Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8233
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMishra, Ram K.en_US
dc.contributor.authorRamwani, Jairam J.en_US
dc.date.accessioned2014-06-18T16:42:15Z-
dc.date.available2014-06-18T16:42:15Z-
dc.date.created2010-11-06en_US
dc.date.issued1986en_US
dc.identifier.otheropendissertations/3454en_US
dc.identifier.other4471en_US
dc.identifier.other1633010en_US
dc.identifier.urihttp://hdl.handle.net/11375/8233-
dc.description.abstract<p>With the advent of radioligand binding assays, central nervous system dopamine receptors have been well characterized in their membrane bound state. These receptors have been grouped into D-1 and D-2 subclasses on the basis of their relationship to the enzyme adenylate cyclase and affinities for dopamine agonists and antagonists. The dopamine D-2 receptor is considered relevant to the behavioral and pharmacological effects of neuroleptic drugs. The studies presented in this dissertation describe a successful method of solubilization of bovine striatal membrane bound dopamine D-2 receptor. The solubilized receptor exhibited typical pharmacological characteristics to that of membrane bound dopamine D-2 receptor. The rank order potency of agonists and antagonists to displace [³H]spiroperidol binding was the same as those observed with the membrane bound receptor. Analysis of the [³H]spiroperidol/agonist competition curves and the [³H]NPA binding revealed the retention of high and low affinity states of dopamine D-2 receptor in the solubilized preparation. This study demonstrated for the first time, a successful affinity chromatography method for the purification of dopamine D-2 receptor. One cycle affinity purification resulted in a 2000-fold enrichment of dopamine D-2 receptor activity with a recovery of 12% from the membrane-bound state and a specific activity of 169,600 fmol/mg protein (assayed with [³H]spiroperidol). The order of potency of D-2 agonists (N-propylnorapomorphine > N0434 > apomorphine > dopamine) and antagonists (spiroperidol > (+)-butaclamol > domperidone) with a purified preparation was found to be similar to that of the membrane bond or solubilized dopamine D-2 receptor. The adsorption of receptor to the affinity matrix was biospecific as pre-incubation of the solubilized preparation with D-2 receptor agonists or antagonists blocked retention of receptor activity. Elution of receptor was also biospecific as dopaminergic drugs were effective in eluting the bound receptor. Affinity purified preparations should be useful in producing monoclonal antibody to dopamine D-2 receptor and also prove to be important in understanding the molecular events from receptor drug binding to final response.</p>en_US
dc.subjectMedical Sciencesen_US
dc.subjectMedical Sciencesen_US
dc.titleSolubilization, purification and pharmacological characterization of bovine striatal dopamine D-2 receptoren_US
dc.typethesisen_US
dc.contributor.departmentMedical Sciencesen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.77 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue