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ABSTRACT

Electric power transmission lines have been traditionally designed for wind and ice
loads. The earthquake load has not been considered in the analysis of transmission lines.
During recent earthquakes, there have been indications of damage to transmission lines. Due
to the complex nature of the problem, there is a lack of research work in the area of seismic
analysis of transmission lines.

The objective of this study is to evaluate the response of transmission lines to
earthquake ground motion in order to evaluate the current design code methodology. The
scope of this research program includes: 1) Modelling of different parts of the transmission
line to analyze its seismic response, 2) comparison between the forces generated in the
transmission tower members by wind, ice and earthquake loads, and 3) analyzing the
probabilistic characteristics of the cable response to earthquake ground motion in order to
establish a seismic design procedure for transmission lines.

An intermediate span of a typical transmission line is chosen for the analysis. The
tower members are modelled as truss elements. The cables are modelled by two node
elements that retain their geometric nonlinearity. The dynamic characteristics of different
components of the line (towers and cables) are determined in order to obtain a better

understanding of the line behaviour. The in-plane and out-of-plane vibrations of the line are



analyzed. The transmission line response to multiple support as well as uniform support
excitations is evaluated. A closed form analytical solution for the cable vibration is carried
out for a more detailed study of the cable nonlinear behaviour.

It is concluded from the analysis that earthquake ground motion may cause substantial
displacements and internal forces in the transmission line elements. The forces in transmission
tower members due to the earthquake load may exceed those caused by the wind loads
specified by the National Electrical Safety Code (NESC, 1993). Seismic ground motion may
cause large displacement in the transmission line cables. This suggests that the cable motion
during earthquakes should be included in the design of the line clearances to avoid having

cables touch each other, which may cause power failure.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Transmission lines are vital for an industrial society as they transmit electric power
from power generating plants to cities and industrial facilities. They extend thousands of
kilometres and cost billions of dollars to construct and maintain. Understanding the actual
behaviour of transmission lines under various loading conditions may result in safer designs
that save millions of dollars in construction cost as well as minimize costly line failures.

The design of transmission lines is governed by codes such as the National Electrical
Safety Code (NESC, 1993) in the United States. In Canada, the CSA Standard S37-M86
(1986) deals with the design of antenna towers and antenna supporting structures and the
CSA Standard C22.3-M87 (1987) deals with the design of transmission towers. The general
trend in the design of overhead power transmission lines is to analyze the transmission line
for dead weight, wind load, and ice load in the vertical and transverse directions. In the
longitudinal direction, transmission lines are designed for the loads resulting from a broken
conductor. During the 1992 Landers and the 1994 Northridge earthquakes (Northridge
earthquake reconnaissance report, 1995) there were several cases of power line failures. In
spite of this, there are no code provisions for earthquake design of transmission lines. This

emphasizes the importance of the seismic analysis and design of transmission lines.

1
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During earthquakes, the transmission towers vibrate which causes cable vibration. In
the design of transmission lines, two issues should be addressed. The first issue is that the
internal forces in the tower members and the tension in the cables should not exceed their
strength capacity. The second issue is that during conditions of extreme cable displacement,
the cables should not touch each other or any surrounding objects causing power failure.
Several difficulties arise in the seismic analysis of transmission lines. The cables have
geometric nonlinearity as the large cable displacement changes its stiffness. In such cases,
nonlinear dynamic analyses should be carried out. Due to the long line spans, the ground
motion at various supporting towers can not be assumed identical and therefore multiple

support excitation should be considered instead of uniform support excitation.

1.2 REVIEW OF PREVIOUS WORK

Research work related to the seismic analysis of overhead transmission lines can be
divided into three categories: first, research work related to the modelling of various elements
of the line; second, analysis of transmission lines response to various types of loads; and third,

research work related to ground motion modelling studies.

1.2.1 Modelling of Different Elements_ of Transmission Lines

A typical intermediate span of a transmission line consists of two towers with cables
extending between them. The cables are suspended from the towers by insulators. The
vibration of the system may be damped using different types of vibration dampers. Modelling

of different components of the transmission line for the dynamic analysis attracted the
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attention of several researchers. The use of a specific model for the line elements depends

mainly on the purpose of the analysis and the required level of accuracy and simplicity.

1.2.1.1 Modelling of cables

Two approaches are generally used to analyze the static and dynamic behaviour of
cables. The first approach is numerical using the finite element or the finite difference
methods. The second approach is analytical intended to obtain a closed form solution for the
differential equation representing the cable static or dynamic equilibrium.

Various numerical schemes were used to model the cables for the static and dynamic
analysis. A review of some of the research work on cable modelling was presented by
Migliore and Webster (1979 and 1982). Winget and Houston (1976) used a finite segment
approach to model the cable. Their formulation was limited to cables with small motion only.
Ali (1986) used the finite difference approach to study the dynamic response of cables under
a suddenly applied uniform load; a sinusoidal load; and a prescribed support motion. The
results agreed well with the results of other research work specially for the case of taut cables.

Various types of finite elements have been used to model the cable. Two-node
elements were used by Argyris et al. (1973) and Mote and Chu (1978). These elements are
simple and easy to use but a large number of elements is required to accurately model the
cable. When a large number of elements is used, the straight elements can be accurate enough
for the analysis of moderately sagged cables. For heavily sagged cables, the use of two-node
curved elements is preferable (Gambhir and Batchelor, 1977). Three-node curved elements

were also used to model cables (Desai et al., 1988). The use of three-node curved elements




4
is required in the case of cables with a very large sag to span ratio which is not common in
transmission lines.

Henghoid and Russell (1976) developed a family of finite elements for use in cable
problems. These elements retain all geometric nonlinearities and allow for elastic
deformation. The stiffness matrices were derived in terms of the deformed global
coordinates. Later, Henghold et al. (1977) and Russell et al. (1978) used a three-node
element to study the free vibration characteristics and the cable equilibrium in wind load,
respectively.

The simplest theoretical approach is to consider the cable as a shallow catenary as was
done by Irvine and Caughey (1974) and Simpson (1966 and 1970) who studied the in-plane
free vibration of a shallow catenary. A better solution can be achieved by considering the
nonlinear vibration of cables. Various methods for obtaining a closed form solution for the
cable differential equation were reviewed by Nayfeh and Mook (1979) and Hagedorn (1981).
The choice of a specific method depends on the form of the equilibrium equations.

The planar nonlinear vibration of cables was analyzed by a few researchers. For
example, Hagedorn and Schafer (1980) used the perturbation method to study the effect of
cable nonlinearities on its normal modes. Luongo et al. (1984) used the perturbation method
and Galerkin's method to study the planar non-linear free vibration of an elastic cable. Other
researchers such as Iyengar and Rao (1988), Perkins and Mote (1987), Benedettini et al.
(1986), Luongo et al. (1982), and Yamaguchi et al. (1982), studied the three diménsional

nonlinear free vibration of cables.
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Few studies were conducted to obtain an analytical solution for the forced vibration
of cables. Takahashi and Konishi (1987a, b) studied the free vibration characteristics and the
out-of-plane vibrations due to in-plane sinusoidally time varying load using the harmonic
balance method. They obtained the unstable solution regions. Rao and Iyengar (1991b)
studied the nonlinear vibration of cables under periodic loads. Takahashi (1991) analyzed the
stability of cables subjected to an axial periodic load using Galerkin's method. There has been
no attempt to obtain a closed form solution for the seismic response of cables. The response
of a cable to earthquake ground motion may be different from its response to other types of

loads.

1.2.1.2 Modelling of towers

The dynamic behaviour of transmission towers has been well studied both analytically
and experimentally. A simplified analysis to obtain the fundamental natural frequency of
towers by Dunkerley's method was performed by Trainor et al. (1986). This method is a
simple numerical procedure that provides a reasonable estimate of the system's fundamental
frequency. The finite element method was also used in the analysis of transmission towers
(Kotsubo et al., 1983 and Suzuki et al., 1992).

Experimental testing on transmission towers is usually carried out on full scale towers.
Kempner et al. (1981) performed static and dynamic tests on transmission towers. The
obtained mode shapes and natural frequencies were compared with the results of a finite
element analysis. They concluded that the experimental results agree well with the results of

the truss model.




1.2.2 Transmission Line Analysis for Various Load Conditions

The response of cables to wind and galloping loads was studied both theoretically and
experimentally. Myerscough (1973 and 1975) studied the wind-induced ;)scillations in
overhead lines using Krylov & Bogoliubov method. He also studied the existence and
stability of limit cycles. Wind and galloping vibrations of overhead lines were also studied by
Hagedorn (1982) and Schafer (1984). Currie et al. (1989) carried out an experimental
research program to study the aeolian wind power imparted to the bundled conductors of
overhead power lines. Foata et al. (1989) presented the principal features of the aeolian
vibration models developed at Hydro-Quebec.

The dynamic behaviour of transmission lines as a coupled system of towers and cables
was recently studied. Ozono et al. (1988) introduced a method for the in-plane dynamic
analysis of tower and conductor coupled system. The method was used to study the
characteristics of the in-plane free vibration of the system. Each tower was also modelled as
a simple mass-spring system and each conductor as a massless spring. They found that the
dynamic behaviour of the simplified model is similar to that of the actual model. Ozono and
Maeda (1992) used the same model to study the in-plane dynamic interaction between towers
and conductors at varying support stiffness. They evaluated the contribution of the normal
modes of vibration of the conductor to the dynamic tension transmitted to the tower.

Suzuki et al. (1992) applied the frequency response method to analyze the seismic
response of transmission towers due to the phase difference between seismic ground motion
at various supports. McClure and Tinawi (1987) carried out a nonlinear dynamic analysis to

evaluate the transient dynamic response of transmission lines due to conductor breakage.
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A distinctive characteristic of seismic ground motion is their random nature, which
suggests that the use of probabilistic seismic analysis is preferable than the deterministic
approach. Ang et al. (1996) performed a reliability analysis on a power transmission line
system in order to evaluate the probability of substations blackout. They used Monte Carlo
simulation in the analysis. However, they concentrated their analysis on the substations while
the cable vibrations were ignored.

It appears that there is lack of deterministic and probabilistic studies on the seismic
response of transmission lines. Further analysis is needed to examine the forces created in
transmission towers and the maximum cable displacements and to compare them with the

response of the line to the code loads.

1.2.3 Multiple Support Excitation of Structures

A major problem that arises in the analysis of long span structures such as bridges,
dams, pipelines and transmission lines is the difference among the ground motion components
affecting various support points of the structure. The principal factors that affect the seismic
ground motion variation are three. First, the wave travel effect that results from the finite
speed of the seismic waves that creates a phase shift between the seismic excitations at
various supports. The second factor is the incoherency effect that results from reflection and
refraction of seismic waves. The third factor is the local site effects.

There are two fundamental approaches to account for the variation in seismic ground
motion. The seismological approach follows the propagation of seismic waves from the

epicentre to the supports of the structure (Rassem et al., 1996). The other is a stochastic
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approach based on random vibration analysis. This approach is adopted by Ramadan and
Novak (1994); Loh and Lin (1990); and Hao et al. (1989).

Multiple support excitation has been applied to various structures. Abdel-Ghaffar
and Stringfellow (1984a and b) studied the response of suspension bridges to travelling
earthquake excitations. They concluded that the assumed shear wave velocity can have a
significant effect on the response of the structure. Nazmy and Abdel-Ghaffar (1992) studied
the response of cable stayed bridges to multiple support excitation. Ramadan and Novak
(1992) studied the response of concrete gravity dams to multiple support excitation. Zerva
(1990) studied the response of multi-span beams to spatially incoherent ground motions.
Zerva (1994) studied the effect of fhe incoherency and the wave velocity on the seismic
response of buried and above ground lifelines. He found that the most significant effect of
multiple support excitation is the introduction of high quasi-static forces in the structures.
Multiple support excitation of transmission lines has not been previously studied, although

they represent long span structures which could be affected by this type of excitation.

1.3 OBJECTIVES AND SCOPE

From the review of previous research work, it is concluded that there is a significant
gap in research in the area of seismic analysis of overhead transmission lines. The response
of transmission lines to earthquake loading has not been evaluated yet, and therefore it is
unrealistic for the design code to assume that this response is small. The analysis of the
transmission line response to various types of loads will establish a rational approach to

determine the overloading factors and thus may reduce the line cost.
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The objectives of this investigation are to model the transmission line system and
evaluate its response during earthquake ground motion including multiple support excitation.
Moreover, it is required' 'to evaluate the current design methodology and develop seismic
design recommendations for transmission lines.

The scope of work in the current research program includes:

1. The analysis of the seismic response of transmission lines in order to obtain a better
understanding of the behaviour of the line during earthquakes and to identify the
important parameters that have a significant influence on the response.

2. The modelling of different parts of the transmission line (towers, cables and
suspension insulator) and to analyze the dynamic behaviour characteristics of each
component of the line.

3. The development of an accurate yet simple model of the transmission lines to be used
in their seismic analysis.

4, The comparison of the internal forces created in the transmission tower by earthquake
ground motion to the forces produced by the wind/ice loads as specified in the code
provisions in order to assess the adequacy of the current code for the design of
transmission lines.

5. The analysis of the effect of multiple support excitation on the response of
transmission lines.

6. The analysis of the effect of the different assumptions used to model the earthquake
ground motion such as the coherency model and the wave velocity on the response

of the transmission line to transverse and vertical excitations.
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7. The analysis of some aspects of nonlinear cable dynamic-behaviour using analytical
solutions.

8. The analysis of the probabilistic characteristic of cable response to earthquake ground
motion in order to develop a basis for the clearances of the line from the seismic point
of view.

In the theoretical and analytical solutions presented in the current research, some
assumptions were adopted. The tension in the cable due to its own weight and its vibration
is assumed to be below the elastic limit so that the cable will remain elastic during the
earthquake. Vibration dampers and spacers are not considered in the analysis. An
intermediate span of the transmission line is considered in the analysis. The end spans and the

corner spans represent special cases that are not considered in this investigation.

1.4 ORGANIZATION

The thesis is divided into seven Chapters. In Chapter two the cable finite element
model is presented. The free vibration characteristics of cables with different sag to span
ratios are determined. The seismic response of different cables is analyzed and the effects of
different cable properties and ground motion characteristics are determined.

Dynamic characteristics of transmission towers are determined in Chapter three. The
seismic behaviour of transmission lines is analyzed and a simplified model for the line is
proposed to determine the cable response. The internal member forces in transmission towers

due to earthquakes are compared to the forces caused by the code specified loads. In Chapter
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four, the response of transmission lines to multiple support excitation is analyzed. The effect
of different assumptions in modelling the ground motion on the response is determined.

The analytical solution of the cable dynamic behaviour is presented in Chapter five.
Galerkin's method along with the method of multiple time scales are used in the analysis. The
stability of the steady state solution is examined. The results of the analytical solution are
compared to those of the finite element solution to assess their accuracy. The effect of
multiple support excitation and the internal resonance are analyzed.

Probabilistic analysis of the seismic response of transmission lines is presented in
Chapter six. The statistical characteristics of the cable tension and maximum displacement
are evaluated. Finally, Chapter seven contains a summary of the research program and the

main conclusions and recommendations for further research.



CHAPTER 2

FINITE ELEMENT APPROACH FOR SEISMIC ANALYSIS OF CABLES

2.1 GENERAL

Seismic behaviour of transmission lines is determined from the dynamic analysis of
towers and cables when the system is subjected to earthquake ground motion. Cables have
geometric nonlinearity because large displacement of the cable changes its stiffness and hence
its frequencies of free vibrations.

Different kinds of finite elements were developed to model the cable taking into
account the cable geometric nonlinearity. Some researchers (Mote and Chu, 1978 and
Gambhir and Batchelor, 1978) believe that if a large enough number of straight elements is
used to model the cable, adequate accuracy of the analysis can be achieved. Other researchers
believe that straight elements are inadequate to model strongly curved cables (McClure and
Tinawi, 1987). However, since transmission line cables are generally with small to moderate
sag to span ratios, the use of straight elements is adequate to model the cables provided that
the cable is divided into sufficient number of elements.

In this chapter, a two-node nonlinear element is developed to model the cable. The
element is verified and incorporated in the PC-ANSR computer program which is a program

for nonlinear static and dynamic analysis of structures. Different cable examples with

12
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different sag to span ratios are selected for the analysis. Free vibration characteristics of the
different cables are determined. The cable response to different components of ground
motion is analyzed. The effect of different cable properties ind ground motion characteristics
on the response is investigated. The effect of the difference in elevation between cable

supports is also analyzed.

2.2 ANALYSIS PROCEDURE

The problem of cable vibration was studied extensively. Some researchers used
analytical procedures based on mathematical solutions of the differential equations of cable
vibration (Perkins, 1992, for example). Other researchers used the finite difference approach
(Ali, 1986). The finite element method was used extensively to study cable vibration with
different kinds of elements to model the cable (Leonard and Recker, 1972; and Russell et al.,
1978). The use of straight elements to model the cable is appropriate for cables with small

sag to span ratios to avoid the complexity that results from using curved elements.

2.2.1 Formulation of Element Matrices
The equation of motion of a sagging cable fixed at both ends under earthquake loading

can be written in the following matrix form:

[M] Gi} + [C]{a} + [Klful = - [M]G, @2.1)

where ii, is the ground acceleration; {u}, {u} and {ii} are the nodal displacement, velocity

and acceleration, respectively; [M] is the lumped mass matrix; [C] is the damping matrix; and
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[K] is the total stiffness matrix which is defined as:

[K:] = [Kgl + [K] (22)

where [K,] is the conventional symmetric stiffness matrix that accounts for the large
deflection of the cable and [K] is the geometric stiffness matrix.
Assuming large deflections but small deformations in the cable and neglecting its

bending rigidity, the stiffness matrices [K¢] and [K] are defined by Henghold and Russell

(1976) as follows:
1 L
[Kgl = 5[ (U™ [NTF [N/] {Uy} - 1) [NJF [N'] ds (2.3)
0
L
K] = fEA [N/TF [N’] (U} {UJT [N/]F [N'] ds (2.4)

where, E is Young's modulus of the cable material; A is the cross sectional area of the cable;
L is the element length; {Uy, } is the nodal coordinate vector; and [N] is the shape function.

Henghold and Russell (1976) developed a class of three-node elements based on the
previous equations and used it in their analysis. In the present analysis, a straight two-node

element is developed to model the cable. The shape function of the element [N] is given by:
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(1-1) 0 0 n 00
0 (1-1) 0 0no (2.5)
0 0 (I-1) 0 0

[N]

where n =x /L and it varies from 0 to 1, and

[N] = %l-m (1] 26)

where [I] is the unit matrix. On the basis of equations (2.3) through (2.6), the stiffness matrix

[K.] is written in the form:
EA | [K] —[K]]
K1l = =2 2.7
Wl = 5] -x1 K] @n
where,
(AX)? AXAY AXAZ
[K] = |AXAY (AY)® AYAZ (2.8)

AXAZ AYAZ (AZ)

where X, Y, and Z, are the coordinates of the i'th node at any instant; and AX = X;,; - X;; AY
=Y, -Y;and AZ=Z,_, - Z. The cable configuration is shown in figure 2.1.
The stiffness matrix [Kg] is given by:

_ EA ((AX)* + (AY) + (AZ)* - LY
(el = 2 L3

(2.9)

[1] -m]
-[11 1]
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The developed element is incorporated in the PC-ANSR computer program (Maison,

1992). The PC-ANSR is a program for the nonlinear static and dynamic analyses of

structures. The program uses the Newton-Raphséh method to achieve equilibrium within

each load step. It also uses the Newmark-§ algorithm for numerical integration in the

dynamic analysis. The numerical procedures for the static and dynamic analysis were

presented by Mondkar and Powell (1975 and 1977) and by El-Attar et al. (1995b). The

procedures can be summarized as follows:

Static analysis:

(a) The stiffness matrix [K';] is determined using equations 2.5 through 2.9 from the cable
geometry at the end of step (j-1).

(b) The joint displacement and elastic forces are calculated using Newton-Raphson method.

(c) The out-of-balance load vector {R,} is determined.

(d) If the components of {R,} are within a given tolerance, then the answer is achieved and
the next step is started, otherwise the forces and displacement vectors are updated and
the steps should be repeated starting with step (a).

Dynamic analysis:

(a) The mass matrix [M] and the stiffness matrix [K;] are evaluated.

(b) The damping matrix [C] is evaluated using [C] = & [M] + B, [K,] + By [K1] where [K]
is the initial stiffness matrix, e, B,, and B are the Rayleigh damping coefficients.

(c) Using Newmark-p method, the changes in displacement, velocity and acceleration are
evaluated at each node.

(d) The member forces are computed and the stiffness matrix is updated.
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(e) [R,] is evaluated and the equilibrium is checked as in the static case.
() A reasonable time step is selected to ensure convergence. In this analysis, the time step
is selected to be 0.005 s. "
It should be noted that the cable is a tension member. Therefore, it is important to
adjust the element such that when the member force is negative, the stiffness matrix [Kq] is

set to zero.

2.2.2 Element Verification

To examine the accuracy of the results of the dynamic analysis using the developed
element, the results are compared to the available solutions. Two examples are considered
to verify the accuracy of the developed element. The first example examines the cable
response to dynamic loads, while the second example examines its response to earthquake
ground motion. The first example is a problem reported by Leonard and Recker (1972) in
their finite element analysis of cable vibration. The same problem was used by Ali (1986) in
his finite difference analysis of the dynamic response of sagged cables. The data of the

verification problem is as follows :

Cable span = 254m Young's modulus = 13.8 x 10’ KPa
Sag to span ratio = 0.019 Weight = 3.5N/m
Cross sectional area = 42 mm?® Damping ratio = 0%

The cable was subjected to a uniformly distributed load with intensity 17.5 N/m in the
transverse direction. The cable is divided into 12 straight elements and a parabolic shape is

assumed as a first approximation for the static equilibrium position. The results of the static
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analysis showed that the parabolic shape is an accurate representation for the cable deformed
shape under its own weight. The results of the dynamic analysis using the finite element
method developed in this analysis, Leonard and Recker (1972) solution and Ali's finite
difference solution are compared in figure 2.2. This figure shows that the developed element
agrees well with both the finite element and the finite difference results.

The second problem was solved by Rao and Iyengar (1991a) using the normal modes

approach. The data of the cable considered is as follows:

Cable span = 1000 m Young's modulus = 20.0 x 10* MPa
Sag to span ratio = 0.09 Weight = 28.0 N/m
Cross sectional area = 50 mm® Damping ratio = 0.5%

The cable is subjected to the three components of the 1952 Taft earthquake. The
cable is divided into 32 elements. The time history of the cable tension as a percentage of the
static tension is shown in figure 2.3. This figure shows that the results of the current analysis
agree well with those of Rao and Iyengar in both the maximum response and the frequency

of vibration.

2.3 SELECTION OF PARAMETERS

The cable properties have a significant effect on its free and forced vibration
characteristics. Moreover, the ground motion characteristics may affect the seismic response
of cables. In the analysis, the cable properties are varied in a range similar to that used in
transmission lines. It is also of interest to determine the ground motion characteristics that

have significant influence on the cable seismic response.
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2.3.1 Cable Characteristics

An actual transmission line cable is used in the analysis with the following properties:
Cable span = 400 m Young's modulus = 55x 10° MPa
Weight = 22.23 N/m Cross sectional area = 10° m?

Damping of the cable is assumed to be of the Rayleigh type. The effect of the cable damping
on the response is studied, however in all other cases of the analysis, the cable damping ratio
is assumed equal to 1%.

The sag to span ratio of cables is the principal parameter that affects the dynamic
behaviour. In general, transmission line cables have a sag to span ratio less than 5%. Three
cable examples Cable I, Cable IT and Cable III with sag to span ratios of 0.03, 0.01 and
0.003, respectively are used in the analysis.

Cables I and II are typical sagged cables that are in actual use in transmission lines.
On the other hand, Cable IIT is an example of taut cables which are not used in transmission
lines because very high tension will be created in the cable. The main reason for choosing
Cable III is to provide a comparison between the dynamic behaviour of sagged and taut

cables.

2.3.2 Ground Motion Characteristics

Earthquake ground motion may be categorized according to their peak ground
acceleration (A), peak ground velocity (V), frequency content, and / or strong ground motion
duration. However, one important method of categorizing ground motion is the use of A/V

ratio where A is in g and V is in m/s. This method was used by several researchers (Tso et
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al., 1992 and Hodhod, 1993). It is also adopted and used in the National Building Code of
Canada (NBCC, 1995). Low A/V ground motion records represent low frequency content
which may be associated with large earthquakes occurring at far epicentfél distances. High
A/V ground motion records represent high frequency content which may be associated with
small earthquakes at short epicentral distances.

Six ground motion records are selected to be used in the analysis. The records have
different frequency content as represented by the ratio A/V. Scaling of ground motion is
required to be able to compare between the effect of various earthquakes on the cable. The
horizontal component of ground motion is scaled to 0.34 g which represents the level of
excitation for the city of Victoria on Canada's west coast according to NBCC (1995).
According to NBCC 1995, the ratio of vertical to horizontal peak ground acceleration ranges
from %4 to %. Therefore, in this analysis, the vertical component of ground motion is scaled
to a peak value of % of that of the corresponding horizontal component. The details of the

selected earthquake records are shown in table 2.1.

2.4 FREE VIBRATION CHARACTERISTICS OF CABLES

To determine the free vibration characteristics of cables, the three cable examples
Cables I, II and ITI, are subjected to a sinusoidal ground acceleration with a peak acceleration
of 0.1 g in the vertical and transverse directions. The maximum displacement of various
points along the cable span and the cable tension are plotted in figures 2.4 to 2.9 for the three

cable examples and for the transverse and vertical directions.
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Figures 2.4(a), 2.6(a) and 2.8(a) show that, in the transverse direction, the
displacements of various cable points are mainly governed by the first mode, specially for the
cable mid-point, where the contribution of the higher modes is small. In the vertical direction,
figures 2.7(a) and 2.9(a) show that for Cables II and III, the displacements of cable points in
the vertical direction are also governed by the first mode. On the other hand, figure 2.5(a)
shows that for Cable I, with higher sag to span ratio, the contribution of higher modes to the
displacement may be significant.

The analysis showed that the tension in the cable is almost constant throughout the
cable span, and therefore the average value of the tension in the cable is shown in figures
2.4(b) to 2.9(b). The tension in Cable IT and Cable IIT due to transverse or vertical excitation
is dominated by the first mode. For Cable I, the contribution of the second symmetric mode
is significant specially due to vertical excitation.

It was also found from figures 2.4 through 2.9 that due to the application of a similar
excitation at both supports, only the symmetric modes were excited which is expected due
to symmetry. The out-of-plane symmetric frequencies are well separated. The in-plane
symmetric frequencies for sagged cables (Cable I) are closely spaced, while for taut cables
(Cable III) they are well separated.

The first three symmetric out-of-plane natural frequencies are listed in table 2.2. The
first three symmetric in-plane natural frequencies are shown in table 2.3. The out-of-plane
frequencies reported in table 2.2 are in good agreement with those calculated by the equations
derived by Irvine and Caughey (1974) based on their linear theory of cable vibrations given

as .



22

6, = @n-1T ,IE 2.10)
m

This agreement can be explained by the fact that for sag to span ratio up to 3% the
nonlinear geometry effects in the cable are small. The first three symmetric in-plane
frequencies for Cable I shown in table 2.3 are compared with the corresponding values
reported by Rao and Iyengar (1991) which were 0.40, 0.54 and 0.80 Hz, respectively. The
agreement with the present analysis is acceptable.

By comparing table 2.2 with table 2.3, it is observed that for Cable II which is a taut
cable, the in-plane natural frequencies are similar to the out-of-plane ones. Similar

conclusions were reached by Henghold et al. (1977) and Irvine (1981).

2.5 SEISMIC RESPONSE OF CABLES

This analysis is performed on Cable I which represents a typical example for
transmission line cables. Other cables are considered only when the effect of sag to span on
the seismic response is analyzed. Damping ratio of the cable is assumed to be 1% unless

otherwise stated.

2.5.1 Effect of the Frequency Content of Ground Motion
The A/V ratio of the ground motion records is used as a measure of the frequency
content. Low values of A/V (less than 0.8) represent low frequency content ground motion

records, intermediate values of A/V (0.8 - 1.2) represent intermediate frequency content
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records, and high values of A/V (more than 1.2) represent high frequency content ground
motion records.

Cable I is subjected to the vertical and horizontal components of the six earthquakes
given in table 2.1. The maximum values of cable displacements and tension due to transverse,
vertical, and longitudinal ground motions are shown in table 2.4. Figures 2.10 and 2.11 show
the displacement time history of the cable mid-point due to transverse and vertical
excitations, respectively. The vertical displacement time history of a point at ' cable span
due to longitudinal excitation is shown in figure 2.12.

The results of the analysis show that for the transverse component of ground motion,
the maximum response in the cable results from earthquakes with low A/V ratio, i.e. low
frequency content. This is expected since the first three frequencies of the cable are less than
0.8 Hz. It is also observed that while the cable displacements can be as high as 205 cm for
the Mexico earthquake, the cable tension does not exceed 2.8 kN which is small when
compared to the tension developed in the cable due to its own weight (37.1 kN). The reason
for the small values of cable tension is that the cable transverse vibrations are of a swinging
type and do not cause change in length and therefore do not produce significant strains and
stresses.

For the vertical ground motion, the records with low A/V ratio caused the maximum
response in the cable. The maximum displacement and tension in the cable result from the
Mexico earthquake. The maximum displacement is approximately 150 cm and the maximum

tension is approximately 17.0 KN which is almost half the static tension.
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On the other hand, the ground motion component in the longitudinal direction does
not cause significant displacement or tension in the cable. The maximum vertical
displacement in the cable is only 25.0 cm and it results from the Mexico earthquake. The
maximum tension in the cable due to the longitudinal ground motion is 3.6 kN.

Comparing the cable response to various components of ground motion indicates that
the displacements in the cable due to the transverse component of ground motion are quite
significant. Vertical displacements, as well as tension in the cable due to vertical excitation
are also significant. Cable response to the longitudinal component of ground motion is
insignificant and will not be considered in the rest of the analysis. While the cable tension is
small in comparison to the tension developed in the cable under its own weight, the
displacements of the cable are significant and may govern the design of transmission line

clearance.

2.5.2 Effect of the Cable Sag to Span Ratio

To study the effect of cable sag to span ratio, the three cable examples were subjected
to the horizontal and vertical components of the Mexico and the San Fernando earthquakes.
These two specific earthquakes are chosen because they cause the maximum response in the
cable. The results of the analysis are presented in tables 2.5 and 2.6 for the transverse and
vertical excitations, respectively.

The results indicate that there are large differences in the magnitude of the response
for cables of different sag to span ratios. For example, the vertical displacement of Cable I

due to the vertical component of the Mexico earthquake is 150.9 cm, while the vertical
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displacement of Cable II is 274.4 cm. The main reason for the large differences in the
response is the difference in frequencies between different cable examples which causes
amplification of the response in some cases (Cable II) and attenuation of the fésponse in other
cases (Cable III).

Comparing the response of different cables to the sinusoidal ground acceleration as
shown in figures 2.4 to 2.9, indicates that the response of sagged cables is generally larger
than the response of taut cables. The only exception is the response of Cable II to vertical
excitation which is larger than the response of Cable I. For example, the maximum
displacement of Cable I due to vertical excitation is 5.5 m, while the maximum displacement

of Cable II due to vertical excitation is 9.4 m.

2.5.3 Effect of the Cable Damping Ratio

Cable damping is an uncertain quantity. Little research work was conducted to
evaluate the damping characteristics of cables. Traditionally, the damping of cables is very
small. However, there is a new trend in transmission line design to use self damping
conductors to damp the cable vibrations instead of using vibration dampers (McCutloch et al,
1980). The damping ratio of the self damping cables can be as high as 5 times the damping
ratio of the ordinary cables (Jones et al., 1988).

Cable I is used in the analysis with different damping ratios 0, 1, 2 and 4%. The cable
is subjected to the vertical and horizontal components of the Mexico and the San Fernando
earthquakes. Results of the analysis are presented in tables 2.7 and 2.8 for the transverse and

vertical excitations, respectively.
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The maximum cable response data in tables 2.7 and 2.8 indicate that the damping
ratio of the cable has a significant effect on the cable response to ground motion. For
example, considering a small damping ratio such as 1% rather than neglecting the damping,
reduces the vertical cable displacement due to the Mexico earthquake by 35%. The use of
self damping cables also reduce the cable response significantly. The maximum effect is
associated with the vertical component of the Mexico earthquake where the maximum
displacement is reduced from 205.9 cm to 127.3 cm with a percentage decrease of 38% when
the damping ratio increases from 1% to 4%. This result suggests that the use of self damping
cables is an excellent solution to attenuate the vibrations of transmission lines due to

earthquakes.

2.5.4 Effect of the Difference in Elevation between Cable Supports

In general, transmission lines extend over long distances of different topography. It
is common that the supports of the line are not at the same level. Therefore, it is important
to examine the effect of the difference in elevation between cable supports on the seismic
response of cables.

First, the effect of the difference in elevations on the natural frequency of cables is
examined. Cable I is considered in the analysis with a difference of "h" in elevation between
its supports and a mid-point sag of "d" as shown in figure 2.13. The values of the first and
second symmetric in-plane and out-of-plane frequencies are presented in table 2.9 for different

values of WL ranging from zero to 1.0.
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Table 2.9 indicates that, the fundamental frequency of cables decreases with the
increase of h/L. Similar conclusion was arrived at by Gambhir and Batchelor (1978). While
the decrease in the out-of-plane frequencies is small, the decrease in the in-plane frequencies
is significant. For example, the first frequency decreases from 0.38 Hz to 0.24 Hz as h/L
increases from 0 to 1.0, with a percentage decrease of 37%. Moreover, for small values of
WL (up to 0.4) the natural frequencies of the cable are almost unaffected by the change in h/L
as found by Gambhir and Batchelor (1978).

The effect of the difference in elevations on the seismic response of cable I when
subjected to the vertical and horizontal components of the Mexico and the San Fernando
earthquakes was studied. Values of the maximum response in the cable are presented in
tables 2.10 and 2.11. The displacement time histories of cable mid-point for different h/L
values due to the ground motion components are shown in figures 2.14 to 2.17.

The results presented in tables 2.10 and 2.11 show that the ratio h/L has a significant
effect on the cable response to vertical excitation, however the effect on the response to
transverse (out-of-plane) excitation is not that significant. For example, the maximum
displacement in the cable due to the vertical component of the Mexico earthquake is 234.4
cm for h/L = 0.4, while the minimum response is 73.1 cm for /L = 1.0 with a percentage
change of 70%. For the transverse component, the maximum displacement is 205.9 at WL
= 0, while the minimum displacement is 177.0 cm at /L = O.Q with a percentage change of
14%.

The main reason for the difference is that the change in the in-plane frequencies due

to the increase in WL is much larger than the change in the out-of-plane frequencies. This is
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also clear from figures 2.13 and 2.14 where it appears that the frequency of the out-of-plane
vibration is not changed except for the case of /L = 0.8. Figures 2.16 and 2.17 show that
the change in the in-plaflé frequencies , in some cases, is significant which agrees with the data

in table 2.9.

2.6 SUMMARY
A two-node element which accounts for the cable geometric nonlinearity is developed.
The element is incorporated in the PC-ANSR for the nonlinear static and dynamic analysis of
structures. The element is checked against other available solutions to determine its accuracy.
The free vibration characteristics of cables are determined. Finally a parametric analysis is
carried out to study the effect of different ground motion characteristics and different cable
parameters on the response.
The following conclusions may be arrived at from the analysis:
L. In the vertical direction, the frequencies for taut cables are widely spaced and the
response is mainly dominated by the first mode. For sagged cables the frequencies of
free vibration are closely spaced and higher modes may contribute significantly to the

cable response.

2. In the transverse direction, the modes are widely spaced and the response is governed
by the fundamental mode.
3. The response of cables to the earthquakes with low A/V ratio is much higher than

their response to earthquakes with higher A/V ratio.
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Significant displacements may result in cables due to earthquake ground motion in the
vertical and transverse directions. These calculated displacements may form the basis
to develop criteria for line separation. The displacements caused by the longitudinal
component of ground motion are insignificant.

The tension in the cable due to the selected earthquakes scaled to the peak ground
acceleration of Victoria B.C. location does not exceed approximately half that of the
static cable tension.

Cable sag to span ratio, damping ratio, and the difference in elevation between cable
supports, are important parameters that may have significant effects on the cable

response to earthquake ground motion.
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Table 2.2 Out-of-plane symmetric frequencies of free vibration

W

Frequency (Hz)
Cable . . Linear theory
type Calculated using finite element Irvine and Caughey (1974)
first second third first second third
Cable 1 0.15 0.48 0.80 0.16 0.49 0.80
Cable I 0.30 0.83 1.39 0.28 0.83 1.39
CableII  0.50 1.51 2.50 0.51 1.51 2.50
Table 2.3 In-plane symmetric frequencies of free vibration
Frequency (Hz)
?;;Le Calculated using finite element Rao and Iyengar (1991a)
first second third first second third
Cable I 0.38 0.52 0.80 0.40 0.54 0.80
Cable IT 0.32 0.83 1.37

Cable III 0.51 1.51 2.50

—-——__——__———__—_——'———_—————————_———-_—_—-—
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Table 2.4 Maximum response of Cable I

Transverse grund ) Verti nd o ngitudinal

motion motion ground motion

Event . Transverse . Vertical . Vertical

Tension displ. Tension displ. Tension displ.

W@ em N e D

Mexico 24 205.9 17 151 13 248

San Fernando 1.6 95.7 4 32 3.2 13.2
Monte Negro 0.4 27.5 2 15 3.6 5.3
Imperial Valley 0.3 454 2 9 1.8 43
Parkfield 03 8.7 1 7 24 2

Lytle Creek 02 4.6 1 4 2.1 0.3



Table 2.5 Maximum cable response to transverse excitation

Mexico Earthquake San Fernando Earthquake
eg:,‘:;le Tension  Displacement Tension  Displacement
(kN) (cm) (kN) (cm)
CableI 24 205.9 1.6 95.7
Cable IT 1.4 130.5 1.6 140.6
Cable IIT 1.1 114.2 0.1 38.7

Table 2.6 Maximum cable response to vertical excitation

——

Mexico Earthquake San Fernando Earthquake—
eg::,l:le Tension  Displacement Tension  Displacement
(kN) (cm) (KN) (cm)
Cable I 17.1 151 44 31.5
Cable I 209 274.4 3.8 51.9

Cable III 1.3 51.7 0.3 13.5
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Table 2.7 Maximum Cable (I) response to transverse excitation for different
damping ratios

Mexico Earthquake San Fernando Earthquake
Damping -
ratio Tension  Displacement Tension Displacement
(kN) (cm) (kN) (cm)
0% 42 261 2 100.4
1% 24 206 1.6 5.7
2% 1.6 171 1.3 91.6
4% 1 127 1 84.8

Table 2.8 Maximum Cable (I) response to vertical excitation for different
damping ratios

Mexico Earthquake San Fernando Earthquake
Damping )
ratio Tension  Displacement Tension  Displacement
(kN) (cm) kN) (cm)
0% 26.5 230 5.7 44
1% 17.1 151 4.4 315
2% 16.1 127 3.7 24.1

4% 15 106 3.4 21.1
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Table 2.9 Effect of difference of cable end levels on the natural frequencies

In-plane symmetric frequencies Out-of-plane symmetric frequencies
WL (Hz) (Hz)
First Second First Second

0 0.38 0.53 0.15 0.50
0.1 0.37 0.53 0.15 0.50
0.2 0.36 0.51 0.14 0.49
0.4 0.34 0.51 0.14 0.49
0.8 0.27 0.49 0.14 0.47

1.0 0.24 0.46 0.13 0.46

—_——————————eeeee e e e
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Table 2.10 Maximum response in the cable due to various components of the Mexico
Earthquake for different h/L ratios

Transverse component Vertical component
WL Displacement Tension Displacement Tension

(cm) (kN) (cm) (kN)

0 205.9 24 150.9 17.1

0.1 205.6 24 152.0 17.1
0.2 204.3 24 162.9 18.9
04 194.3 3.7 234 4 27.5
0.8 177.0 42 90.0 10.1
1.0 178.3 2.6 73.1 7.7

W—_——_

Table 2.11 Maximum response in the cable due to various components of the San Fernando
Earthquake for different h/L ratios

Transverse component Vertical component
WL Displacement Tension Displacement Tension
(cm) (kN) (cm) (kN)
0 95.7 1.6 31.5 44
0.1 95.7 1.7 30.6 43
0.2 95.8 1.7 28.3 3.8
0.4 96.4 1.5 324 3.8
0.8 97.7 0.6 42.9 5.4

1.0 95.7 0.6 48.1 5.0

W




Position (j)

Position (j - 1)

node (i) Static equilibrium position
node (i+1)

Figure 2.1 Cable configuration
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Figure 2.3 Cable seismic response to the 1952 Taft earthquake
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Figure 2.3 (cont.) Cable seismic response to the 1952 Taft earthquake
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Figure 2.4 Frequency-response relationship for Cable I (sag / span ratio of 0.03)

in the transverse direction : (a) displacement and (b) tension
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CHAPTER 3

SEISMIC ANALYSIS OF TRANSMISSION LINE SYSTEMS

3.1 GENERAL

Transmission lines are normally designed for wind and ice loads in the transverse
direction. In the absence of seismic code provisions, it is not the practice to take earthquake
loads into account. However, seismic loads may be important in cases where the transmission
line extends in areas of low wind forces and high seismicity. When subjected to ground
motion, the transmission line towers and cables may be subjected to significant forces and
stresses. However of major concern in the response of transmission lines during earthquakes
is that large cable displacements do not cause the cables to touch each other or any
surrounding object, thus causing power failure

The analysis of cables presented in Chapter 2 indicated that seismic excitation can
cause large displacements of the cables. The displacements of the transmission line cables are
the main concern in this analysis. However, cable tension and the transmission tower
displacements and internal forces are also reported.

A transmission line consists of several towers with cables extending between them.
The cables are connected to the towers using suspension insulators. To control the cable

vibrations, various kinds of dampers may be used such as the Stockbridge dampers and spacer
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dampers in case of bundle conductors. In the present analysis, damping of vibrations due to
the use of dampers is not considered.

Since power transmission lines are noﬁﬂy designed for wind loads, little research
has been conducted to investigate the effect of earthquakes on the design. It is the conception
of designers in the industry that higher safety factors in design eliminate the need to take
earthquakes into account. There are several recent cases of damage to power lines during
earthquakes. During the 1994 Northridge earthquake, 85 power line cables were damaged
and two transmission towers collapsed due to high ground motion (Northridge earthquake-
reconnaissance report, 1995). During the 1992 Landers earthquake, there were over 100
cases of line burn-downs.

In this chapter, two typical transmission towers are analyzed to determine their free
vibration characteristics as well as their behaviour when subjected to earthqt'lake ground
motion. The effect of the suspension insulator and its characteristics on the seismic behaviour
of the transmission line is also analyzed. The seismic behaviour of an intermediate span
transmission line is analyzed due to the effect of vertical and transverse excitations. A
simplified model for the transmission line for seismic analysis is developed. The internal
member forces in the towers due to earthquake ground motion are compared to the forces
caused by the code specified loads. The design code considered is the National Electrical
Safety Code (NESC, 1993) which specifies wind and ice loads as the design loads in the

transverse and vertical directions.
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3.2 SEISMIC ANALYSIS OF TRANSMISSION TOWERS

Towers are the main supporting structural elements of a power transmission line.
Different kinds of transmission towers can be used depending on the line voltage, the spacing
between towers, and the clearance required above ground. The choice of a specific type of
towers will have a direct effect on the cost of the line. The main types of transmission towers
are wood poles, steel poles, steel latticed towers, and reinforced concrete poles.

Steel latticed towers are usually used for high voltage transmission lines where longer
spans are used and considerable height is necessary to provide ground clearance for the
conductors. The current analysis deals primarily with high voltage transmission lines with
steel latticed wide base towers. However, the main conclusions regarding cable
displacements and cable tensions are valid for lines with various voltage rating using other
types of towers.

Two typical examples of steel transmission towers are selected for the analysis. The
first tower (Tower I) has a total height of 41.6 m, a base width of 7.5 m and a weight of 11.1
tons. The dimensions of Tower I are shown in figure 3.1 (Lomas, 1993). The second tower
(Tower II) has a total height of 29.6 m, a base width of 7.1 m and a weight of 7.0 tons. The
shape of Tower I is shown in figure 3.2. All the base points of both towers are assumed to
be totally fixed at the foundation level. Maeno et al. (1984) showed that this assumption
resulted in frequencies of vibration that agreed with experimental results.

In this analysis, the tower members are modelled using truss elements. It was shown

by Kotsubo et al. (1983) that it is sufficient to model the tower using truss elements. They
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concluded that good accuracy in both the free and forced vibration responses can be achieved
by using plane truss elements to model the tower members.

A free vibration analysis is carried out to determine the first three transverse natural
frequencies and mode shapes of the two towers. The analysis is performed using the SAP IV
computer program which is a general purpose finite element program for the linear static and
dynamic analysis of structures. The first three frequencies of Tower I were found to be 1.8
Hz, 8.5 Hz, and 14.7 Hz. The first three mode shapes of this tower are shown in figure 3.3.
The first three transverse natural frequencies of Tower II were found to be 3.5 Hz, 12.8 Hz,
and 18.0 Hz. The mode shapes of Tower II are similar in shape to those of Tower I showed
in figure 3.3, which are the first three mode shapes of a cantilever.

The frequency response relationships of transmission Towers I and II are shown in
figures 3.4 and 3.5, respectively. The towers are subjected to a sinusoidal ground
acceleration with different frequencies and the maximum response of the point of cable
suspension (X) is plotted against the excitation frequency. The ground acceleration is scaled
to a peak value of 0.34 g to represent the city of Victoria in Canada according to the National
Building Code of Canada (NBCC, 1995). Damping ratio of the tower is assumed to be 2%
for all modes. Figures 3.4 and 3.5 show that the tower response to the transverse excitation
is mainly dominated by the first mode which agrees with the conclusions of Suzuki et al.
(1992).

The seismic analysis of a free standing tower is conducted using the PC-ANSR
computer program. The two towers are subjected to the horizontal and vertical components

of the six selected ground motion records listed in table 2.1 with different A/V ratios. The
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ground motion records are scaled to a peak ground acceleration of 0.34 g. The maximum
displacement of the cable suspension point (X) and the maximum internal forces in Tower I
members due to horizontal excitation are @m in tables 3.1 and 3.2, respectively for the case
of a free tower. The results of the seismic response of Tower II due to horizontal excitation
are shown in tables 3.3 and 3.4 for the case of a free tower.

The results of tables 3.1 to 3.4 indicate that the transverse component of ground
motion can cause significant internal forces in the transmission tower specially for Tower L.
For example, the maximum force in Tower I members is about 253.2 kN when subjected to
the horizontal component of the Monte Negro earthquake. For Tower II, the maximum force
is about 95.4 kN and it results from the Monte Negro earthquake as well. The maximum
internal forces in both towers were in the lower part of the tower leg for all the earthquake
ground motion records used in the analysis. The displacement of the cable suspension point
in Tower I is much larger than in Tower II. The maximum displacement in Tower I is 12.9
cm due to the Monte Negro earthquake, while the maximum displacement in Tower II is2.6
cm for the same earthquake.

The results of the seismic response of the two towers due to vertical excitation are
shown in tables 3.5 to 3.8. These tables indicate that both the vertical displacement of tower
points (tables 3.5 and 3.7) and the internal forces in tower members (tables 3.6 and 3.8) are
small and insignificant.

Figures 3.6 and 3.7 show the transverse displacement time history of the cable
suspension point due to the horizontal component of various earthquakes in Tower I and

Tower II, respectively. The fundamental frequency of vibration of this point is relatively high
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(1.8 Hz for Tower I and 3.5 Hz for Tower II) as compared to the frequencies of vibration of
the cable (0.16 Hz to 0.51 Hz for Cables I to III as shown in Chapter 2). This observation
suggests that the fundamental frequencies of the transmission tower and the cables are widely

separated.

3.3 SEISMIC RESPONSE OF TRANSMISSION LINES

To analyze the response of transmission lines during earthquakes, an intermediate span
of the line is selected for the analysis as shown in figure 3.8. The analysis of an end span
transmission line can be carried out in a similar way to this investigation. The analysis is
applied to the Cable-Tower I and Cable-Tower II systems. In this analysis the typical span
is chosen to be typically 400 m unless otherwise stated. The cable used in this analysis is
Cable I with EA = 55 x 10° N and mass / unit length = 22.23 N/m. Damping ratio of the cable
is selected as 1% while the damping ratio of the tower is selected to be 2%. Both values are
considered typical for transmission lines.

In the present chapter, it is assumed that the same ground motion component is
applied at all the base points of all the transmission towers. The effect of multiple support
excitation on the seismic response of transmission lines will be addressed in Chapter 4. Only
the effect of the transverse and vertical ground motion components on transmission lines are
taken into account. The longitudinal excitation has been shown earlier to have only a very
limited effect on cable vibration and cable tension and therefore, it is not considered in the

analysis.
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The PC-ANSR computer program is used in the dynamic analysis of the transmission
line. The time step is taken equal to 0.005 s which was found to be small enough to achieve
convergence of the solution. Each cable is divided into 32 finite elements. The number of
theses elements was established to accurately model the dynamic behaviour of the cable. The
tower is modelled by truss elements. The base points of the transmission tower are assumed
fixed at the foundation level.

The transmission lines response to transverse excitation are shown in tables 3.1 to 3.4.
The results are presented in terms of the maximum displacement of point (X) in the
transmission tower (figures 3.1 and 3.2), the maximum displacement of the cable mid-point,
the maximum force in the tower, and the maximum tension in the cable. Similar results are
presented for the vertical component of ground motion in tables 3.5 to 3.8. In tables 3.1 to
3.8, the response of a single cable with the ground motion applied directly at both ends is
compared to the response of the same cable in a cable-tower transmission line system.

The results of the analysis indicate that the transverse excitation can have a significant
effect on the cable vibration. Earthquakes with low A/V ratio such as the Mexico and the San
Fernando earthquakes, cause the largest displacement in the cable for both types of towers.
For example, the maximum transverse displacement in the cable mid-point is 209.8 cm due
to the Mexico earthquake.

The cable tension due to transverse excitation is insignificant as the maximum value
is only 2.7 kN which is small as compared to the value of the static tension due to its own
weight (37.1 kN). The tension in the cable is almost constant throughout the cable span.

The maximum internal force in tower members is 229.0 kN in tower I due to the Monte
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Negro earthquake. The maximum force occurred in the lower part of the tower leg. These
seismic forces in the tower will be compared later to the design forces of the tower due to
wind and ice loads.

In the vertical direction, the maximum cable displacement for Tower I can be as much
as 150.8 cm for the Mexico earthquake. The tower forces due to vertical excitation are
generally small and insignificant. However, The maximum cable tension due to vertical
ground motion may be significant. The tension in the cable resulting from the vertical
component of the Mexico earthquake is about 17.1 kN which represents 46% of the tension

in the cable due to its own weight.

3.3.1 Modelling of Transmission Lines for Seismic Analysis

The purpose of this section is to propose a simplified model for the transmission lines
in order to analyze their seismic response. In tables 3.1 to 3.8, the results of the analysis
performed on a single cable fixed at both ends are compared to those of a transmission line
system as shown in figure 3.8. The forces and displacement of a tower in a cable tower

system are compared to those of a free standing tower in tables 3.1 to 3.8.

3.3.1.1 Transverse excitation

The envelopes of the maximum cable displacement due to transverse excitation are
shown in figures 3.9 and 3.10 when using Tower I and Tower II, respectively. These figures
along with tables 3.1 and 3.3 show that the effect of the transmission tower on cable

vibrations is not significant. Earthquakes with low A/V ratio cause large displacement in the
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cable while the tower is moving as a rigid body. The reason for this is that the frequency
content of the records with low A/V ratio is much less than the tower's fundamental
frequency.

Earthquakes that have a strong effect on the tower such as the Monte Negro
earthquake, cause insignificant cable displacement due to the decoupling of the frequencies
of free vibration of the cable and the tower in the transverse direction (figures 3.9d and
3.10d).

By comparing the resulting forces in a free tower with the forces in the tower in a
transmission line system given in table 3.2 for Tower I, some differences are observed. The
maximum difference in internal forces is approximately 17% for the Imperial Valley
earthquake. For Tower II, the maximum difference in tower forces is much smaller as
indicated from table 3.4. The maximum cable tension due to transverse excitation is
insignificant and the change in cable tension is therefore insignificant. On the basis of these
results and observations, the intermediate spans of a transmission line can be modelled in the
transverse direction by separate cables fixed at both ends. This simplification yields excellent
results especially in cable displacement calculations. The tower forces calculated from a free
standing tower model are within a maximum difference of only 17% from the force in the
towers of a transmission line system. These observations agree with the conclusions of
Kotsubo et al. (1983) who found that the dynamic interaction between cables and towers is

weak and that the effect of cables on the natural frequencies of the tower may be neglected.
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3.3.1.2 Vertical excitation

The envelopes of the maximum cable displacement due to the vertical component of
ground motion are shown in figures 3.11 and 3.12 when using Toweri and Tower IL in the
analysis of the transmission line system, respectively. Tables 3.5 and 3.7 along with figures
3.11 and 3.12 show that the effect of the tower on the cable vibration due to vertical ground
motion is insignificant. The tower is very stiff in the vertical direction, and therefore it
transmits the ground motion without any change to the cable suspension point. Tables 3.6
and 3.8 show that the cable tension is not affected by the existence of the towers. Comparing
the force in the tower for the case of a free tower with the force in a tower in a transmission
line system indicates that the tower forces are unaffected by the interaction between the tower
and the cables in case of vertical excitation. A free standing tower is a good model to obtain

the forces in the tower due to vertical ground motion.

3.3.2 Effect of Cable Insulator on the Seismic Response of Transmission line

Cables are connected to transmission towers by insulators. The insulators are usually
designed to withstand extreme and sudden temperature changes, rain, smoke, dust, and
chemical fumes without chemical, deterioration, mechanical or electrical failure. Suspension
insulators are a class of insulators that is used widely for all type of transmission lines specially
high voltage lines. Under transverse ground motion, the insulators will swing in the out-of-
plane di;ection and thus affecting the cable vibration. However, under vertical excitation it
is expected that the cable vibrations will not be affected by the existence of the insulators.. In

this section, the effect of the insulators on cable vibration is analyzed.
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A porcelain suspension insulator is selected for the analysis with an average diameter
of 4.0 cm and a modulus of elasticity E = 10 MPa. Two different lengths are selected for the
insulator, 2.0 m to be used for high voltage transmission lines and 1.0 m for low voltage
transmission lines.

The transmission line model shown in figure 3.13 is used with Tower I in this analysis.
The only difference between this model and the model given in figure 3.8 is the existence of
the suspension insulator. The insulator is modelled by a linear truss element. The
transmission line is subjected to the horizontal and vertical components of the 1985 Mexico
and the 1971 San Fernando earthquakes. These two specific earthquakes are selected
because they cause the maximum response in the transmission line.

The maximum displacements of the cable as well as the maximum tension in the cable
are presented in tables 3.9 and 3.10 for transverse and vertical excitations, respectively.
These tables show that for transverse excitation, the cable tension is not affected significantly
by the presence of the suspension insulators. For vertical excitation, the presence of the
suspension insulator does not have any effect on the cable displacement or tension.

Figures 3.14 and 3.15 show the displacement time history of the cable mid-point due
to the horizontal component of the Mexico and the San Fernando earthquakes, respectively.
It is noted that the displacement time history of the cable mid-point is affected by the presence
of the insulators. The main reason for this is the swinging motion of the insulator. This effect
increases with the increase in the insulator length. However, the maximum value of the cable

displacement as shown in figures 3.14 and 3.15 and table 3.9 is not affected significantly by
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the insulator. In the vertical direction, the displacement of the cable is unaffected by the

presence of the insulator as shown in figure 3.16.

3.4 COMPARISON BETWEEN WIND AND EARTHQUAKE EFFECTS

Transmission lines are designed in the transverse and vertical directions for the dead
load in addition to wind and ice loads (Kravitz, 1982, for example). None of the codes used
to design transmission lines contains seismic provisions. The relative importance of wind /
ice and earthquake loads in transmission line design is a complex issue. The relative
importance of loads in design depends on the wind and seismic zones where the transmission
line is to be constructed.

In this section an attempt is made to compare between the design forces in the
transmission towers due to wind and earthquake loads. It is proposed that in seismic analysis
of transmission lines, the main concern is the large cable displacement which may cause the
cables to touch each other. In this section, line forces due to earthquake loads will be

compared with the design code provisions for wind and ice loads.

3.4.1 Code Specifications

Some of the specifications available for the design of transmission lines include the
"Guidelines for Transmission Line Structural Loading " prepared by the Committee on
Electrical Transmission Structures of the Structural Division of the American Society of Civil
Engineers (ASCE, 1991) and the State of the art report * Wind Loading and Wind-Induced

Structural Response" by the Committee on Wind Effects (1987). In this analysis the design
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procedure for transmission lines of the "National Electrical Safety Code ", (NESC, 1993) is
used. The NESC code considers the dead load and the combination of ice and wind loads for
the design of transmission lines in the vertical and transversé. directions. Loads from

conductor breakage are included in the design in the longitudinal direction.

3.4.2 Design Procedure

According to the NESC (1993) code, two critical wind loading conditions should be
considered in the vertical and transverse directions of transmission lines. The first load
condition is the combined wind and ice loading on transmission lines (Case I). The second
load condition is the extreme wind loading on the transmission line system without ice (Case
).

For the combined wind and ice loads, the United States is divided into three districts
according to the ice conditions. Table 3.11 shows the minimum radial ice thicknesses and the
horizontal wind pressure to be used in load calculation for each district. According to this
table, the country is divided into three districts of heavy, medium, and light ice loadings as
shown in figure 3.17 (NESC, 1993). The design loads on cables are increased by the factors
given in table 3.11 to take into consideration the wind and ice loads. The values of extreme
wind pressure (Case IT) are based on the 50 year isotachs. The contours of extreme wind
speeds in miles per hour are shown in figure 3.18 (NESC, 1993). These values of wind

speeds can be converted into wind pressures using the following relations (NESC, 1993):
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pressure in Ib/ft? 0.00256 (Vagear)’

0.613 (Vo)? G.D

or pressure in Pascals

The vertical loads on the towers include their dead Qeight, the weight of cables,
insulators, and ice on cable. Transverse loading on transmission towers consists of two
components: transverse loading from the conductor and transverse loading from the tower
itself The transverse loading from the conductor is calculated according to table 3.11 for all
the conductors carried by the transmission tower if their number is less than 10. The
transverse loading on the tower itself is calculated using the wind pressure values in table 3.11
acting on the tower face without ice covering and applying a shape factor of 2.0 for
cylindrical members and 3.2 for flat surfaced members (NESC, 1993). The total load,
however, should not exceed the load which would occur on a solid structure with the same
outside dimensions.

Overload capacity factors are used in the design of transmission lines for the case of
combined wind and ice loading as an added design safety. Values of these factors depend on
the kind of load under consideration and the grade of construction. The overload capacity
factors for metal towers specified by the NESC (1993) are listed in table 3.12. For the
extreme wind loading case, this factor is 1.0 for the supporting towers. In the current analysis
the forces due to earthquake ground motion will be compared to the forces due to the code
specified loads without using the overload capacity factors. This is because earthquakes

induced forces may be subjected to overload capacity factors as well.
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3.4.3 Evaluation of Combined Wind and Ice Loading (Case I)
Wind loading is calculated for the transmission line system shown in figure 3.8 using
Tower L. The loads on the tower are divided into loads from the conductors and loads from

the tower itself The total loads are the summation of both cases

3.4.3.1 Loads from the conductors

The loads are calculated for a range of different parameters to check the effect of their
variation on the maximum forces in the tower members. The cable diameter is varied from
20cmto _3.5 cm and the typical span of the line is taken to range from 300 m to 500 m. The
number of cables hanging on an intermediate tower is 6 from each side. Internal forces in
tower members are shown in table 3.13 for different loading districts. As expected, the
maximum internal forces are in the heavy ice loading district. In all loading combinations, the
maximum force resulted in the lower part of the tower leg.

From the maximum forces in the medium and heavy ice loading districts, the span of
the line has a more substantial effect on the forces than the cable diameter. However, in the
light ice loading district both the cable diameter and the line span have effects of the same

order of magnitude on the forces in the transmission tower members.

3.4.3.2 Loads from the tower itself
The load on the tower face is calculated for a latticed steel tower with flat surface
members which means that the shape factor equals to 3.2 (NESC, 1993). To calculate the

load for a general tower, the shape of the tower side face is assumed to be triangular with
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equals to 41.6 m and a variable base width and solidity ratio. The base width is varied from
7.5 m which represents a square base to 6.5 m, while the solidity ratio is varied from 0.05 to
0.20. Values of the maximum forces in tower members are shown in table 3.14 for different
ice loading districts.

Comparing tables 3.13 and 3.14 shows that in the light ice loading district, both the
wind on the cables and the wind on the tower produce forces in the tower members of the
same order of magnitude. However, in the medium and heavy ice loading districts, the wind
on cables produces forces in the tower members that are much larger than the wind on the
tower itself. The reason is that according to the NESC (1993) the ice covering is considered

only on the cables and not on the tower itself.

3.4.4 Evaluation of Extreme Wind Loading (Case II)

On the map shown in figure 3.18, the extreme wind speed in each zone in the United
States is indicated. The minimum value of wind pressure using equation (3.1) is 0.60 kPa in
the Los Angeles area and the maximum value is 1.48 kPa in the south-east of the United
States. The maximum values of forces in tower members due to an extreme wind pressure
of 0.60 kPa are shown in tables 3.15 and 3.16 due to wind on the cables and on the tower,
respectively. Since the problem under consideration is a linear problem, then for any value
of wind pressure higher than 0.60 kPa, the internal forces in tower members are linearly

proportional to the value of wind pressure.
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3.4.5 Numerical Example

A numerical example is chosen to compare between the wind and earthquake effects
on transmission lines. The base width is taken equal to 75 m to represent a tower with a
square base and the solidity ratio is chosen equal to 0.15 which is a reasonable value for
transmission towers. Two values of cable diameters are selected: 3.5 cm and 2.0 cm to
represent heavy cables and light cables, respectively. The cable span is varied from 300 m to
500 m.

For seismic analysis, the Imperial Valley earthquake is used because it produces the
largest forces in tower members next only to the Monte Negro earthquake as shown
previously in table 3.2 This event has the advantage of being a California earthquake and
represents a more realistic earthquake loading for towers in the California area.

The horizontal component of the Imperial Valley earthquake has a peak ground
acceleration of 0.35 g. In the analysis, the earthquake is used once without scaling, then it
is scaled to peak ground accelerations of 0.2 g and 0.5 g to cover a range of possible
earthquakes. The maximum forces in tower members due to the Imperial Valley earthquake
for various span lengths of the transmission line are given in tables 3.17 and 3.18 for cable
diameter equal to 3.5 cm and 2.0 cm, respectively. From the forces shown in tables 3.17 and
3.18, it is observed that the change in the tower force due to the difference in line span and
cable diameter is insignificant.

A comparison between the maximum forces in tower members due to different load
combinations for cable diameter of 3.5 cm and 2.0 cm, is shown in figures 3.19 and 3.20,

respectively. Two values of extreme wind pressure are used in this analysis, 0.60 kPa and
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0.78 kPa (13 Ib/fi® and 16 Ib/f?, respectively). In this comparison, the overload capacity
factor for the case of combined wind and ice loading is not used. The earthquake load used
in this figures is the Imperial Valley earthquake without scaling.

From the data shown in figures 3.19 and 3.20, it is observed that the code specified
loads are not always the critical loads for the design of transmission towers and that the forces
due to earthquake loading may exceed those due to wmd loading. For smaller cable
diameters and smaller line spans, the earthquake loading becomes more critical than the wind
loading. In the light and medium ice loading districts for the case of combined wind and ice
loading, the earthquake loading may become more significant than the wind loading.

Consider a specific example for a transmission line in the area of Los Angeles where
the extreme wind pressure is 0.60 kPa and the area is in the light ice loading district. For the
case of a small cable diameter (2.0 cm), the force induced in the tower due to wind loading

is smaller than the force induced in the tower by the Imperial Valley earthquake.

3.5 SUMMARY

In this chapter, the dynamic behaviour of transmission towers is analyzed, then their
seismic response is evaluated. The seismic behaviour of transmission lines is evaluated and
a simplified model for the analysis of the line when subjected to earthquake ground motion
is presented. The forces in tower members due to earthquake loading are compared to the

forces caused by the design loads in the National Electrical Safety Code (NESC, 1993).
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The following conclusions are arrived at from the analysis:

The displacement of tower points due to transverse excitation is governed by the first
mode.

The transverse excitation can have a significant effect on the tower forces, while the
vertical excitation does not produce any significant forces in tower members.

The contribution of the towers to the seismic performance of transmission lines can
be neglected. For simplicity, the line can be modelled by cables fixed at both ends.
The forces developed in tower members due to seismic loading can exceed the loads
developed by wind and ice loads and extreme wind loads particularly for smaller cable

diameters and for shorter spans.
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Table 3.1 Maximum displacement response of transmission lines with Tower I due to

transverse excitation
Tower displacement Cable mid-point displacement
Event (cm) (cm)
Free tower  Transmission line Single cable Transmission line

Mexico 6.0 5.7 205.9 209.8

San Fernando 52 4.6 95.7 97.9
Monte Negro 12.9 11.6 27.5 33.7
Imperial Valley 9.5 7.8 454 47.1
Parkfield 2.1 20 8.7 10.9

Lytle Creek 48 42 4.6 93

Table 3.2 Maximum forces of transmission lines with Tower I due to transverse excitation

M

Tower internal force Cable tension
Event (kN) (kN)
Free tower Transmission line Single cable Transmission line

Mexico 118.3 113.4 24 2.7
San Fernando 101.9 88.8 1.6 1.9
Monte Negro 253.2 229.0 04 1.6
Imperial Valley 186.9 155.4 0.3 1.4
Parkfield 41.0 39.7 03 0.4

Lytle Creek 92.1 85.2 0.2 0.6



83

Table 3.3 Maximum displacement response of transmission lines with Tower II due to
transverse excitation

#

Tower displacement Cable mid-point displacement

Event (cm) (cm)

Free tower Transmission line  Single cable Transmission line
Mexico 20 0.7 205.9 207.2
San Fernando 0.7 2.0 95.7 96.4
Monte Negro 26 2.6 27.5 278
Imperial Valley 1.4 1.3 45.4 45.6
Parkfield 1.6 1.6 8.7 9.0

Lytle Creek 1.9 42 4.6 4.7

Table 3.4 Maximum forces of transmission lines with Tower II due to transverse excitation

Tower internal force Cable tension
Event (kN) (kN)
Free tower Transmission line  Single cable Transmission line

Mexico 234 248 24 24
San Fernando 72.0 73.2 1.6 1.7
Monte Negro 95.4 94.8 0.4 0.6
Imperial Valley 424 422 0.3 04
Parkfield 65.4 65.4 0.3 04
Lytle Creek 54.6 54.8 0.2 0.4
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Table 3.5 Maximum displacement response of transmission lines with Tower I due to
vertical excitation

———— e

Tower displacement Cable mid-point displacement
Event (cm) (cm)
Free tower Transmission line  Single cable Transmission line

Mexico 0.2 0.3 150.9 150.8

San Fernando 0.2 03 315 31.7
Monte Negro 0.2 0.3 14.6 14.9
Imperial Valley 0.2 0.3 8.5 8.8
Parkfield 0.2 03 7.4 7.6

Lytle Creek 0.2 0.3 3.9 42

Table 3.6 Maximum forces of transmission lines with Tower I due to vertical excitation

Tower internal force Cable tension
Event (kN) (kN)
Free tower Transmission line  Single cable Transmission line
Mexico 6.0 10.7 17.1 17.1
San Fernando 6.3 6.7 44 44
Monte Negro 5.8 10.1 21 2.1
Imperial Valley 8.4 12.8 1.7 1.7
Parkfield 6.4 10.8 1.1 1.1

Lytle Creek 7.5 11.8 0.7 0.7
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Table 3.7 Maximum displacement response of transmission lines with Tower II due to
vertical excitation

W
Tower displacement Cable mid-point displacement
Event (cm) (cm)

Freetower Transmissionline  Single cable Transmission line

Mexico 0.1 0.1 1509 150.9
San Fernando 0.1 0.1 315 315
Monte Negro 0.1 0.1 14.6 14.7
Imperial Valley 0.1 0.1 85 8.6
Parkfield 0.1 0.1 7.4 74

Lytle Creek 0.1 0.1 39 4.0

Table 3.8 Maximum forces of transmission lines with Tower II due to vertical excitation

Tower internal force Cable tension
Event (kN) (kN)
Freetower Transmissionline  Single cable Transmission line

Mexico 3.1 3.7 17.1 17.1
San Fernando 2.6 3.8 44 44
Monte Negro 2.1 3 2.1 2.1
Imperial Valley 43 6.1 1.7 1.7
Parkfield 29 4.4 1.1 1.1

Lﬁle Creek 3.1 3.9 0.7 0.7
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Table 3.11 Ice and wind loading factors (NESC, 1993)

W

Loading districts
(for use in the case of Extreme wind
combined wind and ice loading) loading
Heavy Medium Light

F{adlal thickness of 12.5 6.5 0.0 0.0
ice (mm)
Horizontal wind
oressure (Pa) 190 190 430 see figure 3.18
Additional wind 4.4 25 0.7 0.0

ressure (N/m

Table 3.12 Overload capacity factors for metal towers (NESC, 1993)

Overload capacity factors

Grade B construction Grade C construction

Vertical strength 1.50 1.50

Transverse strength (wind load) 2.50 2.20
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Table 3.13 Maximum forces in tower members in kN due to wind on cables (Case I)

(a) Light loading district
.
Cable diameter Cable span (m)
(cm)

300 400 500
20 40.8 544 67.9
2.5 51.0 67.9 849
3.0 61.0 81.4 101.9

3.5 71.2 95.0 118.9

———_—__————_——_—_'_——__—-——————-—————_—_——__-—__

(b) Medium loading district

Cable diameter Cable span (m)
(cm) 300 400 500
20 63.2 84.5 105.4
25 73.0 974 121.8
3.0 83.1 110.8 138.3
3.5 93.0 123.8 154.8
(c) Heavy loading district
Cable diameter Cable span (m)
(cm) 300 400 500
2.0 92.7 123.1 154.2
25 103.3 137.3 172.2
3.0 113.8 152.0 189.7

3.5 124.6 166.2 207.7
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Table 3.14 Maximum forces in tower members in kN due to wind on tower (Case I)

(a) Light loading district

Tower base width Solidity ratio
(m)
0.05 0.10 0.15 0.20
6.5 15.4 30.9 46.3 61.7
7.0 16.6 33.2 499 66.5
1.5 17.8 35.6 53.4 71.2

(b) Medium and heavy loading district

Tower base width Solidity ratio
(m)
0.05 0.10 0.15 0.20
6.5 6.8 13.6 204 27.2
7.0 74 14.8 222 29.6

7.5 7.9 15.8 23.7 31.6
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Table 3.15 Maximum forces in tower members in kN due to wind pressure of 0.60 kPa on

cables (Case II)
Cable diameter Cable span (m)
(cm) 300 400 500
20 58.6 78.1 97.5
25 73.2 97.5 121.9
3.0 87.7 117.0 146.3
3.5 102.3 136.5 170.7

3 e -

Table 3.16 Maximum forces in tower members in kN due to wind pressure of 0.60 kPa on

tower (Case II)
Tower base width Solidity ratio
(m) 0.05 0.10 0.15 0.20
6.5 22.2 44.6 66.9 89.1
7.0 24.0 48.0 72.1 96.1

7.5 25.7 51.4 77.1 102.8

——_—__—_———————:___-—_—_—
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Table 3.17 Maximum forces in tower members in kN due to the 1940 Imperial Valley

earthquake (cable diameter = 3.5 cm)

W

Peak ground Cable span (m)

acceleration
®) 300 400 500
0.20 113.0 111.2 110.1
0.35 1954 193.6 191.6
0.50 282.1 277.5 274.6

Table 3.18 Maximum forces in tower members in kN due to the 1940 Imperial Valley

earthquake (cable diameter = 2.0 cm)

_—____—_———_=——————_——-——

Peak ground Cable span (m)
acceleration
(8) 300 400 500
0.20 115.0 112.7 111.2
0.35 197.8 196.5 193.2
0.50 284.0 279.1 277.2
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CHAPTER 4

MULTIPLE SUPPORT EXCITATION OF TRANSMISSION LINES

4.1 GENERAL

Transmission lines extend for long distances over different site conditions in areas of
high seismicity. One major difficulty that arises during the seismic analysis of transmission
line is its long span. Because of the long distances between transmission towers, they may
be subjected to different input ground motions.

In the dynamic analysis of long span structures, multiple support excitation may be
accounted for using several approaches. One approach is to use the travelling wave method
where the input ground motions at all the supports are similar but with a phase shift that
depends on the velocity of the seismic wave and the distance between supports. The second
approach is the use of spatially correlated ground motions. This approach takes into account
the wave travel effect as well as the incoherency of the seismic waves.

Several problems arise during the study of multiple support excitation of structures.
Most of the commonly available computer programs for seismic analysis of structures do not
allow the introduction of multiple acceleration time histories. The use of the diéplacement
time history of the ground motion instead of the acceleration time history may be more

appropriate for long span structures as suggested by Fenves (1992).
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In this chapter, ground displacement time histories for vertical and horizontal ground
motions are generated. Both the incoherency of seismic waves and the wave travel effects
are accounted for. Various coherency models and seismic wave velocities are considered in
the analysis. The transmission line is subjected to the. generated ground motions. The
equations of motion for the structure due to the multiple support excitation are derived. A
simplified approach is described to obtain the response of the transmission line system to
multiple support excitation.

The results of the analysis are presented in the form of cable displacement, cable
tension, and tower internal forces. The system response using uniform support excitation is
compared with the response using multiple support excitation which is a more realistic
assumption. The effects of wave propagation velocity and coherency model on the response

are also investigated.

4.2 GENERATION OF ARTIFICIAL GROUND DISPLACEMENT

The ground motion travels from the earthquake epicentre to a specific site at a speed
that varies between 250 and 2000 m/s depending on the type of rock or soil through which
the seismic waves travel. During this travel, the amplitude and the frequency of the seismic
waves are affected. For short span structures, the input motion is assumed the same at all
supports. However, this assumption is not true for long span structures such as transmission
lines.

The variation in seismic ground motion affecting different supports of a long span

structure is influenced by three main factors. The first factor is the wave travel effect that
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results from the finite speed of the seismic waves. The second factor is the incoherency effect
that results from the reflection and refraction of seismic waves. The third factor is the local
site effect. The first two factors are accounted for in this analysis while the site effect is
beyond the scope of this research.

To account for the variation in seismic ground motion, a seismological approach based
on the seismic wave propagation from the epicentre to the supporting structure may be used.
Alternatively, a stochastic approach based on random vibration analysis may be adopted. The
ground motion cross spectral density S, (w) betweer: an arbitrary point and a station at a

distance r apart is given by:

S(w) = S(w) R(r,w) (4.1)

where, S (w) is the power spectral density of the ground displacement, and R (r, ®) is the
coherency function.
To define the ground motion at a specific site, the power spectral density function and the

coherency function should be defined.

4.2.1 Power Spectral Density of Ground Motion

The power spectral density of a ground motion is a distinctive characteristic of that
ground motion as it is assumed constant at any location on the ground surface. An
appropriate power spectrum density function that is commonly used by researchers is that
presented by Clough and Penzien (1975) with the appropriate parameters to fit different kinds

of soil. The Clough-Penzien power spectral density for ground displacement is given as:
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1+4¢E2 (2 (Ly
« (Df
S(w) = §, g 4.2)
[1- (PP +4E2 (27 [1-(2PP +4E (=)
wg 0)8 mf (of

where S, is a scale factor; @ ,, § , are the first ground filter parameters. The second ground
filter parameters are @ ;, £ . Values of different parameters depend on the actual earthquake
data, on the type of the soil and on the component of the earthquake considered in the
analysis. For the horizontal component of ground motion, Der Kiureghian and Neuenhofer
(1991) provided values for the filter parameters for different soil types as given in table 4.1.
The power spectral density function for the medium soil is used to generate the corresponding
ground displacement. The medium soil is used because the predominant frequency of the
ground motion is near the range of significant cable frequencies. The shape of the power
spectral density of the ground displacement for the horizontal component of the earthquake
is shown in figure 4.1. In this analysis S, is taken equal to 0.01 m?/s’.

The power spectral density function of the vertical component of ground motion is
different from that of the horizontal component. Limited research was done to determine the
shape of this function. Elghadamsi et al. (1988) and Hao et al. (1989) used the Clough-
Penzien power spectrum to represent the vertical component of ground motion with the
appropriate filter parameters.

Based on the results of about 120 vertical accelerograms, Elghadamsi et al. (1988)
estimated the average value of the filter parameters for different site conditions as presented

in table 4.2. Based on this table, the following values of filter parameters are used in the
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present analysis: w, = 25.0 rad/s, § = 0.46, & =0.1 @,, and & = §;. The value of S,
is taken 0.0075 m?/s® to represent % its value in the horizontal direction. The shape of the
power spectral density function of the vertical component of the earthquake is shown in figure

42

4.2.2 Coherency Models

Different coherency models were developed based on actual sets of earthquake
records. From the available data in the literature, two different coherency models are used
in this analysis. The first model was used by Hindy and Novak (1980), and will be denoted
asmodel I The second model was developed by Harichandran and Vanmarcke (1986), and
will be denoted to as model II. The choice of these two models is based on their wide use in
seismic response of long span structures [e.g., Ramadan and Novak (1992) and Zerva
(1990)]. The purpose of using two different coherency models in the analysis is to investigate
the effect of choosing a specific coherency model on the response of transmission lines.

Model I is a simplified function that works well in other random fields and is given by:

R(r,0) = exp[-c(ﬂ%m 3)

where, c is a constant that depends on the epicentral distance and the magnitude of the
earthquake; V is seismic wave propagation velocity; and vy is a constant. The parameters Y
= 1.0 and ¢ = % are used as suggested by Hindy and Novak (1980). The wave propagation
velocity is varied between 250 m/s and 2000 m/s to cover a wide range of possible wave

propagation velocities.



121

This model was developed in 1980 by Hindy and Novak and was later found (Novak,

1987) to be in good agreement with the SMART-1 data. The change in the coherency with

the frequency for various wave propagation velocities is shown in figure 4.3. It appears from

this figure that at low propagation velocities (V = 250 m/s), the coherency at frequencies
greater than 5.0 rad/s is almost zero which represent uncorrelated ground motions.

Model II was developed by Harichandran and Vanmarcke (1986) based on the

analysis of the recorded data of Event 20 of the SMART-1 array. The coherency function

is given by:
2r
R(r, = A -—— (1 -A+CA +
(r,w) exp [ 7 e(w)z( ¢ A)l s
(1 - A)exp [ B(w) (1 - A+ CA)
where,
0(w) = k[1 + (=01 4.5)

0

The values of the constants were determined based on Event 20 as follows:

A = 0736 ¢ = 0.147
k = 5210m f, = 1.09Hz
b = 278

The coherency function of model I1 is represented by the solid line in figure 4.4.
There are some differences between model I and model I. Model I represents fully
correlated ground motions at very low frequencies (w = 0), then the correlation decays rapidly

at higher frequencies. Meanwhile, model II represents records that are not fully correlated
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at low frequencies, however, the decrease in coherency with increasing frequency is slower
than model I This means that the variability in earthquake time histories generated by model
Iisdueto the higher frequency components. Meanwhile, the variability in the time histories
generated by model II is due to the lower frequency components.

The coherency function for the vertical component of ground motion can be
considered similar to that of the horizontal component with different values for the constants.
In the current analysis, the same coherency models are used for the horizontal and vertical
components of ground motion for two reasons. First, the data available on the vertical
component of ground motion in the literature is very limited. Second, the objective of this
analysis is to evaluate the importance of considering multiple support excitation in the seismic
analysis of transmission lines. This objective can be achieved by using the same coherency

models.

4.2.3 Method for Generating Ground Displacement
Ramadan and Novak (1993) presented an asymptotically accurate technique to
generate stationary random ground displacement. Considering only the incoherency effect

between two or more stations, the generated ground displacement is given by:

N M
u) = Y Y a [ S(w,) 80 cos (wy t + by + nf Iy +

k=0 i=1 ; 4.6)

‘/S(w’ik) Aw cos (o, t + ¢/ + “; 1
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where,
r is the distance from an arbitrary point to the station;
., and &', are two random phase angles uniformly distributed between 0 and 27;
w;,, O, are two circular frequencies given by w;, =i (Aw) - k (Aw) /N, and w;,
=i(Aw)-(k-%)(Aw)/N,i=1,2,..... ,Mwith Aw =,/ M;
M is the number of frequencies in the analysis. It is taken equal to 200;
a, k=01,...... , N are constants that will be defined later;
L,is a frequency dependent characteristic length.

Ramadan and Novak (1993) presented the concept of the correlation length /, as:

I, = fR(r,w) dr 4.7

0

The correlation length is a frequency dependent length and it is used in evaluating the
displacement time history of the ground motion through the relation L; =« l,. The constant
"o" depends on the distance over which the ground motion is simulated and it is assumed
equal to 3.0 in this analysis.

To use equation (4.6) to generate ground motion records, the coherency of the

simulated motion should be given as a Fourier series in the form:

N

R(r,w) = Y, a?2cos (ELEE) 4.8)
k=0 o

The accuracy of the simulated motion depends on the number of Fourier terms used "N".
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However, for N =3 to 10 enough accuracy can be achieved. For the first coherency model,

the correlation length /,, equals to:

w

L = = (4.9)
cw

To satisfy the target coherency function, the factors a, in model I are defined by

Ramadan and Novak (1993) as:
L, )
al = 2‘L [ R dr = —(1-¢™) (4.10)
w L

L
2 ) S nkr 21 -(-1)*e™]
I; l'( R(r,(l)) CcoS (T) dr

o o[l + (—“a—k)zl

]
~
]

4.11)

For coherency model II, the correlation length /, is chosen by Ramadan and Novak

(1993) as:
B(w) ¢
= 412
® 2(1-A-CA) (4.12)
Therefore, the Fourier coefficients a, are given by:
- - (e
W = LrA(-e) (1-4) (Cl c 7)) @.13)
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2 2 (A[l- (D e

a; , (L-A [ -(CDe,

“ 1+ (Fky Cr1+ (ZXy )
o al

(4.14)

Figure 4.4 shows the coherency function of model II, both the target coherency
defined by equation (4.4) and the simulated coherency using equation (4.8) with the
coefficients given by equations (4.13) and (4.14), for value of N = 10. The accuracy of the
method developed by Ramadan and Novak is demonstrated.

The ground displacement generated by equation (4.6) is developed using a stationary
random process. The nonstationary characteristics of ground motion are introduced by
imposing a suitable time function on the ground displacement. In this research, for simplicity,

a half sine wave is used. The nonstationary ground displacement u,(t) is given by:

u_(t) = ut) sin (1‘T—‘) (4.15)

where T is the duration of the generated ground displacement which is taken equal to 40 s in

this analysis.

4.2.4 Wave Travel Effect
The phase difference due to wave travel can be accounted for by introducing a time
lag in equation (4.6). The time lag T between any two stations is givenby T =r / V wherer

is the separation distance between the two stations and V is the wave velocity in the same
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direction. Therefore, equation (4.6) can be modified to become:

N

u(t) =Y i a [ 1/5(0’":) Aw ¢os (o, (t -7) + &, + n[ll( L)

k=0 i1 i (4.16)

+ S(fy) Aw cos {ay (t - 7T) + e+ nllf IH)

4.2.5 Generated Ground Displacement

The Clough-Penzien power spectrum for the horizontal and vertical components of
ground motion shown in figures 4.1 and 4.2, are used to generate the ground displacement.
The records are generated at two locations at distances of zero and 400 m, which is the
typical span of the line. Four appropriate wave propagation velocities are used in the analysis:
2000, 1000, 500, and 250 m/s, to cover a wide range of expected wave propagation
velocities. Model I and model II for the coherency are used in the analysis.

The generated horizontal ground displacements are shown in figures 4.5 through 4.8
for different assumptions and different coherency models. The generated vertical ground
displacements are shown in figures 4.9 through 4.12 for different assumptions and different
coherency models. Figures 4.5¢c, 4.5d, 4.9c, 4.9d show that for model I, the two generated
records, 400 m apart, are well correlated at high velocities, 1000 m/s and 2000 m/s. On the
other hand, at the low velocity of 250 m/s, the generated ground displacements are almost
uncorrelated. Itis also clear from figures 4.7 and 4.11 that using model II results in a ground

motion that is not coherent at both stations.
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4.3 ANALYSIS APPROACH

Multiple support excitation of long span structures is a complex problem. Most
commonly available computer programs for the seismic analysis of structures do not allow
more than one acceleration or displacement time histories as input data. This section is

devoted to presenting different techniques to solve this problem.

4.3.1 Equations of Motion

The equation of motion of a structure subjected to seismic ground motion is in the
form of equation (2.1). Differentiating between the response degrees of freedom denoted by
"s" and the degrees of freedom where the ground motion is applied (ground degrees of

freedom) denoted by "g", the following matrix equation is obtained:
Mss Msg l.is: l'ls u, 0
R o+ = 4.17)
M, M| |5 u, u, 0

The equation defining the response degrees of freedom is given by:

Css ng
CSS CSB

Kss ng
KSS KSS

Mii+C1‘1+Ku=-Msgii8—Cﬁ—Ku (4.18)

sS S ss s sS 8 sg B sg B

The solution of equation (4.18) depends on how the earthquake is defined in the right-
hand side of the equation. The ground motion can be introduced in the form of either an
acceleration or a displacement time history. Each method has its own advantages and

disadvantages.
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If the support acceleration is defined, then the total displacement u, is separated into
two parts, the dynamic displacement u,, and the pseudo-static displacement u,,. The dynamic
part of the displacement exists even if the structure is subjected to similar ground motions at
all supports, while the pseudo-static displacement exists because of the differential movements

between different supports of the structure. The total displacement is then given by:
u, uds ups
= + (4.19)
Ug Ugg Upg
where uy, =0.0

Using equations (4.18) and (4.19) and removing all the time dependent terms, the

static equilibrium equations are obtained:

Ksu, = -K,u, (4.20)

!
|
~
=]

u. = -K 'K_u

ps ss sg P8 sg P8 (4.21)

Finally, considering a lumped mass matrix and a Rayleigh damping, and making use

of equations (4.19) to (4.21), equation (4.18) can be reduced to:

Mss i'ids + Css I:lds + Kss uds =~ Mss ng ﬁpg (4.22)

The generated support acceleration time histories are introduced in equation (4.22).

However, the use of this equation is difficult because it involves matrix partitioning and
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matrix inversion. Moreover, for a nonlinear system, where the stiffness changes after every

time step, the whole matrix operations should be carried out after every stiffness change.
The second possibility is to specify thé 'support displacement time histories. Starting

with equation (4.18) and assuming a diagonal mass matrix and a stiffness proportional

Rayleigh damping, the following equation is obtained:

M,ua, + C,u + K u = -K,u (4.23)

ss s sg B

Considering the initial conditions for the dynamic displacement to be zero, the initial

conditions for the total displacement are given by:

u (0)

u (0)

R, ug(O)
(4.24)

R,, 1,(0)

Equation (4.23) is applicable in the analysis of nonlinear systems. Defining support
displacement instead of support acceleration is more appropriate for long span structures.
However, the problem remains that most of the commonly used computer programs do not
allow the specification of different displacement time histories at the different supports of the

long span structures.

4.3.2 Simplified Approach for the Analysis
Fenves (1992) proposed a simplified technique for replacing the different support
displacement by dynamic forces. The technique is based on adding stiff springs at the

supports in the direction of the specified support displacement. A dynamic load, equal to the
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spring stiffness multiplied by the support displacement, is then applied in the direction of each
support displacement as shown in figure 4.13 for horizontal ground motion. If the spring is
stiff enough, the displacement at the support point should be equal to the éound
displacement time history. This approach is presented by Ghobarah et al. (1996).

To verify the accuracy of the simplified method, an example is solved for cable I using
the data given in Chapter 2. The cable is fixed at both ends and subjected to a horizontal and
a vertical sine-shaped ground motion. The response of the cable to a uniform excitation is
evaluated using both the acceleration time history and the simplified approach. The ground
motion has a frequency of 1.0 Hz and an amplitude of 0.3 g. The transverse displacement
time history of the cable mid-point due to transverse ground motion is shown in figure 4.14.
In figure 4.15, the vertical displacement time history of the cable mid-point due to vertical
ground motion is plotted. Both figures show complete agreement between the simplified
approach and the case of acceleration time history specified as uniform excitation. This is

expected since the simplified approach is an exact solution.

4.4 RESPONSE OF TRANSMISSION LINES TO TRANSVERSE GROUND
MOTION

To analyze the response of transmission lines to transverse ground motion, the model
shown in figure 3.8 for the transmission line is used in the analysis. In this model, the typical
span between transmission towers is taken 400 m. The cable used is Cable I with the

properties given in Chapter 2.
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The transmission line is subjected to the artificially generated ground motions (figures
4.5 through 4.8). The supports of the first tower are subjected to the generated ground
displacement at zero m, while the supports of the second tower are subjected to the generated
ground displacement at 400 m. Four different wave propagation velocities are considered in
the analysis 250, 500, 1000, and 2000 m/s. The effect of the coherency model (model I and
model II) is also studied.

The results of the analysis are shown in figures 4.16 to 4.22. Figures 4.16 to 4.19
show the envelopes of the peak cable displacement of the top cable in figure 3.8 using
different coherency models and different assumptions in generating the ground motion.
Figures 4.20 through 4.22 show the displacement time history of the cable mid-point using

different assumptions to generate the ground motion records.

4.4.1 Transverse Cable Displacement

Figure 4.16 shows the envelopes of maximum total cable displacement considering
the incoherency effect only. The envelopes of maximum cable displacement for the case of
ground motion with wave travel effect only are plotted in figure 4.17. Both the incoherency
and wave travel effects are included in the analysis of maximum cable displacement shown in
figures 4.18 and 4.19 using model I and model II for the coherency, respectively.

It is evident from these figures that for most of the cases of input ground motion
considered, the assumption of uniform ground motion at all supports (V = « for model I) does
not represent the most critical case for cable displacement. Considering the incoherency

effect only, for example, the total displacement at the cable mid span equals to 87.9 cm for
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uniform ground motion, while for multiple support excitation using model I with a wave
propagation velocity of V = 500 m/s the response equals to 95.7 cm. The niagniﬁcation at
% span point is larger for this case as the response increases from 58.2 ¢m for uniform ground
moﬁc;n to 82.8 cm for V = 500 m/s.

The same conclusion was arrived at by Abdel-Ghaffar and Stringfellow (1984a and
b) and by Dumanogiu and Severn (1987) in their analysis of seismic behaviour of suspension
bridges and by Rao and Iyengar (1991) in their study of the seismic behaviour of long span
cables. The reason is that the antisymmetric modes are not excited by the uniform excitation
case. Tt should be noted that figures 4.18 and 4.19 are not the sum of figures 4. 16 and 4.17
as the maximum values do not occur at the same time and the problem under consideration
is nonlinear in nature where the principle of superposition does not apply.

Figures 4.20 and 4.21 show the displacement time histories of the cable mid-point due
to transverse ground motion considering the incoherency effect only and using model I and
model II, respectively. Figure 4.20 shows that, using model I for the coherency, for higher
propagation velocities (V 2 1000 m/s) which is the case of the firm soil, the response
approaches that of the case of uniform excitation. On the other hand, figure 4.21 shows that,
using model I for the coherency, the response is different from the case of uniform excitation.
This is mainly due to the uncorrelation between the seismic waves at the low frequency
content using this model (figure 4.4). Figure 4.22 shows the transverse displacement time
history of cable mid-point considering the wave travel effect only. The figure indicates that
as the velocity of propagation increases the response becomes similar to the case of uniform

excitation which is expected since V = = represents the uniform excitation case.
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Considering the incoherency effect only, the wave propagation velocity has a
significant effect on the transverse cable displacement if model I for the coherency is used.
The second lowest velocity (V = 500 m/s) results in the highest response specially 't.'rom the
cable mid point to the end of the cable as shown in figure 4.16. The lowest velocity (V =250
mv/s) does not result in the maximum displacement in this case as the two generated ground
motions are almost uncorrelated and this might reduce the pseudo-static response. However,
if model II is used, the wave propagation velocity has no effect on the results since the
coherency function defined by model II does not depend on the wave velocity.

Considering the wave travel effect alone (figure 4.17), the lowest velocity (V=250
m/s) results in the highest response in the last quarter of the cable span. The same
observation was made by Dumanoglu and Severn (1987) in their study of suspension bridge
cables. However, in the first half of the span the effect of the propagation velocity is not
significant except for the case V = 250 m/s where the response is reduced dramatically. This
large difference indicates that phasing between the input ground motion can have a significant

effect on the response.

4.4.2 Internal Forces in Transmission Line Elements

The maximum forces in the tower members for different propagation velocities and
different assumptions regarding the earthquake ground motion are shown in table 4.3. The
maximum force in the tower members in the case of uniform ground motion at all supports
is 95.9 kN. It is evident from the results that considering multiple support excitation increases

the internal forces in tower members for all cases. The maximum increase is approximately
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35% for wave propagation velocity of 500 m/s and considering the incoherency effect only
using model I. These conclusions are particular to the numerical example selected and may
vary with the tower dimensions, cable geometry and generated ground motion.

