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ABSTRACT

lhe management area includes a large class of pattern
recognition (classification) problems. Traditionally, these problems
have been solvgd by using statistical methods or expert systems. In
practice, however, statistical assumptions about the probability
distributions of the pattern variables are often not verifiable, and
expertise concerning the correct classification is often not
explicitly available. These obstacles may make statistical methods
and expert system techniques difficult to apply. Since the early
1980s neural network techniques have been widely used in pattern
recognition, especially after Rumelhart'’s back propagation learning
algorithm was adapted to the solution of these problems. The
standard neural network, using the back propagation learning
algorjthm, requires no statistical assumptions but uses training
sample data to generate classification boundaries, allowing it to
perform pattern recognition.

In this dissertation the neural network’s behavior in
classification boundary generation is analyzed. Based on this
analysis, three models are developed. The first model improves the
classification performance of neural networks in managerial pattern
recognition by modifying the training algorithm through the use of
monotonicity. Using simulated and real data, the developed model is
tested and verified. The second model solves bias problems caused by
small sampie size in neural network classification results. The

third model develops multi-architecture neural networks to supply

iii



decision makers with more natural pattern recognition information,

based on fuzzy theory.
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CHAPTER _ONE

INTRODUCTION

1.1. GENERAL DESCRIPTION OF NEURAL NETWORKS

For our purposes, artificial neural networks are defined as
massively parallel interconnected networks of simple (usually
adaptive) elements and their hierarchical organizations, which are
intended to react to information or. the objects of the real world in
a manner analogous to biological nervous systems [Kohonen 1987].
Neural networks or simply "neural nets" may also be referred to as
connectionist models, parallel distributed processing models, and
neuromorphic systems [Lippmann 1987).

Neural network architecture may be described in various
ways, depending upon its desired function [Lippmann 1987, Hecht-
Nielsen 1987]. The most general topology of a neural network is
shown in Figure 1.1.

The neural network system carries ou: the information
processing operation as a mathematical mapping ¢ of vector X to
vector Y so that Y=¢(X) , where X is the vector of external inputs to
the network, and Y is the vector of outputs. Units ("neuroas")
within the network may receive input signals and/or lateral feedbacks

1



Fesdback
Y
xy 1
Input
signals outpus=
x2 - Tesponse
Neuron ¥

Fig. 1.1. General Neural Network Model

{(modified from [Guyon 1989])

in parallel. Many parallel lines among the units may be needed to
establish the input-output relationships. The detailed structure of
layered neural networks will be discussed later.

McCulloch and Pitts’ research in the early 1940s (e.g.
[McCulloch and Pitts 1943)) is regarded as the first theoretical
research which described the fundamentals of neural computing
[Kohonen 1987]. This research showed how neural-like networks could
be mathematically manipulated, and suggested the need for such
networks to learn (cf. [Rumelhart et al. 1986]). Active research on
adaptive or learning neural networks was carried out up through the
1960s. The best known work was Rosenblatt’s [Rosenblatt 1962], and
Minsky and Papert’s [Minsky and Papert 1969%9) research on the
perceptron, which is a simple neuron-like learning network. By the
early 1970s this activity had declined substantially [Griffiths

1988], at least partially due to Minsky and Papert's pessimistic



evaluation of the capabilities of the perceptron (cf. [Rumelhart et

al. 1986, p65, plll}). More interest developed in the late 1970s

when multilayer nonlinear threshold neural network models were
designed with much more potential for learning than the perceptron.
Recently there has been an explosive rise of interest in neural
networks, mainly due to the impression that general neural computers
may become highly important in the marketplace [Anderson 1988]
(Griffiths 1988]. Neural network modelling has usually been pursued
in connection with psychological theories and neurophysiological
research. However, interest is also spreading within the
engineering, mathematical computirg, and computer science {artificial
intelligence) communities. A considerable amount of recent research
in neural networks has been directed towards pattern recognition
applications [Lippmann 1989].

Research in neural networks is still ir its infancy, but it
is expected that neural network models will be useful both as models
of real brain functions and as computational devices for many
applications, including pattern recognition or classification [Widrow
et al. 1987, 1988) [Lippmann 1987, 1989], [Guyon et al. 1989],
handling of complex searches for relevant knowledge from assoclative
memory (Kohonen 1987), signal processing [Parkkinen et al. 1988], and
optimization (Hopfield and Tank 1985]. Neural networks have been
used to solve particular problems (e.g. [Bounds et al. 1988)), or to
implement particular computational models [Alkley 1987]. Some neural
network models have been used to mimic human behavior in problem
solving and learning [McClelland et al. 1986]. Some investigations

have been carried out on neural networks with particular



architectures in order to study their computational properties
(Hopfield 1984]. Most of these investigations are motivated by the
prospect of "neural computers"” -- new generation computers with
parallel processing characteristics [Anderson 1988].

In the context of machine learning [Michalski et al, 1983,
1986], neural networks initially have little task-oriented knowledge,
but they learn by incrementally modifying connection strengths
between individual elements. This contrasts with symbolic concept
acquisition and knowledge intensive domain-specific learning which
are typically supported by logical expressions, production rules
(expert systems), or semantic networks.

The boundary between pattern recognition and machine
learning is not clear-cut. For instance, pattern recognition by a
neural network is often implemented via a kind of learning device, as
will be shown in Chapter 2.

In order to give a scenario for pattern recognition and
machine learning in managerial decision making, consider a simple
example. The shareholders' evaluation of a stock is based on the
return mean and variance (the so-called mean-variance analysis in
finance). Given a stock’s return mean and variance, the shareholder
must judge if the stock is "good" or "bad” (Figure 1.2). The
boundary separating a stock portfolio into two classes is a utilicy
function curve [Rudd and Clasing 1982) [Keeney 1972]. Usually, the
shape of the utility function curve is not regular, and expressing
the curve mathematically is relatively complicated. However, on a
two-dimensional plot, one can intuitively draw a curve to separate

the two classes. The question is how to program a computer to solve



this kind of problem, especially in the multivariate data case where
two-dimensional graphical methods are not applicable. It will be
showm that the neural network approach is able to solve this type of
problem by making few assumptions, and by learning from existing

data.

E

Expecced ¢ CGooea °
Stock
Teturn

S,
Varlance

Fig. 1.2. Stock Mean-Variance Chart

1.2. BACKGROUND

1.2.1, A CLASS OF PROBLEMS IN MANAGERIAI DECISION MAKING -- PATTERN

RECOGNITION / CLASSIFICATION

Pattern recognition is the prediction of the value of a goal
class of any object by its description [Lbov 1982]. A pattern
recognition machine or classification decision function may be
divided into two parts [Nilsson 1965] [Young and Calvert 1974): a

feature extractor and a class selector, as shown in Figure 1.3.  The



pattern vector X, with m components (xl,x2 ...xm) describes an

object. The feature extractor is a transfermation

Y =4 (X (1.1)
which transforms a pattern vector X into a feature vector ¥, witk n
components (yl,yz...yn). Based on Y, the class selector then selects
a class cieC , where C-{cl,cz...ck] is a set of k goal classes to
which X may belong, Usually, the class selector is a very simple
function [Nilsson 1965], such as yy= max (yj) - ¢y where

h|

j=l...i...q, and n=k=q.

Pattern recognition machine

Pattern vector Feature Class Class ¢
extractor Feature vector salecror L

Ye={¥y.¥y.-.
Kmi%, %o . %) Yud (X) (ry¥g - ¥y
172 a

c-[cl,cz...ckl

Fig. 1.3, Pattern Recognition Machine

Pattern recognition involves two stages. The first stage is
the determination of the decision function ¢ from a "training
sample", where the goal classes are known for a given object pattern.
This is a synthesis problem [Karplus 1983]. The second stage, once ¢
has been determined, is to use ¢ to classify new objects from the
same population according to their patterns, where the goal classes,
of course, are not known. This is an analysis problem [Karplus

1983}. The accuracy of prediction is usually measured with a test



sample which is different from the training sample. A closely
related statistical technique is discriminant analysis, which will be
described later in more detail.

In the management area there is a class of managerial
decisions which can be reduced to pattern recognition or
classification. Before defining the characteristics of these
problems, a few published examples of managerial classification

problems and their solutions will be described.

Example 1. Financial ratios analysis and prediction of corporate
bankruptcy.

Altman [Altman 1968) developed a linear discriminant model for
company bankruptcy prediction where a sample of sixty-six firms was
urilized to establish a decision function to discriminate between
companies in two goal classes: those which would go bankrupt and
those which would survive. The pattern vector used financial ratioes,
and the model predicted bankruptcy with an accuracy of 94 percent in

the training sample and 95 percent in a test sample.

Example 2. Credit extension decision.

A number of studies have been published [McGrach 1960],
[Greer 1968], [Myers and Forgy 1963] in which historical data on
customer characteristics (e.g. age, income, etc.) were used for the
pattern vector, and goal classes of "good” and "bad" credit risks
were used for customers with known records. The decision function
thus determined (using a linear discriminant model) is then used to

classify new customers.




Example 2. Assessment of strategic planning.

Ramanujam et al. [1986] developed a set of key attributes of
planning systems as a pattern vector, and employed discriminant
analysis to classify planning systems as more and less effective.

They claimed 81.7 percent overall classification accuracy.

These typical examples of managerial pattern recognition
have certain characteristics:
(1) They assign individuals to a class on the basis of pattern data
that are related to the class. No analytic algorithm is availahle to
solve these problems; it is almost impossible to generate an
objective function and find the opti. . assignment solution subject
to a set of known constraints using mathematical methods such as 0/1
linear programming [Hillier & Lieberman 1986]. In managerial
pattern recognition cases, classification techniques have to be
employed in order to achieve a low error rate when assigning an
unknown observation to a class.
(2) Another common feature is that almost all managerial problems
involve classification into two classes. Indeed, when a numerical
approach is used in the feature vector (discussed later), there is a
continuous range between extreme "no" and "yes" answers (i.e. from O
to 1). There may also be moderate values of the feature extraction
result, (e.g. 0.4-0.6, which could represent "maybe" or
"indeterminate").
(3} In most managerial classification cases, the statistical
distributions of the pattern variable data are not known. Usually,

they are assumed to be multivariate normal distributions with



parameter estimates based on the available training sample. This
assumption may or may not affect the result., Also, there is usually
lictle explicit knowledge about why an individual sample point
belongs to its class.

{4) The examples given above all used a linear discriminant function
which generates a linear decision boundary. Because there is no
prior knowledge about boundary shape, the linear boundary assumption
seems to be a reasonable approximation, and linear discriminant
analysis is commonly used when no knowledge other than the sample

data is available.

1.2.2, PROBLEM DEFINITIONS

In this subsection we discuss definitions relevant to

managerial pattern recognition.

1,2.2.1, MANAGERIAIL PATTERN RECOGNITION

In Section 1.2.1. the general mathematical definition of
pattern recognition was given. 1In fact, pattern recognition implies
much more than pure mathematical matching between the observed
description and the goal class. Artificlal intelligence research
considers pattern recognition to be the use of a human's specific
knowledge and abstraction ability [Rich 1983], and attempts to solve
classification problems in the "human" mode. To apply the generic
theory of classification to a specific problem requires a thorough

understanding of the problem, including its peculiarities and special

PRETVE. R TH I
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difficulties. For the purpose of our discussion, managerial pattern
recognition is thus defined as follows:

Managerial pattern recognition (or c¢lassification)

is the use of a decision function to classify

objects into two or more classes, based on

historical observations from the same object

population and on the generic properties of

managerial problems.
The generic property of managerial pattern recognition problems most
relevant to the present research is the monotonicity of the utility
function. We will discuss this concept and its application to neural
networks in Chapter 3. Other relevant generic properties of
managerial classification problems include;
{1) rough data;
(2) very limited sample data (several to a couple of hundred points);
{(3) ill-structured decision making, and

(4) subjective judgements.

1,2,2,2. CHARACTEKISTICS OF CLASSTIFICATION PROBLEMS

There are nine major characteristics [Young and Calvert
197471 [Lachenbruch 1975] [Green 1978] [Hand 1981] which constitute
the knowledge available to build models to solve classification

problems:
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(1) Dimensions of the pattern vector.

In equation (1.1) each component of the m-dimensional
pattern vector X is a variable or attribute of the object to be
classified [Young and Calvert 1974]. Typical dimensionality of the
pattern vector in managerial classification problems ranges from two
to twenty (cf. [Green 1978] [Churchill 1979] [Zaltman and Burger
1975]1). Generally, the larger the number of pattern dimensions, the
more complex the system. Some technijues such as the stepwise method
of discriminant analysis [Nie et al. 1973] can be used to reduce the
number of pattern dimensions in order to improve understanding of the
problem. However, reducing the number of pattern dimensions

increases the potential risk of losing relevant information.

(25 Number of goal classes,

Given a problem, the number k of goal classes (Figure 1.3)
is determined. In the sense of managerial pattern recognition, the
number k in turn corresponds to future potential managerial
decisions. For example, in the stock mean-variance analysis the

classification of a stock as either good or bad basically corresponds

to a future managerial decision "buy" or "sell". Sometimes, one may
categorize the stock into several groups such as "excellent", "good",
"Fair", "bad", and so on. Nevertheless, 1f the resulting managerial

decision only involves two options, the classification is still a two
goal class problem, but with multiple levels within a class. Solving
problems with more than two goal classes is similar to solving a two
class problem; however, the approach becomes less intuitive

[Lachenbruch 1973].
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{3) Dimensions of the feature vactor.

As shown in Figure 1.3, a pattern recognition system first
transforms the pattern vector X into the feature vector Y before the
goal class is selected. The dimension n of Y is basically dependent
upon the number k of goal classes. In the two class case, Y may be
collapsed to a scalar y. Suppose that y<0.5 indicates class 1, and
y20.5 is class 2, assuming the range of y is [0,1]. An alternative

is to specify Y with dimension 2. If the range is [0,1] for ¥y and
¥qu for instance, yl<0.5 and y220.5 could indicate class 1, and
y120.5 and y2<0.5 could indicate class 2. Other values for the ¥y o

Y5 Pair could then indicate an indeterminate classification.

(4) A priori probabilities,

A priori probabilities Pr(ci) about the occurrence of goal

classes are useful for predicting classification results (Hand 1981}.

In the usual case, the Pr(ci)'s are not related to the sample data

themselves, but are estimated, based on previous observations of the

proportion of occurrences of goal classes.

(5) Likelihood probabilities.
Knowledge about the probability distributions of the

sample’'s pattern data for each given class fc (X} (i.e. Pr(X[ci)) is
i

crucial to the statistical estimates involving the classification
decision [Hand 1981). Lack of knowledge about the distribution

sudstantially weakens a statistical tool’s classification power,



13

(6) Structure knowledge relating a pattern to its class.

In some cases, it is well known why a pattern belongs to its
class rather than to others. Assigning a pattern to a particular
class can be generalized into a structurec tree or a set of rules
[Breiman et al. 17°84]. However, in many managerial problems this

kind of knowledge is often not available.

(7) Decision region / boundary.
Given a problem, any pattern can be represented by a point

in an m-dimensional Euclidean space nx , which is called its pattern

space. For example, assume the pattern dimension is 2, and the two

components of X (x, and x, ) range from 0 to 1 respectively. Then Q
P 1 2 4 Yy X

is square with side 1 (see Figure 1.4).

ay pattern space

Decision

nl(CIlss 9] boundary

0,{Class 2)

Fig. 1.4. Decision Regions And Decision Boundary

Suppose there are two classes. A pattern recognition function will

divide ﬂx into two disjoint decision regions, nl and 02 , each

corresponding to one class. The separating line {(pattern recognition
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function) is called a decision boundary [Young and Calvert 1974],
[Hand 1981]. Wher. there are more than 3 pattern dimensions, the
decisjon boundaries are hypersurfaces. If the decision boundary is a
straight line, plane, or hyperplane, then it is linear; otherwise, it
is nonlinear. In general, the shape of the decision boundary is not
known unless the form of the multivariate random variables which

generate it are known.

(8) Training Data Set vs. Testing Data Set.

Sample data are usually employed for two purposes: building
the classification model, and testing the model [Toussaint 1974],
The data subset S from the sample used for modeling is called the
training data set, and that used for testing is called the testing

data set R. The two data subsets are not necessarily disjoint.

(9) Sample data quality.

In practice, sample data are not perfect. Sample data
quality influences the classifier’s performance. There are three
major types of problems with sample data in classification, which may
cause difficulties for particular classificacion techniques.

(a) Missing values,

The most obvious method of handling a missing value case is
simply to omit the sample point. However, if the sample size is
small, this method is less acceptable. The alternative approach is
to estimate the missing value in order to fully utilize the available

data [Green 1978].



(b) Correlated variables.

If the pattern variables have not been properly defined, a
high degree of correlation may exist between the variables
themselves. The problem not only results in redundant information,
but also brings difficulties for some type of multivariate analysis
such as discriminant analysis [Green 1978, p227], where
multicollinearity causes reduced precision in estimating the
coefficients of the classification function in manipulation of
matrices,

(¢) Conflict data.

Due to the incompleteness of a pattern variable set or
measurement error, conflict sample data might exist. That is, two
sample points with the same pattern values may belong to two
different classes. 1In some classification techniques, it is
suggested that conflict data should be removed from the sample data

set [NeuroShell 1988]; however, simply deleting the conflict data

will cause a loss of information.
{d) Non-representative sample.
Lack of representativeness of the underlying population in
the sample may result In a large classification error rate [Hand

1981). 1If the pattern data do not adequately cover the pattern

15

space, a satisfactory classification boundary is virtually impossible

to derive.
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A COGNITION TE UE

1,3.1, REVIFW OF PATTERN RECOGNITION TECHNIQUES

Many classification techniques are available for managerial
pattern recognition. 1In this section various commonly used

classification techniques are briefly reviewed and compared.

1,3.1.1, BAYES RULE

It is well known that the Bayes classifier {s optimal but
that it requires full knowledge of all distributions of the prior
classification probabilities in addition to the likelihood functions
of the pattern variables [Krishnaiah & Karnal, 1982, p353]. The

Bayes optimal principle assigns X to class oh such that

fc (X)*Pr(ci) is maximized. For example, in the two class case:
i

Pr(c,, X) fcl(x) Pr{cy)
Pric I¥) = —=ppixy=""" = - ISR NECOES SO e oN (1.2)
1 2
Pr(c,, X) fe, (X) Pr(ey)
Pr(eylX) = -=--piixy===" = - Pftéii‘fé'(f{j'%'f’itééi'f;;tkj' (1.3)
1

We assign an observation to ¢ when Pr(cllx) > Pr(cz!x). that 1is,

1

£, (X) Pr(e,) > £ (X) Pr(c,). Otherwise, we assign it to c,. The
<y 1 <, 2 2

extension to the multiple class case is straightforward. The
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classification decision boundary generated by Bayes rules is called

the Bayes optimal decision boundary.
This fundamental rule minimizes the total probability of
making an error [Hand 1981, p5]. Unfortunately, we rarely know the

distributions fc (X) or the prior probabilities Pr(ci). To estimate
i

these, the kernel method [Parzen 1962, Hand 1981] and k-nearest

neighbour estimates method [Cover and Hart 1967] are usually used.

1,3.1.2, DISCRIMINANT FUNCTIONS

The discriminant function technique was initially developed
by Fisher [1936], and is considered to be the earliest formulation of
a classification technique. Later, this more intuitive approach was
supplemented by probabilistic approaches involving Bayes rules [Hand
1981]. 1In this subsection we will discuss the linear discriminant
function for the two-class problem. In Chapter 6 we will discuss
problems with more than two classes.

Let bi be the discriminant coefficient for ;- Linear
discriminant analysis develops a linear function
bo + blxl + b2x2 + ...t bmxm =0

to separate the two classes. Then the feature vector {scalar in this

case) of an object is

y = b0 + blxl + b2x2 + .... + b x
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The goal selection rule is : if y>0 classify the observed object as
belonging to class . otherwise, assign it to class <y [Lachenbruch

1975)
In Fisher's approach [Fisher 1936], using matrix notatiom,

let By and By be the means of the pattern vectors of the two

classes, respectively, and £ be the common covariance matrix of the

population, and B be the vector transpose (bl, b2’ - bm)'.

Fisher suggested choosing B to minimize

L S M - (1.4)

Fisher’s method is distribution-free in the sense that it is
a reasonable criterion for comstructing a linear combination. It is

important to note that, in the two class case, if <y and ¢, are
generated by bivariate normal distributions with means By and Hy and
common covariance matrix £ , and if the prior probabilities of 1 and
c, are equal, Fisher's linear discriminant function is an optimal

solution from the Bayes rule point of view [Lachenbruch 1975].
There is a parallel between the linear discriminant function
and multiple linear regression in the two-class case [Fisher 1936,

Lachenbruch 1975, Healy 1965, Cramer 1967]. Define a predictor Yi
artificially such that

Y= eezecTozo- if xs is a member of ¢y



19

where v1 and v2 are the sample sizes of each class. The regression
result is then equivalent to the linear discriminant function in this
case,

If the class covariances 21 and 22 of the bivariate normal

distributions are not equal, it can be shown that the discriminant

function is quadratic, and the optimal decision boundary is quadractic

[Lachenbruch 1975] [James 1985].
1.3.1.3, SEQUENTTIAL CLASSIFICATION

The fundamentals of sequential classification were built
from Wald's sequential analysis theory [Wald 1947] [Grometstein and
Schoendorf 1982]). 1In the case when the data groups heavily overlap
each other, the discriminatory power of the observed variables is

insufficient for satisfactory assignment to ¢y orc If it is

2

desired to avoid more than a proportion e of errors in <y and e, in
¢y in the classification, and it is possible to obtain independent

observations on the same object, one may use the sequential

probability ratio test to assign the object to ¢y or ¢, . The

classification procedure is briefly described as follows

(cf.[Lachenbruch 1975])).
Determine the discriminant function B(X) from the available

sample using discriminant analysis. Obtain the first observation xl

for an individual to be classified.

1f B(Xl) > -1n[ez/(1-el)] assign to I
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1f B(xl) < -1n[(1-82)/21] assign to ¢y i

otherwise, take a second observation of the object. Continue the

procedure i times until

v

B(X) = -(1/1) Inley/(l-e)] (assign to c)

or B(X)

1A

-{1/1) 1n[(1-e2)/e1] (assign to c2) , (1.5)

where X is the average X of the i observationms.
The difficulty in obtaining replicates of X for the same
object limits the usage of the sequential classification procedure.
There exist other methods for sequential discrimination
problems. For example, instead of replicating the entire vector X,
Mallows [Mallows 1953]) considered the case in which the components of
X were observed sequentially. According to that method, observe j of

the m components of X, and

If ln[fcz(x1 e xj) / fcl(x1 - xj)] = 1n[(1-e2)/e1]

assign to €y s

1f 1n[fc2(x1 . xj) / fcl(x1 e xj)] > ln[ez/(l-el)]
assign to cy
otherwise observe xj+l . The best order in which to observe the

components of X should be pre-defined.
The major problem in using sequential classification in the
present context of managerial problems relates to assumptions about

the probability distribution functions.



21

3.1.4, H CAL CTASSIFICATION

Differing from the Bayes rule and discriminant functions,
hierarchical classification methods are based on an explicit
definition of properties which should largely be satisfied by members
of a class, thus facilitating the subsequent activity of assigning
new objects to the classes [Gordon 1981]. A hierarchical classifier
uses a tree structure to implement the classification. The

essential concept is shown in Figure 1.5.

Fig. 1.5. Hierarchical Classifier

Ty in the figure represents an object with a certain pattern

to be classified. After testing by a set of questions it can be

subclassified into either T, if the answer is positive, or r, if the

answer is negative. This procedure continues until the tree growth

{s terminated. For most real problems there is no definite "yes" and
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no" answer. Breiman et al. [Breiman et al. 1984] suggested defining
an impurity function I' which is used to measure the "purity" on a set

of pre-defined properties at a node. At any node Ty » Suppose that

there Is a candidate split 2 of the node which divides it inte L and

r, such that a proportion PL of the cases at Tx B° into 12 and a

R

(Figure 1.6.).

proportion Pp 80 into ™R

Fig. 1.6. A Split of The Classification Tree

Then the goodness of the split is defined to be the decrease in
impuricy

8TCH,1) = T(r) - py T(rp) - pg Tlrp) . (1.6)

Actually, the split is not necessarily binary and may be, say,
ternary. The additional branch would indicate "undecided” and a need
for sequential sampling.

Usable information regarding the structure of the data is
obtained through the hierarchical method. However, a set of test
questions as well as the criteria for subclassification must he
developed, implying a certain amount of knowledge about relationships

among subclasses.
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1.3.1.5. EXPERT SYSTEMS

An expert system is a computer-based sy-cem that uses
knowledge, facts, and reasoning techniques to s.lve problems that
normally require the abilities of human experts [Martin & Oxman
1988]. A major difference between expert systems and traditional
data processing systems is that, in expert systems, the knowledge
base is separated from the inference engine [Hayes-Roth et al. 1983].
For pattern recognition applications, the knowledge base
representation schemes used for expert systems are based on either

production rules or frames, as follows.

1,3,1,5.1., PRODUCTION RULE SYSTEM FOR_PATTERN RECOCNITION

Classification knowledge in production rule systems is
represented in the "IF-THEN" form. For instance, in an expert system
for judging company credit status, two production rules could be :

IF the financial ratios are extremely low,

THEN the company is "Bad".

IF the financial ratios are extremely high,

THEN the company is "Good".

Expert knowledge can also be represented in uncertainty

form. For example,
IF the cash turnover rate is lower than 10,
THEN the company is probably (90%) "Bad".
Production rules are accessed and reasoning is accomplished

by the inference engine, with forward chaining and backward chaining
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as two commonly used inference strategies. In general, backward
chaining is applied when a goal or a hypothesis is chosen as the
starting point for the problem, and forward chaining is applied when
data is to be used as the starting point for problem solving. A
production rule system is diagrammed in Figure 1.7.

Examples where production rules have been applied in
classification include [Wolfgram et al. 1987] and [Balachandra

19887} .

X pattern

Backward
#

Forward
- .

¢y class

Fig. 1.7. Production Rule System for Pattern Recognition
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3.1.5 FRAME-BASED SYSTEMS FOR PATTERN REC ON

It is widely believed that knowledge is organized in
structured chunks which have their own sub-structure. The data-
structure of knowledge representatiors is a frame or a template which
represents a class [Minsky 1975]. A frame has terminals or "slots"
that must be filled by specific instances or data. For example, an
obiect pattern "Good-company" would have slots representing the
attributes of "Good-repay-ability", "High-revenue", and others. A
collection of related frames is linked together into a frame system
(see Figure 1.8).

Frame-based expert systems use inference to perform
assertion and retrieval operations. Commonly used inference methods

include inheritance, and value class and cardinality reasoning [Fikes

and Kehler 1983].

Good repay Good cash
abilicy turnover Pattern vectar X
oc—
\\ Cood repay
Object class| Good company \ abilicy Tt e—
. \
: \ <
. \
b

Fig. 1.8. Frame Representation of Pattern Recognition
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1,3.1.5.3, PROPERTIES OF EXPERT SYSTEMS IN PATTERN RECOGNITICN

An expert system is usually efficient for solving pattern
recognition problems if the required knowledge is available.
However, the potential number of rules increases factorially with the
number of pattern dimensions. If the pattern vectors are expressed
as real numbers, the rule set is theoretically unlimited, although
categories could be used to limit the number of rules required. More
importantly, explicit knowledge is often not available to cover all
possibilities for managerial pattern recognition. Finally, sometimes
uncertainty must be reflected in the knowledge base, but there is
little agreement in how to support this [Hayes-Roth et al. 1983)

[Hutchison 1987],

1,3.1.6 NEURAL NETWORK TECHNTQUES

A layered neural network [Nilsson 1965] [Rosenblatt 1962]
[Rumelhart et al. 1986] (Figure 1.9) is a special version of the
general neural network model described in Figure 1.1. It is commonly
used in classification applications [Lippmann 1987].

In this section we briefly discuss the general pioperties of
the layered neural network (neural network for short) to prepare for
a comparison of various classification techniques. Chapter 2 will
give a more detailed description of layered neural network
mechanisms.

The simplest neural network which contains just one node,

except for input nodes, is a perceptron [Nilsson 1965] [Minsky &
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Papert 1969]). A perceptron (Figure 1.10) receives an object pattern

vector X, and assigns a weight w, to each component X

Hidden layer

Hidden layer

Input laysT

Fig. 1.9. Layered Neural Network Model

Fig. 1.10. Perceptron Model

The weighted components are processed by a 4-processor giving an

output value of y. ¢ may be represented by a variety of functions.

The simple "standard" form of the ¢-processor is a linear combination

of the WX It is not difficult to show that, if
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Yy = ¥g%p WXy b d W, the perceptron is equivalent to a

linear discriminant function classifier. However, the determination

of the weight W in a perceptron is by a learning technique

(discussed in Chapter 2) which is of course different from Fisher's
method. Thus, the functions generated by the two approaches will
usually not be the same. When operating as a linear discriminant
classifier, the perceptron generates a linear boundary. Figure 1.11
shows a linear decision boundary generated from a case with two

2lasses, and with a two-dimensional pattern vector.

x

Decision boundary

Fig. 1.11. Linear Decision Boundary

A standard perceptron cannot solve more complicated pattern
recognition problems such as the XOR (excl.usive or) problem
[Rumelhart et al. 1986] (Figure 1.12), which has a non-linear
decision boundary. However, a multi-layer neural network can
generate arbitrarily complex decision regions (Figure 1.13) [Lippmann
1987]. Such a network includes one or more "hidden" layers of nodes

between the input and output nodes,
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@ A, B are two classes

®

Fig. 1.12. XOR (Exclusive OR) Problem

Hidden layev

Inpur
P Qutput

*
Hidden layer r
\
1
]

|

Fig. 1.13. A Multi-Layer Neural Network Can Generate
Arbitrarily Complex Decision Reglons

(adapted from [Lippmann 1987])

When the number of hidden layers is greater than 3, the

neural network tends to become unstable [Soulie et al. 1987]; that

is, the network component weights are difficult to establish during

the learning process. On the other hand, Kolmogorov's mapping neural
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network existence theorem [Hecht-Nielsen 1987} asserts thac, given
any continuous function Y=4¢(X), ¢ can be implemented exactly by a
one-hidden-layer neural network having m input elements, (2m+l)
processing elements in the hidden layer, and n processing elements in
the output layer, if the processing elements implement one of a
specific class of transformation functions. Such a one-hidden-layer
neural network can therefore handle any level of difficulty in
classification, and there is no need in principle to consider more
hidden layers for pattern recognition problems ( * see Note at the
end of this chapter).

How to determine the weights for node inter-comnections, and
what network architecture to use (i.e. numbers of layers and nodes)
depends upon the specific problem to be solved. It has been shown
(Minsky & Papert 196%] [Rumelhart et al. 1986]) that if a specific
architecture of neural network has been selected, (say, three-layer
with 10 nodes in the first layer, 20 nodes in the second layer, and so
on,) then the weight of each connection can be determined from training
sample data. Generally, these weights can be adjusted in such a way
that the neural network is "optimally" improved in terms of matching
the training samples’ input and output {(see Chapter 2).

Literature 1s rare on the application of neural necworks in
managerial classification decision making, but this is partly due to
secrecy surrounding this type of research [Q'Reilly 1989). However,
there have been many reports of pattern recognition applications in
other fields. For example, Widrow et al. [1988] built a neural
network called ADALINES. After learning a training set consisting of

36 features, each arranged on a 5 X 5 grid, the system made zero
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errors in classifying che training data set. Lippmann and Gold
{Lippmann and Gold 1987) used a three-layer neural network for
isolated-word speech recognition. The neural network was trained
with fewer than 1000 examples. The result was better than 99%
accuracy in classifying speech pattern from a large speech data base
with 35 difficult words, 9 talkers, and a total of 4095 test tokens.
Guyon et al. [Guyon et al. 1989] used a neural network to classify

handwritten digits, and claimed an accuracy of 98 percent for the

test data set.

Three important points should be noted: First,
classification techniques other than the neural network technique are
not applicable to many pattern recognition problems due to the lack
of knowledge about distribution and classification data structure,
the large number of goal classes, and, most important, the
potentially complex classification region boundaries. Second, a
neural network model almost guarantees good separation in training
data sets [Rumelhart et al, 1986), but has mixed results for
classification accuracy of test data sets [Lehar and Weaver 1987]
[0'Reilly 1989]. Finally, in order to improve its performance, the
neural network is often used in combination with other techniques
which are more specific to the problem domain. For example, a
handwritten digit classification neural network is usually supported
by a pre-processor for pattern extraction [Guyon et al. 1989). This
suggests that a neural network performs better if it 1is combined
with other techniques which use domain-specific knowledge.

Therefore, one of the current research tasks will be to investigate

the generic characteristics of managerial classification problems,



and to develop methodologies to aid the neural network mechanism in

achieving improved classification results.

A summary of the classification techniques discussed above

is shown in Table 1.1.
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1.3,2. COMPARISON OF CIASSIFTICATION TECHNIQUES

A classification problem is a synthesis problem; that is,
given a system's input and feature output, a model having the desired
input / output relationship is to be designed or realized (cf.
[Karplus 1983])). The various classification techniques discussed
above are all means of modeling the classifier that best reflects the
relationship between pattern input and feature output in a certain
context. In Figure 1.14, input and output are specified but the
contents of the system are unknown; hence it is "black". 1In modeling
the system, there are constraints which represent the available
knowledge about the system. If more knowledge is available about the
system’'s internal styucture, then the system is more "transparent” in

terms of developing a suitable model of its performance.

Input Qurput
—— System —
(known) (unknown) (known)

Fig. 1.14. Synthesis Problem

As discussed above, individual classification techniques may
require more or less knowledge about the system to be modeled.
Consequently, these classification techniques cover a range in a
spectrum which exhibits the "transparency” of the system, as shown in
Figure 1.15. As depicted, working from the black box end of the

spectrum to the glass box end, a neural network classifies an object
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using only training data. Discriminant analysis needs an additional
assumption of the form of the function which separates the classes.
Bayes rules require prior precbabilities and likelihood functions as
an underlying optimization condition for the discriminant analysis
method. Bayes and discriminant analysis classifiers are both
parametric classifiers in that parameters belonging to known
distribution functions are being estimated [Kohonen, 1977, p98].
Hierarchical classification explores the detailed nature of why an
object belongs to a class, and implicitly defines the pattern’'s
distribution. Expert systems explicitly define all knowledge about
the classification system in the form of production rules or frames.
Consequently, the methods closer to the glass box end explicitly or
impliecitly cumulate the knowledge required by the methods closer to
the black box end, and more clearly provide insight and understanding
of why an observation should belong te its class.

Knoewledge about the system initially comes from input/output
observations. No matter how detailed and reliable the observations,
the validity of the knowledge is always open to question [Karplus
1983]., In managerial pattern recognition problems, patterns are
generated by multi-dimensional random variables, the pattern
structures are unpredictable, and the forms of the multivariate
distribution functions are unknown. Discriminant analysis in
combination with neural networks can be applied in solving synthesis

problems of this nature, as discussed below.
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Glass Box Black Box
I I | | 1 11
I I | | I 1 T
I I | I b L
Prior
structured
knowledge A set of
required questions

for classifying Probability

is required distributions

are known Decision

function Only
form is training
assumed sample

data
required
Frame-based
systems/ Hierarchical Bayes  Sequential Discrimi- Neural
Production classification rules analysis nant network

rules analysis

Fig. 1.15. The Position of Various Classification Techniques
in the "Glass Box - Black Box" Spectrum

1,3.3, PRIMARY COMPARISON OF DISCRIMINANT ANALYSIS AND NEURAL

NETWORKS

In this subsection we give a primary comparison of
discriminant analysis and neural networks to show how a neural
network can be used to solve classification problems without the

assumptions inherent in the use of discriminant analysis.

1,3.3,1, ILIMITATIONS OF DISCRIMINANT ANALYSTS

Certain problems have been described [Eisenbeis 1977, 1978)

[Morrison 1969] [Frank et al. 1965] (Joy and Tollefson 1975] in
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applylng discriminant analysis to managerial decisions involving
classification. The most serious concerns about discriminant
analysis arise from assumptions about the decision function form.

as described in Section 1.3.1.2, linear discriminant
functions assume that the decision boundary is linear. However, the
linear decision boundary is optimal only if the pattern vector is
multivariate normally distributed, and the covariance matrices are
equal across all classes. Similarly, quadratic discriminant
functions assume that the decision boundary is quadratic, and it is
optimal only if the pattern variables are multivariate normal
distributions; however they can have different covariance matrices.
Though some studies (e.g. the examples cited in Section 1.2) obtained
good results using discriminant analysis methods, most of them did
not verify the distribution conditions. Good results obtained could
be due to the inherent normality of the distributions, robustness of
the technique to deviations from normality, or chance.

if the normality hypothesis is rejected, one is then faced
with a virtually impossible task of first determining the form of the
actual function, and secondly deriving an appropriate alternative
solution technique based on statistical theory. Most researchers
adopt the standard discriminant procedure and proceed as 1f the
normality assumption holds, as long as it yields a reasonably
accurate result [Eisenbeis 1977].

On the other hand, the boundary classification function for
managerial problems is often much more complicated than linear or
quadratic (see, e.g., [Keeney 1972]). Existing discriminant analysis

techniques cannot deal effectively with this problem.
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1,3.3.2, AN EXAMPLE FOR COMPARISON OF DISCRIMINANT ANALYSIS AND

NEURAL. NETWORK TECHNIQUES

In order to show that a neural network could be appropriate
for solving managerial pattern recognition problems, an experiment
was conducted. The experiment demonstrated that a neural network
using the BPIMS algorithm (discussed in Chapter 2) was able to obtain
more accurate classification results than discriminant analysis,
particularly when sample distribution normality was violated. For
normally distributed pattern data, discriminant analysis obtains the
Bayes optimal boundary (see Section 1.3.1.2.). However, any sample
data with a nonlinear and non-quadratic classification boundary,
such as exponential, logarithmic, trigonometric ete., cannot be
classified optimally by discriminant analysis.

For the experiment, a training data set was generated from a
pattern with a bivariate normal distribution and the same covariance
matrix {Law and Kelton 1982) [Scheuer and Stoller 1962]. This
population was then shifted into two classes with different means on
both variates. Thus far the Bayes optimal decision boundary between
the two classes is a straight line as discussed earlier, with the
form

b, + b, x

0 ¥Pp ¥ +b

2% =0
To change the shape of the Bayes optimal decision boundary we simply
transform one or both of the coordinates as desired. For instance,

if an exponential boundary is desired,

x [
let X —e 1 » then the optimal discriminant function becomes
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xl'
bo + b1 e + b2 Xy = 0

After this transformation (see Figure 1.16) the population
distribution does not f£it the normality requirements of discriminant

analysis. A full explanation of the sampling procedure is exhibited

in Appendix I.

% xl'

Y

x
2 2

.
a) Normal distribucions b) After transformation X me 1

generate linear boundary the boundary becomes exponencial

Fig. 1.16. Coordinate Transformation

The size of the training set was 40 (20 in each class; see

the plotted points in Figure 1.17).

Linear discriminant analysis (LDA) of the transformed data
gives a classification accuracy of 37/40 (92.5%); that is, three

points are misclassified (see Table 1.2).
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Linear Discriminant Analysis

Group 0 1
Count 20 20
N =40 N Correct = 37 Prop. Correct = 0.925

Linear Discriminant Function for Group

0 1
Constant -2.999 -3.308
xl -7.738 18,000
x2 22.224 -11.145

Table 1.2. Discriminant Analysis for the Exponential
Boundary Example

For the same data set, the neural network with 5 hidden
nodes obtained an accuracy of 39/40 (97.5%) after 2450 learning
sweeps. The boundary line obtained (NNa in Figure 1.17) has an
exponential shape (compare it with the true boundary). After 37655
learning sweeps it completely separated the two classes, with
significant boundary distortion (NNb in Figure 1.17). Note that this
leads to difficulties in implementing the standard BPLMS neural
network approach where there is a great deal of overlap between two
or more data classes., The technique must therefore be adapted before
it can be used to routinely solve this type of problem, and this is

the main topic of the remainder of the thesis.
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Neural True
network (NNb) boundary
tf wa

Neural
network (NNa)

Fig. 1.17. Neural Network Results for the Exponential

Boundary Example
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*) NOTE (See Section 1.3.1.6)

This note explair.s the applicability of Kolmogorov's mapping
theorem [Hecht-Nielsen 1987] [Sprecher 1965] in pattern recognition
in the sense that Rumelhart’'s backpropagation neural network
({Rumelhart et al. 1986], see Chapter 2) may carry out an
approximation of a mathematical mapping function Y=¢(X). A more
complete mathematical proof, which demonstrated that continuous
nonlinear mapping can be closely approximated using sigmoidal
nonlinearities and layered neural network with only one hidden layer,
is found in [Cybenko 1989].

From [Hecht-Nielsen 1987] [Sprecher 1965), the second layer
(hidden layer) of a neural network implements the transfer fur<ction

m .
L, = T u' g (x, +e¢i)+1i
i j=1 3
where m is the dimensionality of X, 0<i<2m, the real constant u and
the continuous real monotonic increasing function ¥ are independent
of ¢, and ¢ is an arbitrarily chosen positive constant,
The Li , which are independent of ¢, can be approximately

represented by a sigmoid function (Chapter 2) when a proper parameter
temperature (Chapter 2) is selected.
In Kolmogorov's theorem, the output elements have the
transfer functions
2m
y, = & n. (L, )
I jao i
where the IIj (j=1.. n, n is the number of output nodes) are real and

continuous and depend on ¢ and ¢. Il cannot be represented by a prior
known function because of its dependence on ¢.

Assume Li and yj range over the interval [{0,1]. For each

Li divide the interval (0,1] into small intervals Aqg, g=l...o. Let

m
- 0 otherwise

- g g.
yj xj (LO... L2 ) for interval Aq®; and

for all j=1...n, where x?(LO...Lzm) is an approximation of

2m
. 4 g
LEO Hj ( Li )} iu the interval Aq® such that xj(LO"‘LZm) is
represented by the sigmoid logic function (Chapter 2). The
interpretation of this approximation is that any output yj can be

approximated by a group of g ocutput nodes which perferm a sigmoid

logic function as long as g is large enough, which was to be shown.
Note that the above approximation has introduced ¥Y=0 in

addition to the original yj . In the classification context,

considering that the classification boundary is usually defined at
yjao.S (Chapter 3), the introduced function Y=0 does not influence

the classification results, and can therefore be neglected.



CHAPTER__TWO

THE NEURAL. NETWORK MODEIL.

As pointed out earlier, the layered neural network is the
most commonly used form of the neural network model for pattern
recognition. In managerial pattern recognition, the major task of
classification is to find a decision boundary based on a sample data
set which includes information that specifies the correct class for
each observation in the set. Consequently, supervised training can
be used to train neural networks in classification. Among four
groups of neural network classifiers, namely, probabilistic
classifiers, hyperplane classifiers, kernel classifiers, and exemplar
classifiers [Lippmann 1989}, hyperplane classifiers are more
applicable in most managerial classification problems since prior
knowledge about probability distributions, kernel functions, or
typical exemplars is often not available. As well, the results of
managerial classification should be expressible in continuous
quantitative form instead of binary 0/1 form, in order to supply the
decision maker with more detailed information. The multi-layer
neural network which uses the back-propagation algorithm (explained
later) was therefore chosen in the present research. Thus, in the

remainder of the thesis, references to neural network models are

43
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restricted to the class of layered neural networks which use
supervised training and apply the back propagation least mean square
algorithm (explained later) or a modification of this algorithm
during training. In this chapter we first illustrate three major
aspects of this model:

(a) general topology,

(b) computational elements, and

(c¢) learning.
Then we will discuss the current status of neural network design in

general.

2,1, OVERVIEW

The general topology of a layered neural network has been
presented in Figure 1.9. Figure 2.1 shows a neural network with one
hidden layer to illustrate how a neural network is able to do pattern
recognition,

In Figure 2.1, there are three columns of nodes. The nodes
have direct connections only to adjacent columns. The connectien
between the nodes carries weight (or synaptic strength) indicating

the connection strength. The weights between two adjacent columns
comprise the weight matrices. Ul is the weight matrix between the

output nodes and nodes in the hidden layer, and Uz is the weight
matrix between the hidden layer and input nodes. Because input nodes
do not perform any transformation, a neural network with one hidden

layer is commonly called a two-layer neural network. Each node in
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the hidden layer or the output layer includes a function F {described
in Section 2.2) to generate the input-output transformation at that
node. Such a node is therefore referred to as a processing node. In
this model, the functional form of F is the same for all processing

nodes.

Input nod
put noces liidden nodes Qutputr nodes

Feedback Feedback

uz(c 2 2 1 1 1
-c0+1)-h (c-:0)+au (t-coj ) (:-c°+1)-u (c-tojonu (:-:0)

Fig. 2.1. Neural Network with One Hidden Layer

The ultimate goal in developing a neural network model
through training is to adjust the network weights so that the neural
network’s outputs are "close" in some sense Lo the desired outputs
for a given set of training data. This is accomplished by means of
an iterative process which starts with a pre-determined set of
weights. These weights are adjusted through cycles of the training

algorithm which operates on the training data pattern vectors to
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generate classifications. These classifications are compared with
the "true" results, and weights are adjusted accordingly, until the
neural network outputs correspond as closely as desired to the true
results.

During the training process, at step t=ty ., the weights of

Hl(t-to), Uz(t-to) are arbitrarily assigned as long as they are not

all equal (the symmetry-breaking problem will be explained in Section
2.3). Each component of X, multiplied by the corresponding weight,
simultaneously feeds into the hidden nodes. Each hidden node
combines all of its inputs which are then transformed inte an output
by the function operator. The outputs of hidden nodes are in turn
multiplied by the corresponding weights, and collected and
transformed at each node of the output layer, finally giving the
output Y.

At step t-to we have a mapping function ¢(t-t0) which maps X
to Y. Suppose we input pattern data XS of a teaching sample point
seS into the nenral network ¢(t-t0), to generate the corresponding
classification result Ys(c-to) . In order to obtain specific
feedback information from s, Ys(t-to) is compared with the desired
feature vector value TS . Let

1 2
E (t=t)) = — Il Y (e=ty) - T_ || (2.1)
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to measure the discrepancy between Yﬁ and Tg at step t=t, , where

][V||2 is the inner product of V. If Es(t-c0)<e. where ¢ is a pre-

defined error tolerance which is dependent on the class selection

function (Section 1.2.1), then YS is considered to be consistent with
Ts at step t=t, . If for all seS the Yg are consistent with Ts ,

then the neural network representing the mapping function ¢ is the

"right" classifier for S.

If é(t-to) does not give the desired mapping, then Es>e.
Based on the error Es' the network weights are then modified to

improve the relationship between the pattern values and the desired
classification results. The modification of weights in the layered

neural network model proceeds by a feedback mechanism from the output

layer back to the input layer. That is, Ul(t-t0+1) is calculated
first, based on Hl(t-to) and Es' and then Hz(t-t0+1) is calculated,

based on Uz(t-to) and the change AHl(t) (Figure 2.1.). The weight

modification process described above is called back propagation
learning. The detailed algorithm will be described in Section 2.3.
There is no general convergence proof for back propagation learning
in neural network models. We will return to this point later.
Determining the weights for a multi-layered neural network

can be carried out by extending the principles discussed above,.
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C ATTONAL. NETWORK ELEMENTS

In a layered neural network each node of the hidden layer
and the output layer is a computational element which transforms its
input into an output (Figure 2.2). The commonly used functional form

of the computational element .x to calculate its output °, is

o =F (I w o
a [ 4

-8
8 BB

where B is any node preceding «; a8 is the weight at the connection
between nodes 8 and «; # is a parameter to be described; o, and °ﬁ

are the output of nodes a and 8, respectively; F, the activation
function, produces the input/output transformation [Rumelhart et al.
1986]. A positive Input weight represents an excitatory input, and a
negative weight represents an inhibitory input. The summed input
must exceed some threshold wvalue § before contributing to the
activation state of the node. § is essentially another kind of node

input. For convenience, an artificial node (f~0) with output 0y = 1,
and vo™ -8 can be used in the computational function, resulting

in the general representation of a node shown in Figure 2.2b .
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(a)

(b)

Fig 2.2. Computational Elements in a Neural Network

The three most commonly used activation functions (Figure

2.3) [Lippmann 1987] [Williams 1986] are described in the following.

F(z)

F(2)
]l —— +l b = -
!
|
|
Q = 0 4 z
a) Binary legle b) Threshold logic

¢) Sigmold logle

Fig. 2.3. Activation Functions
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(1) Binary logic.

Binary logic (or hard limiter) was initially used in the
simple perceptron [Rosenblatt 1962) [Minsky and Papert 1969]). Binary
logic produces either a 0 or 1 (see Figure 2.3(a)). It is widely
used in physical pattern recognition because the pixel unit in a
display is usually represented in the binary form of black or white.
(2) Threshold logic

Threshold logic is a variant of binary logic. If this logic
is used, the output is 0 until the input magnitude reaches a certain
value #, when it switches to 1 (Figure 2.3 (b)).

(3) Sigmoid logic

Sigmoid logic (Figure 2.3(c)) was initially used in the so-
called thermodynamic models [Rumelhart et al. 1986}. If this logic
is used, the output values are a stochastic function of the inputs.

That is

0,(E) = Pr(o (£)=1) = -gezcccoepeteaiunsnqncn (2.2)

where net - Z w .o, and is the net input for a; T is the

g o B
temperature, which determines the slope of the probability function.
When T approaches zero, the logic becomes more and more like binary

logic. Whenever the node has a summed net input greater than 0, the

probability that oa(t)-l is greater than 0.5. T sets the range of

uncertainty which determines the value of oa(t) (Figure 2.4).
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Pr(oact)-l)
e — . — e —_——_—— — | — it o m—— . a—
T=0.5
! T=1.0
T=8.0
I
|
|
1
0
?‘aﬂoﬂ #

Fig. 2.4. Sigmoid Logic

Sigmoid logic has the useful property of being
differentiable everywhere. Later it will be seen that this property
is essential in implementing the back propagation learning algorithm,
which is suitable for managerial pattern recognition problems.

Hence, sigmoid logic will be employed exclusively in the present

research.

2.3. LEARNTNG

2.3.1. THE LEARNING PARADIGCM AND THE HEBBIAN RULE

As described in Section 2.1., the goal of the training
exercise is to learn (adjust the network weights) to correctly
classify each sample s so that when any of the set § is presented in
the future, the system will classify it properly. This learning

paradigm is called supervised learning, or learning with a teacher.
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While this research will use supervised learning techniques,
there are several other common learning paradigms in neural network
systems [Nilsson 1965] [Rumelhart et al. 1986]. The typical opposite
of supervised learning is unsupervised learning or competitive
learning [Rumelhart et al. 1986]. When the unsupervised learning
paradigm is used, there is a population of patterns from which
patterns are selected at random. During the training process, the
system is supposed to discover salient features of the input
population. Unlike supervised learning, there is no a priori set of
classes into which the patterns are to be classified. The system
must develop its own feature representation of the input stimuli
without benefit of a teacher.

Machine learning was first explored by Hebb [Hebb 1949] (cf.
[Nilsson 1965]). Hebb's essential idea was that, if two nodes are
both active, then the weight between them should be strengthened.
Otherwise, the weight should be weakened. This idea has been adopted
and extended in supervised learning applications. A standard
formulation of Hebbian supervised learning in layered neural networks

is [Rumelhart et al. 1986]
(Awagls = m [ (dy)g - (o) | (og)g (2.3)

where s is a teaching sample point, w_, is the weight at the

af

}_ is the change to be made to the

8’s

connection from node 8 to a, (Awa
weight after s is presented, (da)s is the desired output of node a

for s, (oa) is the actual output of node a for s, (oﬁ)s is the

s

cutput value of node 8 for s, and n is the constant of
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proportionality representing the learning rate. Figure 2.5 is a

feedback diagram depicting this learning rule.

Sample s

|
|
1
@
L "2
M o
™
q
O,
v
DO
.\I

Change (Awas)s

Fig. 2.5. Hebbian Learning Rule

2.3,2., BACK-PROPACATION LEAST MFAN SQUARE ERROR LEARNING ALGORITHM

The back-propagation least mean square error learning
algorithm (BPLMS) integrates two fundamental learning algorithms.
One is the Least Mean Square (LMS) error algorithm suggested by
Widrow and Hoff [Widrow and Hoff 1960] (cf. [Widrow et al. 1988]).
This algorithm minimizes the sum of squares of the errors over the
training set, where the error is defined as the difference between
the desired response and the actual output. It supplies local error
information for the neural network but it does not specify how to
pass the error information from layer to layer. The back-propagation
(BP) algorithm [Rosenblatt 1962] specifies a procedure which passes
the error information (see equation 2.3) back through the network
from the output layer through the hidden layers and to the input

layer, resulting in adjustments to the weight matrices. Rumelhart et
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al. [Rumelhart et al. 1986] generalized and integrated these two
algorithms into a multilayered nonlinear activation function neural
network. This BPIMS learning algorithm (BP for short) is currently
widely used in pattern recognition.

The derivation of the algorithm [Rumelhart et al. 1986) is
briefly:
]2

(2.1.3a)

1
Lee Ej = 3o Z[ (4, - (o),

which is the more specific expression of equation 2.1, where a stands
for all output nodes of the neural network. Then

E= Z E. 1s an overall measure of the error. In order to adjust
seS

the weight values so that the mean square error is minimized, we have

to determine what effect such changes will cause to E. Now,

8E dE d (net )
I S aeag---28 (2.4)
awaﬂ d (net ) aw 3
where (net ) = g waﬂ(o )S (2.5)
d {net )
a’'s d
Thus '--é‘}c;‘é--' L -é‘:’;é- fwm\: (DJC)S - (Oﬁ)s (26)

This suggests that to decrease E we should make weight changes

according to

(o) = m (60 (o), (2.7)
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For output nodes in the neural network, (80)S is computed as:

- aEs - BES a(oa)5
(Gods = “athet]y; = TTELE]). BlRet.). (2.8)
but (oa)5 - Fa { (nE:a)s )] {(see 2.2)
8(o )S
Thus -étﬁé{:;j; - Fa: ( (neta)s ) (2.9)

where F‘(z) is the derivative of F(z) with respect to z

(therefore F must be differentiable).

From (2.1.a)
BES
ateyn T 7 L) - (og)g ]
a’s
thus, (6a)S = (da)s - (oa)s ] F;( (neta)s) (2.10)

when o is an output node.

If the node a is not an output node, we use the chain rule:

aEs d{(net )S BES P
Z -gpesz-ze s-gzz-sz-- T -gsr-iec- ezsec-s Zw (o) =
" B(netn)s d(o )s a(nets)S a(oa)S Kp  p’'s
aEs
R YEVEAL S AT B P (2.11)

where « refers to a node in the layer succeeding a, and p refers to a

node in the same layer of a (Figure 2.1).
Substituting (2.9) and (2.11) for the two factors in (2.8) gives

(SQ)5 - F.( (net ) ) E (6 05 Yoo (2.12)
whenever o Is not an output node.

Equations (2.10) and (2.12) can be used as follows in a

recursive procedure for computing & 's for all nodes in the layered
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neural network, Briefly, first compute the §'s of the output nodes
according to (2.10), and modify the welght matrix between the hidden
layer and the output layer. Then compute the §’s of the hidden nodes
according to (2.12), and modify the weight matrix backward. This
recursive procedure proceeds back through the layers until the input
layer is reached. Because the back-propagation error correction is

implemented by computing §'s, the §'s are called error signals.

In summary, a neural network is deseribed by its
configuration, including its architecture and associated parameters.
Neural network archit.:ture is described by the number of layers and
the number of nodes in each layer. Neural network parameters include
learning rate, temperature, and error tolerance. The weights of each
connection at a particular time specify the state of the neural
network at that time. A neural network determines an appropriate set
of weights by supervised learning from a training sample. The BPLMS
learning algorithm is briefly stated as follows.

Step 1. Initialize weights waﬁ for all a and 8 to small

randomly distributed values.

Step 2. Present the pattern vector X of se¢S. (s may be
selected based on a pre-defined sequence, or
randomly).

Step 3. Calculate the actual output Ys
Step 4. Compare Yﬁ with the desired feature vector Ts , and

obtain the error term ES
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If Es<e then

if Es<e for all se¢S then STOP;

else goto Step 2;
else Step 5.
Step 5. Modify the weights
waﬁ-waﬁ+q600ﬁ o
and Sa's are recursively calculated from output
layer back to input layer:
(50)5- [ (da)s' (OQ)S] F ( (nEta)S )

if ¢ is an output node,

(aa)s- Fé( (neta)s ) E (Sn)s Yo

if a is a hidden node.
Goto Step 2.

Appendix 11 is the detailed BPIMS algorithm using the back-
propagation IMS error rule for two- or three-layer neural network
models, written in pseudo-language. It has been implemented using
the Turbo C language for our specific research purpose. The example

results in Figure 1.17 were generated with this software,
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2.3.3. TSSUES RELEVANT TO LEARNING

3.3.1 LEARNTNG RATE AND M

The change of weights during learning is proportional to

aES/BwQB as shown in equations (2.4)-(2.10). The proportionalicy n

is speciffed in advance. Larger n results in larger changes in the
weights, but this can lead to oscillation instabilities during the
learning process. There are no general rules to select an "optimal"
n, which depends upon the characteristics of the training set §. To
decrease the likelihood of oscillations as n is increased, a momentum
parameter M can be introduced in the learning rule. That is,

Awaﬁ(t+1) -7 (Sa)S (oﬁ)s + M Awaﬂ(t)

This means that the current change in the weight depends partly on
the change during the last iteration, tending to filter out high-
frequency variation in weight change. Fast learning without
oscillation can be accomplished with M=0.9 and a large value of

(e.g. 1.0) [Rumelhart et al. 1986].

2,3.3.2, CONVERGENCE

For neural networks using Hebb's learning rule, convergence
is defined as [Omidvar 1987]:

lim A waﬁ(t) -0 for all connected nodes a and 8 .
T

Theoretical studies (e.g. [Minsky and Papert 1969] [Hirsch 1987)

[Bruck and Goodman 1987)) indicate that convergence in the fully
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parallel network, one case of which is the layered neural network
with BP learning, is not guaranteed. However, in practical
applications, convergent solutions can be found in virtually every
case by appropriate settings of the learning rate and the error

tolerance (cf. [Rumelhart et al. 1986, p36l]).

2,3 3 GLOBAL MINIMA VS, T.OCAIL MINT

Given a particular neural network architecture and training
data set, a state of the neural network which generates the minimum
total error is the coptimal solution {Hinton and Sejnowski 1986]. The
BP learning algoricthm is actually a gradient descent procedure which
seeks the minimum error by moving downhill along the error surface
(see Section 2.3.2). 1In a multilayer network the error surface may
be very complex, with many minima. Some of the minima correspond to
an optimal solution, and are therefore global minima. (Notice that
here we are discussing the minimum of the error function. There is
at least one global minimum corresponding to the optimal solution.
However, there may exist several global minima. In the latter case,
more than one set of weight states will correspond to the optimal
solution.) There also exist some minima which are not optimal, which
are called local minima. These minima may also qualify as practical
solutions (Figure 2.6).

The BP learning rule is not guaranteed to converge to a
global minimum [Rosenblatt 1962]. A strategy for escaping from
local minima is tha use of a stochastic learning procedure such as

randomly setting the learning rate [Rosenblatt 1962) [Ackley 1987].
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However, the local minimum problem is not usually encountered in
practical applications. Empirically it has been found that high-
dimensional spaces (with many weights) have relatively few local
minima, and the learning algorithm seems to find paths out of most
local minima [MeClelland and Rumelhart 1988, pl3s], inaicating that
these are probably saddle-points. Moreover, in mest pattern
recognition problems, the goal is not necessarily to find a minimum
error state, but to find the weight matrices with which the neural
network is able to map the sample patterns and the desired classes

within a pre-defined error tolerance level (Figure 2.6).

Error surface

.L Escapa from Error descent path
1
Error descent path ocal aminima
Y -3 (

Pro.defined? T/{L— — K — — N — — — — —
srror
tolerance Local ainipum
level

Possible practical
Solutions -- all
neural network
states which map
the sample pattern
and the desired
classes within a
Global minimum error tolerance
level

Minigum error level —p — . .

Fig. 2.6. Global Minima, Local Minima, and Possible Solutioms

2.3.3 .4, SYMMETRY BREAKTNG

At the initial step of BP learning, if all weights start out
with equal values, the system will never escape this state. This is

because changes in weights are propagated back through the network by

N\
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error signals. Equal weights result in equal error signals, and
welghts would therefore be adjusted equally. This problem can be

overcome readily by "symmetry breaking", or starting the system with

random values for the weights.

2_4. CURRENT STATUS OF NEURAL NETWORK APPLICATIONS

2.4,.1. ACCEPTANCE CRITERIA FOR A NEURAL NETWORK MODEL

There are two possible basic criteria for acceptance of a
neural network model. One is to evaluate the learning result based
on the training sample [Widrow et al. 1988). From this point of
view, 100% correctness is the objective. A second appreach would be
to emphasize the predictive ability of the neural network model. In
most practical applications [Lippmann and Gold 1987] [Guyon et al.
1989] the neural network model learns from a training data set, and
then is tested with independent test data. If the test results meet
a pre-defined standard, ther the model is accepted.

From the theoretical point of view, neither of these two
approaches is pertinent for evaluation of the performance of neural
network models that deal with managerial statistical data. The first
approach is overly optimistic in its estimation of misclassification
for a population. The second approach is highly influenced by the
sample itself. TFor instance, if the two classes to be classified are
far apart from each other, then test results always tend to he good.
Moreover, if both training data and test data are not representative

samples from the population, the misclassification rate from test
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results might be much lower or much higher than the true rate. This
research theoretically investigates the behavior of the BPIMS neural
network algorithm for classification. The fundamental approach to
the evaluation of neural network models employe in this study is to
compare the classification boundary generated by a neural network to
the true (or optimal) classification boundary based on the simulated
data. Since in practice the true boundary is not known, the only
means to improve the performance of a neural network is to reduce its
misclassification rate. This research will try to show how to make
the classification boundary generated by the neural network closer to

the true one by reducing the misclassification rate.

2.4,2, NEURAL NETWORK DEVELOPMENT CYCLE

While there have been a number of successful applications of
neural networks in pattern recognition [Lippmann 1987) fLippmann
1989], the development of neural network model theories is still in
its infancy. There is still no clear understanding of what network
topology is needed for a particular task [Wieland & Leighton 1987].
In particular, the design of neural networks for managerial pattern
recognitlion has had little attention, due partly to a perceived need
for business competitive advantage [0’Reilly 1989]. The prototyping
approach is considered to be a suitable paradigm for neural network
development [Lehar & Weaver 1987]. The prototyping procedure
suggested (see Figure 2.7) is similar to that used for decision

support system development [Cerveny et al. 1986).
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-----------------------------

-----------------------------

-----------------------------

The development cycle consists of the following stages.
First, an initial neural network model is structured and trained with
the training data set. It is then tested with the test data set,
which is usually disjoint with the training set. If a pre-defined
classification criterion is satisfied, then the neural network is
ready for use. If the neural network is found to have large
disparities in performance, changes of the neural network
architecture and a repeat of the training process is necessary. As
well, a neural network should be improved through re-learning
whenever additional training samples become available. The initial
neural network configuration is likely to be important to the

development procedure. Because neural network configuration is
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highly dependent on the problem to be solved, the selection of an
inictial model is a contingency process. Nevertheless, a heuristic
rule may be helpful in creating the initial neural network model.
Kolmogorov's mapping neural network existence theorem [Hecht-Nielsen
1987] suggested that, in a two layer neural network, (2m+l) hidden
nodes are required for an m dimensional pattern vector (see Section
1.3.1.6.) This number has been recommended as a lower bound [Bruha
1989].

It is commonly accepted that the behavior of the neural
network training process depends heavily upon the training set
itself [Soulie et al. 1987]. Hence, a full investigation of the
BPLMS neural network algorithm’s behavior during training and in
solving managerial pattern recognition problems is needed. The

remainder of this thesis will describe such an investigation.



CHAPTER _THREE

CLASSTFICATION BOUNDARTES IN NEURAL NETWORKS

Chapter 2 has indicated that, through supervised training, a
neural network is able to eliminate classification error by perfectly
classifying the training samples. However, it has also been found
that, in the case of statistical pattern data, a complete separation
of the training sample groups by a neural network often has poor
classification predictability. Hence, it is very important to
understand the influence of parameter values, training data sets,
network configurations and network states on the training process. A
good way to do this is to investigate the behavior of the
classification boundary generated by the neural network during the
learning process. The ultimate purpose of this investigation is to
improve the predictive performance of neural networks in managerial
data classification. In this work we investigate the two layer
neural network in two class classification, since a two layer neural
network can handle any level of difficulty in pattern recognition
(see Section 1.3.1.6.) in managerial classification problems, which
usually involve two classes (see Section 1.2.1). It is also assumed
that Y is one-dimensional with value y and, given a pattern vector,
the output value y of the neural network will be called the

65
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classification score.

3.1, BOUNDARY GENERATION

Usually, the values of the xi's are normalized to (0, 1] for

computational convenience. The output value y of every sample point
is also in [0, 1]. Hence, the X-y space is a hypercube., As an
example, if the X dimension is two, the hypercube can be depicted in
three dimensions (see Figure 3.1). At step t the neural network
corresponds to a function surface y=¢(X), called the y-surface.
Suppose that the cut-off y score for separating the two classes is
0.5. The boundary at step t then is the intersection line of the y-

surface and the plane y=0.5.
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Fig. 3.1. Neural Network Hypercube

To simplify this discussion, Temperature T (i.e. the slope

parameter in the sigmoid function) will be set to 1. For

convenience, a number of new notations are introduced for the neural

network with two layers and single output as shown in Figure 3.2,



y. = (in' Vip e Yy ) i=0,1 ... h

Fig. 3.2. Two Layer, Single OQutput Neural Network

h : the number of hidden nodes:

Ui : weight vector of the inputs inte the ith hidden nede,

Ui-(in’ Wige oo wim)' (i=1,..h)
where wir (r=0...m) is the weight at the connection from

the rth input node to the ith hidden node;

vy ¢ weight at the connection from the ith hidden node to the

{single) output nede;

With this notation, *4e neural network function y=p(X) is

expressed as;

68
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h 1
y-ll+exp[-("0+'2 vioi)l‘
i=1
h 1, -1
= 1+ exp | -(v0 + £ v, {1+ exp ( -UiX')) m (3.1)
i

At the boundary, the classification score y = 0.5, and the

boundary function representing the relationship among the xi's at the

boundary is then

h
{ 1 + exp | -(VO + Z v, (1 + exp ( -UiX'))'l)] l'l = 0.5
i=1
That is,
h 1
vo + 151 Ve ( L+ exp ( -uix )) -0 (3.2)

In the remainder of this section we will investigate the
changes to the y surface, and classification boundary movement
resulting from one learning cycle; that i{s, from the moment just

before learning a misclassified point s (step t) to the moment just

after learning s (step t+l). For convenience, the variables without
super-script represent the corresponding values at step t, and those
with super-script 1 represent the values at step t+l. For instance,

Y. vi , and Ui are actually y(t)}, vi(t). and Ui(c), respectively; and

yl, vi , and Ui are y(c+l), Vi(t+1)' and Ui(t+1). respectively.

Suppose that there is a misclassified point s with desired

classification score Ls—l, where ¢ is a one-dimensional feature
vector value from Ts (the desired feature vector), and ys<0.5 at step

t. After learning point s, the function y=¢(X) is changed by

T |
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modifying the weights vy and U, for all 1. At step t+l, the

classification score y is :

h
z
i=-1

1

¥y = { 1+ exp | -(vo + 1

vi (1 + exp ( -uix'))' mt.oay

In order to find Vi the error signal of the output node 61 should

be calculated. In the sigmoid function F(u)-[l+exp(-u)]-1, where u

is the net input of the output node, F'(u)-[1+exp(-u)]-2-F(u)[1-

F(u)]. 1In the present case F'(u)-ys(l-ys). From formula (2.10),
Chapter 2, we have
61 - (Ls i ys) ys(l'ys)
= -y) ¥y (l-y) - ys(l-y5)2 - (3.4)

According to (3.4) and formula (2.7), v% will be

V} - v 4+ AV,
1 1 1
v, +ny (1-y)2 1+ exp(-ux "yt (3.5)
i - ys i"s '

Using the back propagation algorithm, the U1

{ can be found as follows:

Let §, be the error signal from the ith hidden node. Apply
i

F'(u)=F(u)[1-F(u)] again, but F(u)=[1 + exp( -Ui){s')]'1 at this time.

From formula (2.12), we have
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el -1
§, = (1 + exp( -U. X Y] Tt Y - [l + exp( U X, Y1 ) 61 vy

i
= [1 + exp(-U.X ')]'lll - [1 + exp(-U,X ')]'l} y_(1- )2 v
i’s i%s s Vs i-
{3.6)

From formula (2.7), at step {(t+l) Ui is modified to become Ui ,

1
Ui - Ui + AUi - Ui +n 82i X

s

- R [} -1 " ' -1 2
Ui+ n vi[1+exp( Uixs)] (1 [l+exp(-UiX5)] ) Yg (l-ys) xs .

3.7
Hence, the change of the y surface from step t to (t+l) is
1
Ay =y -y =
1 -1 -1
= {1 + exp [-(v0 + g - {1 + exp [-(v0 + q)]} (3.8)
where qt = . ([ v, + (1-y )% (1 + (-Uu.x_'N!
L vy (L-yg exp (-U;X ")) 7]
1

*[1 + exp(-(U; + 7 vy (1+ exp(-uixs'))'

(1 L+ expCUX N y ey ? X ) x0T

(3.9)
h -1
and g = Z vy {1 + exp (-UiX')] . (3.10)
i=1

Because ql may or may not be greater than q, Ay may or may not be

greater than zero, depending on v, , Ui and X. This means that after

learning the misclassified point s, thn function surface is shifted.
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The shifted amount Ay is highly dependent upon the position in the
pattern space and the current state of the neural network at step t,
given a certain neural network structure and a particular learning
algorithm,

The funccion

h
y=t1+exp[-(vg+ I v, (1 + exp (-UiX’))'l) ] }'l

’ t=1
is a one-to-one function of X. When the y surface is shifted up, the
boundary moves toward point s, and when the y surface is shifted

down, the boundary moves away from point s (see Figure 3.3).

¥-surface(t)

¥-surface(r+l)

v=0.5 plane

v=0.5 plane

v-surface(t+l)

¥-surface(e)

s .
-~

\ Boundary (t+])
\

-

Boundary(t)

3} y-surface fs shifted down b) y-surface {s shifted up
- u

Fig. 3.3. Boundary Movement
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3,2, DISCUSSION OF BOUNDARY BEHAVIOR

The foregoing analysis of boundary generation brings the
following general conclusions. In terms of classification boundary
generation, the behavior of the neural network is highly dynamic.

All of the following factors influence boundary generation:

(1) The training sample set has a major influence on the
boundary because the neural network algorithm is always attempting to
modify the boundary in order to correctly separate the classes,

(2) Newural network architecture,

(3) Function parameters,

(4) Initial state (initial Ui's and vi's ),

{5) The current state, which may also be influenced by the
sequence of training sample points.

A detailed prediction of boundary behavior is difficult due
to the complex interrelated functions invelved, and the highly
dynamic nature of neural networks. However, we may look at several
special cases which are helpful in understanding the boundary

behavior.
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3 1 SPECTAL CASES

3.2.1.1. POSITIVE vi's

We have mentioned earlier that the weight matrices initially
were assigned real values selected at random from a uniform
discribution on (0, 1). In the special case of all positive v
each term in expression (3.9) is always greater than the
corresponding term in expression (3.10), Hence, 4y>0. This means

that, after a learning iteration using the misclassified point s, the

boundary always moves toward s when all v, are positive.

3.2.1.2. UiX; TENDS TO -w

When a U,X_ tends to be negative extreme, the neural netwerk
tends not to adjust the boundary adequately in order to move towards
a proper classification for s. This case often happens when some
weight value is large negative (e.g. wij<-20). and other weights are
moderate. Let z=[1 + e:q:;(-UiJ{s_")]'1 . When UiXé tends to -w , z

tends to zero. The term in {(3.9) then becomes
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h

2
im 2 [v, +ny_ (1 -y) =z
z+0 =1 T s s
* (1 + ex 2 eyl
Pl-(U; + v,z (1-2)y (1-y)" X)] X' )
h -1
= Z v, (1 + exp (- UiX') ]
iml

yielding Ay=0 (compared with (3.8) ). This means that there is

little effect on learning when U.X. tends to -o. Thut is, a badly

misclassified point s has little influence om boundary position and
is therefore unlikely ever to be classified correctly. This case is
very important, especially during real computation, because in a

digital computer the sigmoid logic is never complete. That is, for
example, when UiX;<-15, the internal value of [1 + e:~:p(-lll.h}lls’)]-1 in

the computer might actually be zero.

3.2.1.3. UiX; TENDS TO +=

When UiXé tends to be positive extreme, boundary adjustment
tends to be very sensitive to the location of point s (Figure
3.3(b)). This case often happens when some weight value is
positively large (e.pg. wij>20)' and other weights are moderate. In
this case, z=[1 + exp(—UiXS’)]'1 tends to 1. Terms in (3.9) then

become
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h 2
lim = [vi +ny, (1l - ys) z]
z—~1 i=1

* {1 + exp[-(Ui + 7 v, 2 (1L - 2) Y (l-ys)2 xg)] X’ )'1

h
2 -1
L RARACERARNIEEENE X 3}

h -1
> Z v, [l + exp (- U.X") ]
i-1 " '

yielding ay>0 in equation (3.8).

3.2.1.4. SMALL n, SMALL UiX', AND MODERATE vi's

The condition of small UiX' does not usually occur.
tiowever, if we introduce temperature T and let the value of T become

large, the function [].+e:-cp(-UiK'/T)]'1 could be considered as that

of [l+e1q:‘(-Ui}{')]-1 where UiX' is small. It will be seen that in
the condition of small UiX' and moderate Vi, a small value of g

always makes the boundary move very slowly towards the current

training sample point.
If UiX' is small, [1+exp(-UiX’)]-l= 0.5 which can be
derived from the approximation of e = l-¢ for small €, or directly

from the sigmoid logic function (see Chapter 2, Fig. 2.4).

The terms in (3.9) become
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h
1 2 2 -1
q° = £ [vi+0.5ny (1-y.) }l1+exp[-(Ui+0.25nviys(l-ys) XX .

ry

jel

(3.11)

Further assume that 5 is small (e.g. =0.01) and the vy's
are moderate (e.g. Ivi|<20). Because 0.25 g v Y, (l-ys)2 xs is

relatively small, we can use the approximation e = 1-¢ again in

expression (3.11). The terms in (3.9) then become

h
1 2 . 2 11
q =i§1 [vi+0.5ny (1-y )°)[(2-U,X")-0.25ny (L-y )" v.X X'] 7" .
Letting Al-O.S n ys(l-ys)2 . and A2-2-U1X' for convenience, gives
1. 3 [(v. + 4, ) (A, - 0.5 A v, X_ X)L (3.12)
TEL TR 2 S B S ' '

In the same way, the terms in (3.10) are found to be

h -1
qQ= I V.4, . (3.13)
i=1
Using these approximations, the difference between the corresponding

terms for index i in (3.9) and (3.10) is

-1
Ai = {] Vit oy, (l-ys)2 (1 + exp (-UiXS')) ]

* [1 + exp(-(Ui +n v, (1 + (-n{p(-U].h}(s')).1
D 2 |
* (1 - (1 + exp(-UX D7) y (Loy )T X ) X))

S|
- {vi [1 + exp (-Uix Y1)

giving
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PUTSIEUUE SR S e
i Az-ﬁ.salvixsx A,
2 ,
_ BV Y ARyt Ay 1 03 AV X X
A2 ( A2 - 0.5 Alvi Xs X')
2 ,
A, A+ 0.5 v, X X')
- '"A}('Agi'O'S'Ag'ji"i’i'" (3.14)
y A B e W

Note that, in our special case, n=0(0.01), A1=0(0.001),
A2=2, |vi|<20, if we consider that the X dimension is usually smaller
than 100, giving XSX' <100. This yields

Ay 0.5 Av, XS X > =1

2 l'i
The numerator of (3.14) has a small positive value, and the

denominator is about 2. Hence, Ai>0 , which would result in a small

positive increment of Ay (see equation 3.8),

This case makes sense especially when the neural network is
near the final solution. It is desired that, when learning the point
s, the y surface is shifted only slightly to make the boundary
include point s in the proper class without significantly changing

the boundary for other points.

3,2.2, ERROR FEEDBACK

The neural netwerk obtains feedback information from the

training sample through L Yg - In our case, if y5>0.5 then point s
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lies on the right side of the boundary, and no error feedback is

generated. However, if ys<0.5. an error signal will be generated.
Intuitively, the smaller Yo is, the larger LY, becomes,

and a stronger error signal should be generated. However, this is
not true in this model.

Recall that the error signal from the ocutput node

2

6y = ¥g -y, (see equation (3.4) )
dé 1 4
From ---- =0 , we have y = , and §, reaches a maximum of
Vs * 73 . T

(= 0.148). It is interesting to see that when y_ is close to 0.5- ,
81 = 0,125, and is close to the maximum. This means that the neural

network is relatively sensitive to errors at this point. However,

when Vg is very small, (i.e., the discrepancy is very large), the

error signal becomes weaker instead of stronger (see Figure 3.4).
This implies that a misclassified point which is away from the
boundary has little influence on boundary adjustment during training,
but misclassified points close to the boundary have much more
influence on boundary adjustment.

The error signal from the ith hidden node back to the input

layer 62 is more complicated to calculate, and depends upon y_, V; .
i

Ui , as well as XS (see equation (3.6) J. Maximization of 62 is
i

highly dependent upon the portion of the neural network's current
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state represented by Ui’ From "'i';' = 0 , we have the maximum 82

J i

condition
Ui JII.S = 0 . (3.15)
This means that there is no explicit XS that can cause a maximum

error signal for the neural network. This is because the error

signal at the middle layer is always affected by current weight

values.

Error signal 51

N 0.148
0.125
0.128 :
1 |
0.081
I l
[ I
IR
Lo
[ | 1 >
0 0.1 0.2 0.333 0.5 1 Ye
Discrepancy €&— 1 0.5 0

Fig. 3.4. Error Feedback Signal

In summary, the neural network shifts the function surface
during the training process. However, the behavior of surface
shifting and boundary movement is unpredictable. It is highly
dependent on the state of the neural network at step t. Learning is
an adaptive hill climbing process. This model only looks for a
possible function surface, and generates a boundary which separates

the teaching sample points into the desired classes.
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3.3, _NEURAL NETWORK WEIwdT MATRICES ARE NOT STATISTICS OF THE

SAMPLE RANDOM VARTABLE X

Despite the similarity between neural networks and
discriminant analysis, in chat both techniques require little prior
knowledge except the sample set itself, the underlying difference
between them is significant. In discriminant analysis the
discriminant function is a statistic of the randem variable X.
However, in a neural network the determination of weight matrices are
not totally statistically dependent upon the sample data themselves.
According to the definition of a statistic: "A function of one or
more random variables that does not depend upon any unknown parameter
is called a statistic" [Hogg and Craig 1978, pl22], it can be
concluded that the determination of neural network weights is not a
statistical problem because it does depend on the architecture and
initial state as well as the iteration t. From this standpoint, the
statistical techniques including estlmation of misclassification
(e.g. leave-one-out [Toussaint 1974)) and parameter estimation (e.g.
jackknife [Mosteller 1971, Miller 1974, Efron 1982]) are not directly

applicable to neural networks.

3.4, UNPREDICTABILITY OF NEURAL NETWORK CLASSTFICATION

Most researchers on neural network classification are
painfully aware that the classification results of neural networks
are unpredictable (cf. [O‘'Reilly 1989]). In other words, a neural

network may classify the training sample data set correctly 100



82

percent of the time, but still perform poorly on the test data sect.
This problem is caused by the unpredictability of neural networks in

classification, arising from at least two reasons described as

follows.

3.4,1, UNPREDICTARLE BOUNDARY GENERATION BEHAVIOR

According to the BPLMS learning algorithm, the neural
network learning process proceeds until the training data set is
classified 100 percent correctly. However, as discussed in Section
3.2, classification boundary generation of neural networks is not
predictable. Given a certain training data set, the classification
results generated by individual neural networks may differ in
thousands of ways without any explicit reason. For example, given
the data in Figure 3.5(a), there are an infinity of possible
classification results. Figures 3.5(b)-{e) show several possible
outcomes.

This indeterminacy of boundary results is one of the major
reasons resulting in the unpredictability of neural networks in
managerial classification problems, especially when the training

sample size is not very large.
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(b) (c)

(d) (e)

Fig. 3.5. Examples of Boundary Classification Results

3.4,2. DOGMATIC T.EARNING MECHANISM

Classification using the standard neural network with the

BPIMS learning algorithm works under the assumption that each

83
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input/output pair of the training sample data truly and accurately
reflects the relationship between the pattern vector and the
corresponding class. This condition is questionable in practical
applications. First, most sample data come directly from the real
world. Usually, there are errors (or measurement noise) in measuring

the pattern vector values; namely, what we have observed from a

sample point is Yhé(i) rather than Ye=¢/X), where i ls the measursd
X, but the outcome Y of the observation is still assumed to be
correct. Secondly, according to artificial intelligence theory, the
dimensionalicy of thes pattern vector is never complete for an object
in the real world (cf. {Rich 1983]). This argument is certainly true
for managerial problems since a formal description of the pattern
vector basically provides only a part of the complete information
about a person, a company, or a business event. From this

standpeint, what we have cbserved from a sample point is Y=4(X)

A~

rather than Y=¢(X), where Y is the real outcome of an event, caused
by both observed pattern variables X and unobserved pattern
variables. It is not surprising that, in some cases, two training
sample points with the same (accurately measured) X have totally
opposite outcomes, but both outcomes are right. This type of
information, however, is difficult for neural networks to learn.
Therefore, the practical application of neural networks in managerial
pattern recognition should not simply pursue 100 percent correct
classification of the training sample set.

Before leaving this discussion, let us return to the example

in Figure 3.5. The boundary in Figure 3.5(e) seems to be better than
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the others even if the samples are not 100% correctly classified,
because it is a smooth curve which does not appear to have been
affected by random fluctuations in the sample data, and the shape of
the boundary seems to be more meaningful in the managerial sense, It
is easy to interpret this phenomenon from the staristical viewpoint
[Young and Calvert 1974, p206], but difficult to solve this problem

with current BP learning algorithms [Kohonen et al. 1988].

3.4.3, PROSPECTIVE MEANS FOR CONTROLLING NEURAL NETWORK

UNPREDICTABILITY

There are now two main issues we have examined. On the one
hand, neural network techniques appear to have promise in performing
managerial pattern recognition, due to their adaptive properties.
However, their boundary behavior {s relatively unpredictable.
Although there is no doubt about classification performance on
training samples, the boundary mey or may not be close to an
“optimal" one, since the neural network is too arbitrary in
generating boundaries to be able to approach optimality, however that
may be defined. We will therefore have to impose some constraints on
the algorithm so that boundary generation will be more consistent
with the sense of the type of problems we are attempting to solve.
These constraints may come from task domain knowledge, which in this
context refers to generic knowledge about managerial pattern
recognition. On the other hand, because of the computational
properties of neural networks, the neural network weights are not

really statistics of the sample random variables. Statistical tools
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are therefore difficult, if not impossible, to apply in the
determination of these weights. However, a critical aspect of the
data is that it is random, and standard learning techniques are
highly susceptible to random fluctuations, leading to undesirable
classification boundaries. We therefore need to develop a
statistical technique to pre-prncess the training sample data and
filter its statistical fluctuations. The remainder of this chapter
discusses these two issues in detail, leading to a learning model

which can take full advantage of the adaptive nature oI ithe neural

network technique.

3.5 PRIOR KNOWLEDGE ABOUT MANAGERTAI. PATTERN RECOGNITION PROBLEMS

3,5.1. UTILITY FUNCTIONS AND MONOTONICITY

Recall the example in Section 1,1, The classification of a
stock portfolio is a utility function of the stock return means and
variances. Actually, a wide range of managerial decision problems
involving pattern classification can be considered from the point of
view of utility or preference analysis [Keeney and Raiffa 1976]
[Nicholson 1978]. For instance, the classification of twoc classes is
basically the problem of "which is preferred". In the study of
utility theory, qualitative characteristics of the utility function
are often introduced. Each of these charactoeristics implies a
certain attitude of the decision maker with regard to his or her
preferences. One may express these attitudes mathematically and

impose some restrictions, or assumptions, on the utility function in
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order to actually assess the utility. One commonly used
characteristic is monotonicity [Keeney and Raiffa 19761, which is
expressed as

[ X > X, ] Sm=> | ¢(X|xj-x1) > ¢(X|xj-x2) ]

In terms of a two class classification problem if, other things being

equal, the larger (or the smaller) value a variable x, has, the

A]

larger the classification score y becomes, then y is monotonic in x,.

]

The above expression is for a monotonic increasing function. For our
purposes, a monotonic decrease is conceptually the same as a

monotoniec increase, but with the xj direction reversed. In the

assessment of a utility function, prior knowledge about monotonicity
is usually available; hence, an assumption about monotonic
relationships between certain independent (pattern) variables and
utility is usually valid. For example, in the creditworthiness
classification case, income and assets are monotonic in the
creditworthiness score; namely, other things being equal, the more
the better. Sometimes there are pattern variables which are not
strictly monotonic. For example, in a semantic questionnaire there
may be a scale such as "Too-small ... Good ... Too-large"”. However,
such variables can be decomposed into monotonic variables.

If a monotonicity constrainct is imposed on neural network
learning, then the y-surface will monotonically increase with changes
in the corresponding pattern variable. This will in turn result in

an improvement in the predictability of boundary generation.
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In linear discriminant analysis (LDA) the discriminant

m
function y= £ b,x (Section 1.3.1.2) is monotonic in xj for all j,

j=0 173
since ay/axj-constant for all j. In the case of a pattern

recognition problem which is monotonic, LDA is superior (since it has
an inherent monotonic property) over other distribution estimation
techniques which may violate monotonicity and hence result in
conflict in decision making (see Figure 3.6). For instance, given a
sample, 1f che distrribucions of the pattern data are assumed to be
normal with different covariance matrices, then a quadratic
discriminant function can be generated which is optimal under these
assumptions. However, the analysis result may violate monotonicity
due to the quadratic shape of the boundary. Consider Figure 3.6(a)
where the two dimensions of the pattern space denote mean and
variance, respectively, in financial stock mean-variance analysis.
For a fixed wvariance, the stock can become either good or bad =2long
with an increase of mean value. Obviously, this makes no sense in
decision making. The problem is caused by an incorrect assumption

about the statistical distributions.
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Fig. 3.6. Complex Boundaries Violate Monotonicity

On the other hand, in managerial pattern recognition,
knowledge about monotonicity is often not available for some pattern
variables. For example, in the classification of personal
creditability, there probably is no prior kuowledge about what age is
a critical level, where the utility function of creditabilicy
monotonically increases up to this age level (say, 65) and then
decreases. If the critical age is unknown, Age cannot be decomposed
into monotonic variables, say Creditability-Increase-Age and
Creditability-Decrease-Age. If LDA is employed in this case, the

non-monotonicity will be violated since ay/axAge can change sign.

However, 1f the neural network technique is used. the monotonic
condition constraint can be discharged in the Age wvariable. The
advantage of doing so is more flexibility for classification in
dealing with non-monotonic variables. The disadvantage is that there
is not enough knowledge to constrain the classification boundary,

resulting in unpredictable boundary behavioﬁ in these variables.
;
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BPIMS TRAINING ALGORITHM

In neural networks the desired classification score Lo is

usually defined to be 1 or 0 depending on which class s belongs to,
as we have no other prior knowledge. Completely separating the
training set into two sets may require a very complex boundary, which
would not necessarily meet the objective of having good prediction
capabilities. On the other hand, the LDA generates an approximation
of a "true” classification. This implies that the classification
boundary cbtained from LDA could be used as a beginning approximation
to the boundary. Assuming that a neural network training algorithm
is subjected to a monotonicity constraint, and is trained with a
sample carrying the classification scores obtained from the LDA, the
y surface generated would have a regular shape, and the
classification boundary would be close to the linear function given
by LDA, when training is completed (recall Figure 3.1). However,
our goal is not to simply map the LDA result to a neural network
result, but to improve on it. If w= lack knowledge about the
underlying distribuction functions, the criterion which can be used to
evaluate performance is a low misclassification rate for the training
sample. To reduce misclassification it is desired to modify the
ciassification scheme generated by LDA. This could be done by
learning the misclassified points based on knowledge about the
approximate classification scheme generated by LDA. The following

example (see Table 3.1.) explains the heuristic approach.
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Sample LDA LDA | Training Expected
points scores miscls, | data misecls,
................... I acsesasaa ceemmaaa
Class A A-1 0.8 | A
A-2 0.42 X | A
t>=0.5 A-3 0.6 | A
A-4 0. x | X
A-5 0.48 x i a
...... {
Class B B-1 0.4 | B
B-2 0.6 X | :)
t <0.5 B-3 0.8 X | X
B-4 0.25 I B
B-5 0.3 | B
!

Table 3.1. Example of the Heuristic Approach to Obtain
a Proper Training Data Set

Table 3.1. left shows a classification result using LDA.
There are 5 misclassified points (scores <0.5 for A and 20.5 for B).
Some of them are close to the linear LDA boundary, and the others are
not, as indicated by the classification scores. Since the "true"
boundary may have better measured performance than a linear boundary
function, it should have the potential to decrease the
misclassification rate. Thus, it is desired to make minor
modifications to the current boundary based on the available
information, so that misclassification is reduced. In class A, the
misclassified points A-2 and A-5 are selected to be included in the
new training scheme, because the maximum increase in the scores is
about +0.08 which seems to have little risk of causing new
misclassifications for class B if the boundary is revised to include
them. 1In class B, the misclassified point B-2 is included because a
decrease of 0.1 in the score should result in little risk of

introducing new misclassifications for class A. Misclassified peints
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A-4 and B-3 have large discrepancies, which seem to be caused by
overlap of the data sets, and no attempt will be made to bring these
into their correct classifications. The new classification result
after boundary modification through training is shown in Table 3.1,
right. The classification may be improved further, based on the new
boundary, if the heuristic procedure can be applied again.

In practice, if the LDA result has a large misclassification
rate, and clusters of rizclassified points are observed (see Figure
3.7), the heuristic may be used effectively. Identification and
verification of clusters is alsc a pattern recognition problem. In
this particular case, vector analysis [Kohonen 1988] is helpful,
especially in the case of high dimensionality pattern vectors. An
example, with a two dimension pattern vector, of the suggested vector
analysis approach of finding the clusters is depicted in Figure 3.8,

and an algorithm which utilizes it is described as follows.

! TR Class 1

*1

Fig. 3.7. Clusters of Misclassified Points
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Fig. 3.8. Vector Analysis of Clusters of Misclassified Points

(1) Pre-define a small number ¢ (e.g. 0.05). Define set

) . such that se(Sl_ni ) if s is a misclassified point from

(Smis ¢y s'c

class ¢, and |§S - 0.5|<¢, where (s 1s the LDA classification

score of s. In the example of Figure 3.8 (S ) ={A, B, C}.
mis ¢y

)

Similarly define se:t (S .
mis’e,
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(2) Let (wl)s be the angle between the vector direction of s and

axis ¥, , with cos(wl)s- I}Q-Ii- . Plot (ml)S for all se(SmiS)cl

and (Smis)cz on the Wy axis.

(3) Screen the wy axis from 0 to x/2. Those misclassified

points which belong to the same class and are contiguous will
comprise clusters. In the example of Figure 3.8 (F}, (A, B, €1, and
{D, E} are three clusters. A few points belonging to the other class

(e.g. class cl) might also be allowed to exist within a big cluster
{belonging to, for example CZ) on the w axis.

The trade-off between the potential gain from the corrected
misclassifications and the potential risk of introducing new
misclassifications can also be made by vector analysis. Figure 3.9

shows an example assuming that (Smis)c is an observed cluster of
1

misclassified points in class cy-
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Class 2
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If A B C are modifled, then G would be misclassified

Fig. 3.9. Vector Analysis of the Trade-Off Algorithm

The trade-off algorithm is defined as follows.

(1) Define set (S ) such that se(Sc

cor’e, ) if s is a point

or’c
2

in class Cqy which is correctly classified by LDA, and |g‘s - 0.5|<¢ ,

and (wl)S falls into the range | min ( ul) , max { wl) ] . where

(S (5 ..)

mis c1 mis c1

min ( wl) and max ( wl) are the extreme values of (wl)'s of the

) (s_..)

(smis ¢ mis‘e
1 1
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misclassified points in (S_. ) . In the example of Figure 3.9

mis c1

(scor)cz-lc}‘

(2) Let the cardinality of the sets (Smis)cl and (Scor)cz be

denoted by j(5_. ) | and |(S } |, respectively. If |(S

>
mis’c cor’‘c |
1 2

mis)c1

l(scor)c !, boundary modification about the misclassified points in
2

(s ) would introduce fewer new misclassifications if learning is

mis 4
completed using the modified training scheme.

(3) Delete s¢(S h] ( {G) in the example) from the initial
cor’e,

training set §. Train the neural network with the revised training
data set. When training is complete, the misclassification rate will
not be greater than the LDA result; otherwise, reduce £ and repeat
the vector analysis procedure until £=0,

The heuristic described above requires parameters such as £
and the desired tolerance to be pre-defined. Note that, after
verifying the non-linearity of the desired boundary after LDA pre-
processing, the neural network can readily generate a proper boundary
based on the monotonicity-constrained training scheme. This kind of
adaptive problem is difficult if not impossible to solve by other
classification methods.

As in most other artificial intelligence approaches, there
is no way to prove that this heuristic aprivach definitely results in
an "optimal"” solution. However, the use of prior knowledge about

monotonicity and an initial LDA approximation to the boundary can
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overcome the unpredictability of a neural network’'s boundary

behavior, and improve its classification performance.

3,6, THE MONOTONIC FUNCTION NEURAL NETWORK MODEL

Two issues related to the problems of standard neural
network learning have been discussed thus far. First, the standard
BP learning algorithm makes a neural network’s boundary behavior
unpredictable. In order to ensure a classification result which is
more consistent in the managerial context, it has been suggested that
monotonicity should be imposed during the learning process. Second,
if monotonicity is imposed during learning, the original training
scheme may not be suitable, because the training scheme is often in
conflict with monotonicity in classification of statistical data.
Hence, pre-processing of the training sample based on LDA results is
suggested. This section will summarize a learning model for naural
networks in classifying statistical data under monotonicity
conditions, and we will call it the Monotonic Function Neural Network

Model (MF model, for short).

3,6,1, MONOTONIC CONDITION FOR NEURAI. NETWORKS

If y=4(X) is monotonic in xJ , then 3y / axj =0, Using

the notation in Section 3.1., this condition is generalized as

follows,



h
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3y/3x, = 3l [l+exp(-(vg+ (E; vy (LeexpC-UX NI/ ax,

Thus,

ay/aszo Cmm> iE

for all j, provided ¥y is monotonic in xj

h

S |
where G-v0+i§1vi[l+exp(-Uix )]

]

_ 3y 4G
&G ax,
]
h 3 [vi(1+exp(-UiX'))-l]
- y(l'Y) i§1 _
d x
h

- Y(l'Y) i§1 wij vi

h

1 Yi§ Vi

exp(-UiJ{')[1+e:<p(-l]i1l’)]'2

exp(-ui:nv)[1+exp(-uiX')]'2 20

(3.16)

Condition (3.16) should be satisfied for all monotonic

variables xj

necessary and sufficient conditicn.

An algorithm can be employed to find this general

The

following algorithm meets

these general conditions (see Appendix IIT for the derivation).

(L)

(2}

For all j provided y is monotonic in
For i=1...h, define set I so
wijvi < 0;
Compute
Q1 - 0.25 ? wij vy for
Compute

(3)

Q2 - ; wij vy Ai for

L

x., do:

J

that 1e¢I 1if

those 1i¢I;

those i{I
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where

A, = min {[exp(-gwip)(1+exP(-§Wip))-2].

[exp(-Iw

-2
B91q) (Lrexp(-2w, 0)7%] )

where the wip's and wiq's are elements of vector Ui

and all wip<0 and all wiqao :

(4) If Ql + Q2 =0 |, then y is monotonic,

else monotonicity is violated;

End-do. (3.17)

During training for a sample point, if the monotonic
condition would be violated due to a large change of weights, 5 is
decreased for that sample point. Because our model does not change
the principle of error hill climbing (see Section 2.3), the adaptive
nature of the algorithm does not have to be changed. Experiments
with this algorithm have shown that, when the proper training data
set (see Sections 3.4.2. and 3.5.2.) is used, the monotoniec condition
is rarely violated.

For practical purposes, we may need to find a sufficient
condition for monotonicity. A sufficient condition can be deduced
simply from equation (3.16); that is,

wijvi =0 for all i=1...h and corresponding j. (3.18)

Note that the initialized neural network with its weights of random

numbers uniform on (0,1) has the monotonicity property.
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3,6,2 PROPER TRAINING DATA SET

In Section 3.4.2. a heuristic algorithm to find a proper

training data set based on the LDA pre-process result was suggestad.

Here, it is summarized in a generalized form, using the notation of

Section 3.4.2. The main steps of the algorithm are depicted in

Figure 3.10.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Pre-process the sample set § with LDA, and

m
obtain a linear classification function IT bjxj - 0.
j=0
m
Calculate a score y = Z b,x, for each seS.
sy 3

Normalize the scores from Step 2 on [0,1] such that
a point on the linear boundary has score 0.3.

Find sets (8 ) {(r=1,2) such that each member

mis‘c
r

se(S ) satisfies | € 0.5 | < £ , where { is a

mis‘e

r
pre-decided small number and will be reduced following
the iteration procedure. If §=0, STOP.

Calculate (wj)S (i=1,,.m-1) for all se¢(S (r=1,2),

mis)c
r
where (wj)S is the angle between the vector direction of

s and axis xj

Find clusters of misclassitied points (Sgis)c
r

(r=1,2; g=1...G; where G is the number of clusters



Step 7.

Step 8,

Step 9.
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found) such that

none (or 4 small number within a pre-defined tolerance)

of (wj)s (j=1...m-1) fall into the range
i min (w,) , max (w.,) ], g=1...G ,
g g ]
(Smis)c (smis)c
e r
for all se(S_ . ) , where ¢ is the class other than
mis‘c_ . ~-r

[o4 .
r

If (Sg. ) does not exist (i.e. G=0 for r=1,2),
mis‘e,

then STOP:

otherwise, goto Step 7.

Find (s® ) such that se(s% ) if s is a
cor C_r cor Cﬁ

correctly classified point from the class other than

c, by LDA, and |§S - 0.5|<¢, and (wj)S falls into
[ min ( w,) , max ( wj) ] for all j=1...m-1.
B g
(smis)c (smis)c
r r
4 & -
It I(Scor)c__l_l << I(Smis)crl » 8=1...G,

then goto Step 9;
otherwise, reduce £, and goto Step 6.
Delete s from S if s is a misclassified point but

s¢(S (r=1,23, or

mis)c
r

se(SEor)c (r=1,2; g=1...G).
-
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Train the neural network on § from Step 9;

If successful (i.e. after training for a pre-defined
number of iterations all se¢S are correctly classified),
then a new classification result is obtained, which

has a misclassification rate not greater than LDA on the

initial sample set;

otherwise reduce £ , and goto Step 4.
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Fig. 3.10. Main Steps of the Algorithm To Find a Proper

Training Data Set

As with standard neural networks using the BP learning

103

algorithm, when a new training data point is added into the training

set, the MF model would need to totally relearn the updated training

set.
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PLICATIONS OF (3] c CT NETWO!

MCDEL

3 1, AN EXAMPLE OF STMULATED DAT.

In this section an experiment using simulated data is
described which applies the Monotonic Function Neural Network Model.
For this experiment, the pattern vector dimension was two, so results
could be displayed on a plot. The size of the data set was 40 (20 in
each class). An initial sample data set was generated by the method
described in Section 1.3.3.2. The true classification boundary was
cosine shaped (see Figure 3.11). The LDA approach classified 33 of
the 40 sample points correctly (82.5%). Using the algorithm
described in Section 3.6.2, £ was determined by the algorithm to find
a proper training data set (Section 3.6.2) as 0.04. Four
misclassified points were within this tolerance. However, one of the
previously correctly classified points was now incorrectly
classified, resulting in a net gain of three properly classified
points. Thus a new training data set with 36 sample points was used
to train the neural network, with 5 hidden nodes, under the monotonic
condition. After 6406 learning sweeps, the final classification
boundary was obtained, which is closer to the true boundary than LDA
in most regions of the pattern space, resulting in an overall

accuracy of 90% (Figure 3.11).
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Neural
Letwork
f-— True
i ification
misclassi boundary
0 Lba -

Fig. 3.11. Experimental Result for the Monotonic¢ Function

Neural Network Classifier

However, using standard neural network training on the

original data set , no convergence was observed after 65454 learning

sweeps.
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3.7.2. AN EXAMPLE OF REAL DATA

In the last subsection , simulated data were used for
testing the MF model. The advantage of simulated data is that the
optimal boundary is known and can be used to evaluate the performance
of the model, as shown. However, the above method is not applicable
for real problems. A widely acknowledged testing method is cross-
validation [Lippmann 1989), a form of the jackknife method [Efron
1982] which is commonly used in statistics, In this method, a
training data set is randomly selected from the available sample.
After training the classifier, the remainder of the observations are
used to test the classifier. Usually, the sample is equally divided
into two subsets, and each of them serves as training data set and
testing data set in turn in two trials,

The data used in this experiment came from the Alpha TV
Commercial data bank published in {Green 1978]). This data bank, made
up from the responses of 252 male adults, is used as a kind of
"running case" throughout the text [Green 1978]. The author used a
subset of the data bank to conduct a linear discriminant analysis of
two classes described as follows:

Class 1: 78 respondents who selected the Alpha
brand of radial tires;
Class 2: 174 respondents who did not select
the Alpha brand;
and the pattern variables:
1. whether Alpha was the brand selected in the respondent’s last
purchase of replacement tlres;

2. pre-exposure interest in Alpha radial tires;
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3. post-exposure believability of the Alpha commercial;

4, post-exposure interest in Alpha radial tires.
Using the 252 data points, linear diseriminant analysis gives the
result that (52+131)/252 or 72.6 percent of the sample is correctly
classified, although the difference in the locations of the two class
centroids was highly significant (F=17.98, with 4 and 247 degrees of
freedom {Green 1978, pl79]). Hence, as pointed out by the author,
the separation effected by the linear discriminant function is not
good from a practical point of view. However, the MF model can
improve on this resulet.

The classification case being discussed is a typical
managerial pattern recognition problem. The assumption about
monotonic relationships between selection of Alpha radial tires and
the four pattern variables, including last brand purchased, pre-
exposure interest, post-exposure believability, and post-exposure
interest is valid. The Monotonic Function model is therefore
applicable, and an experiment was designed as follows. Every other

point of the class was selected for one subset Sl' and the remainder

was selected for 52, such that each contained 39 points for class 1

and 87 points for class 2. In the first trial S1 was the training

data set and 52 was the testing data set, and in the second trial the

roles of the two data subsets were switched.

Because this was a high dimensionality problem, it is not
possible to depict the population in a two dimension graph.
Nevertheless, the clustering phenomenon was well observed in the

vector analysis (see Appendix IV (1)). In the two trials, £=0.01 and
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£=0.03 were applied respectively to obtain proper training data sets,
beginning with the LDA result. Neural networks with 15 hidden nodes
were employed, and the learning rate was set at 0.1. The final
result including the neural network weights and classification
results for the two trials is exhibited in Appendix IV (2). A
comparison of the results cbtained in this experiment and the LDA
results is shown in Table 3.2. The experiment shows that the
classification result of the MF model improves on the LDA methed,
although the results of the MF model were based on a limited number

of trial and error processes in the determination of €.

] ] Reduced |
| MFM | misclassi-|
| | fications|
|

| Train on the original data}l (52+131)/252 | |
| set {252 point) and test - 72.6 % ] |
| on the same data set | |

I
i
| | (26+67)/126
|
|
|
|

(26+77)/126 | (10/33)- |

!

I

|
| |
| Trial 1. | Test on S1 - 73.8 % ] = 81.7 % | 30.3 %
| Train on R e R [---mmeemmenns |===-"------ |
| subsec Sl | (24+71)y/126 | (20+476)/126 | (1/3L)= |
| (126 points)| Test on S2 - 75.4 % | = 76.2 % | 3.2 %
| | -xmemrmnees [rommnennes EREPETPEPEPE EEEEREREEE |
| | Overall | f | |
| | | 74.6 % | 79.0 ¥ | |
frrmsmeemm e e fomcemeeemmm- R e [===mmmmme- I
| | | (31+56)/126 | (25+67)/126 | (5/39)= |
| Trial 2. | Test on S1 | = 69.0 % | = 73.0 | 12.8 & |
| Train on |==========-- R R [--aveeemmn-
| subset S2 | | (26+58)/126 | (24+71)/126 | (ll/42)=~ |
| (126 points)| Test on S2 | = 66.7 % | =75.4 % | 26.2 % |
| | -xcenennnne |oemeeeeee EEEEEEPPERERE ERREPEREPPE 1
| | Overall | i | |
i | i 67.9 % | 74.2 % | |
R RCRTLTITEEED | eremneneee EEEEREPEPRPES EERERERERTE !
I I I ! |
| Overall | 71.3 % | 76.6 % | [
I I | | I

Table 3.2. A Comparison of the Percentage Correctly Classified
by the MF Model And the LDA Method on the
alpha TV Commercial Study Data [Green 1978]
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3.8, DISCUSSION

3.8,1. EFFICTENCY OF THE MF MODEL

A well-known problem with neural networks using the standard
BP training algorithm is the significant computational time required
to reach a convergent result [Specht 1990]. One may expect that, on
average, the more complex the y-surface which will be represented by
the neural network, the more iterations will be required during the
learning process (cf. [Wieland and Leighton 1987]). 1In the MF model
developed in this research, an underlying principle is to reduce
unnecessary, even harmful, complexity of the y-surface which can
result from unconstrained learning with statistical data. Using the
MF algorithm, the neural network can generate the less complex y-
surface easily, given the proper training data set. This can be
explained by an example. Suppose we have two sample data points

which have the same pattern vector X and the opposite outcomes of ¢y

and <, respectively, From the staristical point of view, this

phenomenon is the result of statistical fluctuations. Using the
neural network with the standard BPLMS algorithm, a correct
classification result can never be obtained. Suppose we change the
exsnnle slightly, and the two sample points have the same outcomes as
before, but with very slightly different pattern vector values, say,
X and Xt respectively. In this case, a neural network using the
standard BP algorithm would take a long time to generate a boundary

Lo separate the two points. However, the MF model deals with this
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problem in a more astute manner It first pre-processes the data
fully, taking the statistical properties of both conflict points
into account, and obtains a proper training data set. One of the
conflict data points would be ignored in further learning, but would
e classified as found in the pre-process result, Then the neural
network would learn from the pre-processed training data set, which
has fewer statistical fluctuations, and the generated y-surface would
have a less complex form. The learning nature of a neural network
under meonotonic constraints is almost the same as the standard BP
neural network, but when the training data set does not result in a
monotonic boundary the learning will never be complete. In terms of
neural network learning itself, the learning time of a neural network
under monotonic constraints depends on the number of hidden nodes,
and the dimension of rhe pattern variable, as well as the potential
complexity of the resulting classification boundary. However, as
discussed above, data pre-processing in the MF model reduces
unnecessary boundary complexity. As a result, the MF model approach
is usually much more efficient than the standard BP method. HNeural
networks under monotonic constraints in the examples using the MF
model or its extensions (see Chapter &4, 5, 6) throughout this thesis
were implemented with Turbo C program and executed on an IBM P5/2
microcomputer (15MHz, 80386 CPU and co-processor). Learnirg time
ranged between 1 and 5 hours. Experiments suggested that, if the
learning time lasted too long, the monotonic condition was more
likely to be violated, and vector analysis should bz repeated. Note
that, once learning is complete, a neural network classifier is as

fast as LDA in classifying new observations.
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3.8.2. ROBUSTNESS OF THE MF MODEL

When developing a model dealing with stacistical data,
robustness is often used to evaluate the model from the statistical
point of view. Robustness signifies insensitivity to small
deviations from the assumed underlying situation, ineluding
randomness, independence, distribution functions, etc. [Huber 19813,
Although it is difficult to prove the present models’ robustness
directly since statistical tools are hard to apply, the robustness of
the MF models can be compared to the LDA statistical model results,
The MF model developed in the present research is designed to further
reduce misclassification rates from the LDA classification technique.
Given the fact that there exists a large amount of literature to
explain the robustness of the LDA (e.g. [Lachenbruch 1975]),
robustness arguments regarding the present basic model could be
stated as follows: the robustness of the present model is at least as
good as the LDA in terms of low misclassification rates on training
data sets. The limited results obtained so far indicates that there
is also an improvement relative to LDA in test data sets,

LDA is used as a pPre-processing tool in this thesis
primarily because of considerations involving robustness, Actually,
there are a number of linear classifiers (e.g. the perceptron) which
are able to pre-process statistical data, although some of them are

less well grounded theoretically than the LDA technique.



CHAPTER _ FOUR

LEARNING BTAS TN NFURAI, NETWORKS AND

AN APPROACH TO REDUCE ITS EFFECT

4.1, MONOTONICALILY SEPARABLE PROBLEMS

In this chapter we will first discuss an extreme case of
classification -- the completely separable problem, and develop the
Monotonically Separable Problem Model for this type of problem. The
motivacion for this investigation is the need to explain the learning
bias issue. The ultimate goal of this discussion is to incorporate
this model into the Monotonic Function Model developed in Chapter 3,
and to produce a more comprehensive approach for dealing with general
managerial classification problems, as described later in this
chapter.

If several classes can be completely separated by linear
hyperplanes, they are called linearly separable; and if they can be
separated by a polynomial surface, then the problem is called
polynomially separable [Bremermann 1976]. As pointed out earlier,
the "true" boundary shape or the "true" boundary function is rarely
known in advance in managerial pattern recognition, Consequently, we

need to extend the concept of separability in a more general sense to

112
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managerial pattern recognition, based on the definition of
monotonically separable problems as follows:

In managerial pattern recognition, if the

classes can be completely separated by

monotonic surfaces (hypersurfaces), then the
problem is called monotonically separable.

Figure 4.1 shows an example of monotonically separable classes.

Class 2
Monotonie

boundar v

Fig. 4.1. A Monotonically Separable Classification Problem

In principle, I we do not assume probability distribution functions
for the classes, since the actual probability distribution functions
are rarely known in managerial classification, then a boundary which
perfectly separates the classes might be considered the most desired
solution, since this leads to zero misclassification. From Figure
4.1, it is =asy to see that there is usually uncertainty regarding
the location of the resulting boundary, especially if the two classes
are relatively well separated, since there is a gap between the two
classes. In this chapter, we describe ways of resolving this
uncertainty. The remainder of this chapter proceeds as follows.

Section 4.2 introduces the concept of learning bias in neural
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networks. Section 4.3 describes a specific boundary generation
behavior of neural networks, and concludes that a standard neural
network with BPLMS is poor at solving this uncertainty problem.
Section 4.4 explains a useful property of managerial pattern
recognition problems, and Section 4.5 develops the Monotonically
Separable Problem Mcdel (MSP Model) for handling such problems.
Section 4.6 discusses the relationship between the MF and MSP models
developed in Chapter 3 and Chapter 4 respectively. Finally, Section

4,7 discusses neural network architecture issues concerning the

minimum number of hidden nodes.

4.2,  LEARNING_BIAS

It is commonly accepted that the behavior of the neural
network learning process is relatively unpredictable (cf. e.g.[Soulie
et al. 1987]). This means that the classification decision boundary
is not determined only by the statistical constitution of the
training data, but is also influenced by other factors. These

factors include the following:

a. Architecture of the neural network model (e.g. number of hidden
nodes),

b. Parameters (e.g. learning rate) of the learning algorithm,

c¢. Initial state of the neural network,

d. Sequence of training data points,

e. The stopping criteria of the learning procedure,

These factors bring some inherent knowledge or learning

rules to bear on the machine learning process. Because these may or
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may not be pertinent to a particular task or a specific problem, they
are referred to as learning bias in the arcificial intelligence
literature [Utgoff 1986].

The concept of bias used here differs from that of
estimation bias in statistics. The latter refers to the discrepancy
between the mathematical expectation of a classification boundary and
the true one, if it is discussed in the classification context. The
neural network classification techniques we are discussing do not
rely on knowledge about probability distributions, and the
classification boundary generated by a neural network is not a
statistic of the pattern vectors (see Section 3.3.3). Therefore,
discussion of the estimation blas of classification boundaries in
neural networks is not appropriate here. Nevertheless, there are
some common characteristics between learning bias and "biased"®
classification boundary results. As will be seen, neural networks
with their individual learning bias do not generate identical
classification boundaries from the same training data sets. This
implies that the classification boundary generated by a standard
neural network is most likely to be biased because we have no
knowledge about how to set the learning bias in order to generate an
"unbiased" classification boundary. The next three sections of this
chapter show the learning bias effect on classification boundary
generation, and suggest a method to reduce this effect during the

learning process.
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4.3, EFFECT OF LEARNING BIAS

In the BPLMS learning algorithm, the neural network weights
are gradually modified according to the current training sample data,
the current neural network state, and the currently adopted learning
rate {see Chapter 2). According to =his algorithm, the learning
procedure stops whenever a final training sample point is correctly
classified; that is, the error between the current classification
result and the desired value falls within a pre-defined tolerance.
This stopping criterion is considered to be a strong bias factor
since, as will be shown later, it often has a synergy with other bias
factors. The following example explains the effect of learning bias
in neural network classification. The example will show that the
closeness of the final classification boundary to the final training
sample point is a function of the learning rate n (see Figure 4.,2(a)
and (b)).

In this example, a one-hidden-layer and single-output-node
neural network model (Figure 3.2) is considered. Using the notation
in Figure 3.2, according to the layered neural network model with a
temperuture of 1, the relationship between X and y is:

h

y =1 1+exp[-(v0 + Z L
{em

Ln- (4.1)

vi(l+exp(-UiX'))
1
(see equation (3.1), Chapter 3). As usual, suppose that the sample
in class 1 has a desired output of 1 and the sample in class 2 has a

desired output of 0, then the decision rule is that if, given a

pattern vector X of an observation s, the output of the neural
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network ys>0.5. then classify s as class 1; otherwise, classify s as

class 2.

We now consider the last learning event. It is reasonable
to assume that, just before the last learning event of point s in
class 1, the classification boundary is very close to s but does not
correctly classify it; that is,

y, = 0.5- . (4.2)

From (4.1) and (4.2), we have
h

S |
+ ifl v, [ 1+ exp ( -Uixs Y] © = 0- . (4.3)

Yo
According to the BPIMS learning algorithm, after learning s, the
weights are modified based on error signals, and the output of the

neural network corresponding to the pattern vector Xs becomes

. h
1 2
v, - 11 + exp l-EVO + 151 { [ v, +n v, (l-ys)

1

* (1 + exp (-uixs'))' ]

Y §
* [1 + exp(-(Ui +n vy (1 + exp(-UiXS )

- -1 .
* (L (rexp(-U,X20) " Dy (L-y 0 2x0x01 1]
(4.4)
(see equations (3.3) to (3.7), Chapter 3). The superscript of 1 on

s indicates the subsequent learning event. From (4.2) and (4.4), we

have
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1 h
Yg = ll+exp[-§v0+i§

1

{[v;+0.1250 (L+exp(-U X:)) ]

1
* (1 + exp(-(U; + 0.125 n vi(1+exp(-Uix;))'1
* (1 L+ exp-UXNTH X X1 j]} 1

Considering the case of reasonably small n (say, 0.1), we have

h

1 -1
gl = [1+expi-§v0+i§1{[vi+o.0125(1+exp(-uix;)) ]
* [1+ exp(-(0,X '] ) }]i -1 (4.5)
since |0.0125vi(1+exp(-UiXs’))-1

* (L-(L+exp(UX_ ")) 1) X X r| = 0.003125¢v, |,

which is usually very small.
From (4.3) and (4.5), we have

h

yi = {l+exp[ -0.0125 Z (1+exp(-UiX;))-2]}-l . (4.6)
jeml

Taking the average case into account, suppose that

(l+exp (-U.X ")) 1= 0.5

> X .

Then

1 -1

Yg = [ 1 + exp ( -0.003125 h ) ] (4.7

where h is the number of hidden nodes. Considering an example of

moderate h=10, we have

yi = 0.508 ; and

-y . y, = 0.008.

Ay s

5
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This means that the boundary usually does not move very far from the
last learned point s. That is, when a small learning rate n is used,
the classification boundary is most likely to be close to the final
training sample point (Figure 4.2{(a),{(b) ). Although we have
discussed this issue based on a oue-hidden-layer and one-output-node
neural network, this conclusion is generally true for layered neural
networks, and this phenomenon is readily observed in experiments.
Obviously, the “"true" classificaticn boundary of an arbitrary problem
does not necessarily have this property (i.e. close to a particular
sample point). It can therefore be concluded that the learning bias
factor of setting the learning rate n has an influence on the

classification boundary result.

A »
) [
. .
x x,
) »
x, X B
x x x X
(a) A is the last (b) B i{s the lastc {¢) Likely "unblased”
learned point learned point boundary

Fig. 4.2. Effect of Small Learning Rate

In the above discussion, we concentrated on the bias effect
caused by the learning rate 5, while making some reasonable

assumptions about moderate values of Ui (in equation 4.6) and h (in

equation 4.7). In fact, all factors constituting learning bias



120

listed in Section 4.1 have an influence on the boundary generation
behavior. TFor instance, if we fix the learning rate n , we find from
equation (4.7) that the larger the number of hidden nodes h, the

larger &y, will be, and the farther away the final boundary will be

from the last learned point s, when the remaining underlying
assumptions of equation (4.7) hold. As well, from equation (4.6), we

find that Ays also depends on the current state cf the neural
network, namely, the weight mactrix Ui's. Because the current state

in turn depends on the initial state of the neural mnetwork,

especially when the number of learning iterations is small, 8y, may

be influenced by the initial state of the neural network. Moreover,
since the sequence of training examples may play an important part in
determination of which sample point is the last learned one (s in the
above discussion), this sequence will also have an influence on the
final classification result,

The discussion above has shown that neural networks with
their individual bias factors may generate boundaries in many
different ways for the same sample data set, even when each of these
boundaries can completely separate the two classes. As there is no
knowledge about how to set the bias factors for a particular problem,
it is difficult to find a general methodology to judge which boundary
is the "best", Intuitively, it appears to be desirable to find an
"unbiased" boundary which lies centrally between the two classes (see
Figure 4.2(c)). Yet, consideration should not be limited to finding
a single "unbiased" boundary, but also to supply the decision maker

with more information about the uncertainty regarding the gap between



the two classes. This consideration is analogous to statistical

confidence interval estimation.

4.4, A TYPE OF AMBIGUITY IN MANAGERTAL PATTERN RECQOGNITION

In order to find a method to reduce the effect of learning
bias and supply proper classification information for decision
making, the major properties of monotonic managerial pattern
recognition (see Chapter 3) are briefly reviewed as follows. From
the point of view of preference analysis or utility [Keeney and

Raiffa 1976], managerial pattern recognition for two classes is
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basically a problem involving two sets of decision acts: feasible (or

preferred) and not-feasible (not-preferred). For example, the

classification of creditworthiness is a decision to determine whether

credit should be extended to a customer based on the given
descriptions of the customer. Relative to this point, dominance is
an important property of preference analysis [Keeney and Raiffa
1976); that is, assuming that the preference increases in the same

direction for all x.'s

b
If xj' = xj" for all j=l...m , and
xj' > xj" for some j,
then X' (xi ces xé } dominates X" (xi... x&),

since X" is a noncontender for the "best" act,
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In Figure 4.3(a), let S1 and 32 be the sets of consequences

associated with the decision acts "preferred" and "not-preferred”,

*
respectively. The subset S, that dominares all other consequences in

82 is called the efficient frontier of 82 . Since all of the points

on S; will result in the same decision ("just not-preferred"),

S; is an indifference curve {Keeney and Raiffa 1976, p79].

Similarly, the subset S: that is dominated by all other consequences

*
in Sl is the efficient frontier of S1 . Sl is also an indifference

curve representing the decision of "just preferred" . If the sample

data correctly represent the consequences associated with the

* *
managerial decision, then S1 and 52 never intersect [Keeney and

Raiffa 1976]; and the two classes are considered monotonically

separable,



123

Pessimistic

Xy %1 boundary

Prefarrea

Optimiscic
boundary

(b) Frontiers of the

{a) X' dominates X" sample data sets

Fig. 4.3. Frontiers of Decision Consequences

Based on the dominance property, the sample points which
constitute the frontiers of the corresponding sample sets are found

simply by compariscon of the xj's (see Figure 4.3(a)). If two curves

(or surfaces, or hypersurfaces, depending on the dimensicnality of X)
pass through the frontier points of the sample sets, they are the
special cases bel~iging to the set of all classification boundaries
for this problems. The frontier of the sample points in the "not-
preferred” class is an "optimiscic” boundary, as a new observation
would tend to be classified optimistically. Similarly, the frontier
of the sample points in the "preferred" class is a "pessimistic"
classification boundary. Suppose that a new event A to be
clessified is observed in the space between the two frontiers (see

Figure 4.3(b)). This results in an ambiguity wheve, according to the
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"optimistic" boundary, A should be preferred since A is not
surrounded by the "not-preferred" frontier based on the available
data. However, according to the "pessimistic" boundary, A should be
classified in the not-preferred class since it is not surrounded by
the "preferred" frontier.

