Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8314
Title: Neural Network Techniques in Managerial Pattern Recognition
Authors: Wang, Shouhong
Advisor: Archer, Norman P.
Department: Management Science/Systems
Keywords: Management Information Systems;Management Information Systems
Publication Date: Jun-1990
Abstract: <p>The management area includes a large class of pattern recognition (classification) problems. Traditionally, these problems have been solved by using statistical methods or expert systems. In practice, however, statistical assumptions about the probability distributions of the pattern variables are often not verifiable, and expertise concerning the correct classification is often not explicitly available. These obstacles may make statistical methods and expert system techniques difficult to apply. Since the early 1980s neural network techniques have been widely used in pattern recognition, especially after Rumelhart's back propagation learning algorithm was adapted to the solution of these problems. The standard neural network, using the back propagation learning algorithm, requires no statistical assumptions but uses training sample data to generate classification boundaries, allowing it to perform pattern recognition.</p> <p>In this dissertation the neural network's behavior in classification boundary generation is analyzed. Based on this analysis, three models are developed. The first model improves the classification performance of neural networks in managerial pattern recognition by modifying the training algorithm through the use of monotonicity. Using simulated and real data, the developed model is tested and verified. The second model solves bias problems caused by small sample size in neural network classification results. The third model develops multi-architecture neural networks to supply decision makers with more natural pattern recognition information, based on fuzzy theory.</p>
URI: http://hdl.handle.net/11375/8314
Identifier: opendissertations/3529
4546
1662307
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
7.53 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue