Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8098
Title: Nonlinear dynamics and seismic response of power transmission lines
Authors: El-Attar, Mohsen Mohamed
Advisor: Aziz, T.S.
Ghobarah, A.
Department: Civil Engineering
Keywords: Civil Engineering;Civil Engineering
Publication Date: May-1997
Abstract: <p>Electric power transmission lines have been traditionally designed for wind and ice loads. The earthquake load has not been considered in the analysis of transmission lines. During recent earthquakes, there have been indications of damage to transmission lines. Due to the complex nature of the problem, there is a lack of research work in the area of seismic analysis of transmission lines. The objective of this study is to evaluate the response of transmission lines to earthquake ground motion in order to evaluate the current design code methodology. The scope of this research program includes: (1) Modelling of different parts of the transmission line to analyze its seismic response, (2) comparison between the forces generated in the transmission tower members by wind, ice and earthquake loads, and (3) analyzing the probabilistic characteristics of the cable response to earthquake ground motion in order to establish a seismic design procedure for transmission lines. An intermediate span of a typical transmission line is chosen for the analysis. The tower members are modelled as truss elements. The cables are modelled by two node elements that retain their geometric nonlinearity. The dynamic characteristics of different components of the line (towers and cables) are determined in order to obtain a better understanding of the line behaviour. The in-plane and out-of-plane vibrations of the line are analyzed. The transmission line response to multiple support as well as uniform support excitations is evaluated. A closed form analytical solution for the cable vibration is carried out for a more detailed study of the cable nonlinear behaviour. It is concluded from the analysis that earthquake ground motion may cause substantial displacements and internal forces in the transmission line elements. The forces in transmission tower members due to the earthquake load may exceed those caused by the wind loads specified by the National Electrical Safety Code (NESC, 1993). Seismic ground motion may cause large displacement in the transmission line cables. This suggests that the cable motion during earthquakes should be included in the design of the line clearances to avoid having cables touch each other, which may cause power failure.</p>
URI: http://hdl.handle.net/11375/8098
Identifier: opendissertations/3331
4354
1588224
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
6.95 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue