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ABSTRACT

This thesis addresses itself to com;uterﬁaided yield-driven design of
microwave circuits using implementable, efficient appro;cimation and optimization
techniques.

Basic concepts of yield-driven design are identified. A number of appfoaches
to statistical design are reviewed. Their features and limitations are discussed. The
recent generalized £, centering zipproach and one-sided £; optimization algorithm are
addressed.

A highly efficient quadratic approximation, specially applicable to statistical
design, is presented. A set_o[' very simple and ee;sy—to-implement formulas is derived.
This approximation technique is also applied to gradient functions of ¢ircuit responses
to provide higher accuracy.

A combined approach to attack largé scale problem is presented, which
explores the most powerful capabilities of ﬁardware and software available to us,
namely, the supercomputer, efficient quadratic modeling, fast and dedicated
simulation, and state-of -the-art optimization. Yield-driven design techniques are
extended to deal with tunable circuits by considering tuning tolerances. A 5-channel
waveguide multiplexer is considered as an example both for the combined approach
and for the treatment of tunable circuits.

Yield-driven design of nonlincar microwave circuits with statistically
characterized devices is considered. Relevant concepts are introduced. The efficient

[ntegrated Gradient Approximation Technique (/GAT) is presented in the statistical

e
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design environm[ént, which avoids the prohiBitive computational burden resulting
f roﬁ;- the traditional pertﬁrbation scherﬁe.

A novel approach, calllred Feasible Adjoint Sensitivity Technique (FAST), is
derived to calculate sensitivities qi‘ nonlinear circuits thgt are simulated in the
harmonic balance enviro.nmé:nt. By taking advantaéé of the computational eff icie}u_:y
ol adjoint analysis and the implemeniational simplicity ol:' the perturbﬁtion technique,

FAST is responsible for great savings of computational effort required for yield-

driven design of norlinear circuits. : S
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INTRODUCTION a4

For more than two decades, we have been witnesses to the rapid progress of
= -«circuit computer-aided design (CAD), from a set of abstract mathematic formulas
understood by only a half dozen university professors to an indispensable and

everyday tool used by virtually all circuit designers. Progress on such a scale is the

AN

result of two major driving forces, namely, active research and development of

numerical circuit analysis and optimization, and the drastic evolution of computer
hardware and software. CAD techniques continue to thrive, penctrating all circuit
design areas with revolutionary ideas.

The monolithic microwave integrated circuit (MMIC) is part of a developing
techpoiogy. The major difference between MMIC and its previous generation, the
hybrid microwave integrated circuit (MIC), is the following: MMICs allow various
active and passive circuit elements, such as transmission lines, resistors, capacitors,
inductors, field-effect transistors {(FETs) and diodes of many types to be integrated
onasingle chip, performing certain functions, such as amplification, mixing, filtering
and phase-shifting. The MIC technology, however, is to mount active circuit
elements and other components, for example, chip capacitors, on a diclectric substrate
with previously fabricated transmission lines and other elements, In MIC engineering,
tuning is possible by changing the physical _dimensions of elements or even by
substituting one FET for another. But for MMICs, there is no opportunity for device

replacement and very limited scope for circuit tuning.
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'i'he traditional “performance-driven” design is considered adequate enough
for MICs. This is because of the ability to replace devices and to tune circuits to
counteract tolerance effects. The final production yield after tuning can be
dramatically increased from the yield before tuning. However, the tuning procedure
based on an individuai circuit Is very expensive and time consuming. It means that
at the expense of higher costs, the final yield can be improved by tuning.

Because there is essentially no tuning allowed in MMIC production, imposing
performance-driven design can lead to very low yield even for quite modest circuits-’
and, consequently, to prohibitive costs. A different design approach, called "yield-
driven” design or statistical design, is necessary for MMIC. Yield-driven design takes
uncertainties, such as process tolerances, environmental fluctuations, model
inaccuracy, etc., into account 10 maximize manufacturing yield.

‘C‘,Vrnpared with digital circuit simulation, microwave circuit simulation is far
more involved and complex because of the analog nature of such circuits. Microwave
or analog circuits can have many different types of elements and most of them usually
have continuous value distributions. Circuit responses are also continuous functions
which demand considerable computational effort to solve. Simulation of nonlinear
circuit responses is even more computationally intensive since it requires iteration.
In yield-driven design, multiple sets of circuits, sometimes, a quite large number of
them, need be simulated.

Optimization techniques are often utilized to automate yield-driven design.
Because they are iterative in nature, most optimization algorithms require many
objective function evaluations, each of which is the result of many circuit simulations.

Gradient-based optimization tcchniques demonstrate, in general, far superior
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performance to direct (non-gradient) methods. O"_n the other hand, gradient

“* calculation involves circuit sensitivity analysis.

As a result of many optimization iterations, multiple circuit simulations and

.

sensitivity analyses, and posstble iterative circuit simulation prqcedures, the callective
computational effort creates special difficulties in terms"of‘ profﬁbitive computational
Eosts and lengthy design cyclés. To materialize the yield-driven desigh methodology,
there is still a compelling need to further research and develop computationally
feasible techniques to such an extent that yield-driven design is no longer merely an -
option, but an indispensable and robust tool for circuit designers dealing with
practical circuits.

This thesis is intended to summarize new research results of computer-aided
yield-driven design for microwave circuits. We propose new approaches to push yield
optimization techniques forward to meet the challenges. The thesis consists of 7
chapters.

In Chapter 2, we identify concepts and notation involved in yisld-driven
design. Then, we review some of the most representative approackis developed in the
past and the most recent approaches, Qur emphasis is laid on the approach by Bandler
. and Chen (1989) since it will be used and further developed in succeeding chapters.
The peneral fOf“gfl;l_l:_l_ation of thisapproach, which converts the problem of yield-driven
design to an le\Sptimization problem, is given. We consider the relevant concepts and
definitions used in the on-e—?sided ¢, optimization. A two-stage algorithm to solve the
one-sided ¢, optimization problem is described.

In Chapter 3, we present a highly efficient quadratic approximation technique.

The new approach takes advantage of the maximally flat interpolation and of a fixed
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pattern of 'b.-ase points, thus s_ubstantially reducing computational effort and required
storage. A setof extremely simple formulas to calcuiate model coefficients is derived.
Moreover, this approach’\is extended to apbroximate gradients of circuit response
functions. The elegance of this approach is its conciseness aqg:‘l applicability. High
efficiency and {‘easibilityfﬂfifor yield-driven design are demonst:;ated by the results of
yiéid—drivcn circuit design.

Chapter 4 deals with statistical design of tunable circuits with tuning
tolerances. The issue of statistical design of large scale circuits is also addressed. We.-
propose a com binefi approach integrating the use of supercomputer, efficient
quadratic modeling, and dedicated simulator. Modern supercomputers have found
valuable applications in microwave circuit CAD with attractive performance-to-cost
ratios. Our software, which carries out statistical design' of microwave multiplexers,
has been developed for the supercomputer. The computational results of a 5-channél
multiplexer design performance on the Cray X-MP are reported in the chapter.

Chapter 5 offers the first comprehensive demonstre{ﬁon of yield-driven design
of microwave circuits with statistically characterized devices. Efficient harmonic
balance simulation is explored. A powerful gradient approximation technique, called
{GAT, is introduced to avoid extremely expensive computational effort required by
the traditional perturbation method. Large-signal FET parameter staﬁstics are fully
facilitated. Extensive numerical experiment directed at yield-driven design of a FET
{frequency doubler verifies our approach.

Chapter 6 hrescnts a high-speed gradient calculation techq?que for microwave

nonlinearcircuits operating within the harmonic balance simulation environment. The

technique, called FAST, is implementationally feasible for truly general-purpose

4
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nonlinear circuit CAD, c..ombining the efficiency and accuracy of the adjoint
sensitivity analysis with the simplicity of the perturbation g\cthod. Through =5,
numerical experiments, the substantial advantages of FAST over other gradient
calculation approaches have been observed.
We conclude in Chapter 7 with some suggestions for future research.

The author has contributed substantially to the following original

developments presented in this thesis:

(1) An efficient quadratic approximation technique for statistical design.
(2) Extension of yield-driven design to tunable circuits with tuning tolerances.
(3 A combined approach using supercomputers, response approximation, and

dedicated simulator, to statistical design of’ large scale circuits.

{(4) A first integrated treatment of yield-driven design for nonlinear microwave
circuits in the harmonic balance environment.

{5) A gradient approximation approach suitable for statistical design,

(6) A new, efficient, and easy-to-implement sensitivity analysis technique of

nonlinear microwave circuits and its application in statistical design.
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REVIEW OF STATISTICAL DESIGN APPROACHES AND OPTIMIZATION

TECHNIQUES

2.1 INTRODUCTION
The use of optimization techniques can be traced back to the very first
development of circuit CAD. Since then, due to design of more and more complex
-- circuits and the enormous computational power available, the increasing demands
have made optimization techniques widely adopted as primary tools in circuit CAD
programs.

The traditional circuit design is the so-called nominal design that focuses on
the improvement of individual circuit responses of interest. In reality, however, it is
impossible to manufacture a circuit with exact designed parameters for the following
reasons: the existence of uncertainties and tolerances inherent in the manufacturing
process, the inaccuracy of mathematical models to approximate the real physical
behaviour of circuit elements, etc. Recognition such fluctuations in the
manufacturing environment and designh process leads 10 the approach of yield-driven
circuit design. The nature of yield-driven design suggests that it can be converted to
an optimization problem, where the objective is no longer to improve individuai
circuit performance, but to increase the estimated manufacturing yield. Yield-driven
design has been given much attention for more than two decades. Many approaches
have been derived. There is a wide range of literature. A special issue of the [EEE

Transactions on Computer-Aided Design on Statistical Design of VLSI Circuits Edited
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by Strojwas and Sangiovanni-Vincentelli {1986) was published. There have been
many CAD books and dedicated chapters on this subject (Strojwas 1;987, Soin.and
Spence 1988, Ladbrooke 1989, and Vendelin, Pavio and Rohde 1990).

First, in this chapter, we introduce notation for circuit parameters, design
variables, and their statistics. Circuit simulation and response calcﬁlation are
addressed. Relations between response functions, design specifications, as well as
error functions are discussed. The concepts of circuit outcomes, nominal values,
tolerances, and manufacturing Yi;ld are identified. Then, the formal description of”
yield-driven design is presented. Various problems arising from statistical design are
also described.

Af}'review of a number of approaches to yield-driven design is given. We
describe in seme detail several methods which represent many _;}_gars research on this
subject.

Finally, we present the generalized &, centering approach (Bahdler and Chen
1989) and elaborate on a special case: the ¢, approach. We concentrate in detail on the
one-sided £, optimization problem and its implementational aspects because it will be
used inour approach to yield-driven design. The basic concepts, relevant definitions,
and mathematical formulation of the ¢, optimization problem are presented. A two-
stage algorithm combining the trust Gauss-Newton method and the quasi-Newton

method is outlined.

-
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2.2 NOT{\T[ON AND FORMULATIONS ]

In order to describe the formulation for yield-driven design, we will give

relevant definitions and introduce usefu! notation.

2.2.1 Circuit Parameters, Design Variables and_ Their Statistics
The circuit considered will have a fixed topology a.nq}:nown component types,

that is, the structure of the circuit is not an object of design and the components
involved have the proper, mathematical models to approximate their behaviour. A~
given set of parameter values will determine the performance of the circuil. The
parameter values may be traditional discrete elements, such as resistors and capacitors,
device parameters such as coefficients of characteristic equations of a FET model,
geometrical dimensions such as the width of a microstrip line and the gate length of
a FET, as well as manufacturing parameter$ such as the permeability and conductivity
of the material. Other controlling operational and environmental factors, such as bias

voltages and the excitation level, can also be included, We use

¢, |
é,

$a| " @2.1)

2

to denote this set of values where subscript N is the total number of parameters.
Relationships between these parameters can Le very complicated. (1) A
hierarchical structure among the parameters may exist. For example, the actual

process parameters are defined, however, the circuit is simulated using equivalent
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circuit models. A mode! is needed to convert pr:t:)cess level parameters‘. to the
equivalent circuit parameters. (2) Some of parameters n;ay be fixed or discrete for
certain reasons. (3) Some of the parameters may be correlated because they are
controlled by a group of lower level parameters. For instance, a number of equi\.lralem
circuit parameters are controlled by a group of common process pararﬁeters.

In a practical design process, only some of the ¢ are considered as designai_:_fe.
However, we shall assum.a that ¢ are all design variables unless otherwise stated.\lw[t
is 4lso physically meaningful to;lassume that design variables are independent.

In the classical design problem we are interested in finding one single point

{circuit) in the design variable space which satisfies the design specifications. This

kind of solution is impractical from the manufacturing point of view since there is a _

number of factors which influences the performance of a manufactured design.
Among these factors are: (a) manufacturing tolerances, (b) model uncertainties, (c)
parasitic effeets, and (d) environment fluctuations.

Due to the foregoing uncertainties, the parameters of actually manufactured
circuits are spread over a region. In the following, we use ¢ to denote a
manufactured circuit. Suppose the probability density function (pdf) of ¢ is p(é).
in addition to the generic function form, two sets of parameters are needed to
describe the probability density function. The first set ¢° contains the nominal
values, also called the nominal design or nominal circuit in circuit design. The second
set of parameters can be tolerance extremes for uniform distribution, standard
deviations associated with normal distributions, and correlation coefficients for joint

distributions. We use



ca |, -

to denote this set of additional parameters. ¢ may have a higher dimension than ¢
since more parameters are needed to describe asymmetrical and correlated
RN

distributiq_ns. Now, the augmented form of the probability density function of ¢

becomes

p($, ¢, €. (2.2)

The tolerance region is determined by the probability density function and circuit

outcomes are always fall into it

$ € R, o), (2.3)
where R{¢°, <) is the tolerance region. In the following, we may use p(é), p(¢, ¢°)

or pl$, ¢°% € to denote the probability density function according to different

circumstances.

2.2.2  Circuit Simulation
Circuit response calculation usually involves a two-stage process. First, the
circuit is simulated by solving a set of circuit equations
pz, ¢) =0, (2.4)
where z, the solution of the equations, is a vector usually consisting of node voltages,
branch voltages, branch currents, etc. In general, solving (2.4) involves systematic

approaches to circuit analysis (Chua and Lin 1975, Viach and Singhal 1983). This set



0

12
of circuit equations can be linear, nonlinear, differential-integral, or mixed. The
circuit equations c?an also be based on nodal, l.oop, tabular, mixé& analy§is, etc.
Then, responses of desigﬁ interest are calculated from the simulation results

of (2.4). The responses are denoted by

[ F ) |
Fy($)

F(¢) & ) , (2.5)

| Fu(9) |
where M is the number of responses considered. In additionto ¢, F($) isa function
of z, which is intentionally omitted from F(¢)} to avoid complexity.

Consider a voltage amplifier circuit. The response of interest is the voltage
gain G.. First, a set of nodal equations can be set up

Y()v=1, (2.6)

where Y(¢) is the nodal admittance matrix whiéh is assumed to exist, ¥ the nodal
voltage vector and / the nodal current excitation vectorﬁWe need to solve

pV,$) =YW -TI=0, 2.7)

Then, G, is calculated from the voltage at the output node and the input voltage.

2.2.3  Design Specifications and Error Functions

In circuit design, specifications are used to describe the desired performance.
Specifications are usually given in a set of discrete values. These values are functions
of independent parameters, such as frequency, time, temperature, input power level,

ete. (Bandler and Rizk 1979, Bandler, Biernacki, Chen, Song, Ye and Zhang 1990 and
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W
1991a). We use ¥ to denote the inde‘;‘pndent parameters. Specifications, denoted by

- S(¥), are arranged as the vector

S
g

[ $19) |
5,(9)

S(¥) 2 ) R (2.8)

| L)

where L is the total number of specifications imposed. For simplicity, if we omit ¢

in (2.8), then

Ssa | | (2.9)

S
L™t ]

Specifications can be of the following forms: (1) an upper specification which
requires the response be below it, (2) a lower specification which requires the response
be above it, and (3) upper and lower specifications which require the same response
be between the two. To distinguish upper and lower specifications, we introduce
subscripts « and !/, that is, S,; and S;;. For example, an amplifier is to be designed
to meet a set of predetermined frequency specifications and, at the same time, to
exhibit stable responses in a particular temperature region (Bandler and Rizk, 1979).
A typical graphical presentation of such a case is shown in Fig 2.1. Two independent
parameters, temperature and {requency, are involved to define the specifications,

For the case of upper or lower specifications, we define the error functions

as



0

response

Fig. 2.1

14

frequency

Upper and lower specifications for an amplifier to be designed to operate
over a specified temperature range (Bandler and Rizk 1979).
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o - C’u,'(¢) Q& wy,; (Fm(é) = Su:' ).
(2.10)

1<msM, l<is<l,

or Lo

e} & wi(Sy; - Fr(d)),
(2.11)
lemeM, 1<js<lL,
wherg/?%;vu; and wy; are nonnegative weighting factors. Subscripts #1 and { (or j) may
be dilfferent, if upper and lower specifications are imposed on the same response. In
such a case, §,; and SU (i # j)and F,(¢) are the corresponding specifications and_‘
response. However, m just indicates i1s position in (2.5) and is not necessarily equal
o either i or j. A positive(non positive) error function implies that the corresponding
specification is violated(satisfied).
To unify indices of error functions, we assemble all error functions resulting
from (2.10) and (2.11) in a vector
[ ey(9) |
eq($)

ed)y = | = . (2.12)

GL(¢)
The acceptable region R,, with respect to a set of given specifications, is defined by

R, 8141 e#) < 0} (2.13)

2.2.4  Yield Estimation
There exist two categories of approaches to yield estimation, namely, the
geometrical (or deterministic) method and the Monte Carlo {or statistical) method.

The geometrical method considers a continuous spread of parameter values.
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-“The typical formula to evaluate the yield for the geometrical method is

¥d°, €) = j K)p(é, &, 0dé . (2.14)

where function f{¢) is the acceptance index defined by the following

1 i) <0
K$) = (2.15)

0  otherwise,
and p($, % © is the parameter probability density £ unction.
The Monte Carlo method utilizes a number of sample points generated”

according to the given probability function of circuit parameters.

i a ad
¢ _¢ A¢1 (2.16)

FeRr e, i=1,2,... K,
where K is the total number of sample points. These sample points represent circuit
outcomes in the manufacturing process. We will refer these sample points as
statistical outcomes. For the statistical method, the manufacturing yield can be

estimated by the following

K -
Y(g®, €) = % Y 1(8°). @.17)

in}

2.2.5 Yield-Driven Circuit Design

An important problem in yield-driven design is design centering (Bandler and
Abdel-Malek 1978, Bandler and Kellermann 1983). The purpose of design centering
is to enhance yield by optimizing only nominal parameters ¢° and keeping the
tolerances fixed. This is a special case of statistical design. The fixed . tolerance

problem has its practically meaningful appiication when the manufacturing procedure
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always exhibits limited precisior as a constant background and model inaccuracy is
known. The estimated yield is directly or indirectly used as the design objective. The

general formulation to solve such a problem can be stated as

max 1y(¢°) = j 1$)p(g, ¢°, €) dé (2.18)
#° -0

for geometrical approaches, or

K
max ¥(¢%) = L ¥ 1) (2.19)
o K i3

for Monte Carlo approaches.

For some other cases, it is possible to influence tolerances by adjusting the
manufacturing process. Presumably, the smaller the tolerances around a valid nominal
design are, the higher the yield is. However, tightening tolerances will result in
increased manufacturing cost. Another type of problem involves the design of
tolerances. Such a problem _ 1s known as optimal tolerancing (Bandler and
Abdel-Malek 1978), optimal tolerance assignment (Karafin 1971, 1974), or the
variable tolerance problem (Bandler and Kellermann 1983). In such cases, the
parameters in ¢°, along with those in €, are considered as optimization variables.
The objective function consists of costs which reflect assigned tolerances. A yield
figure should also be attached as one more design constraint to ensure the desired

* yield. The typical formulation is

minimize C{¢%, ¢),
¢ e

. (2.20)

subject to

Y(¢%€) > Y,
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where ¥ is a yield specification. When a 100-percent yield is required,_ this problem
becomes the worst case design problem and the formulation corresponding to (2.20)
is
minimize C(¢°, €),

e

subject to
e¢) <0,V E R,

(2.21)

where R, is the tolerance region.

2.3 REVIEW OF APPROACHES TO STATISTICAL DESIGN
The statistical design approach was originated in the early 70's. Among others,
Karafin (1971 and 1974), Butler (1971), Pinel and Roberts (1972), Elias (1975),
Bandler (1972,“.;1973 and 1974}, Bandler, Liu and Tromp (1976) are pioneers making
fundamental cﬁntributions to the research. Then, many others, Director and Hachtel
(1974, simplicial approximation), Soin and Spence (1978, the center of gravity
method), Bandler and Abdel-Malek (1978, updated approximations and cuts), Polak
and Sangiovanni-Vincentelli (1979, outer approximation), Tahim and Spence (1979,
the radial exploration approach), Antreich and Koblitz (1982, design centering by
yield prediction), Styblinski and Ruszczynski (1983, stochastic approximation),
Singhal and Pinel (1981, parametric sampling), Bandler and Chen (1988, generalized
¢, centering), Biernacki and Styblinski (1986, dynamic constraints approximation),
Severson and Simpkins (1987, worst case methods via Hadamard analysis), Purviance
and Meehan (1988, sensitivity figure for yield improvement), Vai, Prasad and
4. Meskoob (1990, yield optimization through simulated annealing) have made

substantial further contributions. In this section, we describe several representative
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approaches.

2.3.1  The Stmplicial Approximation Technique

We examine the simplictal approximation technique of Direcior and Hachtel
(1977}, and Brayion, Director and Hachtel (1980). Their method is a geometric based
one which uses the simpler expressions to approximate the acceptable region.

For a given acceptable region R,, the boundary of it is defined as
OR, =14 |¢(@) <0,Vi and gd) =0,3j, 7, je,2,.., L0, (222)

Given a set of m (> n + 1) points on boundary 8R,, a group of (n-1)-dimensional
simplices can be obtained. The simplicial approximation 10 R,, denoted by }i‘,, isa
polyhedron whose faces are (n-1)-dimensional simplices. A procedure was suggested
by Director and Hachtel (1977) to obtain a convex hull which forms such an

approximation to R,. Specifically, the simplicial approximation is defined by

Ry =g Imé<bi=1,2.,N), (2.23)

where the n; are outward pointing normals to the bounding hyperplanes defined by
n points on 9R,, the & are the distances between these hyperplanes in the
approximation and the origin, and Nf 15 the total number of hyperplanes. When
obtaining a simplicial approximation, we can find an estimate of the new nominal
point by determining the center of the largest hypersphere inscribed inside of the
polyhedron. A linear programming approach is recommended o {ind the center of
the largest hypersphere.

To improve the simplicial approximation, more and more points on the
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boundary should be found to expand the polyhedron. Each of these points is found

along the outward normal direction of the largest face extending from the midpoint

[t
the same face of the current polyhedron. The nominal point is also updated when a

new approximation is available.

A simple illustration of the simplicial approximation is given in Fig. 2.2.

Further development based on the simplicial approximation approach has been
made to include arbitrary statistical distributions by Brayton, Director, and Hachtel
(1980}, and 10 allow the use of muliiple criterion optimization for yield by Lightner-
and Director (1981). The simplicial approximation approach is based on an essential
assumption of a convex acceptable region. This assumption limits its application
because determining whether or not a given problem has a convex acceptable region

is very difficult by itself,

2.3.2 The Center-of-Gravity Method

Soin and Spence (1980) proposed to use Monte Carlo analysis to constitute a
random sampling, or statistical exploration, of the tolerance region. Following Monte
Carlo analysis, which identifies each circuit outcome as *pass’ or fail’ accordingly, the
centers of gr;lvity of both the pass and fail outcomes are determined, The center for
pass(lail) outcomes, denoted by GP(GI) , is simply the arithmetic mean of values of the
coordinates of pass(fail) circuit outcomes. Then, a new nominal point along the
direction fr0'n1 Grio G!, is found so that this point has a higher yield than the previous

nominal point. The proposed relationship between the old and new nominal points is

brow = ota + NG, - G). (2.24)

The way to calculate the step size, X, is very decisive in determiaing the
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acceptable region Ry M

Fig. 2.2  Illustration of the simplicial approximation approach (Director and Hachtel
1977).
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compultational effort needed for the en\gire process. A rulg for the choice of A is
derived for a very restrictive case wherc‘:‘\i 00% yield can be achieved with the gen
tolerances and the nominal point with 100% yield must be on the straight line between
Gp and G,. For morc general cases, a more precise rule to choose X is difficult to
obtain. Therefore, several A should be calculated and only the one with highest yield
is selected. Many iterations may be necessary before the estimated yield ;dofas not
increase. Two outcome sampling schemes are developed to achieve a high confidence
tevel at an acceptably low computational cost.

The serious problems with this approach are: (1) the unclear relationship
between the two gravity centers and yield, consequently, the uncertainty to find the
optimal nominal point along the straight line between two centers; {(2) lack of the

automatic procedure to find the step size.

2.3.3 Updated Approximations and Cuts

In this method, proposed by Bandler and Abdel-Malek (1978,1980), a lower-
order multidimensional polynomial approximation is made to the acceptable region,
First, the circuit is simulated at some points, called base points, which are selected
according to a derived scheme to preserve one-dimensional convexity/concavity of
the circuit response function. Then, the coefficients of the approximation function,
a quadratic polynomia! in their case, can be determined by solving a set of linear
equations based on the simulated response values and the coordinates of the base
points, To prevent possiblc loss of accuracy at some points considered as very critical
in worst case design, multiple regions around these points are suggested be

approximated individually. ltis also necessary to update the approximation functions
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as the no-minal point mo;:es.

An analytical approach to the evalvation of yield and yield sensitivities is
proposed based on computatioq of the hypervolume of the intersection of the non-
acceptable region and the tolerance region. The hypervolume formula is derived from
linear cuts of the tolerance region. The linear cuts are functions of the nonlinear
constraints defining the boundary of the acceptable region. The scheme to construct

the linear cut from the linear or quadratic constraints, which approximate the original

expensive nonlinear constraints, is given. Sensitivities of the yicld estimate are also’

available to be used in a gradient-based optimization algorithm.

2.3.4  Stochastic Approximation
Styblinski and Ruszczynski (1983) found an analogy between statistical design

centering and the problem of finding the maximum of the regression function

max | Y(¢") = J.I(tﬁ)p(ﬂ)dﬂ = EU($)} ¢ {2.25)
¢ -bo

where ¢ is an n-dimensional random variable with zero expectation, the outcome
¢ =¢° -0, and p(9) is the probability density function of #. It is evident that
(2.25) can be obtained by redefining the origin of the parameter space.

The stochastic approximation approach, then, is used to solve the problem in

(2.23). The following iterations are used

0 o
Py = 9+ Tedy
(1) (2.26)
de=(1 -pddgyy + ok, Osp sl
where k is the current iteration, £, an estimate of the gradient of Y(¢"), and7, — 0

and g, — 0 are non-negative coefficients. The significantadvantage of thisapproach

J
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2
is that the gradient of,igji"e\l.d, &, can-.be estimateq based on only one outcome point.
Formulas to gé’nerate 7, and pg are given.

From the example given by the authors, a dramatic yield ingrease 1s observed
during the first several iterations of the optimization process. It is suspected that the

selected starting nominal point out of the acceptable region might contribute to the

fast initial convergence, The algorithm exhibits slow convergence when close to the

solution.

"
i , }
Like many stochastic algorithms, this method may suffer from very slow’

. convergence rate when approaching the solution. Another limitation of this method

is that the gradient evaluation restricted to differentiable functions.

2.3.5 Parametric Sampling
The key principie of the approach due to Singhal and Pinel (1981} is to replace
the original probability density function by some other density function

" - | I:I(cﬁ )%]h( $, 8)d¢ (2.27)

-0 L3
where (@, ¢°) is a chosen sampling density. #($, ¢°) can be arbitrary except for the
requirement that i{g, ¢°) # 0 whenever 1($)p(¢d, 1¢°) # 0. The corresponding Monte

Carlo version of {(2.27) is

¥4°) = i,}% !(es")M -1 ff(é")ww') (2.28)
Kid WYl Kia

where qSi are sample points generated from the sampling density h(qﬁi) rather than the

component density p(nﬁi). The weight factors
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wg) = 28D
)

compensate for the use of a different density function.

The Monte Carlo analysj§ i5 carried out once only using a sampling
distribution #(¢'). The sampléli__statistical outcomes and the circuit responses are
stored in a database. The aci\\\:'antage of the parametric sampling approach; is that no
new circuit simulations are required during the optimization if the tolerance region
does not move out of the territory of the database. However, when the optimization.-

leads some outcomes out of the database, a dynamic updating scheme may be

necessary to enlarge the database.

-t

2.3.6 Sensi;i“\}ity Figure for Yield Improvement .

Purviance and Meehan (1988) introduced a sensitivity {igure for use in
gradient optimization. The main hypotﬁesis of their approach is that use of this new
Sensitivity figure in a gradient-based optimization process will result in a circuit
design with improved yield. ”

Suppose that the circuit performance of interest is F(¢). The sensitivity to a

parameter ¢; is calculated as (Gupta, Garg and Chadha 1981)
T(F, ¢) = LI (2.29)

The response lunction is first normalized with respect to the nominal point and the
tolerance extremes such that the normalized nominal point is at the origin and the
normalized tolerance extremes are -1 and 1. Then the function is expanded as a

polynomial function at the nominal point
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F@® =~ ¢@
N N N R (2.30)
4 8o + E a;¢i + E ag‘“j¢:¢j + i _2 aquk¢;¢j¢k MIETER

il ili.l ‘Ijlk_-l

where 551- stands for the normalized variable. Define 5(3]-) as the average value of g(&)

with respect to all the parameters except ¢;, that is

1 "
209 = jg(mpccé,....,qf»,-_l.as,-,l....,¢N)d¢1md¢.-_1a'¢,-*,---dqu. (2.31)

~1
by

where p(q-ﬁl,...,t;-tv,-_l,t},-,,.....&ﬁ,v) is the probability density function of al! the

normalized parameters except ¢;. Notice that an assumption made is that it is possible

“to separate ¢; from the probability density function of ali parameters. The derivative

of the average performance function value is given by

84 -ai%p(él,...,&;_l,35,;1,.~,c'ﬁn)dh---d&,-,ldfﬁ,-d---dEbN (2.32)
8¢,— =0 :'

The derivatives

ag(4;)

C i=1,2,..., N,
39;

are used .15 the: gradient required by the optimizer to influence the optimization
solution.

The problems with this approach are (1) the assumption on the separable
probability density function might not be applicable to many practical problems, and
(2) the unclear connection between the solution found by the proposed sensitivity

figure and the nominal point for optimal yield.
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2.3.7 Simulated Annealing Optimization

Simulated annealing is a technigque for the solution of difficult combinatorial
optimization problems (Kirkpatrick, Gelatt and Vecchi 1983). 1t has been cxtcnsivel;r
used for circuit geometrical partitioning, component placement, and circuit wiring
{Jepsen and Gelatt 1983, Casotto, Romeo, and Sangiovqgni-Vincentelli 1987). Very
recently, this method was applied to modelling of microwave semiconductor devices
(Vai, Prasad, Li, and Kai 1989). Vai, Prasad, and Meskoob (1990) also used simulated
annealing optimization for microwave circuit vield-driven design.

Simulated annealing belongs to the random optimization category. It
conditionally accepts high intermediate values of the objective function to allow
probabilistic hill-climbing. Following the mechanism of the annealing process, a
controlling parameter called pseudo-temperature is used in the optimization
procedure. Pseudo-temperature is set relatively high at the initial stage, then is
decreased artificially and slowly, If the present nerative solution decreases the
objective function vatue, the solution is accepted as in conventional optimization
methods. If an intermediate solution increases the objective function value, then the
acceptance is conditionai on the result of a random experiment such that probability

of the acceptance obeys a Boltzmann distribution

-aAlU,
.
e * (2.33)

where AU, is the difference between two obrjective function values, T} is the current
temperature, and « is a weighting factor. For the same amount of objective function
increment, it is more likely to be accepted at 2 higher temperature than at a lower one.

This optimizatior procedure is applied 10 a distributed amplifier circuit (Vai,
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Prasad, and Meskoob 1990). The objective function for yield optimization is defined
using the predicted yield rate. (Unfortunately, the formulation of the objective
funci'ion for yield optimization is not made available in their paper). Solutions with
improved yield rates are accept;i automaticaily while the acceptance of those with
decreased vyield rates is governed by the Boltzmann distribution. A interesting
advantage of their approach is that they allow the number of stages in the distributed
amplifier as variable,

Simulated annealing optimization requiresextremelylittle computationaleffort:
itself and is very easy to implement. The most distinct advantage of simulated
annealing is its ability to reach the global optimal solution without requiring a good
initial starting point. However, it is commonly admitted that yield optimization
should start with a nominal design which usually is a reasonably good point. The
major drawback of simulated annealing optimization is the very slow convergence rate

when the emperature is low. Very high computational cosis due to repeated circuit

simulation may need be required.

24 THE GENERALIZED tp CENTERING APPROACH
2.4.1 Formulation of Yield Optimization

It is always our desire to convert the problem of yield optimization to a well
behaved mathematical programming problem so that modern mathematical
optimization techniques can be applied. Bandler and Chen (1989) proposed the
peneralized £, centering approach.

In the following the design variables are the nominal values ¢°. K statistical

outcomes are generated from the given probability density function, Although only
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the outcomes ¢' appear in the error functions, they depend on ¢° because the ¢' are

related to ¢°.
After the error vector & for the outcome qS'. has been assembled as

e,(¢')

c1(¢l)

d=| (2.34)

e (8"

where L is the total number of errors considered, the formulation of the objective
function fdi‘f'ldﬁ_‘iin1\ization can follow the procedure described in Bandlar and Chen

(1988). First, we créate the generalized ¢, function v from &,

€ (#)

[ -1
[z: GWW P, if J¢)+ B
gal - (2.35)

L . - .
-[E (-g@NP |2 ifI@) =90

j=1 e

where

J(@#) = Lilgld) = 0} (2.36)

Then we define the one-sided ¢, objective function for yield optimization as

Uy = Yo', (2.37)
iel
where
r=1iv >0} (2.38)

and ¢; are positive multipliers. If the o; were chosen as



o = e (2.39)

then function U(¢®) would become the exact number of unacceptable circuits, that

is,

Uy = number of unac;;:eptable circuits (2.40)

and the yield would be

Yt = 1 - _‘{.(!.?2 (2.41)

The mechanism of the one-sided £, function naturally imitates the relation
between the yield and unacceptable or acceptable outcomes. Now, the task of

maximizing yield Y is converted to one of minimizing U(¢%). That is

minimize U(¢°) . (2.42)
¢u

We use (2.39) to assign multipliers o; at the starting point and fix them during
the optimization process. Then U(¢°) is no longer the count of unacceptable outcomes

during optimization, but a continuous approximate function to it.

2.4.2 Implementational Aspects
Suppose the value of p in (2.35) is chosen as 1. The objective function for the

one-sided ¢, optimization becomes

U = Y T aetd) ey

i€l jes¢)
where «;, / and J(gbi) are dg[‘ined as before. In (2.43), error functions for
optimization are (.‘j('ﬁi). in (2.37), error functions for optimization are v\, The

functions c}(qﬂi) are differentiable, but the {unctions v of (2.35)‘n'my not be.
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However, (2.43) has more error functions than (2.37) if more than one specification
vl

is imposed. o :‘
, : L 3
In the following chapters, we use both (2.37) and (2.43) in the different yield n
optimization problems. To distinguish them, we refer to (2.37) and (2.43) as /e

Implementation 1 and Implementation II of the one-sided ¢, centering approagb;-7\":-?;::4‘-'

respectively. L e

Several reoptimizations with updated «; may be applied to [ :thhcr increase
yvield, Each can use a different number of statistical outcomes or a different set of
outcames.

To summarize the discussion in this section, a!l steps involved in our yield

optimization are shown in Fig. 2.3.

2.3 ONE-SIDED £, MATHEMATICAL PROGRAMMING

A highly efficient one-sided ¢, optimization algorithm (Bandler, Chen and
Madsen 1988) is used to solve (2.37) or (2.43). The algorithm is based on a two-stage
method combining a first-order method, the trust region Gauss-Newton method, with
a second-order method, the quasi-Newton method. Swiléhing between the two
methods is automatically made to ensure global convergence of the combined

algorithm.

2.5.1 Formulation of the Problem
The optimization problem t¢ be considered has the following mathematical

tormulation. Let
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detérmine design specifications,
design variables, statistics of parameters initialization
and the starting nominal circuit ¢

;

-y generate statistical outcomes ¢i, .
for i=1,2,...,K outcome geaeration

#H ..
solve circuit equations P(Z $)=0

circuit simulation &
sensitivity analysis

caléulate reponses Fj(tbi) and VF (')
forj=1,2,...M

update ¢? V
calculate errors ¢; (') and V & @h, error function &
forj=1,2,...,L gradient calculation
adjust ¢0

one-sided ¢

- optimization
O test convergence
next iteration

local minimum of U($Y) reached

Fig. 2.3 Flowchart of yield optimization
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[ /1(x) ]
f 2(1)

flx) = ’ ' (2.44)

)

be a set of nonlinear, continuously differentiable functions. The vector

x=1" (2.45)

RN

— -

is the set of parameters to be optimized. We define an index set which contains
indices of all functions with positive values
Jix) =1j| fix) >0 | (2.46)

Then the one-sided £, optimization problem can be stated as

minimize{U(x) = ¥ j}{x)}. (2.47)

X JE(x)
Substituting either {2.37) or (2.43) into (2.42) gives a one-sided ¢; problem as delined

in (2.47).

2.5.2  Algorithms for the One-Sided 2, Problem

The trust region Gauss-Newton and Quasi-Newtan methods have their own
advantages. The trust region method is supposed to work well at the beginning stage
of optimization,' but to converge \\.:é:ry stowly when close to a singular solution. The

quasi-Newton method has a.fast rate of convergence near a solution but is not reliable
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from a bad starting ppim. By combining them together, we hope to fully explore their
advantages and to effectively avoid their shortcomings (Hald and Madsen 1981, 1985).
Several switches between the two methods may take place and the switching criteria

ensure global convergence of the combined algorithm,

A _Trust Region Gauss-Newton Method {Method 1)

. At the kth iteration with the present solution X, a local bound Ay is chosen.

A1
L

The following subproblem is to be solved

H
minimizezyj

hy  jel

subject 10
_ (2.48)
vz ) TR G2, m,

Y20,
Ak?:h‘:, AkZ-‘h,', i=l,2,...,N,

-

where ]; is the gradient of }:, A standard linear programming algorithm can be used
to solve this problem for k. If k. reduces the objective function of the original
problem, i.c., if U(x; + &) < U(x,), then x, + By isaccepted as an improved solution
to (2.48) and the next iterate starts. Otherwise, this iteration is considered as a failure,
and the previous solution is kept.

The local bound A, should be adjusted in every iter.zlation. The rule for
adjusting A, is based on whether or not the linearized subprot;llem (2.48) is a good
approximation 1o the original nealinear problem in the present trust region defined

by the current local bound A;. A detailed description of the algorithm to control A,

is given by Bandler, Kellermann and Madsen (1987).

WSy
,,\.;-\



A Quasi-Newton Method (Method I} =

This method solves the optimality condition of the one-sided ¢, problem. The

. optimality condition is a set of equations

IIWAGE 35 fix) =0, (2.49)
}E 0

jed,

where J, and J; are defined as

Joaljlfi(x)>01} (2.50)
and

s (i) =00 | @.51)
respectively, and the multipiiers must satisty

12620, Jj€J; (2.52)
These optimality equations result from applying the Kuhn-Tucker conditions 1o the
one-sided £, problem.

The quasi-Newton method is used to solve (2.49). Second-order derivative

information is required, A modified BFGS formula (Powell__ 1978, and Bandler,
Kellermann and Madsen 1987) can be adopted to generate and.l update the Hessian

matrix.

A Combined 2-Stage Algorithm
Based on the theory of Hald and Madsen (1981 and 1985), the algorithm
combines the trust region Gauss-Newton method (Method 1} with the quasi-Newton

method {Method I).

At the beginning, the trust region is used. Additional to the computation of

the trust region method, the preparation for Method Il is also made, which includes
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estimation of active sets Jg in (2.51), estimation of the multipliers §; in (2.52), and
updéting of the approximate Jacobian uéing a modified BFGS formula (Powell 1978,
also Bandler, Kellermann and Madsen 1987).

A switch from Method | 1o Method Il is made if the following cpnditions are

met:

(1) The estimated activg set J‘;‘;l}as been unchanged overa predeternﬁned number
2 of consecutive iterations.
(e

(2) The estimated multipliers corresponding to J, satisfy (2.52).

If Method Il is unsuccessful, then the safe method, Method [, should be used
again. A switch {rom Method Il back to Method I is made if one of the following
conditions is.met:

L]

(1) The contents of either J, or J, need be updated because a function not

included in J; has become zero or changed sign.

(2) At least one multiplier has violated the constraint.
{3) A quasi-Newton step fails to decrease the residual of the optimality equations:
(Ri.y I < 0.999 Ry | (2.53)

Several switches between the two methods may take place until convergence
is reached. This two-stage algorithm will be used in our yield optimization in the

tollowing chapters.

2.6 CONCLUDING REMARKS

In this chapter, we have considered the yield-driven circuit design problem.

The relevant definitions and notations have been introduced. The formulation of the

statistical design problem has been presented. A number of existing approaches to
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statistical design have been reviewed in certain detail. Their individual advantages
and shortcomings have been addressed.

In order to introduce the new resul;'ts preserﬁ;d in the upcoming chapters, we
have emphasised on the generalized £y centering‘approach. Due 1o its important
properties, a special case of this approach, namely, the one-sided ¢, appr}mch, has
been discussed. Two possible implementations of the one-sided £, method have been
identified. A two-stage algorithm combining the trust Gauss-Newton method and the

quasi-Newton method has been outlined.
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EFFICIENT QUADRATIC APPROXIMATION FOR STATISTICAL DESIGN

3.1 INTRODUCT ION \\__» ;/

u ‘
In order to make existing statistical circuit design methods more practically
usable, many approaches have been devised to reduce very costly computational effort

by approximating acceptable regions or circuit responses. Quadratic approximation

has proven suitable and successful (Bandler and Abdel-Malek 1978, Abdel-Malek and_

-

Bandler 1980, Hocevar Lightner and Tnck 1583, and Biernacki and Styblinski l986)
However, the determination of a quadratic model itself for a problem with a large
number of variables may be too ¢xpensive.

For a circuit with 50 elements; the number of coefficients in the quadratic
model is 1326. The calculation of the coefficients in a traditional manner involves
1326 circuit simulations and solving a linear system of 1326 equations. Besides all the
coefficients, the matrix of the linear system requires storage of a 1326 by 1326 array.
Determining a quadratic approximation to the response of such a circuit creates quite
a large prol:)lem in terms of computer time and storage, although the circuit itself may
be of a moderate scale. Therefore, for large scale problems the traditional approachés
that aim to obtain unique quadratic models do not effectively reduce computationa!
costs.

Biernacki and Styblinski (1986) introduced the concept of the maximally flat
interpolation and presented an updating algorithm. The most significant property of

their approach is that the method allows the number of actual circuit simulations

39
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required for an accurate model to be much Iess than that necde& for a full unique
QL:adratic approximation. However, the computational requirement of the method,
especially storage space, is still hi'gh.'
In lhns chépter we substantially enhance the maximally flat quadratic
interpolation. Our approach makes use of a fixed :pauern of points at which simu-

"

lation is performed, resulting in very low computational requirements for both CPU
time and storaze (Biernacki, Bandler, Song and Zhang 1989). The basic concgpt is
reviewed in Section 3.2. Our new approach is described in Section 3.3. Compa;isons'
of the efl’icienc_y of our approach and that of the original maximally flat quadratic
approximation are given in the same section. In Section 3.4, the proposed quadratic
approximation technique is applied to model circuit response functions. A low-pass
filter serves as an example to demonstrate this implementation. In Section 3.5, we
utilize the quadratic approximation to model not only circuit performance functions,
but also their gradients (Bandler, Biernacki, Chen, Song, Ye and Zhang 1991c). . Our
gradient-based optimization procedure, the one-sided £, centering approach (Bandler
and Chen 1989), requires gradient information. Higher gradient accuracy will

improve the overall performance of the optimization process.

Finally, Section 3.6 contains the conclusions.

3.2 THE MAXIMALLY FLAT QUADRATIC APPROXIMATION
A quadratic model in polynomial form to be used to approximate a given
. T .
function f{x), x = [-“1 Xy o .. x,,] , can be written as
n

glxy =ag + Ya;(x -n)+ Y a;lx -5~ ), (3.1

i=] ij=1,i<f
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T, .
- where r = [r1 N r,,] is a'known reference point. The form of the quadratic
function used is similar to that of Biernacki and Styblinski (1986). However, g(x) is
defined here w.r.t. the reference point 7 rather than w.r.t. the origin. Note that the

subscript notation is such that each coefficient can be easily identifig;l with its

corresponding x term, e.g., a;; is the coefficient of (x; - r,-)(xj = 1;). Determining a;

quadratic model is equivalent to determining all its coefficients, which are now

unknowns in (3.1).

-

Suppose that m (m > n + 1) evaluations of f(x) are performed at some points

X, i=1,2,... m. These points are called the base points. Using the values of

f(xf), we set up a system of linear equations

0 2y [ a ] [h 62
Q21 Qo v | '
where a and v are arranged to have the following orders:

a=[a° a . .. a"]T (3.3)

and

V= [ a1 8 - . . Gy 4y 43 . . . G, ]T. {3.4)
respectively. The vectors f; and f, are of dimensions (n + 1) and m - (n +1),
respectively. They contain function values f(x). The matrix Q. i =1,2,is
determi.ned by the coordinates of the base points and of r.

Similarly to the approach due to Biernacki and Styblinski (1986), the reduced
system with variables v is obtained as
Cv=e, (3.5)

where
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C = O - 05,0110, (3.6)
and
e=f,- QZIQH f1- G.7)
WA m< -(-E—tl—)z('}—ﬁ, the above system is under-determined.
Q‘\«_,,

W

When the least-squares constraint is applied to v, the unique solution to (3.5)

can be found as

v = c'(cchyle (3.8)
and a is readily obtained as : ‘
-1 -1 _ .
a=0,/-Q30Qpv. (3.9)
Then v, called the minimal Euclidean norm solution of (3.5), and a give the
maximally flat quadratic interpolation in the form of (3.1) to f(x). The term of the
maximally flat quadratic approximation comes from the mechanism of the least-

squares constraint that forces the second-order derivatives to be as small as possible.

33 APPROACH USING A FIXED PATTERN OF BASE POINTS
3.3.1 Derivation and Algorithm of the Approach

In the original scheme of Biernacki and Styblinski (1986) all base points are
randomly selected. This type of selection allows certain freedom. However, several

large matrices have to be stored and manipulated. For instance, matrix C in (3.6)

n(n + Dm - (n + 1)]
5 .

involved calculations, such as matrix inversion, or equivalent calculations shown in

needs an array with dimension Meanwhile, some fairly

(3.6)-(3.9), are required. Even a circuit of a reasonable size may demand large storage

space and CPU time. Here, we shall propose 2 new approach which is based on a

Pl
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fixed pattern of base points. The regularity of the pattern will greatly reduce storage %
and simplify the calculation of coef i‘icients.
In our approach, only m (n + 1 < m < 2n + 1) base points are used. The
reference point r is selected as the f'irst base point x'. The next # base points are
determined by perturbing one variable at a time around r, i.e.,
. T
x'1=r+[o...op,.o...o],
(3.10)
i=1,2,..., 1,

where B; is a predetermined perturbation. It can be shown that the first {n + 1) base

points lead to very simple forms of matrices Q] and @]} Qy,. They are

[ 0 0 |
14 0
By B,
-1 _L 0 .y 0
0= & G.11)
0
0
LI 1
ﬁ,u ﬂ!l
and
[0 0 o ]
B 0 0 |
0 4, 0 |
Q@i =1 0 0 0o [ 0 (3.12)
0 0 0 |
0 0 0 |
0 0 8, |

Because of this simple pattern they need not be stored in matrix form.

After the first # + | base points, the remaining m1 - (# + |) points follow 1o



44

A . ] L. .
provide the second-crder information on the function. Similarly to the base points

K

defined in (3.10), consecutive base points are selected by also perturbing one variable
at a time. For simplicity, these base points are determined by consccutively

perturbing the variables in r, that is

Z3a3)

where 7; is another perturbation of r, which must not equal £;, and
k=m-(n+1)
Under this arrangement matrices @,, and @y, have regular structures. Substituting

@,, and @, into (3.6), the matrix C takes a concise analytical form

(- B

C = ('7,' - JB,')'Y,' (3.14)

o O 0 O O o o O

(f = By O

~and the vector ¢ can be expressed by

—

W

)
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- 0
B B
- X 0 0
B By
s 0
/. ] 0 / {3.15)
2 - 1. .
- X 0 \
lel .B"
) 0
0 0
- ML
By By, |

Substituting (3.14) and (3.15) into (3.8), the coefficients are determined by

1 S T A WA At W
% - B 47 B

:l ’ (3.16a)

a; =0, ekl 0. 0, {3.16b)
and .
aij=0, P+, L, i=1,2,...,n. (3.16¢)
The coefficients a, and & are easily;obtained as
ag = f (x!) (3.17a)
and
g = L/ (£ '- [ D) By o i=1,2,...,n (3.17b)

Bi

The maximally flat quadratic interpolation, using a fixed pattern of base

points defined here, has an interesting property. All the coefficients of the mixed

terms, aj; fori # j are conveniently forced to be zero because no related information

can be extracted from the fixed pattern. Any of the @;'s in (3.16a), i<k, can be
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rnonzero because double perturbations are made along a straight line parallel to the ith
- axis. If a third perturbation is made along the same line, it can be shown that theC
matrix will not have full row rank, and, therefore, the third pe.‘;ti;:l;‘ation does not
provide any extra useful information for the quadratic model. it should be noted,
however, that the fact that the mixed term coefficients become zero is a consequence
of the maximally flat idierpolation.

In a situation where the mixed terms are important, this approach can easily

be modified by introducing an appropriate transformation of variables. Insuch a case -

the perturbations can be carried out along lines not necessarily parallel to the axes.
The proposed fixed pattern of base qgints can thus be generalized while preserving
the main advantages of our approach.

Theoretically speaking, the efficiency and simplicity of our models are
achieved at the expense of some model accuracy. It should be stressed, however, that
even so-called exact circuit simulation carries certain approximations of actual
physical behaviou:r. Therefore, our approach provides an excellent modeling
technique for many practical problems, especially when a very high accuracy is not
really necessary. The method is suitable for 2 maximum number of base points of
2n + 1, It takes advantage of the concept of maximally flat quadratic interpolation and

thus any number of base points between #+1 and 21 +! can be used.

3.3.2  Compuiational Efficiency
A dynamic updating scheme was proposed by Biernacki and Styblinski (1986),
which allows the existing model to be revised when a new base point is added.

However, this simple updating may not be suitable if some of the base points are far

e}
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from the region of interest. To maintain accuracy, it may. be desirable to disregard
such points. Our method can be used to rebuild the model very efficiently whenever

_itis needed. However, it can also be used within the concept of dynamic updating
B

=

provided that the base points are selected in the aforementioned manner and their

number doe§ not exceed 2n+1. i

In this"j;ection we compare computational efficiency of our approach with that
of the originall;nethod of Biernacki and Styblinski (1986). To unify the comparison
we assume that exactly 2n +1 base points are used to build the model. In our approach
the required storage is reduced to a minimum. Only 22 perturbations and2n +1
function valués are to be stored. No matrix manipulations are needed. All

calculations are simplified to (3.16) and (3.17). The operational count to calculate all

coefficients using this pattern can be merely 4n. In this new apbproach, the storage

requirement and computational count vary linearly with the number of variables. For

the originél method of Biernacki and Styblinski (1986), at least, all base points,
matrices @,; and C are stored in three arrays with dimensions nx{2n+1},

(n+l)x(n+1) and nxnx(n+1)/2, respectively, and the computational count is

0(.-14}. For the original approach, the storage requirement and computational count
vary cubically and guarticly, respectively, with the number of variables. For a circuit

with 50 elements and m chosen as 101, we need storage consisting of two arrays of 101
and 100, and computational effort of 200 multiplications. The original approach
would require storage consisting of three arrays of 50 by 101, 51 by 51 and 50 by
1275, respectively, and incomparable computational effort. .

Statistical design or design centering involves a very large number of circuit

simulations. It is essential to reduce the CPU time due to simulation which usually

'l
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takes a large portion of overall design time. In such design, the trend of ‘the circuit
response hypersurface is much more important than the accuracy of the individual
circuit responses. ‘_:'I‘heref ore, our maximally flat quadratic approximation is capable
of acceleréfing the design process without loosing much accuracy in the vicinity of a
nominal cifcuit. The approximate model is eva_luated at all design outcomes that are
sampled according to the characteriz:ad statistical properties of the variables, such as

means, variances and dependenciss.

34 QUADRATIC APPROXIMATION OF CIRCbIT RESPONSES
34.1 .lmplementation:

The quadratic approximation ;_echnique has been implemented within the
framework of a circuit design program which uses a general-purpose simulator and
implementation I of the generalized £, centering approach outlined in the preceding
section. The individual circuit responses are approximated by quadratic functions.
The reference point is defined as the nominal point. At each iteration, a set of
quadratic models is built: The models are evaluated for all outcomes, i.e, the
statistically sanipled circuits. The objecfive function is calcu_lgted from the resulting

approximate error functions.

3.4.2 Design of a 11-Element Low-Pass Filter

A low-pass ladder filter with 11 elements used by Singhal and Pinel }981, and
Wehrhahn and Spence 1984, shown in Fig.3.1, was used in this example. The upper
specification was 0,32dB in the frequency range from 0.02Hz to 1Hz, and the lower

specification 52dB at 1.3Hz, on the insertion loss. The frequency sample points are
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Fig. 3.1 The LC low-pass filter.



50
{0.02, 0.04, ..., 1, 1.3Hz}. A relative tolerance of 1.5% was assumed for all elements.
Qutcomes were uniformly distributed between tolerance extremes. The starting point
was the result of a synthesis procedure (Singhal and Pinel 19'§il).

Results and comparisons are given in Table 3.1. Implementation I of the
generalized 4, centering approach was used. Two designs within the same '
opiimization environment were carried out. The only difference between the two
approaches was the way of calculating the circuit responses. Actual circuit
simulations were‘ﬁused in t;e first design and our approximation method was utilized
in the second one.. Each design consisted of two successive centering processes shown
as phase | and phase 2 in Table 3.1. Two phases of design with actual simulations
took approximately 158.6 miﬁutes on the VAX 8600 and required 79200 circuit
simulations. The final yield was 63.7%. The very large number of circuit simulations
was due to repeated circuit simulation of 200 outcomes, gradient calculations based
on the perturbation approach, and many optimization iterations. Two phases of design
with our approximation method used only 6.4 minutes and 1357 actual simulations.
The final yield was 79.7%. In all cases the yield values were estimated from 1000
Monte Carlo samples using exact circuit simulations. For the purpose of clarity, the
CPU time needed for thns vield estimation is not included in the aforementioned CPU
times. lnterestingly, for this example, our method not only presented greatly reduced
computational effort as compared with the actual simulation approach, but also
reached a higher final yield. It suggests that accurate, time-consuming exact circuit
simulation does not necessarily result in a better final yield.

While not illustrated in the tabl'é‘ we have used this example to compare the

eff icieﬁcy of our method w.r.t. the original maximally flat approach (Biernacki and
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TABLE 3.1

COMPARISON OF STATISTICAL DESIGN OF A LOW-PASS
FILTER WITH AND WITHOUT QUADRATIC APPROXIMATIONS

LN
s

Nominal Exact Simulation Quadratic Approximation
Component Design
Phase 1 Phase 2 Phase 1 Phase 2
Xi XD Xl .\'.2 X3 X4
X 0.22510 0.22572 0.22512 0.22266 0.21669
Xq 0.24940 0.24903 0.24944 0.25045 0.25131
Xg 0.25230 0.25269 0.25276 0.25268 0.25083
Xy 0.24940 0.24908 0.24882 0.25028 0.24067
Xg 0.22510 0.22568 0.22594 0.22335 0.22120
Xg 0.21490 0.21589 0.21658 - 0.22163 0.23347
Xq 0.36360 0.36313 0.36275 0.36291 0.37008
Xg 0.37610 0.37625 0.37698 0.37938 0.37217
Xg 0.37610 0.37633 0.37561 0.37156 0.38529
X10 0.36360 0.36313 0.36305 0.36226 0.37232
Xy, 0.21490 0.21587 0.21674 0.22168 0.21893
Yield! 54.0% 61.7% 63.7% 70.2% 79.7%
Yiclgtt 54.0% 74.0% 84.5%
Number of Qutcomes 200 200 200 200
Used for Optimization
Starting Point x0 x! x? X3
Number of Simulations 48000 31200 529 328
Number of Iterations 9 7 10 19
CPU(VAX 8600) 96.3min.t  62.4min.} 2.5min. 3.9min.
CPU(MicroVAX) 48 1 min. 312min. 12.3min. 19.5min.}

CPU times do not include yield estimation based on actual simulation.

t The yield is estimated using exact simulation and 1000 cutcomes.

tt The yield is estimated using quadratic approximation and 200 outcomes used
in design.

The CPU time is approximately given by assuming that the speed ratio of
VAX 8600 10 MicroVAX is 5. ‘

t
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Styblinski 1986). Using the same base points and employing the same scheme of
i ~

’Hr"cbuilding the models at each iteration, the original approach required approximétely
5.3 and 8.3 minutes for the same two phases that our method took 2.5 and 3.9 minutes
to finish. It should be noted that in both cases the CPU time needed to build and/or

to evaluate the model constitutes only a fraction of the overall time, thus the

remaining portions are common to the two approaches.

3.5 GRADIENT QUADRATIC APPROXIMATION SCHEME

[n the previous presentation, we have applied quadratic approximation to
circuit response functions. In this section, we utilize an efficient quadratic
approximation scheme to replace the expensive repeated circuit simulations and

rr

gradient evaluations, in order to speed up the process.” The novelty of this utilization

is that not only circuit performance functions, but also their gradients -are- -

approximated. In a gradient-based optimization procedure, such as the one-=sided £,
‘centering approach (Bandler and Chen 1989), gradient information is critical in
determining the direction for optimization iterations to follow, Higher gradient

accuracy will improve the overall performance of the optimization process.

3.5.1 Quadratic Approximations to Responses and Gradients

In most approximation approaches for statistical design, such as Biernacki and
Styblinski (1986) and Biernacki, Bandler, Song and Z..uha'ng (1989}, only circuit
responses arec modeled by quadratic functions. The gradients of the responses are
either not used or their approximate values are calculated by differentiating the

quadratic approximate responses. To further improve the performance of the

1S
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gradient-based yield-driven optimization, more accurate grad‘i_'ems are preferable.

Considcr a response function with n variables. The gradient of the response

isa vector of functions of the same n variables, each of the functions being the partial

derivative of the response w.r.t. one designable variable. In yield optimization we
. -

typically deal with three types of variables, namely, np¢ designable variables xp¢ with
statistics, #ip designable variables xp without statistics, and ng non-designable
variables x5 which are subject to statistical varigiions. Suppose that there arek

responses, R;, i =1, 2, ..., k. The gradients of the responses with respect to the

O

designable variables are

i T
T T
3R, 3R;
VR, = K : , : (3.18)

s
\‘5‘_

s

where x° stands for the nominal values and the dimension of the gradient vector is
(npg +np).

For yield-driven design, circuit responses and their gradients have to be
evaluated at a number of statistical outcomes. éach statistical outcome is generated
ina (npg + 1g}-dimensional space aécording 1o a known statistical distribution and can

be expressad as

0
Xps Xps Axpg
= + . (3.19)
xs xg AXS

where Axpg and Axg are outcome specific deviates from the nominal values. Because
of a large number of statistical outcomes needed for a meaningful yicld estimate the
main saving of the computational effort is achieved by building the models in the

(nps +ng)-dimensional space of the statistical variables (3.19). In other words, we

r—

i
]
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consider (3.19) as the vector X in {3.1), or
x = . (3.20)

Local_ity of statistical spreads assures a good level of model accuracy. The
models are built for the current {optimization spec!if‘ic) nominal point and utilized for
as many statistical cutcomes as desired. In addition to the response functions, each
entry to the gradient vectors can be appro#imated by a separate quadratic function iq
a similar manner as the response functions are. For k responses, thus, there are

totalty kx(1 «npq +np) functions to be approximated, i.e.,

'Ri _
VR,

R, ;
VR, '

Ry
VR,

It should be pointed out that, if the adjoint technique is used, the gradient can
be available at a low additional cost to the circuit simulation, and can be returned
from the simulator regardless of whether it is utilized or not. Therefaore, the proposed
method can not only utilize information that would otherwise be lost, but also allows
for reduction of the mode! dimensionality by #p, as is clearly seen from (3.21).

A general-purpose circuit design program, ca'led McCAE, is under continucus
development in the Simulation Optimization Systems Research Laboratory {SOSRL)

of McMaster University. This program uses proprietary modules of Optimization

. | (3.21).0

J’

\
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Systems Associates Inc. In thns program, the gradient iI{E'Ormation has been made
available. Impleme;nation IT of the generalized ¢, centering approach is used. We
apply our quadratic approximation technique to gradient functions as well,
2(npe + ’?s) + 1 base points, defined by (3.10) and (3.13), are used. An interface has
been devlaloped for the response and gradient approximation module which is very
flexible in dealing with different :types of variables involvp:_gl in-vield-driven design.
Additional to response functions, their gradient f unctions_r{;;e also taken as candidates
o
to be approximated. The same set of 2x(npg +ng) +Ll;bg§e points, defined by (3.10)
and (3.13), is used both for response functions and for their gradient functions.
Again, the reference point is de.:-t.' ined as the nominal point. At each iteration, a set of
quadratic models for both responses and gradients is built. The models are evaluated
for all cutcomes. The resulting quadratic model for the gradient is more accurate than

the one that could be obtained by diff erentiating the quadratic model of the response,

because the partial second-order information is incorporated in the model.

3.5.2 A I3-Element Low-Pass Filter
| The low-pass filter (Wehrhahn and Spence 1984) shown in Fig. 3.2 is

considered, The circuit must meet the specifications: insertion loss less than 0.4dB at
the angular frequencies

{0.25, 0.27, 0.29, 0.31, 0.33, 0.67, 0.69, 0.71, 0.73, 0.75, 0.90,

0.905, 0.91, 0.92, 0.93, 0.978, 0.981, 0.984, 0.986, 0.988, 1},
and greater than 49dB at

{1.04569, 1.056, 1.059, 1.063, 1.0677,‘ 1.071, 1.115).

There are 13 design variables. A normal distribution with 0.5% standard
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Fig. 3.2.  Circuit schematic of the LC 13-element filter (Wehrhahn and Spence 1984).
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deviation is assumed for all variables, The startipg point is the optimal minimax
solution, which has an estimated yield of 33.4%. To illustrate the ef ficiency of the
new quadratic approximation approach, we solve the problem using both approximate

simulations from the quadratic modal-and exact simulations. The final vields for both

N

Ry
appr_o_ziqhes are 75.6 and 80.7%. Computational details are given in Table 3.2, CPU

times for the two designs were 7 and 30 minutes, respectively.

3.5.3 A Two-Stage GaAs MMIC Feedback Amplifier

We consider a two-stage 2-6GHz GaAs__ MMIC feedback amplifier (Vendelin,
Pavio and Rohde 1990). The specifications are a small-signal gain of 8dBt1dB,
VSWR at the input port of less than 2, and VSWR at the output port less than 2.2. The
circuit and the equivalent circuit model for the FET are shown in Figs. 3.3 and 3.4.
It is intended to manufacture high—-volume, i)igh—yield, and, consequently, low-cost

microwave amplifiers. The size of the IC has a strong effect on the cost. Therefore,

we c;)nsider the mean values of most capacitors as fixed to keep the size of the chip
reasonable. The mean value of the gate width is fixed because of the assumed FET
process, but a 3% standard deviation is allowed. We assume that the bias circuit is
well designed such that changes of bias resistor values do not strongly influence the
RF response around the operating point. Therefore, no tolerances are assigned to the
resistors. Two feedback resistors and a forward capacitor are chosen as design
variables. A standard deviation of 2% is assumed for the design variables. For
nominal values and standard deviations of other elements, see Table 3.3. Correlations
among elements are not considered in this circuit.

The first step in the entire optimization procedure is to find a minimax
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TABLE 3.2

YIELD OPTIMIZATION OF THE LC 13-ELEMENT FILTER
WITH AND WITHOUT QUADRATIC APPROXIMATIONS

Parameter  Initial Solutiont Solution't
X1 0.2088 0.2145 0.2205
Xy 0.03594 0.03642 0.03929
Xy 0.1822 0.1800 0.1775
Xy 0.2340 0.2347 0.2266
Xg 0.2424 0.2426 0.2556
X5 0.08776 0.08702 0.0842¢
Xq 0.1333 0.1290 0.1234
Xg 0.3549 0.3535 0.3551
Xg 0.06477 0.06496 0.06381
X0 0.1674 0.1625 0.1561
Xy 0.1422 0.1435 0.1498
Xqs 0.1140 0.1120 0.1098
X, 0.1433 0.1414 0.1303

Yield

Estimate 33.4% 75.6% 80.7%

Number of

Simulations 3780 18200

crU’ 7min. 30min.

t The solution after one phase of yield optimization
 with quadratic approximations.
tt The solution after one phase of yield optimization
, With exact simulations and numerical gradients.
On the Sun SPARCstation 1.

Comments: Normal distribution of o = 0.5% is
assumed for all parameters. 100 outcomes are

used in the optimization,

1000 outcomes are used in the yield estimation.

Parameters are ccaled down by the factor 2, e.g.,
the actual element value of x, is 2rx0.2088.

RN
]
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0.65Z 0.14Z 0.85/Z
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1L1Z - V
=0.16Z S

=0.25/Z

A

RN
Normalized GaAs MESFET model (Vendelin, Pavio and Rohde, 1990). Z
is the gate width in millimeters. 8, =0.17Z, and r = 2.5ps. All resistors are

in ohhms. All capacitors are in picofarads.
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Fig. 34 A two-stage amplifier (Vendelin, Pavio and Rohde, 1990).
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TABLE 3.3

PARAMETER VALUES AND TOLERANCES
FOR THE MMIC AMPLIFIER

Element Mean Standard
Parameter Value Deviation
Z(um) 300 3%

R () 400 0%
C,(pF) 4 2%
R4() 20 i~ 2%
Cy{pF) 10 2%
Rg(0) 145 2%
Ry(1) 2200 0%
Co(pF) 4 2%
R,,(0) 6000 0%

R ,(f2) 500 . 2%

C,5(PF) i0 To2%
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TABLE 3.4

YIELD OPTIMIZATION OF THE MMIC
AMPLIFIER . WITH AND WITHOUT
QUADRATIC APPROXIMATIONS

- Parameter  Initial Solutiont “Solutiont?

R, 201,02 207.63 207.73
R, 504.82 627.94 630.53
C3 5.3501 - 2.7742 2.7563

Yield

Estimate 32.1% 77.8% 77.3%

Number of

Simulations 1380 6400

cru’ 9min. 39min.

! The solution after one phase of yield Optlmxz':uon
with quadratic approximations. r

tt The solution after one phase of yield optimization
wnth exact simulations and numerical gradients.
* On the Sun SPARCstation 1.

Comments: 100 outcomes are used in the optimization.
1000 outcomes are used in the yield estimation.
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solution as the §tarting point for yielci—driven design. The minimax soluti‘;m is found
and listed in Table 3.4. The vyield estimate at this point is 32.1%. Two yield-driven
optimization processes are carried out with and without the new quadratic
approximation to both the responses and their gradients. Two solutions and the final
yield are given in Table 3.4. The actual ields based on a Monte Carlo analysis of

1000 outcomes are 77.8% and 77.3%, respectively. The CPU times are 9 and 39
minutes. : Ty
3.6 CONCLUDING REMARKS

| =< In this chapter we have presented a highly efficient quadratic approximation
tec‘l;nique. The new approach takes advantage of the maximally f !_at'interpolation and
of a fixed pattern of base points, thus substantially reducing th;.compumtional effort
and required storage. A set of extremely simple formulas to calculate model
coefficients has been derived. The elegance of this approach is its conciséness and
applicability.. The very strong impact of our approach on the feasibility of statistical
design of larger circuits should not be underestimated.

This app-roximation approach has been applied either to circuit response
functions only, or to responses and their gradients simultaneously. For the first case,
the results of a statistical design example has proven very efficient. For the second
case, it is found that our approach can be especially suitable for gradient-based yield-
driven design, making the model more accurate and robust. A standard test p;'oblem
and an MMIC amplifier desig‘._rllh‘illustrate the merits of this implementation,

It should also be noted that our approach is suitable for a large variety of

applications where a large number of expensive simulations is involved.
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SUPERCOMPUTER-AIDED STATISTICAL DESIGN OF A LARGE SCALE

CIRCUIT — A 5-CHANNEL MICROWAVE MULTIPLEXER

i ~

4.1 INTRODUCTION

The advantage of modern technology has been creating increasingly complex
circuits. The demand for reliable design which leads to shorter development time,
requires more and more accurate, at the same,ﬁme, more and more compq__mtional!y
involved models for circuit elgmenls and devices.: Statistical design of large scale
circuits presents a great challenge. |

Design of microwave multiplexers is a large scale problem. Contiguous-band

multiplexers consisting of multi-cavity filters distributed along a waveguide manifold

are used in satellite communications. The problem of optimal design and manufacture

of such circuits has been of significant, practical interest {Atia 1974; Chen, Assal and

Mahle 1976, Chen 1983 and 1985) for a number of years. There has been systematic
research to provide very comprehensive simulation, sensitivity analysis, and
optimization design tools for these circuits' {Bandler, Kellermann and Madsen 1985
and 1987, Bandler, Che.;l, Daijavad and Kellermann 1984 and 1988, Bandler, Daijavad
and Zhang 1985 and 1986, and Bandler and Zhahg 1987).

Bandier, Biernack'i, Chen, Renault, Song and Zhang (I988)'Jdevelopcd a
combined approach to large scale circuit statistical design. They attacked this difficult
_problem by: (1) the use of supercomputers, (2) efficient approximation to circuit

responses, and (3) the use of fast, dedicated simulation techniques.

65



66

In the manufacture of electrical circuits, tuning can be a/q-;essennal and
e

effective part of the production process to improve circuit performance and to

increase the final manufacturing yield. Through adjustment of circuit components

to meet design specifications, tuning counteracts collective effects caused by the
tolerances inherent in the production process, model inaccuracy and other factors
ignored in the design process. In general, tuning requires simultaneous adjustment of

several elements to reach a satisfactory result. Even when the number of tunable

elements is moderate, the effort'made to find the right combination of elements and

h\ -

amounts to be adjusted is enormous. This leads to the most/zipparent problem with the
tuning process: the enormous amount of time required. In the tuning process, the
amount of tuning is also subject to imprecisions of adjustments and uncertainties of
circuit models. This chapter also addresses the issue of the application of statistical
design to tunable circuits with tolerances associated with both the fabricating process
prior to tuning and tuning process itself,

This chapter is organized in the following way. We first provide a physical
meaning of applying yield-driven design principles to design of small production
volumes. Then special consideration is given to the applicétion of yield-driven design
to tunable circuits. We discuss the use of the supercomputer to deal with large scale
circuits. Finally,a 5 channe! muitiplexer with 75 design and toleranced variables, 124
constraints and up to 200 statistically perturbed outcomes, is used to demonstrate the

feasibility of yield qutimization of large scale problems using our combined strategy.
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4;.2 YIELD- DRIVEN DESIGN FOR NON-MASSIVE PRODUCTION

Convent:onal yield-driven design is intended to increase yield of mass
productinn of electronic circuits. In some cases, howaver, a relatively small number
of circuits are requested by custor:lers. Then the term yield ttself is:ﬁﬁonger
mathenlatically?'(nmore precisely, ggxlt.i‘sftically) justifiable because of the small number
of outcomes. Under such circumstaﬁces, the major concern of the design is not the
yield, but the probability of producing satisfactory circuits at the lowest cost.
Tolerances, inevitably inherent in the manufacturing process, are still a critical l‘aclon:
affecting the final outcomes. The lc;;;cal result of applying the yield-driven design
methodology to circuit production on a small scale is the improved probability of
obtaining circuits meeting specifications.

The formal mathematical justification is based on the original definition of

yield
Y(¢%) = Probability of {¢ € R, 1, 4.1)
where R, is the acceptable region and fixed tolerances given by ¢ are assumed.
Then, the utilization of ordinary yield-driven design techniques can increase the

probability of manufactured circuit outcomes to meet design specifications,

4.3 YIELD-DRIVEN DESIGN OF TUNABLE CIRCUITS
4.3.1 Tuning and Its Tolerances

To apply the available yield-driven design approach to tunable circuits, a
number of aspects should be identified. In the following, tolerances inherent in the
circuit fabrication process before tuning are referred to as fabrication tolerances, and

tolerances in the tuning process as to tuning tolerances. Here, we focus our attention
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on the case of fixed fabrication tolerances, tuning region, and assumed tuning

tolerances. We assume that the fabrication tolerances are symmetrical and that tuning

is two-way and symmetrical. Let

| T
¢ =[‘1 €2 -.“-EN] , ) (4.2
. r
J;' ! ={ oty .- tN] . (4.3)
and
€, =[€‘1 € - - c,N]T  (4.4)

denote the fabrication tolerance extremes, maximal tuning amounts, and tuning
tolerance extremes, respectively. For those elements that cannot be tuned, the
corresponding tuning amounts in (4.3) are zero. Then, the associated tuning tolerances
in (4.4) are also zero. We will assume that the parameters can be varied continuously
and independently. ¢? is used to denote the nominal design. The kth tunable

outcome ¢ may be described by

# = 4% « ad,
(4.5)
Agﬂk = Ad)’; L ark,
where A¢* needs the f ollowing explanation: Aqu represents deviations due to the

actual model uncertainties and fabrication tolerances, generated from

A¢: = Ep

€

. (4.6)

where

Y

e
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€ iy
€2 )
Ep . FIRaY s e, o212, N
€N By
t* denotes possible postproduction tuning adjustments, taking form of
£ .
t~=Tp, 4.7)
where
51 Py
Iy P2
Ta . PO » =lgpied, i =1 2,..., M
Iy PN
and ar® represents actual tuning tolerances, defined by
14 -
ALY = Eo | (4.3)
where
€ _‘71 i
€, g
Eré » g b ) , -lSO','Sl.l-‘"I.z'- 1N-
€ (2
P _ lN B L N p

AT
s

In these formulas, y; and o; are random numbers, generated according to their own
statistics, p; is the relative tuning amount. For ideally accurate tuning (At"" =0) we

can obtain AqSk = 0 provided that the tuning ranges are large enough to accommodate
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the spreads due to the fabrication tolerances. Then, for realistic {imprecise) tuning

and sufficient tuning region, we obtain A¢F = Ar*. Outcomes of nontunable circuits

can be considered as a special case of (4.5), where A¢F = Atﬁf.

If the yield optimization only takes manufacturing tolerances into account,
we may face a very poor yield figure because many fabricated circuits cannot be

tuned into the acceptable region due to existing tolerances. Consider a two-"~
dimensional case shown in Fig. 4.1, where ¢, and ¢, are fabrication tolerances. If

]

only the fabrication lolerancé\’g,\aré\"“cn‘r‘lsidered in yield optimization, design tends to.
- ‘.L -
)

Kl
move the fabrication telerance \l;egiq_r_;", R, to overlaps the acceptable region, R,, as
B i

Koo

much as possible. Then we may have a solution ¢°. At this point, circuit outcomes
fabricated can spread over the area R,. Assume that tuning on the second element is
available and that the maximal tuning amount is ¢,. Then, tuning on the second

parameter tries to bring outcomes into the area R, ; ¢°. €), defined by the nominal

point and
_El -
€
€ A T, (4.9}
EN
where
E,‘Q max(O,e,--t,—) . {4.10)

Because of tuning tolerances, final outcomes (after tuning) do not atl fall into

R, ;. Insicad, they spread over the region

R. . (8%, @.11)
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nontunable

¢,

lllustration of yield optimization with the fabrication tolerance region R,
only. R, is the acceptable region, R ot the spread region with exact
tuning, and R, tee is the actual spread region after toleranced tuning.
Yield after tumng 1S (RyOR 4o VR4 -



72
where

€ =€ +¢, .
Some of circuits may fall outside of R, due to the tuning tolerances, indicating that

those outcomes violate the design specifications. For instance, ¢! shown in Fig. 4.1

is such a circuit.

4.3.2 Yield-Driven Design with Tuning Tolerances

It is natural to extend yield-driven design techniques to tunable circuits.

Consider
ék = ¢0 . A¢k‘;,’./‘
: (4.12)
ag* = Eo,
where
—?1 ] [ f, ]
., ,
Ea ’ Lo0a | T, -lse;ch, i =1,2,..., N4.13)
€, g
L N LN

If the combined outcome spread region, Rt. :, ,!(¢°, €}, is treated in the same way as
the normal tolerance region, then yield-driven design will give a solution such that
tunability is fully utilized to cancel any deviation caused by fabric_:_;tion tolerances
and, meanwhile, tuning tolerances are also accommodated. Fig. 4.2 presents such a
formulation where tuning and tuning tolerances are considered. Unlike the
formulation of Fig. 4.1, this procedure tends to move the nominal point such that the

combined region R, , ,((é“, ‘€) overlaps the acceptable region R,as much as possible,
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” tunable

nontunable

P,

Fig. 4.2  illustration of yield optimization with the combined spread region R, ..
Yield after tuning is higher than that in Fig,. 4.1- ¢



74

14
- . . A . o ~ . .
giving a higher yield af‘le‘a‘;!y_\n\nnngﬁuth the same tunable region and tuning tolerances.
\\;Vi:ll

Now, ¢’ is well in the accepta‘bﬁn'é:);egion.

The design of tunable ciréixils using (4.12) has two goals. One is to drive up
the probability of ob:iaining circuits that exhibit good initial responses for the tuning
process. The other is to increase the possibility of circuit outcomes satis{ying speci-
fications after tuning easy-to-tune elements. For the Iatter,l we assign larger tuning

tolerances to more difficult-to~-tune elements in an effort to avoid painstaking, and

tedious tuning. This should have an impact on the overall effort of tuning.
Y

Y
R

4.4 UTILIZING THE VECTbR PIPELINE SUPERCOMPUTER
4.4.1 Basics about the Vector Processor

The largest available computers, namely supercomputers, have impressive
number-crunching and storage capabilities. One typica_l type of supercomputer is the
vector pipeline computer.

One of the most fundamental mechanisms that makes a vector pipeline
supercomputer very powerful is its machine architectures, which include vector
instruction and pipelining. From the user’s point of view, the program should be
reorganized such that it best fits the machine architecture. Here, we conceatrate only
on this type of reorganization called program vectorization.

Program vectorization is the most important action to be taken to fully take
advantage of a vector pipeline supercomputer. The vectorization is carried out by the
compiler. What the compiler actually vectorize is do-loops. Specifically, it vectorizes
innermost do-loaps, so in 2ny section of code with do-loops nested more than one

level deep, the compiler will attempt to vectorize only the most deeply-~nested loop.

o

A
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In circuit simulation and optimization programs, a substantial amount of work is done
by many vector and matrix manipulations, resulting in many possibly vectorizable do-
loops. Successful vectorization of these programs will get dramatic performance
improvement,

The feollowing steps should be taken to make a program better vectorized.
Often, we encounter a pair of do-loops nested for which the outer loop has a much
greater range than the inner loop. We can rearrange the loops by exchanging them to
gain efficiency. Keep the inner loop as sfhple as possible, Many extrinsic function
cails, 1/0 statements, GOTO and IF statements, a_nd index cross references inhibit
vectorization. Certain preprocessing may be helpful to reorganize the code structure
to achieve better vectorization resuits at the cost of more memory which usually is not

a big problem with supercomputers.

4.2.2 Supercomputer-Aided Yield Optimization

Vector pipeline supercomputers have been used by many rescarchers in the
circuit CAD Fielg)_ir____t.(Calahan 1979 and 1980, Viadimirescu and Pederson 1982,
Yamamoto and Ei‘akahashi 1985). Specially, effort has been made to explore
supercomputers for microwave circuit CAD (Rizzoli, Ferlito and Neri 1986, Rizzoli,
Cecchetti and Lipparini 1986, Rizzoli and Neri 1988, Bandler, Bicrnacki, Chen,
Renault, Song and Zhang 1988, Rizzoli et al 1991). i

From the CAD viewpoint, yield-driven design problems concerning realistic
microwave circuits are of very large scale. With existing design methods, the most

powerful available computational tools, namely, supercompulters, can provide us with

an effective means to deal with practical design problems.
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4.4.3 The Cray X-MP/22 Environment - "
I'\\\\’icld—driven design has been carried out on the CRAY X-MP/22 in the
e o

Ontario Cérilcn for Large Scale Computati/qﬁ’: located at the University of Toronto.
. I -

Included in the mainframe are two central processing units (CPUs), each controlled

by a 9.5 nanosecond (ns) clock, and 2 Million 64-bit words {(16MB) of shared ceniral

memory. The Cray Operating System (COS} efficiently allocates system resources and

controls the execution of user jobs on one or both of the CPUs. At the time the

" system ran under Version 1.15 of (COS). The FORTRAN compiler used is Cray’s

FORTRAN-77 (CFT77). This compiler performs optimizations such as automatic
vectorization and:iltg};ﬁclion resequencing in order to mosi effectively utilize the X-

MP hardware.

4.5. YIELD OPTIMIZATION OF A 5-CHANNEL MULTIPLEXER
This problem is a 5-channel 12GHz contiguous band microwave multiplexer
consisting of multi-cavity filters distributed along a waveguide manifold (Bandler,

Chen, Daijavad and Kellermann 1984). Fig. 4.3 illustrates the equivalent circuit of

e

lhe multiplexer, Tuning is essential and expensive for multiplexers to satisfy the
ultimate specifications. The goal of this design is to provide such a well-centered
nominal design that the tuning process can be greatly easied.

Gef{‘éral multiplexer optimal nominal design procedures using powerful
gradicnt-based minimax and £, aléarithms have been described by Bandler,
Kellermann and Madsen (1985 and 1987). The circuit simulation and sensitivity
au::lysis aspect ol the problemn together with 2 number of examples of multiplexer

optimization have been presented by Bandler, Chen, Daijavad and Kellermann (1984).

et
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Fig. 4.3

Equivalent circuit of a 5-channel contiguous band multiplexer.
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A novel approach to the’_.‘t‘a'xact simulation and sensitivity analysis of multiplexing
= st

‘networks has been derived by Bandler, Daijavad and Zhang (1986), based on the
general branched cascaded network structure (Bandler, Daijavad and Zhang 1985).
An automatic decomposition approach to optimization of large scale problems was
applied to a 16-channel multiplexer design (Bandler and Zhang 1987). Recently, a 5-
channel muitiplexer has also been used to demonstrate a gradient approximation
scheme used in gradient-based optimization (Bandler, Chen, Daijavad and Madsen
1988). A multiplexer design system has been developed in the Simulation
Optimization Systems Research Laboratory, McMaster University,

Our yield optimization uses the generalized ¢, centering algorithm described
in Chapter 2. Even with the power of the supercomputer, such design using exact
stmulation would 1ake a very long time to complete. The cost would be extremely
high. To speed up the design process, we use the quadratic approximation scheme,
presented in Chapter 3, to model the multiplexer responses. Therefore, only the
simulation portion of the multiplexer design system is to be used. Tha gradient
information will be provided using the quadratic models of the response functions.

The program is implemented on the CRAY X-iVIP/ZZ. The multiplexer design
system is tailored to obtain a dedicated simulator to perform fast circuit simulation,
Thcn this part is connected to the statistical design driver, with an interface of
quadratic approximation.

To fully explore the vector pipeline supercomputer, the program, including
simulation, optimization and statistical outcome generation, is carefully reorganized
by restructuring the program, reordering some DO loops, and redirecting input and

outpul flows. T
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4.5.1 Design Variables and Specifications

As shown in Fig. 4. 3: each branch unit consists of an impedance inverter I,
an input transformer with the transform ratio nli, a multi-coupled cavity filter Z;,
an output transformer with the transform ratio nzi, and an output load with voltage
V. The main cascade is a waveguide manifold with spacing / between two.
bran_ches. Branches are connected to the main cascade through series junctféhs. 'I‘hc
series junctions are assumed non-ideal. Eachrof the multi-coupled cavity filters is
determined by 12 independent coupling coefficients. )

in order to take the appropriate tolerances into account, spccil‘icationlg;-wc.:nje

N

chosen to be 10dB for the common port return loss and for the individual channel
stopband insertion losses, resulting in 124 nonlinear constraint {unctions. Design
variables included 60 couplings, 10 input and output transformer ratios and 5
waveguide spacings. Tolerances of 5% were assumed for the spacings, and tolerances
of 0.5%.{or the remaining variables. The starting point was the solution of the
conventional minimax nominal design w.r.t. specifications of 20dB. The
corresponding responses are shown in Fig. 4.4. The estimated yield w.r.t. the
specifications of 10dB at this point was 75%.

Careful and time-consuming tuning is essential for multiplexers. Any
ad justment involving physical disconnection of the structure is particulary expensive.
For the sake of illustration we focus attention in this example on the waveguide spac-
ings as being expensive adjustments to make. Therefore, the larger tuning tolerances

are assumed for the spacings. We consider total tolerances of 5% {or the spacings, and

0.5% for the couplings and the transformer ratios.
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4.5.2 Design Procedure an:(; Res,;ils

The. process consist§ of ‘4 phases as shown in Table 4.1. 'At the _bé:ginning of
each phase, a set of quad?ﬁtic models corresponding to 124 responses is construc;;ed.
These nl'ilzodels, then, are used for all gutcomes in the entire phase. | Notice that this is
dii‘f‘erent from the cases in the last chapter where quadratic models are rebuilt for
each optimization iteration, To build quadratic models, 151 siniulétions are performed
at the baisl.e points for each phase, leading to a total 604 exact simulations for the entire
design process. More and more outcomes, from 50 to 200, are used in four
consecutive desig_n phases. A total of 20 optimization iterations are involved. Without
quadratic modeling, 2500 exact simulations and sensitivity analyseé. would have‘ been
required (if the same number of optimization iterations are necessary).

Four phases took totally 69.5 seconds on the CRAY X-MP/22 to reach a 90%
estimated yield. The estimated yield is gradually increased in the first three phases
and becomes almost steady in the last phase. To study the collective performance of
the circuit, the return losses of all 3000 outcomes and of the satisfactory outcomes are
contained within the envelopes in Figs. 4.5 and 4.6, respectively. A very small portion
above the specif icati;n in Fig. 4.5 reflects the probability of near 10% to produce a
bad circuit.

This approach allows us to handle this large optimization problem (with 75

toleranced variables, 124 constraints and up to 200 statistically perturbed circuits) in

acceptable CPU time.
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g TABLE 4.1
%\ STATISTICAL DESIGN OF A 5-CHANNEL MULTIPLEXER
e USING QUADRATIC APPROXIMATION
Phase 1 Phase 2 Phase 3 Phase 4

Startfng Point Nominal Solution Solution Solution
of the Phase B _ Design of Phase | of Phase 2 of Phase 3
Initial Yield" | . 75.0% 81.0% 84.3% 90.0%
Initial Yield'~ | 56.3% 69.0% 69.2% " 92.0%
Number of Quicomes 50 100 150 200
Used for Optimization
Nuraber of Iteratrions 4 6 - 6 : 4
Final Yield" T 81.0% 84.3% 90.0% 90.3%
Final Yietd™ 77.3% 77.3% 91.3% 94.0%
CPU Time 16.55 17.65 17.85 1765

(CRAY X-MP/22)

e
"V

*
¥

Yield estimated using actual simulation.
Yield estimated using quadratic approximation.

CPU times do not include yield estimations based on actual simulation.
All yields are estimated using 300 samples.




O

83 R S

10 ¢

N
A%&r\/ Vv %‘é !é
ol \' —
’.’ |

g =1
151 R
2 =T¥=
E SI=
= 1
B 20 -
—7
25

Y
Iy

-

i
I F. |

30 ] 1 I T
11880 11920 = 11960 12000 12040 12080 12120

frequency (MHz)

Fig. 4.5 Return loss envelope of 3000 5-channel multiplexer circuit outcomes after
yield optimization.
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4.6 CONE:LUDING REMARKS

In this chapter, we have shown that yield-driven design techniques can well
be applied to non—masﬁive prréduction and tunable circuits. W; have identified a
number of aspects related to statistical design of tunable clircuils w:lh tuning
tolerances. Some discussion addresses the use of one type of supercomputer, namely,
the vector pipeline supercomputer. To cope with statistical design of larpe scale
circuits, supercomputers and very efficient approximation techniques have been used
to cooperate with a powerful yield-driven approach. To dcmonstraté the feasibility
of such yield optimization of large scale microwave circuits, we have successfully
accomblished the vield optimization of a 5 chanae! multiplexer with 75 design and
toleranced variables, 124 constraints and up to 200 statistically perturbed circuits. No
microwave circuit design optimization of this type and on this scale has ever been

reported.
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5

NONLINEAR CIRCUIT YIELD OPTIMIZATION WITH GRADIENT

APPROXIMATIONS
51  INTRODUCTION

Many engineering applications rgquire the use of nonlinear circuits, such as
switches, oscillators, and mixers. The rapid development of monolithic microwave
inte;raled circuits (MMICs) has made possible the integration of these noalincar
circuits within one die. This demands efficient and effective CAD tools to design
aonlinear circuits. Not only must the tools produce valid nominal designs, but they
must ensure design manufacturability and satisfactory yield. i"or MMIC technology,
in particutar, yield-driven, cost-effective design is ‘vital 10 commercial
competitiveness.

Rizzoli, Lipparini and Marazzi (1983) attempted to accomplishing nominal
design of nonlinear circuits. Their approach combines the harmonic balance (HDB)
simulation and design into one optimization loop by considering design variables and
HB state variable as optimization variégles simultaneously. The circuit does not have
to be completely solved by HB during optimization until the final solution is reached.
However, this approach iz not compatible with most yield-driven approache's since
yield-driven design requires actual circuit responses to calculate yield as the objective.
To meet this new and very difficult challenge, a number of important points must be
incorporated in yield-driven design of nonlinear circuits:

(1) An efficient HB simulation scheme.

87
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(2) High-speed gradient calculation if gradient-based optimization is used.

(3) Weli-modeled nonlinear p%sive and active devi;::es. such as FETs, diodes, and
trans;nission lines, and valid sta.list;i‘c:}l models for circuiF:_ -components,
especially for active devices. |

(4) A well-structured over all dgsjgn process consolidating the above points, ;

This chapter is organized as follows. We start by reviewing an efficient

simulation method suitable for microwave nonlinear circuits, namely, the HB method

(HB). Instead of working on very abstract and intricate formulations for the general

HB approach, we use a siinple circuit, a q_pe—FET circuit, to illustrate how the HB
method works. The HB method is implemented with exact Jacobian matrices for fast
convergence and improved robustness. Next we introduce specifications and errors
for nonlinear circuit yield optimization, and formulate the yield-driven design
problem for nonlinear circuits. We offer an approach 1o efficient yield-driven
optimization of nonlinear microwave circuits with statistically characterized devices
(Bandler, Zhang, Song and Biernacki 1989). This approach utilizes a powerful and
robust one-sided £, optimization algoritﬁ_m for design centering (Bandler and Chen
1988). The effective gradient approximation technique (Bandler, Chen, Daijavad and
Madsen 1988) is adopted. An extension of this approach for statistical design is
provided. independent and/or correlated normal distributions and uniform
Jistributions describing large-signal FET model parameters and passive elements are
{ully accommodated.

The yield optimization of a microwave frequency doubler with a large-signal
statistically simulated FET model is successfully carried out. The performance yield

is increased from 40% to 70%. We believe that this is the first demonstration of yieid
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optimization of nonlinear circuits operating under large-signal steady-state periodic

or almost periodic conditions.

5.2 THE HARMONIC BALANCE SIMULATION TECHNIQUE

’ A quick review of the recently developed HB method is worthwhile because
it is a key part of our vyield-driven nonlinear circuit design approach. The
formulation will also help us derive the sensitivity analysis in the next chapter. The
HB method is a hybrid tinie- and frequency-domain approach which allows all the
advantages of time-domain noniinear device models, such as FETs and diodes, and
the power of steady-state frequency-domain techniques for lumped and distributed
circuit elements, such as microstrip lines and striplines. A variety.of attempts has
been made to improve the efficiency and versatility of HB by Kundert and
Sangivanni-Vincenteili (1986), Rizzoli, Lipparini and Marazzi (1983}, Curtice (1987),
and Gilmore (1986), and many others.

The key concept in the HB method is to decompose the circuit into two parts,
linear and nonlinear subnetworks. Therefore, time- and frequency-domain analyses
can be performed on the nonlinear and linear subnetworks, respectively. To iliustrate
how the HB method can be used to simulate a nonlinear circuit, we consider a typical
one-FET circuit shown in Fig. 5.1. The circuit is decomposed into the linear part,
N, and the nonlinear part, Ny, as shown in Fig. 5.2. We assumse that the circuit is

excited by a periodic stimulus with fundamental frequency w.
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Fig. 5.2 Decomposition of the circuit in Fig. 5.1, N and Ny, stand for the linear

and nonlinear subnetworks.
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5.2.1 The Nonlinear Madel and Its Time-Domain Simulation

The FET ﬁééd is a modified Materka and Kacprzak model (Materka and

Kacprzak 1985, Super-Compact 1987) shown in Fig. 5.3. The nonlinearities inherent

-

o
in the intrinsic part are'described by

Ly

¥
D

7 ),
Dss

{E + Kgve) ’
Y, Sy
F(",VD)?-ID‘gsli] "——L—-] N tanh[_l_o_jl‘

fip = Flglt - 7), (D + S,

Voo * 1D Ipgs(l - K¥g)
ig = Igdexplagyg) - 11,

iy = Ipggexploglp - vy = Vgolls

R,
R,

Ryl - Kpvg),
0, if KRVG > 1,

i

C, = Cull - Kywg) 2,
C, = Cyof5 + Crn  if Kyvg 2 0.8,

and

[ Cr = Cpoll - KF(V:‘I = pnty/2),
[ Cp = Cppl5. if Kelv, - vp) 2 0.8,
where v, ¥g, and vy are controlling voltages as indicated in Fig. 5.3, the remaining
coeflicients being model parameters. Notice that such decomposition allows two of
the controlling voltages, v, and vp, to appear at the interfacing port.
Suppose that the controlling voltages can be expressed as

i

w(t) = ¥ V(h)e"™,  k-=1,G,D, (5.1)
he(

where # is the highest harmonic considered and V() are complex coefficients of the
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nonlinear intrinsic FET
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Fig. 5.3 The nonlinear intrinsic FET model.
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Fourier series. Then we define

[ V40) |
Vi)

~
L]
Pl
0
a
o

(5.2)

V(H)

The currents from controlled sources, the current through the nonlinear resistor, and
the charges on the capacitors are functions of V|, Vg and Vp, that is,
ik(VG’ VD), k = D, G‘ B

V) - eVl
RI(VG)

aVys Va.Vp)s k=1, F

n(V1. V) =

The calculation of the charges on the two nonlinear capacitors involves integration.
The frequency-domain expressions of these currents and charges can be obtained by
the Fourier transformation. They are of the forms

W) =5 [i{¥)), &k =D,G, B, Ry,
(5.3)
QuV) =F[gV)), k=1 F,
where & stands for Fourier transform, /. and ;. are vectors consisting of the

complex coefficients of the corresponding Fourier serieses, and ¥V is defined by the

foilowing

V = VG . (5.4)
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5.2.2 Linear Subcircuit Simulation

Bandler, Ye and Song (1990) proposed an efficient approach to construct the
multiport matrix to accelerate HB analysis. Here we use this approach to deal with
the circuit in Fig. 5.1.

Consider the linear subnetwork in Fig. 5.2. There are five ports, a port
connecting with the intrinsic FET, an output voltage port, an input excitation port,

and two DC bias ports. At a given frequency, the nodal equation can be written as

% _ -
} rl_g [“‘
v
ﬂd- "J
V"’ / "
V I [ll
Vo Iy
Y |y = s (5.5)
8G Igc
Lg% Iap
V"l 0
V"e- L 0 N

where V"&’ k = g, d, s, are node voltages at the three terminals of the interfacing
port,and ¥, , i =1, 2, ..., b, are internal node voltages in the linear subnetwork.
4

First, we express Y in the form

Y =9, Yu, Yo, Y1 Yo Y36 Yu» Yu, - -+ Ym, |s (5.6)
where each entry is a column vector. By adding and, at the same time, subtracting

YuVu, and y, V, toand from the right hand side of (5.5), we can rewrite it as
e s il



Vo, = Ve, (1 ]
V:"d - V", I"d’
Va, I,
¥, I
Vo Iy
v/ Vo T e I
Vip - Igp
Vu i 0
V"b L 0 -

where

!
Y =[yns Yn, (yn“"yns*'ynd) ¥r Yo Ysc ¥Ysp y"l

Notice that

V, = V”s - V";
and
Vp = Vnd -V

We have

Y]

(5.7)

(5.8)
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::1 B I_.,s 7]
D ['"d
l’!l’ I
n.l
v
)
I I’
Q
t |y lo
Y| Vg | = P . (5.9)
y BG
Bo
Igp
an 0
Vay | 0

Second, we express Y/ in its row vector form

"
!
Yo

/
Y

¥

¥/

Y6

Y/ X
yhe | (5.10)

/
YD

!
ynt

/
Yty

where each entry is a row vector, If we add the [irst and second rows to the third row

in (5.9), then, we have



Y1 - v, . " ; -
yl "a
D VD ;
hoevl v | v "
¥ n
! ’ 0
.V]‘ V[ I[
! v
! V
Yep BG - |1 (5.11)
V
YiG b Tsp
! V"x 0
Y,
) V,,b i U
Yu, - -
because, from KCL,
‘rn8 * lud * [n, '-‘*0

Now, we suppress internal nodes, from #, t0 #,, and the node #; from (5.11).

Then, the following cquation can be obtained:

7 . -
b 41 v, I n,
ol v I,
"
Yr V! - ) I (5 12)
i Vo I ’ )
Yo o
V
J’ing BG e
Yoo {
vie |L . | 8D

where the coefficient mateix is written in the row vector form, Notice that at the
outputport f = 0. Hence, I, can besuppressed so thatonly V,, Vp, ¥}, Vgg and Vpp

are left in the resultant equations



A‘Vl I,
Vb In,

YL Ve | s Lo (5.13)
VeG Ipg
| Vap | Isp

Equation (5.13) can be used at different harmonics. For given V, and Vi at
a certain frequency hw, 0 < # < H, and the signal input (when % = 1) or DC biases
(when %t = 0), from (5.13), the currents going into the linear part from the interfacing

port with nonlinear part can be computed as

Lah, 0shsH, k=<gd, (5.14)

where the harmonic index /i has been included to indicate the harmonic considered.

We use /, to denote the complex vector containing all harmonics, that is,

[ 4, (0) T

k
1,(1)
1 (2)
I, = , k=gd. (5.15)

5.2.3 Harmonic Balance Equation

HB starts by assuming an initial guess of V, defined in (5.4), that is

where Vi, k =1, G, D, are given in (5.2). The current summations at the three
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nodes, %, ty, and g, are

FV, = 1, (V) = 1) + JACAY) + IgV) + jAQeY), (5.16)
FV), = 1, (V) + Ig(V) - jRQe(V) « Ip(V), (5.17)

and
SEW Yy = V) -1tV - jRQc (), (5.18)

where Iy, I, Ip. IR;, Qr and Qg are from (5.3), /. k = g, d, are defined in
(5.13), and

N = wdiagf0, 1,2, ..., A (5.19)
In ll;esc equations, V is included to symbolize those terms which are functions of V.

We obtain the HB equation by assembling, from (5.16) to (5.18),

Fal?) |
Fvy=| F V) | -- (5.20)
Fuy V)
K CL requires
FV)=0, (5.21)

provided that the V¥ are correctly assumed.
The equation in (5.21) is in complex form. We can rewrite it into a set of

algebraic real value equations by splitting the real and imaginary parts,

F(V) =0, (5.22)

where the bar stands for a real vector resulting from the complex counterpart, i.e.,

_ [Rc(V) ] _ [Re(F) ]
V = , F = .
Im{¥) [m(F)

The HB method starts by assuming an initial set V. Then, a Newton-like
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method is used

View = Vata = JWo1a) "'F(¥ 1) (5.23)
where T(I_/:,,d) is the Jacobian and evaluated at Vo,d.

The Jacobian can be constructed either numerically or analytically. In order
to obtain faster convergence and higher accuracy, the analytical Jacobian approach is

adopted in our yield optimization.

5.2.4 Response Calculation
Consider the output voltage as the desired response. A linear equation in

(3.12) can be used 10 calculate the output

_ v, -
V,
I/
Yo v =1g (5.24)
o
Vo
Vap
If we write out the row vector yg and notice that /5 = 0, then we have
V1
Vb
I " H HooH i
Vo = ‘T[J’o,x Yoo Yor YosG J’o,u:)] Vi |. (5.25}
Yoo %
BG
Vin

[t is then possible to find V), h =0, 1, 2, ..., H, aftersolving the I equation,
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5.3 SPECIFICATIONS AND ERRORS FOR NONLINEAR CIRCUIT YIELD

Yy
1

OPTIMIZATION
Consider a nonlinear microwave circuit operating under large-signal steady-
stale periodic conditions. Response functions for such a circuit may involve DC and
harmonic components of the output signal. Unlike linear circuits, therefore, design
specifications can be imposed at DC and several harmonics. The jth specification can
be denoted by
S,j(h), | (3.26)
il it is an upper specification, or
| S #) (5.27)

in the case of lower specifications, where

h=1- (5.28)

H
is the harmonic index vector, 0 and H represent DC and the highest harmonics,
respectively. A specific circuit response may involve all or some of the (H + 1)

spectral components,

We still use ¢i to denote circuit outcomes, namely,
¢ =9 end, i=1,2,..,K (5.29)

The responsc of each outcome, denoted by

RAE. V' by (5.30)
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is calculated after solving the HB equations o &4
.
F¢.vh =0, (5.31)

where V! comprises the split real and imaginary parts of the state variables in the 1B
equation for the outcome qSi. The corresponding error function is defined as
. - — \‘\'
Ri¢. V', k) 15,,(h) (5.32)

or as

Siik) - R(S, V', ). (5.33)

We assemble all errors for the outcome ¢ into one vector €. If all entries of this
vector are nonpositive, the outcome éi represents an acceptable ciicuit.

Following the generalized £, centering approach described in Chapter 2, the

objective function for the one-sided £, optimization is

minimizedU@") = ¥ ¥ oq(é) |, (5.34)
¢ i€l jeds)

where t.:,{tﬁi) are elements in e¢)), and J(¢%), 7, and o; are defined in (2.36), (2.38)

and (2.39), respectively.

5.4 EFFICIENT GRADIENT APPROXIMATION FOR YIELD-DRIVEN
DESIGN
It is always a difficult problem to obtain the gradients of circuit response
functions when powerful gradient-based optimization is used. For yield-driven
design of nonlinear circuits, the computational effort for evaluating gradients may be
prohibitive since many nonlinear circuit oulcomes are involved. How to obtain the

gradient information efficiently is of extreme importance. Much research has been
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devoted to devise high-speed gradient :;pproximation methods when analytical
gradients are nonexistent or very difficult to get. A simple and traditional way to
obtain numerical gradients is the perturbation approximate sensitivity technique
(PAST)(Rizzoli, Lipparini and Marazzi 1983). Bandler, Chen, Daijavad and Madsen
(1988) proposed an integrated gradient approximation technique {(IGAT) for circuit
design.

in the following sec;.ion we wiil briefly review JGAT in the single fuaction
case, then extend JGAT 1o yield optimization.
54.1 IGAT for Nominal Design

Since the application of JGAT is not restricted to circuit response functions,

let us use f(#) to denote a generic function.

Approximating Dergivatives by PAST

The first-order derivative of f(¢) w.r.t the kth variable can be estimated by

3/@) [+ s - [9)
a¢, Ady. i

i(5.35)

where ¢ + Ady, denotes the perturbation of the kth variable, Ady is the perturbation
length and ;. is a column vector which has 1 in the kth position and zeros elsewhere.
An approximation to the gradient, V f(#), can be obtained by perturbing all variables

one at a time.
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by

Appro‘fcimating Derivatives by IGAT

To start the process, PAST is used as in Bandler, '_Chen, Daijavad and Madsen
(1988) to calculate the approximate gradient.
The Broyden update generates the new approximate gradient from the

previous gradient, namely,

Vf(¢t:cw) = Vf(éald) + A, (5.36)

S (Buew) = f@o1a) - (V/(ora))’ 9
A A

wh;re $o1q and @, are two different poinis and A¢ = .~ Sora- If Porq andPyen
are iterates of optimization, f{¢,;4) and f($,.. need to be evaluated anyway. Thus,
the updated gradient can be obtained without additional function evaluations (circuit
simulations).

To overcome a particular defliciency of the Broyden update, alter a few
updates, a special iteration of Powell generates a sDeqia'_! step A¢ to guarantee strictly
linearly independent directions. Aftera number.of optimization iterations, we may
also apply PAST to maintain the accuracy of the approximate gradients at a desirable

level.

5.4.2 [IGAT for Yield Optimization

Notice that

3(#) g 816
EEA ady

are different. The latter is of interest, because ¢°
is considered variable in our yield-driven design.
‘Thus, all perturbations are made to ¢° in the initialization and reinitialization

steps using PAST (Bandler, Chen, Daijavad and Madsen 1988). When #° is perturbed
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to ¢+ A¢2uk, denoted by ¢2. pert fOT ghort, outcomes shéuld be regenerated f romqsz. pert
in order to get perturbed circuit responses. These outcomes are denoted by 161 pert
Notice the very same procedure to generate ¢ should be repeated to generate qﬁi. parte
It means that the initial status of the random number generation, usually, a set of
initial values called seeds, is stored.

From Bandler, Cllen, Daijavad and Madsen (1988}, the approximate derivative
0('—7__lhe response J(¢) is defined as

@) _ T @hperd - &)

(5.37)
a4y B4

When the Broyden update or the special iteration of Powell are used, Al is
a . s e . .
computed from ¢u;; and &,,., as generated either by the optimization or by the special
. . i i . 0
iteration. Outcomes ¢4 and ., are outcomes generated from ¢2ld and ¢,..,

respectively. The gradient of the response f (¢") w.r.t. §* can be updated as

i i ilcw - f; -(v i TA 0
VI ) = VI + [(@nen) - f@o1a) T( Gf('ﬁ 1))’ O A
S (5.38)

in circuit simulation, there are usually several response levels involved.
Suppose the response of interest, on which the design specification is imposed, is the
power gain. In the circuit simulation, the power gain is calculated from the output
power which, in turn, is calculated from the output voltage. This implies three

different response levels. [GAT can be applied at any response level.

W
L¥]

NONLINEAR FET STATISTICAL MODELS AND STATISTICAL
OUTCOME GENERATION

Purviance, Criss and Monteith (1988) treated the statistical characterization of
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small-signal FET models. Our prop\\?sed yield optimization requires statistically

\

described large-signal FET models. Ot\f\r large-signal FET statistical model includes
an intrinsic large-signal FET model mod“i‘l‘{ ;:ed_f rm;l the Materka and Kacprzak model
Ny -

(Materka and Kacprzak 1985, Microwgye Héfﬁiu::ic_gtwl987), statistical distributions
and correlations of parameters. The rnuI_t:idimensional normal distribulior{'is assumed
for all FET intrinsic ard extrinsic parameters. The means and standard deviations are
listed in Table 5.1. The correlations between parameters are assumed according to ‘the
results published by Purviance, Criss and Monteith (1988). Certain modifications
have been made to make the correlations for the large-signal FET model to be
consistent with tho#e for the small-signal FET model dealt with in Purviance, Criss
and Monteith (1988). The corre!.tion coefficients are given in Table 5.2.

We use a random number generator capable of generating statistical outcomes
from the independent and multidimensional correlated normal distributions and from
uniform distributions.

Parameters of the nonlinear large-signal models have certain physica! limits.
A normal distribution random generator may generate outcomes far beyond these
limits., These outcomes may cause serious problems either in HB simulation, such as

very slow convergence and divergence, or in optimization. Such outcomes must be

carefully detected and eliminated.

5.6 YIELD OPTIMIZATION OF A FREQUENCY DOUBLER
5.6.1 Description of the Design
A FET frequency doubler shown in Fig. 5.4 is considered. [t consists of a

common-source FET with a lumped input matching network and a microstrip output

14
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TABLE 5.1

ASSUMED STATISTICAL DISTRIBUTIONS
FOR THE FET PARAMETERS

FET Nominal Standard FET Nominal Standard
Parameter Value Deviation Parameter Value Deviation
(%) (%)
Lg(nH) 0.16 5 S 0.676x1071 0.65
RD(7) 2.153 3 Kg 1.1 0.65
Lg(nH) 0.07 5 (pS) 7.0 6
Rg(0) 1.144 5 Ss 1.666x1073 0.65
Rpe(® 440 14 Igo(A) 0.713x10°° 3
Cpg(pF) 1.15 3 ag 38.46 3
- Cps(pF) 0.12 4.5 Ipo(A) -0.713x10°° 3
Ipss(A) 6.0x1072 5 ag -38.46 3
Voo(V) -1.906 0.65 R0 3.5 8
g -15x1072 0.65 C,4(0F) 0.42 4.16
E 1.8 0.65 Cro(PF) 0.02 6.64

The following parameters are considered as deterministic: Kg = 0.0, Kg = L111, K,
=1.282, C,= 0.0, and Ky, = 1.282.

For definitions of the FET parameters, see Section 5.2.1.
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TABLE 5.2

FET MODEL PARAMETER CORRELATIONS

Le Rg - Lg Rpg Cps B 7 Rin  Cgs CuD

Lg 1.o¢ -¢.16 011 -0.22 -0.20 0.5 006 0.15 025 0.04
Rg -0.16 100 -028 0.02 006 -0.09 -0.16 Q.12 -024 0.26
Lg g1 -028 100 0.1 -026 053 041 -052 078 -0.12
Rpg -022 002 0.1 100 -044 0.03 0.04 -054 002 -0.14
Cps -020 006 -026 -044 1.00 -0.13 -0.14 0.23 -0.24 -0.04
Zm 0.15 -009 053 003 -0.13 100 -0.08 -026 0.78 0.38
T 006 -0.16 0.41 0.04 -0.14 -C08 1.00 -0.19 0.27 -0.46
Rin 0.15 0.12 -052 -0.54 023 -0.26 -0.19 100 -035 0.05-
Cgs 0.25 -024 078 0.02 -0.24 0.78 027 -035 1.00 0.1I5
Cep 0.04 026 -0.12 —0.14 -0.04 038 -0.46 0.05 0.15 100

Certain modifications have been made 10 adjust these small-signal parameter
correlations (Purviance, Criss and Monteith 1988) to be consistent with the large-
signal FET model.
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matching and filter section. The optimization variables include the input inductance
L, and the microstrip lengths {; and {,. Two bias voltages Vgg and VBI)”and .qu
driving power level Py, are also considered as optimization variables. The
fundamental frequency is SGHz. Responses of interest are the conversion gain and
spectral purity, defined by |

power of the second harmonic at the output port
power of the fundamental frequency at the input port

conversion gain = 101log

and

power of the second harmonic at the output port
total power of all other harmonics at the output port

spectral purity 0log

respectively. The specifications for the conversion gain and spectral purity are 2.5dB
and 20dB, respectively. They are both lower specifications.

The large-signal FET statistical model includes an intrinsic large-signal FET
model modified from the Materka and Kacprzak model (Materka and Kacprzak 1985),
statistical distributions and c3rrelations of parameters. The multidimensional normal
distribution is assumed for all FET intrinsic and extrinsic parameters. The means and
standard deviations are listed in Table 5.1. The correlation coefficients are given in
Table 5.2. Uniform distributions with fixed tolerances of 3% are assumed for Pyy,
Vg Yips Lis {1 and {,. The nominal values for nonoptimizable variafnles are: Ly =
ISnH, Ly = 150H, C, = 20pF, C, = 20pF, w, = 0.1x10173m, w, = 0.635x107°m, Rygap

= 500, Rynpyt = 3090, Ry = 102, and Rpp = 1002, Finally, the uniform distributions

with fixed tolerances of 5% are assumed fox L,, Lg, C,, Cy, w, and w,. The random

number gencrator used is capable of generating outcomes from the independent and

multidimensiona! correlated normal distributions and from uniform distributions.
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Fig. 5.4 Circuit diagram of the FET microwave frequency doubler.
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5.6.2 Design Procedure

In our program, Implementation I of ‘the generalized ¢, centering approach
of (2.43) is used. In more detail, the error f unc‘t‘i‘ons resulting from the simulated
conversion gain and spectral purity are calculatéd, then these error functions with
their multipliers defined in (2.43) and (2.39) are fed into the one-sided ¢,
optimization. [GAT calculates approximate sensitivities of the conversion gain and
spectral purity. The computer used is the Multiflow Trace 1473001,

The starting point for yield optimization is the solution of the minimax
nominal design w.r.t. the same specifications, using the same six design variables. At
this point, the estimated yield based on 500 outcomes is 39.6%.

We conduct a design using /GAT gradient calculation. Computational details
are given in Table 5.3. The design has two consecutive phases, that is, the starting
point for the second phase is the solution of the first phase. The second phase is to

reoptimize the first solution with updated o,

5.6.3 Results and Discussions
Using /GAT, the first phase reaches 71% yield and the second phase confirms
that the soiution of the first phase has been optimized in terms of the estimated yield.

The two phases use 61 optimization iterations and 184 function evaluations.

Figs. 5.5, 5.6, 5.7 and 5.8 show histograms of the conversion gain and the ™

spectral purity, respectively. 500 outcomes are used to calculate both distributions.

IThis machine has the performance of 10.04MFLOPS in a test of solving 100 linear
equations. The routines used are the standard LINPACK routines. Full precision (64
bits) arithmetic was used, The VAX 11/780 computer has the performance of
0.14MFLOPS for the same test. .
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TABLE 5.3

YIELD OPTIMIZATION OF THE FREQUENCY DOUBLER USING IGAT

Parameter Nominal Solution 1 Solution 11
Design

Pin(W) 2.49048x1073  1.98488x10"3  1.92366x10°3

Vpe(V) -1.70329 -1.93468 -1.92542

Vgp(V) 6.50000 6.50000 6.50000

L,(nH) 5.29066 5.68905 5.633822

I ,(m) 1.77190x10"2  1.73378x10°3  1.73740x10~3

I{(m) 5.73087x10°%  5.75011x10°3  5.74907x10~2

Yield 39.6% 71.0% 71.0%

No. of Optimization 23 38

Tterations

No. of Circuit 4450 4750

Simulations

CPU(Multiflow 18.6min 19.1min

Trace 14/300)

The yield is estimated from 500 outcomes.




114

30 e e e e e

)Y
o

15

FREQUENCY

CONVERSION GAIN (dB)

Fig. 5.5 Histogram of conversion gains of the frequency doubler at the starting
point. 500 outcomes are used.
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Fig. 5.6 Histogram of conversion gains of the frequency doubler at the solution of
yield optimization using /GAT. 500 outcomes are used.
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Fig. 5.7 Histogram of spectral purities of the frequency doubler at the starting
point. 500 outlcomes are used.
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Fig. 5.5 is the conversion gain distribution before yield optimization. The histogram
in Fig. 5.6 is based on the final solution. Fig. 5.7 is the spectral purity distribution
before yield optimization. The histdéram in Fig. 5.8 is based on the final solution.
The improvement in spectral purity is very clearly iIlustrz{téd by the histograms in Fig.
5.8. Before yield optlimization, the center of the distribution is close to the design
specification of 20dB, indicating that many outcomes are unacceptable. After yield

optimization, the ceater of the distribution is shifted;to the right-hand side of the

specification. Most outcomes then satisfy the specification.

5.7 CONCLUDING REMARKS

We have presented a comprehensive approach to yield-driven design of
nonlinear microwave circuits operating within the HB simulation environment. This
had been the first convincing demonstration of yield optimization of statistically
characterized nonlinear microwave circuits. Qur success is due to the sophisticated
combination of the following advanced techniques: efficient HB simulation using
exact Jacobians, powerful one~-sided £, design centering, effective and robust gradient
ap;)roximmion, and flexibility of statistical handling to allow different kinds of
nonlinear device parameter statistics. In our design example, the large-signal FET
stutistical model is fully facilitated. Comprehensive numerical experiments directed

at yield-driven optimization of a FET frequency doubler verify our approach.
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FAST GRADIENT BASED NONLINEAR CIRCUIT STATISTICAL DESIGN

6.1 INTRODUCTION
This chapter addresses fast gradient calculation for nonlinear circuit yield-

driven design. Statistical design of practical nonlinear microwave circuits is a

T

challenge. One serious inherent difficulty is the prohibi}:j_\l/e computational cost: many
circuits have to be simulated repeatedly and each ¢ircuit simulation involves CPU’
intensive iterations to solve harmonic balance equations. Furthermore, gradient-based
optimization requires effort to estimate the gradients of the error functions.
Therefore, an effective and efficient approach to gradient calculation is of the utmost
importance.

The conventional Perturbation Approximate Sensitivity Technique (PAST) is
conceptually simple. Since PAST needs to perturb all variables one at a time, the
computational effort involved grows in proportion to the number of variables.
Rizzoli, Lipparini and Marazzi (1983} used this method in their single-loop approach
to nominal circuit design. In yield optimization, however, PAST becomes extremely
inefficient because of the large number of circuit outcomes to be dealt with.

The Exact Adjoint Sensitivity Technique (EAST) has been recently developed
by Bandier, Zhang and Biernacki (1988a, i988b) for the harmonic balance technique.
[n contrast to PAST, EAST involves solving a set of linear equations whose coc{{icient

matrix is available after circuit simulation. The solution of a single adjoint system is

sufficient for the calculation of sensitivities with respect to all variables. No

i19
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pg[\turbation or iterative sim;lations are required. EAST enjoys hig‘h computational
e N
cfficiency, but is very difficult to implement.
We _introciuce a powerful approach to gradient calculation, the Feasible Adjoint
Sensitivity Technique {FAST), by Bandler, Zhang and Biernacki (1989) and Bandler,
Zhang, Sénf; and Biernacki (1990). Motivated by the potential impact of the adjoint

sensitivity approach on general purpose CAD programs we have studied its

implementational aspects. FAST combines the efficiency and accuracy of the adjoint

"
y .

sénsitivi:y technique with the simplici'ty of the perturbation techrique. FAST is
demonstrated to be an implementable, high-speed gradient calculation technique.
FAST retains most of the efficiency and accuracy of E4AST while accommodating the
simplicity of PAST. FAST, linking state-of-the-art optimization and efficient
harmonic balance simulation, is the key to making our approach to nonlinear
microwave circuit design the most powerful available.

First, we describe a general formuiation for the adjoint sensitivity analysis
technique. Then, this formulation is applied to deveiop FAST for the nominal design
case. FAST is extended to a form applicable to statistical design. Detailed
comparisons among FAST, IGAT, PAST, and EAST are given,

FAST is used in yield optimization of a microwave frequency doubler. The
performance yield is inéféased from 40% to 70%. This example is the same circuit
used in the last chapter so that the comparison between [GAT and FAST can be

drawn. FAST exhibits superior efficiency. (L

W
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6.2 FEASIBLE ADJOINT SENSITIVITY TECHNIQUE

6.2.1 Generic Formulas for Adjoint Sensitivity Analysis

We derive a set of generic formulas to calculate sensitivities of a response in:

the harmonic.balance simulation environinent. The sensitivity of a response with

respect tu one variable, ¢,

R4, V. )
EFR

{6.1)
should be computed at the solution of the harmonic balance equation, that is, this
sensitivity calculation is performed subject to the constraints of

Fl¢, V)=0.

First, (6.1) is found to be

(6.2)

KRG T ORGT.H 3R, v.h [ o7
BT av | 3%

Then, we differentiate both sides of the harmonic balance equation with respect to ¢y,

aF($, ?:)_+ aF($, V)| av =0, (6.3)
a';bk 3? a¢k

Now, from (6.3), we can find that

_— - T —_—
av - aF ar
a¢;. av ;. (6.4)
=;‘_’;7-1 3F
g’

where J is the Jacobian matrix defined in (5.23).

By substituting (6.4) into it, (6.2} can be rewritien as:
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K@V B RS, V. k) [aR,@f ] ;19F e

3¢ 0 T A av N

Now the three terms on the right-hand side of (6.5) should be available before
coﬁlputing the sensitivity. For different types of responses and variables, those terms
can become very involved. (It is a headache to implement this approach in a general-
purpose program while various responses and user-defined responses are allowed.)
Bandler, Zhang and Biernacki (1988a, 1988b) have proposed EAST to caiculate
sensitivities. The sensitivity expressions for various elements have been derived and

listed (Bandler, Zhang and Biernacki 1988b).

6.2.2 FAST for Nominal Design

To simplify the derivation and to embody the procedure, we consider the
circuit in Fig. 5.1 in the last chapter. The response of interest is the voltage at the
output port in the circuit shown in Fig. 5.2. The output voltageata certain harmonic

can be calculated from (5.25). We may want to include Vg{k) into (5.25),

v (h)
Velh)
[28u00 0 w85t y840 18pcth) Yoz®] | VoA

.Va,o(h) Vith)
Vg (k)
Vep(h)

Volh) = . (6.6)

We define a vector for the output voltage spectra,
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0 T
Vo)

| VolH)

We'also define a vector containing the input and DC bias voltages

Z70)
VS fa VBG(O)
Vpp(0)

Now, we can relate the output voltage at all harmonics to the harmonic balance

solution ¥, input excitation and DC bias supplies

V
YooVo =[YO,F Yo,s] ve | (6.8)
where
Yo.0 & diagly50(0) 501} - - - ¥hotH)) (6.9)
i i
A (o) S O N - P
0 yo,(n0.. . 0 yip() 0.
YO,F é - - | 0 l
| l
I !
c .0 ¥8(H) | | . N LY G
(6.10)

and
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From (6.8), we have
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0 ¥543500) ¥55p0) ]
o 0 0

0 0 0

0 0 0o |

V
Vo = Yo,c;l[Yo,F 1"o.s] [ Vs] .

or

vo=[u][,‘;],

where matrices A and B are appropriately defined.

(6.11)

{6.12a)

(6.12b)

By spiitting the real and imaginary parts of (6.12), the real-valued version can

be found as

_ Re,,;',-’ O)
Yo & I:lm(Vo)

Now, we define the following

V

[4 B] 7,

Re(4) ~-Im(A) Re(B) -Im(B)
Im(4) Re(d) Im(B) Re(B)

Re(4) -Im(A) Re(B) -Im(B)
Im(A) Re(d) Im(B) Re(B)

|

L

_ Rech) _
Im(V)
Re(¥s)

Im(¥)

Re(V)
Im(F)
Re(Vs)
Im(V)

(6.13)

-

where Fs denotes the split real and imaginary parts in the spectra of excitation

voliages, and Vs actually the solution to the harmonic balance equations (5.22).

Then,
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has a linear transfer matrix linking the output voltage with T;s and V. The
. coefficients of C are functions of element parameters in the linear subnetwork, V.
are dependent not only upon element parameters in both linear and nonlinear
subnetworks, but also the excitation and DC biases. Obviously, Vs is determined by
the excitation voltage and DC bias voltages: We may want to change 7_«,- to improve
the circuil;_ performance.

To make the i'ormulatioﬁ'concise, we only considgér the derivative of
R = Retv,(h))
oth) = olh)

with respect to ¢,. The corresponding row in (6.14) gives

vy = a” o7] (6.15)

. . . . . R
From this equation, the approximate derivative of ¥ 5 w.r.t. ¢ can be calculated as
(o k

R 7 =
AV r 14 73 AV
0 . A — |+d av -, pr 3 (6.10)
Ad  Adp | Vs Lgy Ay
by perturbing ¢ to ¢ + Aduu,..
A
Let ¥ be the adjoint voltages obtained by solving the linear equation
A
J V = a, (6.'7)

where 7 is the Jacobian of F with respective-to ¥ at the harmonic balance solution.

Substituting (6.17) into the third term on the right hand side of (6.16) gives the

T—
JAV,

<>
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From (6.4), we have

-JAV = AF
Now, we can express
R T T F
AVox[c @ + Aduy) - ¢ ] -
s {6.18)
— .y A _
< 6T [T5(é + Bdw) - V| - V AF.
The incremental term AF can be approximated by
AF = F(¢ + Adpu, V) (6.19)

for a small Ady.
Equation (6.18) is a special case of (6.5).

Considering the different elements, (6.18) can be further expressed as

(1 7 ) |4 Ar_ —
[ + agun) =) | o |-V b+ 2 V),
5

if ¢, € linear subnetwork;

_ A =
vl ] b Vs6 + Aday) - Vs| -V 4+ Dy, V), (6.20)

if ¢, € sources;

Ar_ —
-V F(¢ + gy V),

-.if ¢ € nonlinear subnetwork.
This formula is much easier to implement than the corresponding formula for
EAST (Bandler, Zhang and Biernacki 1988b). The function F( + Adpu V) is

evaluated by perturbation. The effort for solving the linear equations (6.17) is small



£y

et SR’

e e,

A
-

127

W
Y

since the LU, factors of the Jacobian matrix are already avail;lble from the final
S

; 1
I L

harmonic balance iteration. The terms ¥ and ¥ are also availab/l,-'.'a from the harmonic
balance simulation, The perturbed vectors a{¢ + A.‘q;kukl-‘i::;zj’b(¢ + Adpuy) can be
easily calculated since they involve the linear subnetworié{;;:anly. Finally, the perturbed
excitations VS(QS + Adruy) can be effortlessly obtain‘;d. It is clear that the calculation
of all the terms in (6.18) or (6.20) can be ;eadilzy implemented.

Finally, the approximate sensitivity of output voltage Vg(h) with respective
to ¢, can be computed as

avimy  avBwm
3o, Dep

(6:21)

6.2.2 FAST for Yield Optimization
For the ith outcome, the following terms are defined, corresponding to their

counterparts in the nominal circuit case,
R . - - - — . — -
Vol#), al$), Bé#), dé), V¢), V). (6.22)
The harmonic balance equation and adjoint system are

(¢, Vi) =0 (6.23)

and

[776) 76 = atd). (6.24)

Similar to IGAT perturbations in vield optimization, perturbations used in

FAST are ql§o made to the nominal values ¢°. ¢ and qbi'[,m are outlcomes generited
from the unperturbed and perturbed nominai values ¢° and ¢£d,m, respectively. The

increment of the output voltage of the ith outcome due to the perturbation is
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calculated by

. ; 1 {V)
aVE@) = [cT@ L o) - )] )
o (6.25)
= — .1 Ar . _
e T@|T5@ & perd - Tod)] - 7 @0F,
where
AF % Fi$} por VD), (6.26)

A g
¥(¢') is the harmonic balance solution of the ith outcome, and 7(;6'-) is the adjoint
system solution cé};'rcs:_porfding to (6.17).

For different 1ypf;s; of elements, a formula similar to (6.20) can be derived.

Although we provided formulas 1o calculate the sensitivity of the output
voliage, the principles behind our approach are applicable to other forms of responses
of interest. Since many other responses are functions of the output voltage, their
sensitivities can be calculated from the sensitivities of the output voltage. In nonlinear
microwave circuit design, the power performance is usually of major interest. The

sensitivity information of the output voltage can be translated into that of output

power through the chain rule.

6.3 COMPARISONS OF YARIOUS APPROACHES

6.3.1 Implementational Comparisons of PAST, IGAT, EAST and FAST
PAST and IGAT do not need any maodification of the circuit simulator.
PAST is a widely used approach, because it is very easy to implement.

However, computational costs may be prohibitive. Suppose there-are 10 design
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variables in the no_nlinear circuit. Using PAST to calculate the gradient, one needs
to perturb all design variables and to solve the entire nonliﬁear circuit for each
perturbation, i.e., 10 times. The best possible situation for this approach is tha; all 10
simulations use the same Jacobian and all converge in one iteration. This applies to
nominal circuit design. For yield optimization, a large number of statistical outcomes
may make PAST prohibitive.

The distinct advantage of IGAT over PAST is that IGAT only requires the
circuit response function once to update the previously calculated gradi_em for most
optimization iterations, IGAT enjoys the simplicity of the perturbation method so that

" yield optimization can be carried out without _;_nodif‘ying the circuit simulator to
calculate exact derivatives. JGAT is very desirable when the circuit simlnlator cannot
be modified.

Both £EAST and FAST require modii‘ication to the circuit simulator,

The generic exact adjoint sensitivity technique (Bandler, Zhang and Biernacki
1988a, 1988b) is accepted by all circuit thgoreticians as the most powerful tool.
However, to implement it, we have to keep track of all arbitrary locations of variables
and to compute branch voltages at all these ibcations. Microwave sof tware engineers
have, to date, found these obstacies insurmountable,

Uslag FAST, we also need to perturb all variables. For a circuit with 10
design variables, instead of completely solving 10 nonlinear circuits, we only evaluate
10 residuals in the form of (6.19) and calculate the perturbed lincar subnetwork, The
solution of adjoint zquation (6.17) can be accomplished by using forward and

backwati? substitutions. In FAST, we completely eliminate the need to track variable

\

locations. We only need to identily the output port, which is the simplest step in
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adjoint sensitivity theory.

6.3.2 Numerical Comparison of PAST, EAST and FAST

We use a MESFET mixer (Camacho-Penalosa and Aitchison 1987, Bandler,
Zhang and Biernacki 1988a, 1988b) to investigate the accuracy and actual time
efficiency of FAST (Bandler, Zhang and Biernacki 1989). Sensitivities of the mixer
conversion gain w.r.t. 26 variables were calculated by the FAST, EAST and PAST
approaches, respectively. The variables include all parameters in the linear as well as
in the nonlinear part, DC blas, LO power, IF, LO and RF terminations. The results
show that the FAST sensitivities are almost identical to the exact sensitivities, whereas
the sensitivities computed by PAST are typically 1 to 2 percent different from their
exact values. This fact reveals that FAST promises to be much more reliable than
PAST. The CPU time comparison shows that FAST is 3 times slower than EAST but
23 time faster than PAST for one complete sensitivity analysis of the mixer circuit.

The comparison betweeﬁ IGAT and FAST will be given in the following

section by a statistical design example.

6.4 YIELD OPTIMIZATION OF A FREQUENCY DOUBLER

The same FET frequency doubler shown in Fig. 5;1 in Cha‘;::ter 5 is considered.
We implement FAST and conduct a g{gﬁgn using FAST gradient calculation in the
same environment as JGAT was implem\énted. Computational details are given in
Table 6.1. The design has two consecutive phases. The first phase uses 19 function
evaluations and gradient calculations to give 70.6% yield. The second phase slightly

increnses the estimated yield to 71%, verifying the solution of the first phase. The

WY

IR}



131

TABLE 6.1

YIELD OPTIMIZATION OF THE FREQUENCY DOUBLER USING FAST

Parameter Starting Nominal Solution I Solution II
Point Design
Ppe(W) 2.0x10°3 2.49048x10™3  2,02313x10°*  1.94444x10°3
Vge(V) -1.9 -1,.70329 ~1.93930 -1.92927
Vep(V) 5.0 6.50000 6.50000 6.50000
L,(nH) 5.0 5.29066 5.71547 5.63312
15(m) 1.0x1073 1.77190x10™3  1.73531x10"®  1.74046x10~3
I,(m) 5.0x10°3 5.73087x10"%  5.74965x10™%  5.74956x10™S
Yield 39.6% - 70.6% 71.0%
No. of Optimization 19 29
Iterations
No. of Circuit Simulations 950 1450
and FAST Analyses -
CPU{(Multiflow 7.9min 12, 1min

Trace 14/300)

The yield is estimated from 500 outcomes.
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efficiency of FAST is well demonstrated. To reach the same yield level, the CPU
time used by ﬁ'}é FAST approach is much less than that used by the IGAT approach.
Figs. 6.1 and 6.2 show histograms of the conversion gains and the spectral

purities, respectively, at the solution of yield optimization. 500 outcomes are used to

calculate both distributions. The histqm:_afns of I-:i'g. 6.1 and Fig. 6.2 are very similar

RS

to those in Fig. 5.6 and Fig. 5.8, respectively. The center cf the spedtral purity

histogram has been moved well above the specification.

6.5 CONCLUDING REMARKS

This chapter has presented the comprehensi\'re formulation of gradient
calculation of FAST. Combining perturbations, and adjoint analysis techniques,
FAST has significantly improved computational efficiency as compared with most
existing methods. The significant advantages FAST over PAST and IGAT are its
unmatched speeds and accuracy, and over EAST are its implementational simplicity.
IGAT is a desirable choice when the circuit simulator cannot be modified. FAST is
particularly suitable for implementation in general purpose microwave CAD software.

Numerical experiments directed at yield-driven optimization of a FET
frequency doubler verify the new gradient calculation approach. The substantial
computational advantage of IGAT and FAST have been observed.

Since most microwave circuit CAD packages currently used in industry utilize
the traditional ﬁéfiurbation approach to evaluate gradients, design optimization is
severely limited by poor efficiency. Because of its superior properties, the gradient
calculation technique based on adjoint sensitivity analysis has attracted much attention

from the microwave CAD community (Gilmore and Steer 1991). The author strongly
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Fig. 6.1 Histogram of conversion gains of the frequency doubler at the solution of

yield optimization using FAST. 500 outcomes are used.



k2

134

N
A

30 ——p—————— T

251 -

]
[=]
|

|

'FREQUENCY
1

=
i
s

(LA
14 16 8 20 22 24 26 28 . 30 32

SPECTRAL PURITY (dB)

Fig. 6.2  Histogram of spectral purities of the frequency doubler at the solution of
yield optimization using £AST. 500 outcomes are used.



i

135
believes that FAST will become an expedient tool to meet the pressing need for
efficient microwave nonlinear circuit design. Qur success should strongly motivate
other developmeants in nonlinear microwave circuit CAD, such as yield-driven design

using physicas based device models and statistical modelling of microwave devices for

1 ;
e 4
[

iR i
large-signal applications. 4
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CONCLUSIONS

This thesis has addressed yield-driven design of microwave circuits using
efficient computer-aided design techniques. Novel approaches to approximations to

both circuit responses and gradients have been described. Em"bhasis has been put on

the feasibility of these approaches. This is essential both in dealing with practical

-~

large problems and allowing yield-driven design to exist it general-purpose CAD
tools. Ourapproaches offer great reductions in computational requirements, including
storage and CPU time. Meanwhile, it is easy to implement them into a new CAD

programs or to integrate them with existing programs.

The efficient quadratic modeling presented in Chapter 3 offers substantial
savings of CPU time and storage through avoiding repcated expensive simulations and
gradient evaluations. This technique ¢an be applied to a broad range of applications
where many computationally intensive simulations are required, such as statistical
modeling, Monte Carlo simulation, iterative numerical calculation involving very
complicated function evaluations, etc. For example, it has been suggested by Rizzoli
et al. (1991) that complex components that can only be computed by electromagnetic
methods are approximated by our quadratic approximation.

Actual tuning is always associated with tolerancas. [n Chapter 4, yield-driven
design of such circuits is discussed. By taking tuning tolerances into consideration,
our yield-driven design will ease the tuning process and the design results present

better yields after tuning. For very large scale circuits, yield-driven design using

137 -
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general—purpgse CAD programs on available computer platforms may become
unmanageable. Our combined approach presented in Chapter 4 provides an effective
means (o meet this challenge. Due to our work, the application of supercomputers to
yield-driven design task has generated interests in microwave CAD area (Rizzoli et
al. 1991)

Our approaches to gradient calculation in the harmonic balance environment,
presented in Chapters 5 and 6, are directly applicable to yield-driven design using
optimization techniques. They have shown very promising features i.ncludifi;g high
computational efficiency and implementational feasibility. We have illustrated how
these methods can be implemenied to suit different situations. This work has been
highly rc.garded by other researchers. Purviance and Meehan (1991) stated that the

‘step from Ii;ear circuits to nonlinear circuits in yield optimization was first pre;gnted
to the microwave CAD community by us. These methods have found their way into
general-purpose CAD software. We believe that they will play an important lfole in
the new generation microwave circuit CAD software. Reliable and efficient yield-
driven techniques will also facilitate and broaden the ﬁew CAD research.
Comprehensive testing examples have been presented in this thesis to examine
our new approaches. The merits of these approaches have been well demonstrated.
The author has felt, during the course of this work, that the issue of how to
improve manufacturability and yield has been realized to be of extreme importance
by more and more engineers in the MMIC field. Development of reliable and
efficient yicld-driven design tools has lagged behind the demand. In order to reduce

this gap, the following problems could be considered in future research and

development.
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In the proposed gradient quadratic approximation scheme of Chapter 3, a
circuit response and its gradient are treated as separated functions. However,
they are actually related. " There:;'ore, it is suggested that the pradient
information, together with response information, should be utilized to build
the response model. Then, consistency betweei; the quadratic models of the
response and gradient and higher accuracy of the response model are logical

consequences. A problem is that the resultant formulas may not be as simple

as those in Chapter 3.

Statistical design of large scale circuits is still one of the most challenging tasks
in CAD. Approximation techniques will continue to play an extremely
important role in the coming generation of CAD. They can be applied at the
system response level, subsystem level, and/or device and =lement level,
Besides some traditional approximation techniques, such a‘é‘ quadratic
approximation of Low and Director (1989) and spline approximation of Barby,
Vlach and Singhal (1988), the response surface method based on experiniental
design theory (Bo':'.‘,‘ Hunter and Hunter 1978) has be used to guide statistical
design of VLSI devices (Alvarez, Abdi, Young, Weed and Herald 1988,
McDonald, Maini, Spangler and Weed 1989, and Aoki, Masuda, Shimada, and
Sato 1987). Applying this method to microwave circuits and devices would
tremendously improve the efficiency of large scale network yield-driven

design.

As we know, the ultimate goal of design is 10 direct the manufacturing
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process. It is much more meaningful to use actual geometriﬁci.hlsizes and process
controlling parameters as design variables. Physics based models of passive
and active devices are necessary tb link the design procedure and the

manufacturing process (Yoshii, Tomizawa and Yokoyama 1983, Snowden and

-

Loret 1987, Khatibzadeh and Trew 1988, and Curtice 1989). Research into
4] S

using physics based device models m design has been undertaken by Bandler,
Zhang and Cai (1990). Simulation of active devices, such as GaAs FETs, is
still the computational bottleneck. In the case of yield-driven design wili}
physics based models, computational effort will be even more prohibitive.
Approximation 1o device level simulation should be devised. The table lookup
approach (Burns, Newton and Pederson 1983, Jain, Agnew éhd Nakhla 1983)
and the macromodeling approach {Turchetti and Masetti 1983, Casinovi and
Sangiovanni-Vinceniclli 1991) can be very good cé;ndidates to be applied in
microwave circuit design. It is better to complete the approximation

calculation in the preprocessing phase prior to actual design optimization.

Another urgent problem emerging is statistical modeling of different types of
elements and devices. Reliable statistical models are key to determining
accuracy of yield estimates and, consequently, of yield-driven design. The
more difficult aspect will be the statistical modeling of devices using physics
based models. Research reported is mainly focused on digital circuit devices
(Cox, Yang, Mahant-Shetti and Chatterjée 1985, Herr and Barnes 1986, and
Yu, Kang, Hajj and Trick 1987). One of the first research results related to

the statistical modeling of GaAs MESFETs is given By Bandler, Biernacki,

o
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'\(‘fhen, Song, Ye and Zhang (1991b). Further research is definitely needed to

produce efficient, consistent and unique solutions.

Parallel processing and distributed computation will provide us with even
greater computational power. Calculations required in yield-driven design
have an inherent parallel nature which is highly suitable for parallel
processing (Rizzoli et al. 1991). Research into this parallelism should be

conducted to efficiently explore available networked computers.
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