The maximum value of cable tension for different cases of input ground motion is
shown in table 4.4. The maximum tension in the cable due to the effect of uniform ground
motion is 1.08 kN. The tension in the cable due to the transverse component of ground
motion is insignificant and the change in the tension due to multiple support excitation is very
small. This result is expected since the transverse vibration of cables is mainly swinging and
does not incorporate significant change in cable length and therefore does not produce

significant stresses

4.4.3 Effect of the Coherency Model

Several coherency models are available to model the ground motion. Therefore, it is
important to study the effect of choosing a specific coherency model on the response of
transmission lines. The purpose of this study is not to recommend the use of a specific
coherency model. The choice of a specific coherency model depends on the specific site
conditions and the nature of the expected ground motion. However, the purpose of this study
is to identify the characteristics of the selected models that has a significant effect on the
response of transmission lines.

Considering the incoherency effect only, figure 4.16 shows that model II produces the

highest total cable transverse displacement throughout most of the span. The reason is that
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model II represents uncorrelated ground motions at the low frequency range which is the
range of the cable predominant frequency.

Figure 4.23 shows that, considering both effects, at high propagation speeds there is
almost no difference between the response using the two models. It was found by Zerva
(1994) that the type of the coherency model has a significant effect on the dynamic and
pseudo-static responses. However, concerning the total response, which is the summation
of the pseudo-static and the dynamic responses, no general conclusion can be derived.

Table 4.2 shows that the differences in tower internal forces using different coherency
models are in the range of 10% which suggest also that the differences in the internal forces

using different coherency models are not significant.

4.4.4 Incoherency Versus Wave Travel Effects

It is a common approach in multiple support excitation analysis of long span structures
to consider only the wave travel effect and neglect the incoherency effect. The purpose of
this section is to examine the effect of these assumptions on the response. Figure 4.23 shows
the maximum transverse displacement of the cable for various wave propagation velocities.

Figure 4.23 shows that considering the wave travel effect alone reduces the maximum
cable displacement for all propagation speeds. However, at high propagation velocities,
considering the incoherency effect in addition to the wave travel effect increases the response
regardless of the coherency model considered in the analysis. It is also shown from table 4.3
that considering the incoherency effect may in some cases increase the internal forces in the

tower members.



136

4.5 RESPONSE OF TRANSMISSION LINES TO VERTICAL GROUND
MOTION

The analysis of the rwpohﬁe of transmission lines to vertical groundAmotion is carried
out in the same way as for the transverse ground motion. The transmission line is subjected
to the artificially generated ground motions shown in figures 4.9 to 4.12. The supports of the
first tower are subjected to a dynamic force based on the ground displacement developed at
zero m, while the second tower supports are subjected to a dynamic force based on the
ground displacement developed at 400 m. The results are presented for the top cable of the

tower-cable system shown in figure 3.8.

4.5.1 Vertical Cable Displacement

Figure 4.24 shows the envelopes of the total peak cable displacement considering the
incoherency effect only and using either model I or model II to model the coherency function.
The envelopes of the total peak cable displacement considering the wave travel effect only
are shown in figure 4.25. Both the incoherency and the wave travel effects are considered
in the analysis shown in figures 4.26 and 4.27.

Figures 4.24 to 4.27 show that in many cases the response of the multiple support
excitation cases may exceed that of the uniform excitation case, specially when the
incoherency effect is considered alone. For example, considering the incoherency effect only
with model I and velocity 500 nvs results in a peak vertical cable displacement of 41.0 cm,

where the uniform support excitation results in a peak cable displacement of 28.6 cm. It is
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evident from these figures also that the response is governed by the first and second
symmetric modes which is related to the frequency of the generated ground motion.

Figures 4.28 and 4.29 show tﬁe vertical displacement time history of the cable mid-
point considering the incoherency effect only and using model I and model II, respectively.
These figures show that using model I, as the propagation velocity increases the response
approaches that of the uniform excitation case. On the other hand, using model II results in
a response that has a slight difference from the uniform excitation case regardless of the
propagation velocity. Figure 4.30 shows the vertical displacement time history of the cable
mid-point considering the wave travel effect only. Similar to the transverse displacement of
the cable shown in figure 4.22, the response approaches the uniform excitation case as the
velocity approaches infinity.

The wave propagation velocity has a significant effect on the cable displacement.
Considering the incoherency effect alone and using model I, for example, the maximum
displacement near the towers corresponds to V = 500 m/s. Near the middle of the cable, the

maximum response corresponds to V = 1000 m/s.

4.5.2 Internal Forces in Transmission Line Elements

Table 4.5 shows the maximum forces developed in transmission tower members due
to the vertical component of ground motion. This table indicates that the forces in the
transmission tower members are very small as compared to those developed by the horizontal
component of ground motion. The variation in these forces due to multiple support excitation

is very small and insignificant.
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The maximum tension developed in the cable due to vertical ground motion is shown
intable 4.6. The maximum tension in the cable due to the effect of uniform ground motion
is 5.00 kN. The haximum tension developed in the cable in case of mulﬁple support
excitation is 6.18 kN for the case of incoherency effect only using model I. However, these
values are less than 20% of the tension developed in the cable due to its own weight which

equals to 37.08 kN.

4.5.3 Effect of the Coherency Model

The type of coherency model used to generate the ground motion may have an
influence on the response of transmission lines for small values of wave propagation
velocities. Figure 4.31 shows the maximum value of vertical cable displacement using
different coherency models and different propagation velocities. It is evident from this figure
that at high propagation velocities, if both the incoherency and wave travel effects are
considered in the analysis, then the value of the maximum total cable displacement is not
affected by the type of the coherency model. Tables 4.5 and 4.6 show that the type of

coherency model used has no specific effect on the internal forces in the tower and the cables.

4.5.4 Incoherency Versus Wave Travel Effects

The purpose of this section is to examine the effect of considering the wave travel
effect alone or in addition to the incoherency effects in analyzing the response of transmission
lines to vertical ground motion. Figure 4.31 shows that considering the wave travel effect

alone reduces the maximum vertical displacement of cables, as compared to the uniform
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support excitation case, for V > 250 m/s. For V =250 m/s, the wave travel effect increases
the cable displacement.

Considering the incoherency effect with the wave travel increases the response than
the uniform excitation case for all coherency models and for V > 1000 m/s. For the lower

wave propagation speeds ( V = 250 or 500 m/s), the vertical cable displacement is less than

that of the uniform support excitation case.

4.6 SUMMARY

In this chapter the procedure to analyze the effect of multiple support excitation on
the response of transmission line systems is presented. The method is used to analyze the
response of the transmission line to transverse as well as vertical excitations. An artificially
generated ground motion is developed, using random vibration approach, and used in the
analysis.

The generated ground motion takes into account the incoherency of seismic waves
as well as the wave travel effect. Two different coherency models are used in the analysis.
Clough-Penzien power spectrum is used in the analysis with the appropriate coefficients.
Ground displacements are generated at distances 400 m apart which represents the typical
span of the line in the considered example.

A simplified approach to predict the structural response to multiple support excitation
is presented. The approach is based on the use of displacement time histories at the structure
supports. The approach is verified against the traditional approach where acceleration time
histories are specified. The results show complete agreement between the two approaches.

The results of the analysis carried out on the transmission lines are presented. The

following are the main findings:
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The case of uniform support excitation does not produce the maximum response in
the transmission line. Multiple support excitation, which is a more realistic
assumption, can result in larger displacements and internal forces.
The assumed velocity of propagation of seismic waves has a significant effect on the
response of transmission lines to seismic ground motion. In order to obtain a
representative analysis of the transmission line, an accurate estimation of the wave
velocity is required.

Considering the wave travel effect only, may reduce the displacement of the cable as
compared to the uniform excitation case. However, if the incoherency effect is
considered with the wave travel effect, the cable displacement increases over the case
of uniform excitation.

The additional tension in transmission line cables due to transverse ground motion is
small. Moreover, the change in the tension when considering multiple support
excitation is negligible. On the other hand, the vertical component of ground motion
produces higher values of tension in the cable but it is still less than 20% of the
tension developed in the cable due its own weight.

The variation in member forces in transmission towers due to multiple support
excitation in the transverse direction can be as high as 35%. On the other hand, the
vertical component of ground motion produces negligible forces in transmission
towers and therefore, the variation in these forces is insignificant.

The type of the coherency model used does not have a significant effect on the total

response of transmission lines.
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Table 4.1 Power spectral density filter parameters for horizontal ground motion
(Der Kiureghian and Neuenhofer 1991)

Soil type w&d/s) EL w, (rad/s) &
Firm 15.0 0.6 1.5 0.6
Medium 10.0 04 1.0 0.6
Soft 5.0 0.2 0.5 0.6

/

Table 4.2 Power spectral density filter parameters for vertical ground motion
(Elghadamsi et al. 1988)

Soil type w, (Hz) €,
Alluvium 4.17 0.46
Alluvium / Rock 4.63 0.46
Rock 6.18 0.46
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Table 4.3 Maximum forces in tower members due to transverse ground motion (kN)

Effect considered

Considering wave travel only

Propagation velocity (m/s)

Considering Model I
i nl
incoherency only Model II

Considering both
effects

Model I

Table 4.4 Maximum tension in cables due to transverse ground motion (kN)

Effect considered

Propagation velocity (m/s)
1000

500

Considering wave travel only

Considering Model I
. h nl
incoherency only [ 1.18

Considering both | Model I
ffe
eriects Model II
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Table 4.5 Maximum forces in tower members due to vertical ground motion (kN)

Effect considered Propagation velocity (m/s)
1000

Considering wave travel only

Considering Model 1
incoh:
incoherency only Model I

Considering both | Model I
ffect
erees Model II

Table 4.6 Maximum tension in cables due to vertical ground motion (kN)

Propagation velocity (m/s)
1000

Effect considered

Considering wave travel only

Considering Model I 451 6.18
incoh nl
inconerency oY 1 Model II 5.69

Considering both | Model I 3.14 2.75 4.61
fFect
etects Model IT| 422 2.55 47
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Figure 4.3 Change in coherency with the frequency of ground motion using
model I
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Figure 4.7 Generated horizontal ground displacement using model I and considering
incoherency effect only
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Figure 4.11 Generated vertical ground displacement using model II and

considering incoherency effect only
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Figure 4.13 Simplified approach for ground motion application
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Figure 4.15 Vertical displacement time history of the cable mid-point due to
sinusoidal ground motion with 1 Hz frequency
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Figure 4.18 Envelopes of total peak cable transverse displacement considering
incoherency and wave travel effects (model I)

140

120 +

8

&

&

Maximum transverse displacement (cm)
8

0 100 200 300 400
Cable span (m)

Figure 4.19 Envelopes of total pesk cable transverse displacement considering
incoherency and wave travel effects (model II)

157




158

®
(s) oany

s/ 000T = A (P) PUe 'S/ 0001 = A (9) ‘511 005 = A (@) ‘S 05T = A (8)
: (1 japow) A[uo 3933 Aoua1oyooul SuLISPISUOD ynod-pru 3]qes Jo Juawade[dSIp ISIASURLY, OTY amSiy

or

T 80
T 90
T o
+ 70

2000T = A

%<><>< W

T 80
T 01

>} A
<
uonene 10ddns cuoHU

+ v0

00
- T0

(@) yewaosidap ouaAsRI]

Tl

(44 ol

+ %0
oy Axnyoou; Reuspruo) | 90 @
el i 1
uonmrxs poddns wUOFU)
005 = A .
Ti

0§

©

$/1 0001 = A

- 20
1 vo
+ 90
- -.° A4
$ot

(3

(3 o ot

ol

+ 80
+ 90
+ro
+ 0

00

) JRRON]ESIp ORISASURIY,

14

ol

yUosT=A

T 80
190
+ v0
+to

00

+70
+vo
+ 90
480~
+ 01

) roauaonidsip sAsUel],

1




159

T uniform support excitation

(=]
o0
Il
1

1 considering incoherency effect

§ ol

g 021 /‘\
Ty

502+

A

g 04 -

06+
08
-1.0 ' — : : 4 : : .
0 10 20 30 40 50

Time (s)

Figure 4.21 Transverse displacement of cable mid-point considering incoherency
effect only (model II)
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CHAPTER 5

ANALYTICAL SOLUTION OF CABLE VIBRATION

5.1 GENERAL

Analytical solutions for nonlinear systems such as asymptotic methods yield
satisfactory approximate solutions specially when the nonlinearity is small. Numerical
techniques such as the finite element and the finite difference methods, although powerful
tools in the analysis and design of nonlinear systems, still fail to reveal important features of
the nonlinear cable behaviour (subharmonic and superharmonic oscillations, for example).
It is therefore important to obtain as much information as possible from the analytical solution
beside using the numerical methods.

The free vibration characteristics of cables were determined analytically in two and
three dimensions. In earlier studies, Irvine and Caughey (1974) treated the cable dynamics
as a linear problem in order to determine its frequencies of free vibration. Later on, the
nonlinear nature of the problem was addressed by Hagedorn and Schafer (1980). The three
dimensional free vibrations of cables were analyzed by Benedettini et al. (1986). Rao and
Tyengar (1991b) and Al-Noury and Ali (1985) studied the three dimensional nonlinear forced
vibrations of cables under in-plane periodic loads and out-of-plane static loads. Limited

research work was conducted on the response of cables to support excitation. Perkins (1992)
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used the first order perturbation method to study the case of parametric resonance due to
longitudinal support excitation.

A major difficulty that is encountered in the dynamic analysis of long span cables, such
as transmission line cables, is that during earthquakes there will be a time lag between the
input earthquake ground motions at different supports. The system is subjected to multiple
support excitation. The tower was found to respond to the seismic excitation mainly in its
own fundamental mode of vibration (El-Attar et al., 1995a). Therefore, the transmission line
problem can be reduced to a cable which is subjected to a harmonic excitation with a phase
difference between both supports. Rao and Iyengar (1991a) studied the response of long span
cables to seismic excitation using the normal modes approach. This approach may not be
accurate enough for sagged cables as is the case in transmission lines.

In this chapter, the three-dimensional equations of cable vibration are developed
considering the coupling between the in-plane and out-of-plane vibrations. This formulation
is applicable to cables with small sag to span ratios where a parabolic approximation of the
static equilibrium position can be assumed. This represents the majority of transmission line
cables. The support motion is applied in both the vertical and transverse directions. The
equations of motion are solved using Galerkin method for the spatial problem and the method
of multiple time scales for the temporal problem.

The solution is verified by comparing the results to that of the finite element analysis
presented earlier. The stability of the steady state solution is examined. A parametric study
is conducted to investigate the effect of the cable sag to span ratio on the amplitude of

oscillations and zones of instability. The effect of cable damping is also analyzed. Finally, the
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effect of the phase difference between different support excitations on the cable response in

the symmetric and anti-symmetric modes is studied.

5.2 EQUATIONS OF CABLE VIBRATION
Consider the dynamic equilibrium of a single cable with weight per unit length, mg,
hanging in a vertical plane between two supports at the same level as shown in figure 5.1. If

the element length is dS,, then under tension its length becomes dS where,

T
dS = (1 + —)dS
( +EA) 0 (5.1)

where,
T is the cable tension; E is Young's modulus of the cable material; and A is the cable cross
sectional area.

The change in tension across an element of length dS in the x and y directions is given

by:
d dx d T dx
dT, = = (T =)dS = ds
x 55 T 38 as, TTTEA aso) °
3 v O 3 T d ©2)
dT, = = (T &) dSs Yy)ds
y 5s (T 38 as, TTT/EA aso) 0

The condition of static equilibrium of the cable is that dT,= 0 and dT, = -mg. Using this
condition with equation (5.2) and for cables with small sag to span ratios, the position of

cable static equilibrium is given by:
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mgL?
2H

X _ 2(_2
[f (L)] (5.3)

where L is the distance between supports and H is the horizontal component of static cable

tension.

The nonlinear equations of equilibrium of cable motion in space can be written as:

a a + = _az.—u '

3s [(T +R) -a—g(x u)] m 3¢2 (5.4
d d o . o*v

'55_ [(T + R) E(y v)] = mg m —8t2 (5.5)
0 ow, _ Fw

s TR 5l =m0 o

where u, v, and w are small displacements in the x, y, and z directions as shown in figure 5.1,
respectively, R is the additional dynamic cable tension and S is the tangent to the cable
coordinate at the point of interest.

Assuming small sag to span ratio, which is the actual case in transmission line cables,
thendS = dx and T = H. Rao and Iyengar (1991b) found that the additional dynamic cable

tension "R" is given by:

R = EA(%‘.+d_3'.i‘i+_(§l)2+l(aw)z)
X

1
dx ox 2 ‘ax’ 2 ‘ox .7
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Introducing equation (5.7) into equations (5.4), (5.5), and (5.6) and taking into

account the static equilibrium of the cable, the following three dynamic equilibrium equations

are derived:
G e Ea R YT GG s M 6

Neglecting the longitudinal inertia term (ii), equation (5.8) takes the form:

du _dy dv

1 v
ax dx dx 2 0x

P r2 (2P = e G.11)
where g(t) is a function of time only.

The implication of neglecting the contribution of the longitudinal inertia is that the
tension along the cable is a function of time only which agrees with the results of the finite
element analysis carried out by Aziz et al. (1996).

Integrating equation (5.11) with respect to x, with the boundary conditions u(0, t) =

u(L,t) =0, results in

av

— —(—)’ (aw)zld (5.12)

g(t) = [

oOt—
D-I&

1
L
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Using equation (5.12), equations (5.9) and (5.10) can be simplified to the following form:

v dy , ov = m ¥

ax [H Ix + EA( " ax) g(v)] m V (5.13)
ow _ .

ax [H-a_x EA g(t)] = mw (5.19)

5.2.1 Response of Cables to Support Excitation

Since the cable response to seismic ground motion acting in the longitudinal direction
is negligible compared to its response to the vertical and transverse components of ground
motion, the longitudinal component of ground motion is not considered in this analysis. The
two components of displacement v(x, t) and w(x, t) of a cable subjected to a ground motion

at both supports acting in the y and z directions as shown in figure 5.1, are given by:

v(x,t) = v(x,t) + vg(x,t)

w(x,t) = wi(x,t) + wy(x,t) (5.15)

where v,(x, t) and w (x, t) are the pseudo-static displacements in the y and z directions
respectively, and v/, t) and wy(x, t) are the dynamic displacements in the y and z directions
respectively.

The pseudo-static displacements are given by:

v(x,t) = (1- {-) v (t) + -I’f-vz(t)

(5.16)
(1 - {) w,(t) + % w,(t)

w,(x,t)
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where v,(t) and w, (t) are the displacement time histories at the left support in the y and z
directions, and v,(t) and w,(t) are the displacement time histories at the right support. For
the special case of short span cables, uniform support excitation mé;y be assumed where v,(t)
= v,(t) and wy(t) = w(t).

In the solution for the vertical and transverse motions of the cable, the following non-

dimensional parameters are introduced:

(5.17)

ol b

It was shown from the finite element analysis that the cable displacements in the
vertical and transverse directions are dominated by the first mode. Therefore, only one
degree of freedom is required to represent the cable vibration in each direction, and a two-
degree of freedom model would be accurate enough to evaluate the displacement of any point
along the cable. The dynamic displacement of the cable in the vertical and transverse

directions are modelled in the form:

v, (x,t)
w (x,t)

V(t) ®(x)

W(t) O(x) (5.18)

where ®(x) is the first in-plane mode of vibration and ©(x) is the first out-of-plane mode of

vibration
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From the static equilibrium shape of the cable,

dy _ BL _
T > (1 -2X) (5.19)

where p =mgL /H,
Integrating equation (5.12) and using equations (5.15) to (5.19), the following is

obtained:

0.5 0.5
g(t) = PLV + 051, V2 + 0.5I,W? + F(Vz’vl)z + '17'(“’2 - w,)? (5.20)

where,
1 i 1
1,=f<1>2dx, 12=f92dx, I3=f<I>dX
\ \ f (5.21)
I, = f@”dx, I = fe”dx, I, = [©dX
0 0 0

Using equations (5.15) to (5.20), adding the damping term and applying Galerkin
method, equations (5.13) and (5.14) can be reduced to two coupled nonlinear ordinary
differential equations in the following form:

W+2no,W+w2W+e, WV +c, WV2+c W+

5.22
F, W, + F; (W, - W) + F, W (w, -w)? +F, W (v, vl =0 (5.22)




V+2no,V+wo, VgV +cgW +¢V +c, VW +

(F, -F) ¥, + F, ¥, + F;V (v, - v\ + Fg (v,
F,V (W, - w,)? +Fg (w, ~w)? =0

2
— vl) +
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(5.23)

where the constants ¢, to ¢, are given by equation (5.24) and the constants F, to F; are given

by equation (5.25) as follows:

¢, = ayp (LL/L)
¢, = 05 ay (IJ/L)

cs = 05 avyp (LL/)
c, = 05ay (LL/I)

_“!‘J
|

4 QL)

1
F, = -II:(_/‘X(-MX)/I2
0

0S5 «
F, = — Y (1,/1)

1
Tl:(fX(I)dX)/Il

wherey =EA/Handa=H/mL2

¢, = 05 ay (IL/L)
c, = L5eayp (LL/)

\ (5.24)
cg = 05 ay (I/1)
F, = — (L/L,)
2 L 1
0.5
F, = =T (1)
L
(5.25)

0.5
F, = __I‘Jl;ﬂ(la/ll)

Equations (5.22) and (5.23) indicate that there are two kinds of nonlinearities in the

system, quadratic and cubic nonlinearities. The quadratic nonlinearity terms are due to the

initial curvature of the cable and the cubic nonlinearity terms are due to stretching of the cable

under tension.
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5.2.2 Solution of the Equations of Motion
The method of multiple time scales by Nayfeh and Mook (1979) is adopted in the
solution of the éﬁuations of motion of the cable. Assume that T;= €' t where € is a small
quantity of the order of the amplitude of the response. The time scale T, is slower than the
time scale T, and more generally, T, is slower than T,, The derivatives with respect to t are

- Do + eDl + € D2 ¥ « o s o e .

dz (5.26)
IS D + 2eD,D, + €(D?+2D;D) + ......
t

where D, = 9/9T;

The following scaling scheme is considered: W(t) = € W'(t); V(t) = € V'(t); vi(t) = e
v(t), w(t) =€ w,'(t) wherei=1, 2 and n = €’1". The reason for this scaling scheme is to
have the effect of damping and load appear in the perturbation solution at the same time the
effect of nonlinearity appears in it. Dropping the asterisks, the time dependent component

of the response V(t) and W(t) are expanded in the form:

W(T,, T, T,) =W, (T,,T,,T,) + €W, (To,T,,T,) + €W,(Ty, T}, T,)

5.27
V(T,,T,,T,)=V,(T,, T, T,) + €V, (T, T, T,) + €V,(Ty, T;,T,) (5:27)

Applying the expansions given in equations (5.26) and (5.27) to equations (5.22) and
(5.23), two differential equations with different powers of € are arrived at. Equating the sum

of the coefficients of the same power of € to zero, the following equations are obtained:
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€ Coefficient:
DZW, + oW, = 0 (5.28a,b)
D2V, + @V, = 0

€! Coefficient:
D2W, + oW, = -2D, D, W, - ¢, W, V, (5.293a,b)
D2V, + @2V, = -2D,D, V, - ¢, V& - cs W’

€? Coefficient:
D2 W, + ©*W, = -2D,D,W, - D;> W, - 2D,D,;W, - ¢,W,V, -
¢, W, V- Wy V? - ¢;Wo' - (F, - F)w, - Fyw, - 2nw;D,W,
(5.30a,b)
D2V, + @2V, = -2D,D,V, - D2V, - 2D,D,V, - 2¢,V,V,
26, W, W, - ¢,V;* - &, VoWg? - (F, - F))¥, - F;¥, - 2n@,D,

The solution of equations (5.28a and b) for the out-of-plane and the in-plane motions

takes the form:

W, = A(T,T,) e ™ + cc

-i (5.31a,b)
V, = A(T,,T,))e “fh 4+ cc

where cc represents the complex conjugate of all the terms before the plus sign.
Introducing equations (5.31) into equation (5.29a), the following is obtained:

2 2 _ . —ioyTy _ -i(wyray)Ty
D2W, +0?W, = 2iw,D A e c, Aj A e

—_ —ife.- 5.32
cl Az A[ e i(wy-wy)Ty +cc ( )
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where A, is the complex conjugate of A, i =1, 2.

Eliminating the secular term results in D,A, =0; and the solution for equation (5.32) is given

by:
- A mice, -
W, (t) = :‘ A A e @t :l A Ay e 1T, o (5.33)
W, +2 W, W, W, -2 W, W,
Similarly, substituting equation (5.31a and b) into equation (5.29b), gives:
DAV, +@?V, =2iw,D A e M ¢, Al e - ¢ A A, - 534

2 2wy Ty Y
c; Afe ¢, A A +cc

Eliminating the secular term results in D,A, =0; and the solution for equation (5.34) is given

by:

—_— 2 A
-2i@2To_c A2A2 - cs Al e'ZiuaTo_c A;A.l.'f'cc 5.35
4 2 5 2 ( )

V‘(t)=l_c4_zA22 ¢ 2 2
3 w, W, -4 w, w,

w,
At this stage, it is appropriate to simplify the solution by differentiating between two
cases. The first case is that when the excitation is in the transverse direction only, while the

second case is that when the excitation is in the vertical direction only.

5.2.3 Transverse Excitation
The support excitations are defined as accelerations using the travelling wave

approach in the following form:
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W, = P cosQt, w, = P cos (Qt + 1) (5.36)

The external resonance is defined by:

n o (5.37)

where n = 2, 3 for the vertical and transverse excitations, respectively, t is the phase
difference due to wave travel effect which is equal to the length between cable supports
divided by the wave propagation velocity, o is a detuning parameter. Resonance occurs when
c=0.

Substituting equations (5.31a and b), (5.33), and (5.35) into equations (5.30a) and

(5.30b) and eliminating the secular term, the following equations are obtained:

A A AZA A’ A
2inD,A| + 2¢c, -ALA—Z——I- + clcs—T'—l—-z- + 2¢,c— > - -
W, W,” - 4w, w,
A A A A A A — —
¢} ———— ki ¢ ——= el B 2¢,AAA, - 3¢;A%A, - (5.38)
2 2
W," +2 W, W, W, -2W, W,

P, _, P, . iler .
(Fl-Fs)?l-e leono_F37le( Eono T)+2inw32 Al=0

) = —
21(402D2A2+—1-(—)c4"’A’:\2*-4c4c5A2 ‘2 L -3¢ AZA, -
_ ®, _ 2
A A A A - 5.39
2clcs_l_;éz__—20‘cs_l___l_AL—2c7AlAlA2+ ( )
2
W,"+2 W,w, w,° -2w,w,
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A, and A, are expressed in the polar form as follows:

A = %ae'w' A, = ~be (5.40)

where a, b and ¢,, ¢, are the amplitudes and phase angles of A, and A,.
Substituting equation (5.40) into equations (5.38) and (5.39), and equating the real

and imaginary parts to zero, the following set of equations is arrived at:

2w,€*a =-(F -F,)€*P siny, - F,P,€*sin(y,+7) - 2€’nw,’a
2w,a€’y, = 2w,ae’c + S, a8 + §ab’ -
(F, -F,)P, € cosy, - F, P, € cos(y, +71) (5.41)
b = -no,b
2w,be?p, = S;b* + S, ba’
where:
Y, = €T, - ¢
c ¢, €
S, = 025¢€*[ ‘2’ 2" - - 3]
W, w," - 4 w,
: 2¢ ¢ c,?
= 214 _ 1 -
S, 025 €[ — 2 4ol 2¢,] (5.42)
2 2 3
2
s, = 0252 [0 _ 3¢
3 o,
4c,c c, C
S, = 025 [ —— - 4 1= - 2¢]



182

The steady state solution is given by the condition:

a = b = v, = 1, = 0 (5.43)

Therefore, from equation (5.41), b =0 and,
(F, -F,)P,siny, + F,Psin(y,+7) + 2nw’a = 0 (544

2w,e%a0 + S,a* - (F,-F,) P€? cosy, - F,P, € cos(y, + T) =0 (545)

Equation (5.45) shows that the system exhibits either softening or hardening
behaviour depending on the value of S; which in turn depends on the terms of the quadratic
and cubic nonlinearities. After solving equations (5.44) and (5.45) to determine the values
of a and vy,, the general solution of the non-dimensional time dependent component of the
response V(t) and W(t) are given by substituting equations (5.31a and b), (5.33) and (5.35)

into equation (5.27).

W(t) = acos(w,t + &)

c, a’ c, a’
V(i) = ef - 3 cos 2 (w, t + ;) - 2y (549)
2 (0,7 - 4 w?) 2 0

Equation (5.46) shows that due to transverse excitation, the cable vibrates in the
transverse direction with its natural frequency (w;). Meanwhile, there is a vertical vibration
of order € and frequency 2w, coupled with the transverse vibration. Moreover, there is a

non-zero amplitude term in the vertical direction due to the quadratic nonlinearity.
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5.2.4 Vertical Excitation

The support excitations are defined in the following form:

Vv, = P,cosQt, V, = P,cos (Qt + 1) (5.47)

where Q is given by equation (5.37).
Performing the analysis in a similar manner to the case of transverse excitation, the

steady state solution is given by:

(F, -F,)P,siny, + F,Pysin(y,+7) + 2nw’b = 0 (548

2w,e?ba + S,b° - (F,-F,) P, cosy, - F,P,e? cos(y,+t) =0 (5.49)

The solution of equations (5.48) and (5.49) simultaneously results in the values of b

and v,. The solution for W(t) and V(t) is given by:

W(t) = 0
2 c b2
cos 2 (w, t + ¢2)—-2-4——2}

¢, b (5.50)

V(t) =bcos (w, t +,) + €l
6 W} W,

Equation (5.50) shows that due to transverse excitation, no transverse vibration is
associated with the vertical vibration. The cable vibrates in the vertical direction with its
natural frequency ®,. In addition, there is a vibration of order € and frequency 2, . The
cable motion is also characterized by a non-zero amplitude term due to the quadratic

nonlinearity.
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5.3 STABILITY OF STEADY STATE SOLUTION
Due to the nonlinearity, the response may be multi-valued for the same amplitude and
frequency of excitation. In some cases, there are three possible amplitudes of the response.
However, not all possible solutions are stable. It is necessary to examine the stability of the
steady state solution. For the case of support excitation in the transverse direction, consider

equation (5.41) with b =0 and a and y, expressed in the following form:

a(t)
Y. (t)

a + aj;(t)

Y, + Yy -51)

where a and ¥, are the steady state solution and a,, and y,, are small perturbations of the
steady state solution.
Substituting equation (5.51) into the steady state solution given by equations (5.449)

and (5.45), the following expressions are obtained:

a, = ha, + hy,

- (5.52)
Y h,a, + h, v,
where
hy = h, = -no,,
-2€e w,ag - S, a’
h, = n ,
2 € w, (5.53)




185

The stability of the solution depends on the eigen values of equation (5.52). The
position of the points separating the stable and unstable regions is given by the characteristic
equation h, h, - h, h, = 0, which in the case of no damping can be written as:

28, a 3§2a

6 + —— =0 (5.54)
4 .2 .
4 € W,

Equation (5.54) has two possible solutions given by:

S, a . 38, a
o = - o', = - —— (5.55)
2 € w,

The solution given by a*, is the backbone curve which is the solution of equation (5.45)
without the loading term.

The stability of the solution due to support motion in the vertical direction is obtained
in a similar way to the stability analysis in the transverse direction. The position of the points
separating the stable and unstable regions for the case of zero damping is given by the
equation:

S, b? . 38, b?
6y = -~ — 0, = ~——— (5.56)
2 € w, ' 2 € w,
5.4 NUMERICAL EXAMPLES
In the numerical examples, unless otherwise stated, only the first out-of-plane mode

and the first in-plane symmetric mode are considered. Three cable examples are analyzed
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with the properties shown in table 5.1. These cables cover a wide range of sag to span ratios
from 0.03 to represent sagged cables to 0.003 to represent taut cables. The first symmetric

mode shapes are those given by Irvine and Caughey (1974):

8(X) = sinn X

X)) =1 - tan% sinuX - cospX

where, | (5.57)
B = oL

H

Based on equation (5.57), the constants c, to ¢; and F, to F, given by equations (5.24)
and (5.25), respectively are evaluated. The calculated values of some important constants are
given in table 5.2. The non-dimensional solutions for the displacements W(t) and V(t) are
given by equations (5.46) and (5.50) for the transverse and vertical excitations, respectively.
The dimensional solution can be found by using equations (5.17) and (5.18) and considering

the scaling scheme used in the analysis.

5.4.1 Verification of the Results

The results of the analytical solution may be compared with the results obtained using
_numerical integration of the equations of motion (5.22) and (5.23) (Benedettini and Rega,
1987). However, the numerical integration of these equations does not verify the validity of
using a two-degree of freedom model to represent the cable vibration. Therefore, the results

of the analytical solution are cbmpared to those of the finite element analysis.
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The accuracy of the perturbation solution depends on two factors: the number of
terms carried in the perturbation solution and the number of modes of vibration considered
in the analysis. Since the solution is camed only up to the € order terms, then the accuracy
of the perturbation solution is somewhat reduced. Using one mode in each direction is
adequate only if the modes are widely separated, as the accuracy of the solution is reduced
away from the resonance frequency. Since the finite element analysis yields the total solution
(transient response and steady state response), the transient response is added to the steady
state solution developed by the multiple time scales.

Figures 5.2 and 5.3 show the displacement time history of the cable mid-point of
Cable I to uniform transverse and vertical support excitation, respectively. The support
excitation is a cosine function scaled to a peak acceleration of 0.1 g. The results of Cable II
are shown in figures 5.4 and 5.5, while those of cable III are shown in figures 5.6 and 5.7.

These figures show good agreement between the perturbation solution and the finite
element approach. While the frequencies are almost identical, the difference in amplitude is
reasonably small. As expected, the accuracy of the results increases near the resonance
amplitude. Comparing figures 5.4a and 5.4b, for example, shows that, for Cable II, the
accuracy of the perturbation solution for an excitation with 0.4 Hz frequency is better than
the accuracy for an excitation with 0.5 Hz frequency (resonance frequency = 0.32 Hz).
Moreover, the accuracy increases for cables with small sag to span ratios (Cables II and III)
because the effect of quadratic nonlinearity is reduced. For taut cables (Cable III), since the

modes are widely separated, the perturbation solution can be extended for a wider range of
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frequencies around the resonance frequency. It is expected that if enough terms are included

in the perturbation solution, the results would approach those of the finite element analyses.

5.4.2 Effect of the Cable Sag to Span Ratio

The sag in the cable creates quadratic nonlinearity in addition to the cubic nonlinearity.
In the numerical examples, the first cable with a sag to span ratio of 0.03 represents a sagged
cable while the third cable with a sag to span ratio of 0.003 approaches the behaviour of a
string. Figure 5.8 shows the frequency-amplitude relationship of different cables to vertical
support excitation scaled to peak acceleration values of 0.1 g and 0.2 g. Figure 5.8a shows
a softening behaviour for Cable I (sagged cable) due to the vertical ground motion. The
softening characteristics of the cable are due to the quadratic nonlinearity. Multi-valued
response of the cable is obtained for certain values of the detuning parameter . However,
only two of these three solutions are stable and either one of them can be reached depending
on the initial conditions. Reducing the sag to span ratio, as in Cable III (Figure 5.8¢), results
in hardening characteristics of the cable due to the cubic nonlinearity.

Regarding the stability region, Figure 5.8b also indicates that for Cable II the solution
is almost linear and stable in all regions. The reason for that is due to the interaction between
the quadratic and cubic nonlinearity terms. The amplitude of vibration of Cable III is

generally smaller than that of Cables I and II which is the case for taut cables.
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5.4.3 Effect of Damping Ratio on the Response

Figure 5.9 shows the effect of cable damping on the frequency amplitude relationship
for Cable I as an example. This figure indicates that the effect of the damping on the cable
vertical vibration is significant. With higher damping ratios, finite peak amplitudes occur as
can be seen by comparing the curve corresponding to a damping ratio of 0% to that

corresponding to a damping ratio of 5%.

5.5 EFFECT OF PHASE DIFFERENCE BETWEEN SUPPORT EXCITATIONS
One of the distinctive features of long span cables is the possible difference in the
support excitations acting at cable ends due to the wave travel effect. In simplistic form, the
wave travel effect can be accounted for by a phase shift between the motions affecting
different ends of the cable. The phase shift in support excitations influences different modes
of cable vibration. For simplicity, the effect of multiple support excitation is analyzed for zero

damping, however the same formulation can be used for the damped case.

5.5.1 Transverse Excitation
5.5.1.1 Symmetric modes

Consider the first symmetric mode given by equation (5.57) and for the three cases
of cables considered, F, =0.159 = %4 F, . Solving equation (5.44) resultsiny, =-t/2.