The fact is that, in the classification of monotonically
separable problems, neural networks arbitrarily generate boundaries
which fall in the region between the two frontiers. Neural networks
suffer from learning bias, and they cannot generate an "unbiased"
boundary. They are therefore unable to resolve the ambiguity problen
discussed above. The next section will suggest a model to overcome

this deficiency, based on monotonicity conditions.

4.5. A MODEL TO REDUCE THE EFFECT OF LEARNING BIAS

4.5.1. MONOTONICALLY SEPARARLE PROBLEM MODEL

As discussed in the previous sections, a single standard
neural netwerk is not likely to be able to generate an "unbiased"
boundary due to learning bias. As well, a single standard neural
network does not supply any information about the gap between the two
frontiers. On the other hand, the two frontiers specify the
classification of a new observation to some degree (e.g. preferred -
questionable - not-preferred). It therefore seems natural to take
the two frontiers into consideration, by employing two neural

networks to implement the two frontiers. The model which includes
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this feature is called the Monotonically Separable Problem (MSP)

Model, and is depicted in Figure 4.4,

Projection of A on ¥, surface

Y, surfaca — : = y=0.5 plane

L]

Optimistic boundary
Pessimistic boundary

- rf
yp surface

\\ \ Naw observation

Projection of A on Yo surface
Fig. 4.4, Monotonically Separable Problem Model

1

Suppose that we have two neural networks, say, NN, and NNp

which generate optimistic and pessimistic frontiers respectively.
The classifier consisting of the two neural networks supplies more
complete information than a single neural network classifier which

will contain unknown learning bias effects. For example, if a new
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observation point is on the same side of the two frontiers (e.g. B or
C in Figures 4.3(b), 4.4), its class would be decided with more
assurance. Otherwise (e.g. A in Figures 4.3(b), 4.4), the decision
maker would be less certain, and would have to more carefully
consider other contingent situations which are not necessarily
included in the pattern variable data.

Because the monotonicity and dominance properties do not
define the frontier curve (or surface, or hypersurface) itself, there
still is a range within which a frontier could arbitrarily be located
(shaded regions in Figure 4.5(a)). The generation of frontiers by a
neural network is also influenced by learning bias. Obviously, at
this time the uncertainty regions of the frontiers should be much
smaller than the entire gap between two possible frontiers, as shown
in Figure 4.5(a). In practice one could expect to obtain frontiers
with low curvature in the usual cases (cf. [Wieland and Leighton
19871). Furthermore, we still can reduce the effect of learning
bias if additional knowledge is available, as illustrated by the
following instance. In practice, sample points with extremely high
or extremely low pattern variable values are usually not available.
This results in a large range of the possible frontiers that fall in
the boundary tails (see Figure 4.5(a)). On the other hand, in
managerial applications some knowledge about the extreme values of
each pattern variable can often be estimated. In credicworthiness
classification, for example, the decision maker might say that

IF and ONLY IF

salary is greater than 20,000
THEN

the person could be creditworthy.
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Such a control could be implemented by adding artificial training
sample data (see Figure 4.5(b)). 1In the above example several points

(X|x =20000) could be introduced in the tail regilons of the

salary
"preferred" frontier. These artificial training data points force
the neural network to generate a more specifically meaningful
frontier during the learning process.

Note that we have thus far introduced two ways of reducing
the unpredictability of boundary generation for a neural network.
One method (Chapter 3) uses the monotonicity constraint imposed on
the learning machine. The method discussed here trains the neural
network directly with explicit knowledge represented by artificial

data training points.

*

Tall Arcificial
Feglona poincs

. - |
<

ﬁ»—:li-ﬂ——T- EZZZE A |
47

! BN
l My
F [
1] xz 0 min Kz Xz
(a) Range of possible sample frontiers (b) Reduce the bias effect by

adding knowledge

Fig. 4.5. Determining the Frontiers of Sample Sets
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E I TED NEURAL CRR_TO P C

INFORMATION

In practice, users would like to have an integrated neural
network to supply assurance information for a new observation between
or near the frontiers. To do so, we may combine the two neural

networks NNo and NNp into one as shown in Figure 4.6. Suppose that

the outputs of the two neural networks have the same range, say,

{y  =0.1, ¥

min =0.9], and the classification score on their generated

max
frontiers is 0.5. Given an cbservation s between or near the sample

frontiers, the output pair [(yp)S , (yo)s] gives a degree of
assurance through the relation
Yain < (yp)s < s < (yo)s < Ymax

Consider

Ys = L pdg + (¥gdg 1 /7 2,
vhere

Yo = L (pdg + 5)g 1/ 2 =0.5
if s is at a supposed "unblased" boundary. This gives

Yy, + ¥, = L (4.8)

P
at the "unbiased” boundary, which will reduce learning bias (see

Figure 4.7).
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Fig. 4.6. The Integrated Neural Network to Supply

Assurance Information

X Y,=0.4 0.45 0.
1 P| ° ymax
. 3 - xz
Yatn ¥,=0.5 0.55 0.6 4
o*ypt

Fig. 4.7. "Unbiased" Boundary
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The steps to implement the integrated MSP neural network are

briefly summarized as follows.

(1)

(2)

(3)

apply the dominance property to find the frontier point sets

* *
S1 and S2 for the two classes of sample data sets S1 and

52 respectively.

Add artificial points in tails where necessary and
appropriate.

Build a neural network with one hidden layer

and two output nodes.

The neural network is evenly divided into two

parts, say NNI and NN2 .

Train NN1 with SI , and train NN2 with S;

such that, for i=1,2,
yi(xl-...-xm-O)-0+, and yi(xl-...—xm-l)-l-,
and yi(Xs| seSI)-O.S. The monotonicity constraint is

imposed during training.
Then, given a new observation between or around

the sample frontiers, the pailr [yl , yz], where Yy and Yy
are the outputs of NNl and NN2 , respectively, supplies the

assurance information.
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4 TONSHIP B EN MON C_FUNCTION (MF) MODEL AND

0 Y SEP, 0 MS

The MSP model described above is for solving monotonically
separable problems. However, when the sample points in the two
classes overlap, the frontiers of the two data sets cannot be simply
determined according to the MSP model. On the other hand, the MF
model (Chapter 3) is able to solve problems with overlapping data:
but when we use the MF model, we find that there always exists a
region within which the class of all boundaries with the same
misclassification rate lies, given the fact that the number of sample
points is finite. The magnitude of the uncertainty region depends on
particular circumstances, as shown in Figure 4.8. Therefore, given a
sample set to be learned, we can first use the MF model to identify
the sample points which carry significant statistical fluctuations.
We can then find a monotonic boundary to completely separate the rest
of the sample set with the lowest possible misclessification rate,
then treat the problem as a monotonically separable problem and use
the MSP model to solve it, as shown in Figure 4.8(b)(c). The final
result will be less biased than that of the MF model by itself.

Figure 4.9 shows an experimental result using the
experimental data described in Section 3.7.1 (compare Figure 4.9 with
Flgure 3.11). Using the combination of the MF and MSP models, we
obtained a 90% correct classification rate, where a large fraction of
the true boundary falls in the uncertainty region generated by the
MSP model. In this drawing, misclassified data points are

underlined.



(a) Sample

(b) LDA

- "Unblased”
boundary

(c) Possible range of MFM result

Fig. 4.8. Example of the Uncertainty of Boundary Generation

.32
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Neural
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True

|~ boundary
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Fig. 4.9. Experimental Result with Combined MF and MSP Models

(Compare with Fig. 3.11)
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4.7, MINTMUM NUMBER OF HIDDEN NODES

When implementing the MSP model, if we have found the
frontiers of the sample data sets, then we face the additional
question of how many hidden nodes are required in order to generate
the desired boundary, The neural network with too few hidden nodes
is not able to generate sufficiently complex boundary functions.
However, one always wants to keep the number of hidden nodes h as
small as possible, since larger h results in increased computation
time. This is therefore a neural network capacity problem. There is
published research on binary node neural network capacity, based on
entropy theory (e.g. [Denker and Wittner 1987]), but theoretical
estimates for the continuous sigmoid logic case are not available
[Denker and Wittner 1987] [Sietsma and Dow 1988]. A formal
discussion of the minimum number of hidden nodes 1s beyond the scope
of this research. The present discussion i{s therefore Iinformal, and
based on practical considerations of the required number of hidden
nodes for sigmoid logic neural network models. We work from the
standpoint that the neural network is a good computational device for
non-linear interpolation of data [Wieland and Leighton 19871,

Consider the typical neural network with one hidden layer

and a single output node. Suppose that we have identified the set of
*
points S € S through which the true boundary must pass. Let the

cardinality of S* be u*. Recall (equation (3.2)) that the boundary

function representing the relationship between vi's . Ui's , and X

is
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h
. -1
Vo + 1§1 vi( 1 + exp(- Uix Y ) -0 (4.9)

Equation (4.9) is used to determine the weights v, and the
Ui's based on the known X values. It is a non-linear equation with
(h+1) variables V. and h{m+l) variables wij (constituting the Ui's).

This totals h(m+2)+1 variables, where m is the pattern vector

dimension, and h is the number of hidden nodes. Consider that each
*
point in § has its individual X value, and each X value determines

*
one relation between the v;'s and wij's. We thus have v equations

for the h{m+2)+1 variables:
h

T ifl vi( 1 + exp(- Uixl') )

1 0

h
. -1

h
Vg + 121 vi( 1 + exp(- Uix ) )
- v

1o (4.10)

Assume that, to solve this coupled set of equations, each equation
can eliminate one variable. (Note that this assumption does not hold

strictly in the non-linear equation case, However, if Uixr. i=1...h,

*
could be considered approximately constant for all rel...y during
the back propagation learning process (Kung & Hwang 1988), then the

above coupled set of non-linear equations would degenerate into a

linear set of equations). 1If v* exXceeds h(m+2)+l, under this
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assumption equation (4.9) will be underdetermined. Accordiugly, the

minimum number of hidden nodes required to generate a boundary

passing through all of the points in s* is:

h ¥ 2

min " ¥ - L/ (@m+2) (4.11)
If h is less than hmin the neural network does not have the capacity

to generate the desired boundary, since it would not have the
required curvature to pass through all the points. The solution is
to increase h.

Note that equation (4.9) itself does not define which part
of the pattern space is in class 1 or class 2. The solution of the
equation only determines the beundary function. As well, the
resulting y-surface is not necessarily monotonic. The monotonic
constraint also makes the issue more complicated. However, using
more hidden nodes will improve the ability to generate the desired
monotonic y-surface. At the same time, more hidden nodes increase
computation time, so there is a need to select the number of nodes so
that the desired surface can be generated during the training process
without unnecessarily compromising computing efficiency.

The conclusion from equation (4.11) 1s approximate, and only
*
shows that hmin is relatively sensitive to v . Nevertheless, the

following relevant arguments are based on the above discussion.
(1) 1If we consider a neural network as a computing tool in non-
linear interpolation, then its capacity, represented by the number of

hidden nodes (h), determines the complexity of the boundary function
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which can be represented by the number of points (v*) on the
boundary.
(2) Considering that the frontier of the sample data set is a kind

of boundary as discussed in Section 4.4, the number of peints in the

frontier set S*should be taken into account in designing the neural
network structure for the MSP model.

In the case of problems to be solved by the MF model, the
data set can be pre-processed, and the minimum number of hidden nodes
can be determined from equation (4.11) and a count of the frontier

points (Figures 4.8, 4.9).



CHAPTER FIVE

FUZZY SET REPRESENTATION OF NEURAI, NETWORK

CLASSTFICATION BOUNDARIES

The ultimate objective of traditional statistical
classification methods is to find a clear cut-off classification
boundary to divide the pattern space into two or more decision or
classification regions based on some pre-defined criterion [Nilsson
1965] [Young and Calvert 1974]. Since fuzzy set theory was suggested
in the 1960s [Zadeh 1965), pattern recognition problems have been
intensively studied in the fuzzy set sense, especially when applying
pattern recognition concepts in the social context [Bossel et al.
1976]. In fuzzy theory, class membership is not binary, but is
represented by the value of a gradually changing function which can
take on intermediate values between ¢ and 1, In this way a pattern
class need not have a sharp cut-off but may have a gradual fade-out
[Bremermann 1976), The major attractions of fuzzy set theory in
pattern recognition are twofold. First, it is difficulct, if not
impossible, to find a "true" or optimal clear cut-off classification
boundary in a real problem (see Section 3.1 discussion). Decision
makers also need information about uncertainty for particular real

events. Secondly, considering pattern recognition as a model for

138
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cognitive processes, the use of fuzzy sets is a promising approach to
providing imprecise class membership information [Bossel et al. 1976]
[Zadeh 1984), especially in the case where probability theory is
difficult to apply directly.

There have been several studies assoclating neural networks
with fuzzy set theory [Klimasauskas 1989]. Kosko [Kosko 1987), for
example, suggested combining fuzzy knowledge with neural networks in
expert system reasoning. Shiue [Shiue 1987] and Keller [Keller 1985]
used fuzzy set theory in designing learning algorithms for neural
networks and perceptrons, respectively. However, research on
representing fuzzy membership in neural network classification
problems is rare.

This chapter develops a neural network model to represent
fuzzy membership functisns in managerizl pattern recognition. The
remainder of the chapter proceeds as follows. Section 5.1 describes
the boundary representation problem in statistical classification.
Section 5.2 briefly reviews fuzzy theory concepts. Section 5.3
describes how a fuzzy boundary relates to neural network
classification, and Section 5.4 is a general discussion of the

suggested approach.

2.1, A PROBLEM IN STATISTICAL_ CLASSIFICATION

In order to explore problems with statistical
classification techniques, we begin with the two class linear

discriminant analysis (LDA) classification method, Suppose that a
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m
linear boundary y = I b,x, separates the pattern space into two

j_]' j j
regions as shown in Figure 5.1. The linear boundary is optimal only

under the assumption that the sample data have multivariate normal

distributions with common covariance [Lachenbruch 1975].

Linear boundary

II: Class 2

Sample populacion 1

I: Class | <:::>

Sample populacion 2

Fig. 5.1. Linear Discriminant Analysis

It is worth noting two closely related characteristics of
the LDA result, First, the linear boundary itself reveals nothing
about the statistical behavior of the sample data distributions. For
instance, the two very different sample populations in Figure 5.1 can
theoretically result in the same classification boundary. 1In one
situation, observations are widely distributed over the pattern space
and there is a large overlap between the two data set classes, but in
the other situation there is little if any overlap. In statistical
classification techniques, information reflecting the overlap of the
data classes is provided through error rate estimates. In LDA, the

error rate estimate is ®(-A/2), where ® 1s the cumulative normal
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distribution function, als (il-iz) S'l(il-ié)', il and 22 are the

sample means of the two pattern vectors, and § is the sample
covariance matrix [Lachenbruch 1975]. Like other statistical
methods, the error rate estimate in the LDA is based on the
statisticel behavior of the entire sample set of both classes. This
brings up the second characteristic of LDA; that is, the probability
of correct classification, or the probability of misclassification,
is defined as a property of the two regions of the pattern space
which are divided by the sharp boundary, rather than the property of
a particular observation. For instance, in Figure 5.1, if an
observation belonging to class 1 {s observed {n region I, then the
probability of correctly classifying it is, say, 90%, (or, the
misclassification rate is 10%, equivalent to Type I error in the
hypothesis test context,) no matter whetlier the observation is A or
B. 1In other words, probability does not supply information about the
"likeness", or membership, of a particular point belonging to its
class. One may calculate the classificarion score according to the

m
linear function y = X b,x, , which may represent a kind of

jo1 3%
"likeness" of an observation belonging to its class. However, as
pointed out earlier, the linear function itself does not carry any
information about the overlap degree of the two data set classes;
hence, the classification score can not completely represent the
membership which associates each observation with its class. These

two characteristics of the LDA result suggest that uncertainty
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information may be provided for a particular point in a more natural
way.

The above discussion is based on the linear discriminant
analysis case; however, the general argument extends to all
statistical classification methods. In fact, any sharp boundary
function suffers from the same problem discussed above. Pure
statistical tools are not able to solve the membership problem,
especlally in the cases where the precise estimation of the
probability distribution is not possible.

Although a neural network itself is not a statistical tool,
the MF model develuped in Chapter 3 does find a clear-cut
classification boundary such that the division results in as low a
misclassification rate as possible. The MSP model developed in
Chapter 4 is a supplementary tool to find a range within which a
sharp boundary is likely to lie. The present chapter extends the
neursl network model to provide decision makers with class membership
information in the fuzzy set representation mode. The motivation for
this work stems from the following considerations. First,
statistical tools cannot be used to derive uncertainty information
since we do not use strong assumptions about probability
distributions which are often used in statistical pattern
recognitlon. Secondly, considering the pattern recognition machine
as a decision support tool, a classifier should supply more natural
information regarding the class membership of a particular
observation. Thirdly, the adaptive property of a neural network
makes it possible to represent a managerial classification problem

with fuzzy set information, as discussed in Section 5.3,
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2.2, TFUZZY SET CONCEPTS

This section will briefly introduce the basic concepts of
fuzzy sets. The most recent and comprehensive literature review of
fuzzy set theory is found in [Dubois and Prade 1989]. Zadeh's [Zadeh
1965] original idea of a fuzzy set is to consider a membership

function fzc(x) which associates X (pattern vector of a point s) in

the space Q0 with a real number in the interval [0, 1] that represents
the "grade of membership” of X in class c. For example, a person
holding large amounts of assets is more likely to belong to a
creditworthy class than someone holding less assets. A set can be
glven which represents creditworthiness as a membership function of

the amount of assets (see Table 5.1).

---------------------------------

200
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1000
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Table 5.1. A Fuzzy Relationship between Assets and Creditworthiness
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It 1s also possible to show fuzzy relationships using a graph (see
Flgure 5.2(a)).

Two basic points regarding fuzzy set theory should be noted,
(1) The grade of membership is subjective and context-dependent.
There is not much point in treating the grade as a precise number

(Zadeh 1984}. 1In many applications it is sufficient to represent the
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grade of membership as a fuzzy number, say, approximately 0.8. A
fuzzy set whose membership function takes fuzzy values is called

ultrafuzzy (see Figure 5.2(b)).

fzc(X) fzc(x)

- — —

a) Fuzzy b) Ultrafuzzy

Fig. 5.2. Graphs Representing Fuzzy Relationships

(adapted from [Zadeh 1984])

(2) The relationship between the grade of membership and probability
is not explicit. For example, we may say that s person belongs to
the creditworthy class with a membership grade of 0.8. 0.8 is not
the probability with which the person is a member of the class, but
is a vague representation of membership which is context-dependent.
However, probability in the present discussion context is a definite
measure. As discussed in Section 5.1, classical probability
calculations are based on the entire population. In the example of
Figure 5.1, it makes no sense to distinguish the probabilities of
points A and B belonging to class 1. However, in a fuzzy set there
exists a difference between A and B in terms of membership. Despite
the significantly different concepts of probability and fuzzy sets,

there is a certain relationship between the two, at least in the
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theoretical sense. According to [Zadeh 1968, p422], the probability

Pr(c) of class c is defined by

Pr(c) = [ fz_(X) dPr(X) . (5.1

The interpretation of the above expression is that the probability of
a fuzzy event Xefl is the expectation of its membership function

fzc(X).

Practically, however, the above equation can not be used to
deduce the membership function directly., Sometimes, the membership
function represents an individual’s own idea of a vague category. In
this case, a possible method to define the membership function would
be similar to the approach used in defining subjective probabilities
(Zadeh 1984, p6]. In other cases the membership function may be
determined from statistical data [Dubois and Prade 1988, pl9]). For
instance, in order to determine the membership of X in Class 1, one
may test X, say, 100 times to see how many times it is classified as
Class 1. However, there is no commonly accepted practical methnd of
determining the mumbership function. Nevertheless, fuzzy set theory
emphasizes more the information structure (logical aspects) and the
relation of the items of information to real events in dealing with
imprecision and uncertainty (cf. [Dubois and Prade 1988])

Zadeh [Zadeh 1965] described how fuzzy sets can be
manipulated by set operations. The classical set operations union
and intersection can be extended by the following formulas {Zadeh

1965]);
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For all Xef1,
sz- OR ¢ (X) = max[fzc (X), fzc (X)) (5.2)
i 2 1 2
fz (X)= min[fz_ (X), fz_ (X)] (5.3
Cl AND C2 cl c2

A justification of the above logical operations was given by Bellman

and Giertz [Bellman and Giertz 1973]. However, the complement ¢ of ¢
defined by the membership function [Zadeh 1965]

fz_(X) =1 - £z (X) (5.4)
[

is difficult to justify [Bellman and Giertz 1973] [Dubois and Prade
1980] [Negoita 1984]. The reason for rejection of the definition
{5.4) is that the natural value of "not ¢" in terms of that of ¢ may
not arise from normal sharp mathematical intuition [Bellman and
Gilertz 1973). A number of forms of natural conditions with related
assumptions have been suggested for the complementation function (cf.
(Dubois and Prade 1980}). A more general expression of
complementation was developed by Sugeno [1974], and called A-
complementation [Sugeno 1977] [Dubois and Prade 1980, pl27]:

fz (X) = (1 - £z (X)] / [L+ A £2 (0] , *>-1 (5.5)
[o4

where A is a parameter. Obviously, when A=0, the fuzzy Ai-
complementation is Zadeh's complementation definition. However,
research (e.g. [Sugeno 1977, p98]) has shown that values of A in the
neighborhood of zero have not been observed in experiments. Figure

5.3 depicts a membership function and its complementation with

various A values,
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£2(X)

£z (X)

f2_(X)[A<0
<

£z (X)|A=0
[~

£z (X)}|1>0

[~

Fig. 5.3. JA-Complementation Relationship

The analysis of the complement of a fuzzy set is meaningful
in the two class classification case. If we consider cl-éz. then

expression (5.5) becomes

fz_ (X) = [1 - fz_ (X)) / [1+ & £fz_ (X)] , A>-1 (5.6)
€2 €1 ¢

Various theories are associated with the fuzzy
complementation concept. For example, according to Shafer [Shafer
1976], suppose a belief function Bel(c) is a measure of a fuzzy set

¢, then

Bel(c) + Bel(c) <1 (5.7

which means that a lack of belief in Xec does not imply a strong

belief in Xec . On the other hand, according to Zadeh [Zadeh 1978],

the possibility function Pos(ec) is a measure of a fuzzy set ¢, where

Pos(c) + Pos(¢) = 1 (5.8)
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meaning that "c is possible" does not necessarily imply "c is
impossible". All of these theories could be expressed in the form
of equation (5.5), provided that a proper X range could be defined.
However, no unique natural complementation concept has yet been
commonly accepted, nor has a definite range of X been specified. The
more practically meaningful utilization of fuzzy complementation
probably should not be separated from the specific problem to be
solved. The remainder of this chapter uses the fuzzy complementation

concept to examine the problem discussed in section 3.1.

5.3, THE FUZZY SET MODEL

5.3.1 A-COMPLEMENTATION IN_TWO CLASS CLASSIFICATION

Before building a neural network medel to solve our problem,
fuzzy A-complementation is studied in more detail in the two class

classification situation.

Suppose we have a fuzzy function fzc (X) which represents
1

the membership of X in Class 1, where X is a point with m-dimensional
acttributes. For convenience, the function is depicted in two

dimensions with X and fzc (X) coordinates as shown iIn Figure 5.4,
1

Note that, when the dimensionality of X is larger than 1, the fuzzy

membership function (e.g. fzc (X) )} is a surface, or hypersurface,
1
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Fig. 5.4. Fuzzy Membership Functions in the Two Class

Classification Case

To accommodate the fuzzy membership function to a sharp

classification boundary, let

L]

Xecl when fzcl(X) >

2

ch2 otherwise; where ¢, = él

149
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The values of X which satisfy fzc {(X)=0.5 define the sharp
1

classification boundary. In fuzzy set terms, these points are called
crossover points [Dubois and Prade 1980, pl0]. As discussed earlier,
the main objective of fuzzy set representation is not to pursue an
exact fuzzy function, but to investigate its logical information and
uncertainty aspects. In the light of this, a single fuzzy membership
curve has lirtle implication about uncertainty in the classification
case, because we may arbitrarily define the function values provided
that the location of the sharp boundary is fixed. Suppose that we
have produced a fuzzy boundary membership function through some
method such as the boundary function of LDA in two class
classification. This fuzzy function value emphasizes more the degree
of how far a point in the space deviates from the sharp boundary (see
Section 5.1, which describes classification scores). However, it
does nut supply Information about overlap of the data sets in
addition to misclassification. 1In order to provide information about
uncertainty based both on factors of potential misclassification
(i.e. distance to the sharp boundary) and existing misclassification
{(i.e. overlap degree of the sample data), the single fuzzy membership
function must be supplemented. In other words we have to have two
fuzzy membership functions in order to supply more complete
information for classification of a new observation. One of these
functions evaluates how far the new observation is away from the
sharp boundary, and ewphasizes more its "possible" menmbership.
Another fuzzy membership function specifies the overlap degree of the

two data sets, revealing more information about "belief",
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The following develops a model for this purpose, and
illustrates it with an example.

For a new sample peint s with pattern vector X.s , based on

the fuzzy function fzc (X) as shown in Figure 5.4, we might say that
1

Based on information about a given sharp boundary,
s belongs to Class 1 with membership 0.7 , and
belongs to Class 2 with membership 0.3 ;
if we have no information about existing misclassifications. On the
other hand, suppose that we have a known misclassified sample point

s’ with the same pattern vector as point s; namely, XS,-XS . The

complementation relationship would need to be modified. Obviously,
the membership value of s’ belonging to Class 2 would need to be

adjusted so that fzc (Xs) >1 - fxc (XS) . According to i-
2 1

complementation theory (see equation (5.6) ), A should be in the
range -1<i<0 in this case. For example, after modification, the
description of the membership values of s might become :

Based on both the sharp boundary and

the existing misclassification s',
a new observation with pattern vector XS is

possible to be in Class 1 with membership 0.7,

and possible to be in Class 2 with membership 0.6;
OR, in other words, the new observation is

believed to b {n Class 1 with membership 0.4,

and believed tu be in Class 2 with membership 0.3,

In the above statement, we have the relationship between "possible"
and "belief" as

Bel(ci) -1 - Pos(cj). isj; 1,34=1,2. (5.9
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This theoretical relationship is discussed in [Dubois and Prade
19867.
Based on the existing misclassifications, we can supplement

a fuzzy membership function with another fuzzy membership function,

denoted fzi (X) which is a XA-complementation of fzc (X). This
1 1

provides more information about the uncertainty caused by

misclassification., The fzi (X) function is depicted in Figure 5.4 by
1

the dotted line. Note that, conceptually, both fzc (X) and fzi (X)
1 1

are fuzzy membership functions on [0,1]. However, in our

classification problem, the relatienship between fzc (X) and fzi (X5
1 1

is hard to interpret intuitively when the active range is on the left
side of the crossover point (Figure 5.4). The more meaningful
discussion in that active range should be based on the corresponding

X and fzr (X) coordinate ({see Figure 5.3).
2

In order to determine the complementary relationship of two
class membership, it is necessary to determine X, Generally, the
value ) differs from person to person depending on the individual's
subjectivity [Sugeno 1977, p98]. In Section 5.4 we will show that
the procedure of building the fuzzy set model is usually iterative.
The initial selection of ) may be based on the ratio of the numbers
of misclassifications to correct classifications. We may define

extreme cases where:
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A = -1 when the number of misclassifications
and correct classifications are equal;
(In this case, the two data sets totally

overlap, and fz_(X)=1 which means that we
c

never believe an observation belongs to either class);
A1 =0 when no misclassification is observed,

{In this case, fz_(x)-l-fzc(X) vhich means
c

that we should accept the sharp boundary);
so that A is normally in the range -1<A<0.
The issue of determining practical values of the fuzzy

membership functions will be discussed in section 5.4,
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fzc (X)

£z
c2(3(). (NNO)

0 ‘
I
k——  Class 2 ——41 X
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Sharp boundar
locatton ¥ fzr X)

Fig. 5.5. Fuzzy Membership Functions Implemented in

Conjunction with Neural Network Classification

5.3.2.  FUZZY REPRESENTATION IN THE TYPICAL NEURAL NETWORK

The typical neural network employed in managerial pattern
recognition generates a boundary sepavation of two classes (Figure
3.2), and has three characteristics which are relevant to fuzzy

membership functions:
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(1) If the neural network learning process is completed under the
monotonicity constraint, the y surface must be monotonic.

(2) vy is a continuous function in the pattern space (see eguation
(3.1) ).

(3) y values range over the open interval (0, 1). If we define two
constants

Ypax =Y [ X1 X=(1, 1, ... 1) ] (e.g. 0.8)
and Ypin =Y [ X[ X=1¢(0,0, ... 0) ] (e.g. 0.2},

then the function y can be implemented through the learning process
such that

0 < Ymin Y =Y <1

Note that, having these characteristics, the y function
implemented by this kind of neural network is a fuzzy membership

function, but subnormal, since the extreme values Ymin and Ymax are

not 0 and 1 respectively [Bellman and Zadeh 1970] [Dubois and Prade
1980, pl0]. However, the normalization can be implemented simply by
a linear transformation (cf. (Bellman and Zadeh 1970))

) /7 (y ) (5.10)

=y - Ymin max ~ min
so that y'¢[0, 1). This normalization would ensure that all fuzzy

set expressions (e.g. equation (5.6) ) are applicable,

5,3.3, THE FUZZY MEMBERSHIP MODEL

According to the analysis in Section 5.3.1, two fuzzy

membership functions (i.e. fzc(X) and fz‘(X) ) provide better
[
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uncertainty information than a single fuzzy membership functien in
the two class classification case, since factors of both potential
misclassification and existing misclassification are taken into
account. Also, as pointed out in Section 5.3.2, a properly designed
neural network classification algorithm can also incorporate a fuzzy
membership function. Hence, a neural network model would be able to
provide more complete information about uncertainty in terms of fuzzy
membership functions.

A suggested neural network model, called the Fuzzy
Membership (FM) Model, consists of three individual neural networks,
each of which corresponds to one of the fuzzy membership functions
shown in Figure 5.5. A suggested algorithm to implement the Fuzzy

Membership (FM) Model is defined as follows,

Step 1. Based on the given sample, train the neural network
using the MF model to find a sharp classification

boundary with the neural network NN . (Details are

provided in Chapter 3).

Step 2. Find misclassification sets § and S ., such
m mis

¢ €2

is

that: scSmis if misclassified point s is in the cl

‘1
region, and seS . if misclassified point s is in

mis
¢
2

the ¢y region.

If Spis  ©OF Smis is empty, this means that

©1 €2



Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.
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there is no information available regarding the fuzzy
nature of the given problem, and accept the sharp boundary;
else go to the next step to develop the fuzzy boundary,
Determine X subjectively, based on the ratio of the
numbers of misclassifications to correct classifications,

so that -1<A<0.

For each seSmis or Smis calculate y(xs)
‘1 €2

using the neural network NNO.

Normalize the membership value for these

misclassified points

y' (XD = [ y(X) -yl 7 @ ),

nin max ~ “min

where y and y are the extreme output values
max min

of NN0 .

For each misclassified point s assign

yl

clcxs) -y (X)) if seS_

is '
c

Yo, (X)) = 1 - y' (X)) if seS

2 is

2
Calculate A-complementation values for the

misclassified points

=A! ' [
o (R = L= 1=y D1/ 11+ yg (K]

-‘\' L} +
o, (Xe) = L=y, X1/ [+ 4 yg (X))

De-normalize iil(xs) and &2 (X,) for neural
1 2
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network learning purposes such that

- -X*
y (xb) =7 (xs) [ymax- ymin] + ymin '

Step 9. Train the neural network NNl (under the MF model

and, wusually, with the same topology as NN, and

)

the same extreme output values Y max and Ymin

with the sample set Smis such that each sample
c
1

point has the A-complementation value &2 (Xs).

1
Step 10. Repeat Step 9 for neural network NN2 trained with S .
m:.sc2
The neural network model consisting of NNO . NNl , and

NN2 will provide more information about fuzzy

uncertainty in managerial pattern recognition.

5.3.4. AN EXAMPLE APPLICATION OF THE FUZZY MEMBERSHTP MODEL

Figure 5.6 shows an experimental result using the data
described in Section 3.7.1 (compare Figure 5.6 with Figure 3.11}.

Based on the sharp boundary generated by NNO and the
misclassification information obtained using the MF model (Chapter

1), the two fuzzy membership functions fzi(x) and fzi(X) were
1 2

generated by two neural networks NN1 and NNZ' respectively. The

fuzzy membership functions represented by the y-surfaces of the
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neural networks are three dimensional in this case, because the
pattern vector X has two dimensions. We use contour lines to
represent the two complementation fuzzy membership functions in the
diagram (compare Figure 5.6 with Figure 5.5). A value of ) was
subjectively selected as -0.3 for this application; élthough the
range is (-1,0), and the misclassification ratioc 4/36 is not very
high. Figure 5.6 shows three groups of lines. The first one is the
sharp boundary (shown to be close to the true boundary) representing

the neural network NNy. Any new observation in the pattern space

will be assigned with a classification score by the neural network

NNO. This classification score indicates the possibility of the new

observation belonging to one of the two classes. For example,

according to NNO, point A(0.8,0.3) is classified as class 1 with the

classification score 0.55, which means that A possibly belongs to
class 1 with grade 0.55. On the other side of the sharp boundary,

point C(0.5,0.3) is assigned by NNO with classification score 0.45,

which only means that C possibly belongs to class 0 with grade 0.55,
{Note that we do not discuss the issue of C belonging to class 1

here; see Section 5.3.1), The second group of lines are contours of
fzi(X) generated by NNl' They represent the belief of a new

1
observation belonging to class 1, given the new observation is

classified as class 1 according to the sharp boundary. For example,

according to the complementation fuzzy membership function as shown

in the contours of fzé(x). A iIs believed to belong to class 1 with
1
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grade 0.4, which indicates the uncertainty of A belonging to class 1
caused by the influence of misclassifications. On the other hand,
B(0.85,0.4) is classified as class 1 with more certainty. The neural

network NNO represented by the sharp boundary assigns B with 0.65
possibility grade, and the contours of fzi(X) representing NN1
1

assigns B with 0.55 belief. Both are greater than 0.5. The third

group of lines are contours of fzi(x) generated by NNZ' They
2

represent the belief of a new observation belonging to class 0, given
the new observation is classified as class 0 according to the sharp
boundary. For example, though C possibly belongs to class 0 with

grade 0.55, it is believed to belong to class 0 with grade 0.5 as

shown in the contours of fzé(x). which means that € is in a cricical
2

status due to the influence of misclassifications. From Figure 5.6
one may see that, {n the unshaded regions, the membership of a new
observation will be more certain than observations in the shaded
region which might be considered as a "fuzzy boundary” for a
particular A value, Within the shaded region, the belief functiens

for both class 1 and class 0 are less than 0.5.
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Fig. 5.6. Fuzzy Membership Functions for the Example in

Section 3.7.1 (compare with Fig.3.11)
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5.4, DISCUSSION

5.4.,1., PRACTICAL FUNCTION VALUES

An important question from fuzzy set theory is how to
actually derive membership functions. Answering this question is
critical for practical applications, and the following three points
address the question.

(1) Fuzzy sets are relatively "subjective". Theoretically, no fuzzy
set can be proved to be true, in the absence of the user’s opinion
(see [Zadeh 1965, 1984)). Therefore, any fuzzy set decision model
which does not incorporate a particular user’s opinicn is at most a
prototype.

(2) The fuzzy membership functions represented by a particular
neural network model prototype may have differing values; however, in
the suggested model a certain value of the fuzzy membership (0.5% in
the Figure 5.5 example) is always established at the assumed sharp
boundary. This ensures that no mistakes occur in the "yes/no"
sense., Thus, the suggested model is at least a good prototype.

(3) There are several methods which can be used to find a
"practical” fuzzy membership function (note: not the "true" fuzzy
membership function) (cf. [Dubois and Prade 1980, p257] [Bremermann
1976, pllé}). 1In general, one may consider an interactive procedure
to construct a practical fuzzy membership function for a given
problem, which is briefly described as follows. First, develop a
prototype for the fuzzy membership functions, based on the given

data. Then generate a series of (artificial) typlcal sample data.
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Input these sample data into the prototype MF model. Each input
observation generates an output. The users (decision makers) observe
these input/output pairs and their associated values for possibility
and belief, which are based on the prototype fuzzy membership
functions. They may accept the results, or modify A to get a better
subjective feeling for the classification. Only minor modifications
are allowed to the fuzzy membership function shape, but not
significant changes to the crossover points defined by the sharp
boundary. The neural network model is then re-trained, taking
advantage of its highly adaptive nature., At this stage, the aim is to
minimize any discrepancies between the prototype fuzzy membership
functions and the users’ subjective thinking. The final neural
network model then includes the subjective factors discovered in this
way, but it would only be applicable to this set of decision makers
and to this particular situation, It may also be time dependent,
since decision makers’ opinions may change over time. On the other
hand, since the model was based on knovledge extending beyond the
scope of the limited sample data, the final model would be a
generalized knowledge representation that can be associated with this
environment (cf. [Dubois and Prade 1980, p358]). The point is that
the neural network model acts as an artificial intelligence tool to
aid humans in obtaining and accumulating knowledge. It may aid the
decision maker directly, or act as a component in a fuzzy reasoning
machine - a sort of expert system. It should be no surprise that a
good model of this kind would often be time consuming and expensive
to construct; as well, there is no universally applicable managerial

classifier which can be built from a limited sample data set.
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5.4,2, THE RELATION BETWEEN MFM, MSPM, AND FMM

In this subsection we will discuss the relation between the
three models developed in Chapter 3, 4, 5, respectively; namely, MFM
(Monotonic Function Model), MSPM (Monotonically Separable Problem
Model), and FMM (Fuzzy Membership Model).

Given a sample data set, we may judge if the problem is
monotonically separable simply by using the dominance principle. If
it is, then MSPM can be used to find the "unbiased"” sharp boundary as
described in Chapter 4. 1In this case, there would be nc way to apply
FMM because no misclassification was observed. If the problem is not
monotonically separable, then MFM should be employed to find a sharp
boundary which can improve classification performance beyond the
linear discriminant function’s classification result. It is also
possible to use MSPM to reduce the learning bias effect to cbtain a
more "unbiased" sharp boundary as shown in Chapter 4. In order to
supply classification information on class overlap in a natural way,
FMM could be employed at this point to develop a good prototype model
reflecting fuzzy membership functions. These could then be refined

through interactions with the users, as discussed in the previous

section.



CHAPTER STX

GENERAT.TZATION _TO MORF THAN TWO CLASSES

A summary of the MF neural network model approach to

managerial pattern recognition as defined in Chaprer 3 was
In two class managerial pattern recognition problems,
the sample data are first pre-processed by a linear
classifier (i.e. linear discriminant analysis) to reduce
significant statistical fluctuations. The pre-processed
data are then analyzed by vector analysis in order to
determine a proper training sample set for the neural network.
Finally, the objective classifier for the problem is the
BPIMS neural network algorithm, completing the learning
process under monotonicity constraints.

This model has been entirely addressed to the k=2 (k is the
number of classes) managerial classification problem. However, the
basic idea of the model may be extended readily to k>2 problems.
This chapter discusses related issues, as follows: Section 6.1
briefly reviews classification methods for k>2 problems. Section 6.2
discusses decision region complexity in k>2 classification, and a

possible extension of the k=2 model. Section 6.3 illustrates k>2

neural networ’ models.

185
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6,1, GCLASSIFIERS FOR k>2 CLASSIFICATION

The k>2 classification problem has not been as extensively
studied as the k=2 problem for several reasons. First, as will ke
seen, the theoretical application of Bayes rule to obtain optimal
solution is not difficult in the k>2 case; however, practical
applications using Bayes rule require necessarily strong assumptions.
Secordly, because of difficulty in obtaining an overall optimal
solution for k>2 classes, the two class method is often employed as a
s=arting point in k>2 classification, as discussed in more detail in
Section 6.1.2. From this standpoint, the k>2 problem can be
considered as a direct extension of the k=2 problem.

There basically are three categories of statistical methods
in k>2 classification [Hand 1981], described in the following

subsections.

6.1.1, BAYES RULFE

The most fundamental statistical method is Bayes rule. For

the k class problem,

k
Pr(ci|X) - Pr(ci) fci(x) / jf Pr(cj) fcj(X) , i=1...k

are calculated. The decision rule is:

Pr(ci|x) - m?x Pr(cjlx) - chi

In practical applications (e.g. [Chien and Killeen 1982]),

estimates of all the probability distribution functions are needed,
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along with assumptions about prior probabilities and conditional

probability distzibutions.

6,1.2, FISHER'S APPROACH

Fisher’s approach to k=2 problems (see Section 1.3.1.2) can
be generalized to problems with k>2 classes, by finding the linear
compound B which maximizes the ratio v of between-group variance to

within-group variance, where

Here, is the between-group covariance matrix, and £ is the
g p v

within-group covariance matrix. Fisher's method tacitly assumes that
mzk, where m is the pattern vector dimension [Duda and Hart 1973],
and it cannot be used, for example, on the three class problem with
a two dimensional pattern vector. The solution includes no more than
min[k-1, m] discriminant functions. Suppose D discriminant functions
are obtained by Fisher’'s method. The goul selection rule is: assign

the observation to c; if

D ) D
Z (B * (X-p;)]° =min T (Bl % (X-p, )]
r=1 j =1 ]

2

where p, (j=1..i..k) is the mean of the pattern vectors of class
3

cj However, very little is known about the characteristics of this

method, and it cannot be shown to be optimal [Lachenbruch 1975].
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6.1.3, LINEAR FUNCTION CLASSTFIER

A practical method is simply to extend two class linear
discriminant analysis heuristically so that the classification space
is divided by a number of linear classifiers [Duda and Hart 1973]
[Hand 1981]. There are three schemes for k>2 classification,

described as follows:

(1) First separate ¢y from Coy «veCp then separate cy from
’ Cq -+ Cp s and so on, until Cy-1 and ¢, are separated (see Figure

6.1). The problem with this scheme is that the set with the small
index is separated first, and therefore tends to be assigned a bigger

region. This method needs (k-1) linear classifiers.

Step 1 Step 2

LDF,

Fig. 6.1. Linear Functions in the k>2 Case (Scheme )

(2) Carry out an iterative process over all i, i=1...k-1 such that

the c; re separated from all cj (j=1...i-1, i+l...k) (see Figure

6.7). This method also needs (k-1) linear functions. The problem is
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that there are undecided regions which may not be assigned to a class

(see the shaded region in Figure 6.2).

Step 1

Undacidedﬂ
region |

Fig. 6.2. Linear Functions in the k>2 Case (Scheme 2)

(3) Separate two of the k classes at a time, ignoring the other
classes each time (see Figure 6.3). This requires a total of k(k-
1)/2 linear classifiers. Apart from possibly excessive computational

requirements, this method also leads to undecided classification

regions.

\\ Step l: consider ¢y €, only

Undecided @

tegion

\

Scep 2: consider €y €4 only

Fig. 6.3. Linear Functions in the k>2 Case (Scheme 1
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For our purposes, two important properties of these schemes

should be noted:

(1) the optimality of none of these methods has been proved, if the

optimal solution is to maximize the probability Pr(chX) for all
classes Cj . j=1...k, from the Bayesian point of view (cf.

[Lachenbruch 1975]). No one scheme is superior over the other two in
all situations. There is also no sound theoretical basis for any of
the extensions to the k>2 linear discriminant analysis methods, and
(2) the regions generated by the linear discriminant functions

discussed above are convex [Hand 1981).

6,1.4. OTHER CLASSTFIERS

In real k>2 classification problems the decision region is
not necessarily convex, and the boundaries are not necessarily
linear. Besides Bayes rule, there are several methods available to
solve this type of classification problem, with its highly irregular
regions. One approach is to split complex decision regioms into
subclasses using a linear classifier [Hand 1981] (see Figure 6.4).
Obviously, a priori knowledge about how to split the complex region
must be available. Another more general approach used for disjoint
region cases is a piecewise learning machine method [Nilsson 1965].
If this method is used, class prototypes are required (see Figure
6.5). The decision rule used is to minimize the Euclidean distance
from each observation to a speciiied point in a given prototype

(Figure 6.5).
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Fig. 6.4. Split Complex Decision Region into Subclasses

(adapred from [Hand 1981])

<1 sl
. boundary
\/‘:1
2 2 -tsh, s?
s; . s s Prototype cy=is;. syl
.,
’//,///:/N\\\\\\\ Prototype cz-ls%, ;5]
si boundary
“1

Fig. 6.5. Minimum Distance Classifier in Piecewise

Learning Machine (adapted from [Nilsson 1965])

6.2, A POSSIBLE EXTENSION OF THE k=2 MF MODEL

Suppose that we have no other knowledge except for the
statistical data set consisting of discrete sample points. The
linear function classifier would seem to be the only feasible method
to develop a starting "prototype" in k>2 classification. Given this

approximate classification result the neural network model with its
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highly adaptive nature could be used to improve on this result as in
the k=2 case. The idea of extending the k=2 model to the k>2 case is
then straightforward; that is, given a k>2 problem, use linear
classifiers to obtain initial approximate classification boundaries,
then employ neural network techniques to reduce misclassifications.
In order to develop this extended model, decision region complexity

must be examined, as follows:

Complexity level 1 The simplest form of decision region is the

convex shape with linear boundary. As shown in Section 6.1, in

principle this form of decision region may be generated by linear

classifiers (see Figure 6.6(a)).

Complexity level 2 A more complex form of decision region is a
convex region with a non-linear boundary between each pair of the k

classes (see Figure 6.6(b)).

Complexity level 3 An even more complex form of decision region is a

continuous non-convex region with monotonic boundaries between each

pair of the k classes (see Figure 6.6(c)).

Complexity level 4 The most general and the most complex form of

decision region is highly irregular; that is, each decision region
may or may not be disjoint, and the decision boundaries have no

specific convex or monotonicity properties (see Figure 6.6(d)(e)).
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Establishing the level of monotonic boundary in the
complexity spectrum described above is based on the following three

considerations:
(1) Accuracy.

In the complexity spectrum shown in Figure 6.6, each
preceding form is a special case of the succeeding one. For
instance, a convex region with a linear boundary is a special case of
a convex region with a non-linear boundary. On the other hand, there
is a wide range of complexity between decision regions which are
convex and those which are irregular. It is desirable to select the
type of decision region which is an organized set of non-convex
decision reglions. This can be satisfied by establishing monotonic

boundaries between each pair of the k classes.

(2) Consideration of neural network learning constraints.
It 1s natural to consider monotonic boundaries between pairs

of decision regions, since this is a natural extension of the k=2 MF

model.

(3) Practical considerations.

The most important consideration is application in practical
situations. As has been discussed, k>2 classification problems are
often treated as a series of ke2 classification problems (se= Section
6.1). When two of the k classes {or one class vs. the remaining (k-
1) classes) are independently considered, one may find some monotonic
(either monotonic increasing or decreasing) relationship between the

pattern vector X and the likely classification score y, based on
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generic knowledge about the particular problem. For example, in an
oil spill identificacion problem [Chien and Killeen 1982, p664],
during chemical testing of a spill sample, a spectrum is run on the
sample, and the distance between its particular spectral line and
that of the suspect sample is calculated as a pattern variable of the
sample. Typically, the distance increases monotonically as the
suspect and spill spectra become dissimilar. Sometimes, the

relationship between the initially defined xj (j-th component of X)

and y may not be strictly monotonic. However, if there is knowledge

about the inflection point, one may decompose xj into two or more

dimensions in order to obtain a monotonic relationship. This is

illustrated in Figure 6.7,

Afcer decomposition of Xy

Before decomposition The boundary becomes monotonic

1
e 0], P
. . s N ' . - * [
|
. L4 l [ . ( ’ * ’
L[]
. XA
| 2
0 } *2 ¢
Inflection Inflection

Fig, 6.7. Decomposition of A Pattern Dimension

Note that, {f the slope of the boundary at the inflection point is
not very large, the classification result is not likely to be very

sensitive to the accuracy of location of the inflection point (Figure
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6.7); in other words, knowledge about the inflection point does not
have to be very precise. The important point here is that
information about an inflection peint, even if imprecise, still
makes it possible to apply linear functions efficiently to obtain an
approximate classification result. As well, it will provide
constraints on neural network learning behavior, which can be used to
further improve classification results.

Based on the above considerations, the extension of the k=2

MF model becomes straightforward.

6.3, THE GENERALIZED MF MODEL

6.3.1. TYPICAL NEURAL NETWORK TOPOLOGIES FOR k>2 CLASSTFICATION

As discussed in Sect: 2.1, there are two possible numbers
of linear discriminant functions which could be required for a given
k>2 classification problem : (k-1) or k(k-1)/2. Accordingly, two
types of neural network structures can be developed for k>2
classification; those with (k-1) output nodes and those with k(k-1)/2
output nodes, respectively (see Figure 6.8).

Note that each output node corresponds to one linear
function in interpretation of the meaning of that output. For
example, suppose that we adopt the classification scheme shown in

Figure 6.1 for a three class problem, and use two output nodes, ¥y
and y, , in the neural network model. Then, the output of Y1

corresponds to LDF1 and Yy corresponds to LDF The output

2
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classificarion rules would be: iff y1>0.5 » ¢lassify the observation

as ¢; ; 1Iff y,<0.5 and ¥5>0.3, classify it as ¢, : Lff y,<0.5 and

y2<0.5, classify it as ¢

3

Each ocurput node
Corresponds to
one linear function

Total (k-1)
or k(k-1}/2
5 output nodes

Fig. 6.8. Two Types of Typical Topologies of Neural Networks

6.3.2, A GENFRAL ALCORITHM FOR NEURAL NETWORKS 1N k>2 CLASSTFICATION

As discussed above, if knowledge about monotonic conditions
is available, it is pcssible to extend the learning model for k=2
classification to the k>2 case. The Generalized Monotonic Function

Model is briefly stated as follows.
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Step 1. Select the separability criterionm, i.e. (k-1) or

k(k-1)/2 for the number of linear classifiers to be used.

Step 2. Decompose any non-menotonic variables which exist, based on

knowledge about monotonic conditions.

Step 3. Pre-process the sample data set using the LDA

approximation.

Step 4. Use vector analysis to find any clusters so that
the modification of the pre-processed linear
boundary to include these clusters would result in a lower

misclassification rate.

Step 5. Build a neural network (as shown in Figure 6.8).
Select the number of output nodes and hidden nodes based on
the separability criterion and the estimated minimum number

of hidden nodes (see Section 4.7) respectively.

Step 6. Ignore any sample points which carry significant
statistical fluctuations according to the LDA pre-process
and the vector analysis result. Train the neural network
with the MF model, using the modified training data set.

The final classification result will have a
misclassification rate which is no greater than that of pure

linear discriminant functions.
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Because this model is a direct extension of linear
discriminant analysis, there will usually be undecided regions as in
the linear discriminant analysis cases (Figures 6.1-6.3). When an
observation appears within an undecided region, the class selector
will be unable to decide its class according to the pre-defined class
selection rule (see Section 6.3.1 explanation). If this happens, a
possible conclusion is that the new observation to be classified does
not necessarily belong to any known class. For example, in oil spill
identification [Chien and Killeen 1982], a suspect sample falling
into an undecided region probably belongs to a class which is not
included in the known class set. However, if the class set is
supposed to be complete, a possible resoclution is to classify a new
observation in the nearest class based on its neural network
classification score in this situation (see Figure 6.9). As
discussed earlier, in the current model shown in Figure 6.8, each
output node corresponds to one boundary function. Its geometrical
interpretation can be seen by reference to Figure 3.1; that is, each
part of the neural network in Figure 6.8 corresponds to a y-surface.
Therefore, an n output neural network actually implements n y-
surfaces. In the usual case, there may be undecided regions between

these y-surfaces.
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Assumed boundary
in the
undecided region

e

Undecided region)

A is classified as Class 3

Fig.6.9. Classifying a New Observation Falling in an Undecided

Region

6.4, AN EXAMPLE OF k>2 CLASSIFICATION

Fisher’s iris data [Fisher 1936] have been widely used in
the literature for studying pattern recognition (e.g. [Sammon 1969]
[Chien 1978] [James 1985]). The data which are given in Appendix Vv
consist of four variables on 50 sample points in each of three
classes of Iris: Setosa, Versicolor, and Virginica. The four pattern
variables are sepal length and width, and petal length and width.
Using the algorithm proposed in Section 6.3, Fisher’'s data was first
pre-processed by linear function classifiers as in classification
scheme 1 (Figure 6.1); that is, class 1 (Group I in the real data) is
first separated from non-class 1 (Group II and Group III), and class

2 (Group II) is then separated from class 3 (Group III). Three
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points were misclassified, resulting in 98% accuracy. It was assumed
that each species differs from others on these variables in a
monotonic manner. The Monotonic Function Model for the k>2 problesw:
was then applied. In this case m=4, and the samplc size of each

class was 50, which was considered as a reasonable upper limit for

v* in equation (4.11). Accordingly, a neural network with nine
hidden nodes was employed corresponding to each linear function
classifier, and there were two output nodes. One point (ID number
134 in Group III, see Appendix data), that was misclassified by the
lirear function classifiers, was ignored in the neural network
learning process. As a result, 149 of 150 sample points were
classified correctly, resulting in 99.3% accuracy. The final neural
network weights are shown in Appendix IV, The problem solution

cannot be displayed on a two dimensional pleot because the input data

have four dimensions.

6.5, DISCUSSTON

In this chapter the generalized MF model has been described.
The extension of the Monotonically Separable Problem model (Chapter
4) to k>2 classificarion is straightforward, If the extension of the
MSP model is applied to a k>2 problem, two frontiers generated by a
neural network with two output nodes (Figure 4.6) correspends to the

boundary generated by the MF model for each pair of class sets
{either ci and cj , imj, or c; and éi’ depending upon the

separability criterion). The two frontiers generated will reduce the
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effect of learning bias in neural networks and will supply assurance
information. Usually, one may take the "unbiased" boundary (see
formula (4.8), Chapter 4) as the final classification resulc.

The extension of the Fuzzy Membership model (Chapter 5) to
k>2 classification is not difficult to develop. However, the
practically meaningful interpretation of the fuzzy membership in the
k>2 cases is questionable. For instance, suppose the separability
criterion is adopted with scheme 3 (Figure 6.3), namely, each sharp
boundary separates c; and cj (i%j). Corresponding to a sharp
boundary, there would be a pair of fuzzy membership functions fzi-(X)

i

and fzé (X) to supply fuzzy uncertainty information with respect to

J

s and cj only. In this model, if extended to the k>2 problem, no

generalized fuzzy uncertainty information would be available on the
membership of an observation in all of the classes. Similarly, if
the separability criterion is adopted with scheme 1 (Figure 6.1), or

scheme 2 (Figure 6.2), the fuzzy uncertainty information mainly

concerns the membership of an observation in ¢y and &i (where

ci-lci+l...ckl for scheme i1, and ci-[cl"'ci-l’ci+1"'ck} for scheme

2}, rather than its membership in an individual class. This research
suggests that the lack of available theory about fuzzy membership for
k>2 classification, rather than the lack of powerful implementation

tools, is the main obstacle to this generalization.



CHAPTER__ SEVEN

CONCLUSTONS AND DISCUSSION

1 GENERAIL. CONCILUSIONS

Regarding the information sufficiency problem in neural
network classification, Denker and Wittner [Denker and Wittner 1987)

pessimiitically pointed out:

Consider the following objective : first, the

network should be very powerful and versatile,

i.e., it should implement any function (truth

table) you like, and secondly, it should learn

easily, forming meaningful generalizations from

a small number of training examples. Well, it

is information-theoretically impossible to create

such a network.

This is very true for the standard BPLMS neural network in
classification applications. Even more pessimistically, with
standard neural networks it Is impossible to control boundary
functions unless some assumptions are made about their shape, and it
is difficult to develop meaningful generalizations.

Neural network researchers are painfully aware of these

disadvantages, and have been trying to improve available algorithms.

There have been two important published works on neural networks

183
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which deal with statistical data in classification. One deals with
the learning vector quantization model [Kohonen et al. 1988). This
approach is based on the nearest-neighbor method. In this method the
number of processing units in the input domain is predetermined.

Each unit has a predetermined d-element reference vector, and each
unit is associated with one of the classes of the input samples. The
learning process is used to update the unit. Another model dealing
with statisecical classification data is the probabilistic neural
network [Specht 1990a, 1990b]. The probabilistic neural network is
actually a parallel processing device for statistical functions. The
hidden nodes (pattern units in the probabilistic neural network
model) assume a kind of kernel function with a pre-defined smoothing
parameter. The learning process sets the weight vector directly and
connects the neural network nodes properly. Both of the above models
apply statistical concepts directly to nsural networks. As discussed
above, the major limitation of these two methods in the context of
ocur discussion is that strong assumptions are necessary about certain
parameters, and the selection of these parameters influences the
results for a particular problem. Therefore, the validation of these
models is basically empirical, based upon benchmarking studies.

The present research, however, tries to fully exploit the
adaptive nature of neural networks, and utilizes a type of generic
problem domain knowledge, (i.e. monotonicity), te improve neural
network learning ability in generating a proper classification
boundary. In the models developed in the present research no
assumptions are necessary about statistical properties of the sample

data set. Instead, more general knowledge about classification is
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considered and is consolidated in the neural network through the
learning process. The argument is that the information (or prior
knowledge) required in the present neural network model is more
readily available and less rastrictive than that required for other
classification techniques,

As discussed throughout the thesis, the monotonic constraint
overcomes the unpredictability of classification boundary generation
in neural networks. The Monotonic Function model is able to train
with statistical data at a much faster speed than in the standard
BPILMS neural networks, and is robust in dealing with statistical data
{Chapter 3). Monotonicity is also useful in reducing the effect of
learning bias in neural networks, a problem which has not been
addressed elsewhere. This can be very useful in supplying decision
makers with assurance information (Chapter 4). Neural networks with
monotonic properties can alsc represent fuzzy membership functions in
classification, and supply decision makers with more natural
uncertainty information represented in fuzzy membership forms. This
has the potential to serve as a component in fuzzy reasoning (Chapter
5).

The application ¢f monotonicity in neural network
classification is not limited to typical managerial pattern
recognition problems. Rather, the neural network under monotonic
constraints is a promising classifier which can be used in other
fields with two or more class classificarion (e.g. target
‘identification [Breiman et al. 1984] [Chien and Killeen 1982]
[Barnard and Casasent 1989]). If a neural network is to be used as

an artificial intelligence machine for improving understanding
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through the interplay of multiple sources of knowledge [Rumelhart et
al, 1986], then, as has been argued, the characteristic of
monatonicity is a critically important component of the knowledge

sources used in classification.

7.2, REMARKS

Let us recall the comparisor. of various classification
techniques shown in Table 1.1. The restrictions of each technique
make it very clear that no single technique can be absolutely
superior over the others in all situations. On the other hand, it
has been showm in the present research rhat the BPIMS neural network
approach preceded by a linear discriminant analysis pre-processor and
supplemented by problem domain knowledge (e.g. monotonicity, and
artificial data points) can significantly improve classification
performance in many cases. Although the present research has not
implemented an integrated classification system, there is no apparent
obstacle to building one. There are three main components of an
integrated classification system which could accomplish the desired

functions, as follows:

(1) An expert System comporent
Verify monotonic variables;
Identify the inflection points in non-monotonic variables, and

decompose these into monotonic variables;
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Define specific knowledge about the extreme values of each
pattern variable for a particular class (see Section 4.5.1) and
transform it into artificial training data;

Check fuzzy membership functions generated by the neural
networks.

The performance of the functions listed above relies heavily
on human expertise. Consequently, most of these functions would be
accomplished interactively with the user, and the expert system would

include an advice-giving function to support the user.

(2) Linear discriminant analysis component :

Pre-process the statistical sample data set.

(3) Neural network component :
Generate the decision boundary, or boundaries;

Supply fuzzy membership functions and uncertainty information

about the decision boundaries.

A possible way to implement an {ntegrated system would be to
employ an expert system shell which would host the discriminant

analysis and neural network components,

7.3. FUTURE RESEARCH

The present research might be extended in at least two
directions. One is related to the neural network learning algorithm.

As discussed in the thesis, the present research has solved the
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unpredictability problem of neural aetworks for managerial
classification problems; however, certain components of the
classification model, such as vector analysis, do not belong to the
neural network model itself. The question of whether the neural
network could handle unpredictability problems solely through
learning remains unsolved, and should be addressed,

Another possible research direction is related to
applications. Direct application of the models developed in this
thesis to the solution of practical classification problems is simple
and straightforward. However, since we ust.ally have no idea about
the "true optimal” decision boundary in any particular problem, there
would be little theoretical value of a single practical application
in terms of general evaluation of accuracy and efficiency of the
developed models. The question of whether the models developed in
this research could extend into other applications, such as rodel
management in decision support systems, is an interesting area which

can be explored.
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GENERATING RANDOM SAMPLES WITH TWOQ CLASSES

TO TEST_ THE ORKS
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A program generating the desired random sample with a two-

variate variable performs as follows.

(1) Generate 0-1 uniform random numbers.

(2) Generate N{0,1) random numbers.

(3) Generate two-variate normal distribution.
(4) Shift into two Bernoulli groups.

(5) Transform the linear boundary to desired shape.

In more detail :
(1) Using time as the seed generate 0-1 uniform random numbers.
is implemented simply by Turbo C math functions.

(2) Following the procedure suggested by Law and Kelton (1982),

This

generate N(0,1) normal distribution sample. Supposa we take uniform

random numbers uy and Uy then let vy - 2ul -1, vy = 2u2 - 1, and

2

1t vg . If w> 1 throw the result away, and try again;

W

else let y = (-2 lnw / w )0‘5, and Zy =V Y. Zy =V, Y then

z1 and 22 are random samples from the N(0,1) normal distribution.

(3) In order to generate a two-varliate normal distribution, the

procedure suggested by Scheuer and Stoller (1962) is used.
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Suppose the desired bi-normal distribution has Ky» B, and

:11 512
21 922

0.5 0.5 2 0.5
FeE 11T T117 » C1m 991 /9117 Sppm oy, - 0y / 0p; ) '

then Xy cll* 2 + By and X, = c21* zl + c22* z, + B, are the

desired bi-variate normal randoem observation.

(4) shift the homogeneous sample into two Bernoulli groups following

xi - X+ by-b(l-y)
Xp= Xy scy+c(l-y), y=0,1

wvhere b, ¢ are parameters which specify the transformration.
¥y is a constant rather than a random variable, to ensure the

two-group sample is still a bi-variate normal distribution.

(5) By Bayes rule or discriminant analysis the boundary between the
two shifted groups is linear (see Chapter 1). 1In order to generate
an arbitrary boundary, we may simply transform the coordinate. For

X L
example, if we let xz" - e 2 . the boundary is shifted to an

exponential shape. Note that after the transformation the sample is
ne longer a bi-variate normal distribution.
Finally, the sample is normalized into the range

%[0, 11, x,(0, 1].
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WAR3

IND1
TISN

input

Variables
Defined by
IND
OUF
HN1
HN2
ETA
MEPS
NTE

TEM

P X1

BACK PROPACATION ATGORITHM

WAR

m
HN2
OUH2

hidden2

user:

Number
Number
Number

Number

2

of
of
of
of

WARL
o )
0 ---- o0
0-- -+ 0
] o
h T
HN1 OUF
OUHL TOSN

hiddenl outjut

input dimension
feature output
first hidden layer nodes

second hidden layer nodes

Learning rate

Error maximum tolerance

Number of teaching samples

Temperature
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MOM Momentum

Defined by the program:

LRS Learning sweep number

OUHZ (HN2)
OUH1 (HN1)

QUT (OUF)

Array of each HN2 node output
Array of each HN1 node output

Array of each output node

TIS(NTE, INDl) Array of teaching sample input

TOS(NTE, OUF) Array of teaching sample output

TISN(NTE,

TOSN(NTE,

WAR1 (HN1,
Array of
LWC1(HN1,

DLT1({CUF)

If HN2 not=0
WARZ (HN2,
Array of
LWC2 (HN2Z,

DLT2 (HN1)

WAR3(INDL,

IND1) Array of normalized sample input

OUF) Array of normalized sample output
OUF)
weights between output and first hidden layers

QUF) Array of last weight changes in WAR1

Error signal at WARI1

HN1)
weights between first and second hidden layers
HN1)}  Array of last weight changes in WAR?2

Err r signal at WAR2

HN2)

192
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Array of weights between second and input layers
LWC3I(INDL, HN2) Array of last weight changes in WAR3
DLT3(HN2) Error signal at WAR3

Else (HNZ=0)
WAR2 (IND1, HN1)
LWC2(IND1, HN1)

DLT2 (HN1)

EPS Sum of error square

FL1 Flag for EPS > MEPS

BUF Working storage

Functions

F(ALH) = 1 / (1 + e ** (-ALH)/TEM)

Subroutines

.Initial-accept accept IND, OUF, HN1, HN2, NTE, ETA, MEPS

.Initial-assign 1RS=0, FL1=0, IND1=IND + 1

.Initial-generate
Accept TIS and TOS
Normalize input, »utput TISN, TOSN from TIS, TGS
TISN{1l)=1

Generate initial weights values for WAR1 WAR2



if NH2 not= 0 generate random values for WAR3

Main programming of back-propagation algorithm

1. call Initial-accept
Call Initial-assign

Call Initial-generate

2. Do t=~l To NTE
/* compute actual output */
If HN2 not= 0 Then
OUH2(1)=1
Do m=2 To HNZ
ALH=0
Do n=1 To IND1
ALH=ALH+WAR3 (n,m)*TISN(¢t,n)
End-do
OUH2 (m)=~F(ALH)
End-do
OUHL(1}=1
Do h=2 To HN1
ALH~0
Do m=1 To HN2
ALH=ALH+WAR2 (m, h) *QUH2 (m)

End-do

194
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OUHL1 (h)=F (ALH)

End-de

Else

OUH1{1)=1

Do he=2 To HN1
ALH=0
Do n=l To INDI1
ALH=-ALH+WARZ2 (n,h)*TISN(t,n)
End-do
OUH1(h)=F(ALH)

End-do

End-if

Do r=1 To OUF
ALH=0
Do h=l To HN1
ALH=ATH+WARL (h,r)*0UH1l (h)
Fnd-deo
QUT(r)=F(ALH)

End-do

/* compute-EPS */

EPS=0

Do r=1 To OUF
EPS=EPS+{TOSN(t,r)-0UT(r))**2

End-do
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If EPS > MEPS
Then FL1=1
/* Call Back-propagation */
Do r=1 To OUF
DLT1(r)=0UT(r)*(1l-0UT(r))*(TOSI(t,r)-0UT(r)) /T

End-do

Do h=1 Te HN1
Do r=1 To OUF
WARL(h,r)=WARL(h, r)+ETA*DLT1(r)*OUHL1 (h)+
+MOM*LWCL1 (h,r)
LWC1(h, £)=ETA*DLT1{r)*QUHL (h)
End-do

End-do

Do h=1 To HN1
BUF=0
Do r=1 To OQUF
BUF=BUF+DLT1(r}*WAR1(h,r)
End-do
DLT2(h)=0UHL{h)*(1-0QUH1 (h))*BUF/T

End-do

If HNZ not= 0 Then
Do m=1 To HN2
Do h=l1 To HN1

WARZ2 (m,h)}=WAR2 {m,h)+ETA*DLT2 (h) *QUH2 (m)+
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+MOM*LWC2(m,h)
LWC2(m,h)=ETA*DLT2 (h)*0UH2 (m)
End-do
End-do
Do m=1 To HN2
BUF~0
Do h=l To HN1
BUF=BUF+DLT2 (h)*WAR2 (m,h)
End-do
DLT3 (m)=0UH2 (m)*(1-OUH2 (m) )*BUF/T

End-do

Do n=1 To INDl
Do m=1 To HN2
WAR3(n,m)=WAR3(n,m)+ETA*DLT3(m)*TISN(t,n)+
+MOM*LWC3 (n,m)
LWC3(n,m)=ETA*DLT3(m)}*TISN(n)
End-do
End-do
Else (HN2=()
Do n=1 To INDl
Do h=1 To HNL
WAR2(n,h)=WAR2 (n,h)+ETA*DLT2 (h)*TISN(t ,n)+
+MOM*LWC2 (n,h)
LWC2(n,h)=ETA*DLT2 (h}*TISN(t,n)
End-do

End-do
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End-{if

/* End of Back-propagation #*/

Else
FL1=0
End-if

End-do

If FL1=1
Then LRS=LRS+1
Goto 2

Else Call Print-all-weight-and-LRS



199

APPENDIX TII,

MONOTONIC CONDITION

This Appendix is a derivation of the monotonic condition in
the MF model, corresponding to algorithm (3.17), Chapter 3. The

numbers in brackets to the left correspond to the numbered sections

of the algorithm (3.17).

(1) Let
h -2
ifl wij vy exp(—UiX’)[(1+exp(-UiX'))] -
ifi TR exp(-UiX')[(1+exp(—UiX’))]'2 +
-2
1?1 wij vy exp(-UiX')[(l+exp(-UiX’))]

where I is a set such that, if ie¢I, w,,v <0, that is,

ij'i

t ] -2 .
ifI wij v, exp(-UiX )[(1+exp(-Uix Yyl <0 ;

and if ifI for w vizo, that is,

i}

T w,, Vv

i#l lj i exP('Uix')[(1+EXP(-UiX'))]-220 .

(since exp(-UR') [ (1 + exp(-uix'))]‘2 >0).

h

(2) Monotonicity <—=> T w v

Z vy exp(-UX ) [ (rexp(-ux N1 2 2 0,

i

and each term in the sum is independent. Thus,
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min 1§I wij vy exp(-UiX')[(1+exp(-UiX'))]-2

+ min Z wij V. e:«:p(-UiX')[(1+e:q::(-UiX'))]'2 =0
iel

is a necessary and sufficient condition for monotonicity,

Denote min £ w, vy exp(-U1X'){(1+exp(-UiX'))]'2 and
iel i

. , . -2
min 1?1 wij vi exp(-UiX )[(1+exp(-UiX )] as Q1 and Q2 .
respectively,

exp(-UiX') [ (1 + exp(-UiJ{')]'2 has a maximum of 0.25 at

UiX'-O {because at least one point X=-0, and this maximum occurs at

that point}, hence

Q,= 0.25 Z w, v, .
1 fel 1j°1

(3) We now need to find Q=min T w_ v exp(-U X')[{l+exp(-U Jl"))]'2
2 141 ij'i i i

{when wijviZO vi),

Let Ri-exp(-UiX’)[(1+exp(-UiX'))]-2. Ri is a function of the

m m m
quantity I wirxr , since Ri-exp(- z wirxr){(1+exp(- b)) wirxr))]-z.
r=0 =0 r=0

m
The behavior of Ri as a function of 2 WieXe is shown in Figure A.1.
=0
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|
|
.25
|
Pl x |
| P2
| X
| -
|
---------- B e e R DR e i el Ewirxr
r
min Ewirxr max Ewirxr
T T
- 3T w = w
ir ir
vwir<0 Vwir?_o
m
Fig. A.1l. The Behavior of Ri as a Function of Z w, x .
r=0 irr
Since Osxrsl, we have
0< Z wirxr = Ewir ¥ wirao R and
r b
fwirs 5 LR =0 Vwir<0.

The extreme points are P1 (xr-l when wir<0' and xr-O when wirZO) and
P2 (xr—l when wirao, and xr-O when wir<0).
Note that the two extreme points Pl and P2 of the function Ri

depend on the specific Ewir values, and either point could be the
T

minimum.

Thus,
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o
N
1

min B w, v exp(-U.X')[(l+exp(-U,X’))] 2
141 ijii i i

' . -2
- i?{ min wijviexp(-UiX )[(1+exp(-Uix N1l

{(since each independent term 20)

- Zw,v, (an exp(-uix')[(1+exp(-uix'))]‘2}

- z wijvi Ai

where Ai is the minimum value of Pl and P2.

h
(4) If Ql+ Q2 >0 then ¥ w
i=1

1j vy exp(-UiX')[(1+exp(-UiX'))]-220,

that is, y is monotonic; else monotonicity is violated.
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APPENDIX IV,

AN _EXPERTMENT ON GREEN’S DATA [Green_1978]
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Appendix 1V (2)

8. The neural network

weights after

training on data

set 82

order:

wij v j=0...4,

i=0...14;

i=0...14,
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APPENDIX Vv,

AN _EXPFERIMENT ON FISHER'’S DATA [Fisher 1936]
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Appendix V (1) - The Iris Data [Fisher 1936]
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The result weights of the neural network corresponding to

the linear function classifier for Group I vs.

Group III.

Appendix V (2)
1.

Group II and

.8; Vi i=0.

i-0,.

by,

Order: wij . j=0.
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