Equation (5.45) takes the form:

2w,€a0 + S a -2F3P,€2608-12—:=0 (5.58)
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5.5.1.2 Anti-symmetric modes
The first transverse anti-symmetric frequency and mode of vibration of the cable are

given by Irvine and Caughey (1974) as:

2T H

L \m (5.59)
O(X) = sin2n X

(1)3 =

For this mode, I, = 0, F, = 0, and equation (5.44) gives y; = (7 - t) /2. Equation

(5.45) takes the form:

2w3ezao+Sla3+2F3Plezsin-g-=0 (5.60)

5.5.2 Vertical Excitation
5.5.2.1 Symmetric modes
Following a similar analysis to the transverse vibration case, equation (5.49) for the

vertical vibration takes the form:

2w,e2bo + S; b —2F.,Pzezcos-;-=0 (5.61)

5.5.2.2 Anti-symmetric modes
The first vertical anti-symmetric frequency and mode of vibration of the cable are

given by Irvine and Caughey (1974) as:
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2n | H

L \m (5.62)
®(X) = sin2n X

(1)2=

Similarly, for this mode, I; = 0 and therefore F, = 0. Equation (5 .48) gives vy, = (% -

©) / 2. Equation (5.49) takes the form:

2w,etbo +S3b'3 +2F7P2628in§ = 0 (5.63)

5.5.3 Discussion

The effect of the phase shift in support excitation on the frequency-response
relationship for Cable I is shown in figures 5.10 and 5.11 for transverse and vertical
excitations, respectively. The support excitation is in the form of a cosine wave scaled to a
peak acceleration of 0.1 g. These figures show that, for the first symmetric mode, the
amplitude of the dynamic response is reduced when considering the phase shift. For the case
of T = 7 (i.e., the two components of ground motion are completely out-of-phase) there is
no stable solution for the cable equation of motion. The response being discussed is the
dynamic response component. To obtain the total response, the pseudo-static component of
the response should be added to the dynamic component.

For the first anti-symmetric mode, the effect of different phase shifts on the frequency
response relationship of Cable I for 0.1 g peak support acceleration is shown in figures 5. 10b

and 5.11b. These figures show that for uniform excitation (t = 0), the anti-symmetric modes
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are not excited. As the phase shift increases, the anti-symmetric mode response increases
until it reaches its maximum value at T = = (i.e., the two components of ground motion are
completely out-of-phase). Thi§ -emphasizes the importance of considering the phase shift in
the support input motion. This represents the case when the anti-symmetric modes are
excited which, depending on the specific cable characteristics, may result in a higher overall

response of the cable.

5.6 SUMMARY

The analysis of nonlinear cable response to support excitation in the vertical and
transverse directions is presented in this chapter. The coupled nonlinear equations of motion
are formulated and solved. The spatial problem is solved using Galerkin method for a two-
degree of freedom model. The temporal problem is solved using the method of multiple time
scales. The stability of the steady state solution is developed and discussed. Different cable
examples with different sag to span ratios and damping ratios are used in the analysis to
demonstrate aspects of the solution and stability phenomenon. The effect of the phase
difference between the support excitation at different cable ends on the response is examined.

The analysis shows that the analytical solution with a two-degree of freedom model
yields accurate results as compared to the finite element approach. The accuracy of the
analytical solution increases for cables with small sag to span ratio where the modes of
vibration become widely separated. The results show that due to vertical excitation, only
vertical vibration exists, while due to transverse excitation, both vertical and transverse

vibrations exist. The analysis shows a softening behaviour for sagged cables due to the



193

quadratic nonlinearity resulting from the initial curvature of the cable. Taut cables show
hardening behaviour due to the stretching of the cable. It is also demonstrated from the
analyéis that the uniform support motion excites only the symmetric cable modes. The anti-

symmetric modes are excited due to the phase difference between the input motions at cable

ends.
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Table 5.1 Properties of the example cables

Cabletype  d/ o
| (7 (Hz) (Hz)
Cable I 0.03 0.102 0.240 1495.00 0.15 0.28
Cable I 0.01 0.306 0.080 498.33 0.30 0.32
_CableIl 0003 1020 0024 14950 _ 050 051
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Figurre 5.1 Coordinate axes and components of cable motion
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CHAPTER 6

RELIABILITY ASSESSMENT OF CABLE VIBRATION

6.1 GENERAL

Transmission lines typically extend in areas of high seismicity and sometimes cross
active faults. There have been several cases of line burn-out due to cable vibration during the
1994 Northridge earthquake (EERL, 1995). The current practice in the design of transmission
lines is to account for wind and ice loads without consideration for seismic loading. The cable
clearances specified for transmission lines by the National Electrical Safety Code (NESC,
1993) have not been checked for earthquake loading conditions. The NESC (1993) limits the
initial cable tension to 35% of the breaking strength and limits the tension in the cable due to
wind and ice loading to 60% of its breaking strength. This implies that the tension caused by
wind and ice loading does not exceed the value of the initial static tension in the cable.
However, there has been no attempt to check the magnitude of cable tension caused by
earthquake ground motion.

The analysis of transmission line systems showed that there is a wide separation in the
frequencies of free vibration between the towers and cables in the transverse direction (Aziz
et al,, 1996). Therefore, the tower vibration has little, or no, effect on the cable vibration. In

the vertical direction, the tower is very stiff and again it has negligible effect on the cable

207
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vibration. On this basis, an intermediate span of the line can be modelled by separate cables
with the ground motion applied directly at the cable ends.

In this study, Monte Carlo simulation method is used to determine the probability that
the cable displacement and cable tension will exceed a certain limit. The transmission line is
subjected to vertical and transverse ground motions. The analysis is performed using both
actual and artificial ground motion records. The results of the analysis are verified by
comparing the mean values of the response quantities caused by artificial earthquakes to those
caused by a sample of actual earthquakes. The strong ground motion duration and the
parameters of the power spectrum function are considered as random variables. The
generated ground motion records are scaled to different values of peak ground acceleration.
Cable examples with varying sag to span ratios are used in the analysis. Sensitivity analysis

is performed to examine the effects of various modelling assumptions on the results.

6.2 GROUND MOTION MODELLING
Several attempts have been made to generate artificial ground motion records using
both stationary and nonstationary approaches. The procedure of generating ground motion
records from a prescribed power spectral density function, as explained in Chapter 4, will be
used in this analysis. Multiple support excitation is not considered to simplify the analysis.
The stationary acceleration time history can be generated in a similar way as described
in Chapter 4 but for the case of uniform support excitation. The generated stationary ground

acceleration is defined as:
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N
i (t) = kzl J 2 5, (@) Bo sin(et + ¢,) (6.1)

where,
w, is the frequency corresponding to the power spectral ordinate;
k=1, 2,......., nis the number of frequencies considered in the analysis. Typically this
is taken equal to 200;
Sg(w,) is the value of the power spectral function for the ground acceleration, as
defined by equation 6.2, calculated at w,;
Aw =y, - ; and

¢, is a random phase angle uniformly distributed between 0 and 2m.

6.2.1 Power Spectral Density
The power spectrum of the earthquake record is a distinctive characteristic of the
ground motion. The Clough-Penzien (1975) power spectral density for the ground
displacement , S, (), is used to generate the ground motion. It is defined as:
1+ 48 (=) (;)“lf)‘

Sg(w) = S, : _
[1- (2P + 43 (2P [1- (PP +40(2
(n)g cog e We

6.2)

where S, is a scale factor; w,, {, are the first filter parameters for the ground motion and the

second filter parameters are w¢and {;. The statistical values of the first filter parameter for
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the horizontal component of ground motion were given by Lai (1982) based on the study of
118 soil-site records and 22 rock-site records, as shown in table 6.1

From the analysis of the vertical component records of 161 Soil sites and 26 rock sites,
Elghadamsi et al. (1988) found that the mean value of w, is 4.17 Hz for soil-site records and
6.18 Hz for rock-site records. They also found that the mean value of { is 0.46 for all sites.
Since the coefficients of variation of these parameters are not provided, in this study they will
be assumed equal to those of the horizontal component of ground motion. The value of w;
is taken equal t0 0.1 w, and {; is considered equal to {,- The probability distribution of the
filter parameters is assumed to be normal distribution. The effect of this assumption on the

results is examined later.

6.2.2 Temporal Shape of the Ground Motion

To model the time varying intensity of a typical earthquake, the stationary acceleration
time history generated by equation 6.1 is typically muitiplied by a suitable envelope
nonstationary function. One form for this envelope function Y(t), is defined by Sues et al.
(1985) as:
(—t-)2 ; Ostst

t,
= 1 : L st

e W . t, <t

Y (t)
(6.3)

where t, and t, are the rise and decay times of the ground motion, t,-t, is the strong shaking

duration and c is a decay parameter as shown in figure 6.1. Sues et al. (1985) used values of
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t, = 1.5 s and ¢ = 0.18. They also recommended a mean duration of the strong ground
shaking of 10.0 s for soft soil and 5.5 s for rock with a coefficient of variation of almost 0.9
for all cases. The duration of strong ground motion shaking is assumed to be normally

distributed.

6.3 ANALYSIS PROCEDURE

The cable vibration problem is nonlinear due to the geometric nonlinearity of the
cable. To determine the statistical characteristics of cable vibration, it is not possible to use
a closed form mathematical formulation and a simulation procedure is required to be used in
the analysis. The selected method is the Monte Carlo simulation which is a powerful tool for
the statistical analysis of uncertainty in complex engineering problems.

The analysis carried out by several researchers such as Gambhir and Batchelor (1 978),
suggested that the cable sag to span ratio is the most important parameter that affects the
cable’s natural frequencies and response to dynamic loading. On this basis, all other cable
characteristics will be maintained constant in the analysis. The following properties are

assumed to represent a typical cable:

Span = 400m Weight = 22.23 N/m
Young's modulus = 55x10° MPa Damping ratio = 0.01
Cable cross section area = 10°m?
The simulation method can be summarized in the following steps:
1. Five cable examples are used with sag to span ratios in the range normally used in the

construction of transmission lines (3.0%, 3.5%, 4.0%, 4.5% and 5.0%).
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2. Using the mean, the coefficient of variation, the probability distribution of the ground
motion parameters and the strong shaking duration, one hundred artificial records are
generated for the horizontal ground acceleration for soil-sites and 100 records for
rock sites. Similar number of records are generated for the vertical ground
acceleration for soil and rock sites.

3. Each record is scaled up to different values of peak ground acceleration of 0.25 g,
0.50g,0.75gand 1.0 g.

4. Each point of the results represents the effect of one hundred earthquakes on the five
cables which total five hundred cable response analysis calculations.

S. The mean and standard deviation of the maximum displacement and the maximum

tension in the cable are calculated.

6.4 CABLE RESPONSE

The cable response is evaluated in terms of two quantities; the maximum displacement
of the cable in either the vertical or the transverse directions and the maximum dynamic cable
tension as a ratio of the initial static tension in the cable due to its own weight. The statistical
properties of the response quantities are presented first, then design guidance and probability

distribution curves are plotted.

6.4.1 Statistical Properties
Figures 6.2 and 6.3 show the mean value (1) and the mean + one standard deviation

(n £ 0) of the cable displacement in the transverse and vertical directions for different soil
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conditions. Values of the mean and coefficient of variation of the transverse and vertical
displacements are listed in tables 6.2 and 6.3, respectively. The results show that the mean
of the maximum displacement in the transverse direction is larger than that in the vertical
direction. For example, for a peak ground acceleration of 1.0 g, the mean of the maximum
lateral displacement is 260.4 cm for soil sites, while the mean of the maximum vertical
displacement is 174.2 cm for the same soil site.

The mean of the maximum displacement in the transverse and vertical directions are
larger for ground motion on soil sites than for ground motion on rock sites as shown in
figures 6.2 and 6.3. For example, for a peak ground acceleration of 0.5 g, the mean maximum
transverse displacement for soil sites is 138.7 cm while it is equal to 72.5 cm for rock sites.
For the same value of peak ground acceleration, the mean of the maximum vertical
displacement is 76.2 cm for soil sites and 63.2 cm for rock sites. The reason for the smaller
values of displacement for rock sites is that the ground motion records on rock sites have
higher frequency content than the records on soil sites. The cable fundamental frequencies
in the transverse and vertical directions are low as shown in Chapter 2. For the case of the
cable considered in the analysis and for a sag to span ratio of 0.03, the fundamental frequency
of free vibration in the vertical direction is 0.38 Hz and the fundamental frequency of free
vibration in the transverse direction is 0.15 Hz.

The coefficient of variation of the vertical displacement is less than that of the
transverse displacement as shown in tables 6.2 and 6.3. The modes of vibration in the
transverse direction are widely separated and the response is governed by the first mode

which increases the number of the relatively high and the relatively low values of transverse
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displacements. Consequently, the coefficient of variation of the transverse displacement
increases. On the other hand, in the vertical direction the modes of vibration are closely
spaced which reduces the béssibility of extreme values of the response and hence the
coefficient of variation of the maximum vertical displacement is reduced.

Figures 6.4 and 6.5 show the mean a_nd the mean + one standard deviation of the ratio
of the maximum dynamic to the static tension in the cable due to transverse and vertical
excitations, respectively. Values of the mean of the dynamic to static tension and the
coefficient of variation are given in tables 6.4 and 6.5 for transverse and vertical excitations,
respectively. The results show that the mean of the tension due to vertical excitation is much
larger than the mean value of the tension due to transverse excitation. For example, for a peak
ground acceleration of 1.0 g on soil sites, the mean of the ratio of dynamic to static tension
is 0.822 due to vertical excitation and 0.316 due to transverse excitation. The reason for this
reduction in mean tension is the fact that the transverse vibration of cables is usually of a
swinging type that causes little change in the cable length and consequently does not produce
significant strains and stresses.

Similar to the displacement response of the cable, the tension in the cable due to
seismic excitation on soil sites is larger than the tension in the cable due to seismic excitation
on rock sites. Moreover, the coefficient of variation of cable tension due to seismic ground
motion in the vertical direction is less than that due to seismic ground motion in the transverse
direction.

The results in figures 6.2 to 6.5 show that the relationship between the peak ground

acceleration and the mean value of the maximum cable response can be approximated by a
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straight line. The reason is that the nonlinear behaviour of the cable results mainly from the
large displacement which is limited to the case of resonance. Otherwise, there is no large

displacement in the cable and the response is almost linear.

6.4.2 Recorded and Generated Earthquakes

The use of actual earthquake records in the proposed simulation procedure involves
a number of difficulties. Many of the available records are not well identified for being on soil
or rock sites. In addition, many of the available records are not free field time histories but
rather modified by the response of a structure. For these reasons, the number of available and
usable earthquake records is not large enough to obtain sufficiently accurate results.

The current analysis is based on 100 generated time histories for each case of
horizontal and vertical motions for rock and soil sites. In order to evaluate the effect of using
generated versus actual earthquake records, the mean values of the maximum displacement
of the cable due to artificial ground motion are compared to the similar values of the response
using a smaller sample of actual earthquake ground motion. The vertical and horizontal
components of a sample of 45 actual ground motion records are used in the analysis
(Naumoski et al., 1988). The sample consists of 24 rock-site records and 21 stiff soil-site
records as shown in table 6.6.

Figures 6.6 and 6.7 show the mean value of cable displacement in the transverse and
vertical directions, respectively. These figures show a reasonable agreement between the
cable displacement using actual records and generated ground motion. For example in the

transverse direction, using actual records scaled to a peak ground acceleration of 1.0 g results
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in a2 mean value of maximum cable displacement of 240.0 cm for soil sites and 151.2 cm for
rock sites. Using artificial earthquakes, the cable displacement is 260.4 cm for soil sites and
142.3 for rock sites with a percentage difference of 7.8% for soil sites and 6.3% for rock
sites. These differences are mainly due to the small size of actual earthquakes sample.

For the vertical component of ground motion, the differences between the cable
response to actual and generated time histories are larger than the case of the horizontal
ground motion. For example, using actual earthquakes scaled to a peak ground acceleration
of 1.0 g results in a mean maximum vertical displacement of 197.1 cm for soil sites and 153.8
cm for rock sites. Using artificial earthquakes, the cable displacement is equal to 174.2 cm
for soil sites and 132.0 cm for rock sites. The percentage difference is 13.1% for soil sites
and 16.5% for rock sites. The reason for the larger difference is due to the lack of
comprehensive representative statistical data for the vertical component of ground motion.

However, the differences are still small enough as compared to the uncertainty in the analysis.

6.4.3 Probability Distribution for Cable Response

Figures 6.8 and 6.9 show the probability of exceedance of the cable maximum
transverse and vertical displacements, respectively for different values of peak ground
acceleration and for different site conditions. Small probabilities of less than 10% as indicated
by the horizontal line in the figures, should be treated with caution because of their low
degree of reliability. To increase the accuracy of the solution, the sample size may be
increased. These curves can be used as a basis to design the clearances of transmission lines

for seismic requirements along with other loads and functional requirements.
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Using figures 6.8 and 6.9 to design the clearance of transmission lines in a specific
area is a straightforward process. First, the design peak ground acceleration should be
defined for the area under consideration for a specific return period. Then the designer should
specify a specific probability of exceedance for the design of the power transmission line.
Finally, using these figures, the maximum displacement corresponding to the defined peak
ground acceleration and the specified probability of exceedance can be determined.

Figures 6.8 and 6.9 indicate that the probability of exceedance for the transverse
displacement can be considerable and illustrate the need to take seismic loading into
consideration in the design of transmission lines. For example, for soil sites and for a peak
ground acceleration of 1.0 g, there is a probability of 78% that the cable displacement exceeds
1.0 m, a probability of 29% that it exceeds 3.0 m and a probability of 16% that the
displacement exceeds 5.0 m. These high probability values should be addressed in the design
process.

The probability that the ratio between the dynamic and the static tension of the cable
exceeds a certain limit due to vertical excitation is shown in figure 6.10. This figure indicates
that the probability that the dynamic tension exceeds the static tension may reach 22% for soil
sites and 17% for rock sites. These probabilities are high which suggest that the seismic

loading should be taken into consideration in the design of transmission line cables.

6.5 SENSITIVITY ANALYSIS
Several assumptions have been made in the analysis concerning the cable sag to span

ratio and the ground motion parameters. The effect of different assumptions on the cable



218
response is studied using a sensitivity analysis. Since the cable response to soil-site records
is larger than its response to rock-site records, only the results for soil-site records are

presented.

6.5.1 Cable Sag to Span Ratio

The results shown in figures 6.2 to 6.10 represent the average of five cable examples
with sag to span ratios of 3.0%, 3.5%, 4.0%, 4.5% and 5.0%. This range of cable sag to span
ratio represents the practical range of cable sag that is commonly used for transmission lines.
Figure 6.11 shows the maximum values of cable displacements in the vertical and transverse
directions for cables with different sag to span ratios. The differences between the response
of the cable with a sag to span ratio of 3% and that of the cable with a sag to span ratio of 5%
are relatively small. Cables with sag to span ratio 3% and 5% represent the limits of the
considered range of cable sag. The response of the taut cable (sag to span ratio of 1%) is less
than the response of the sagged cables. Taut cables are outside the range of interest because
it is used less frequently in transmission lines due to their high initial tension. The effect of
the cable sag on its displacement in the vertical direction is much smaller than that in the
transverse direction which results mainly from the correlation between the natural frequencies

of different cables and the predominant frequency of the ground motion.

6.5.2 Ground Motion Duration
To study the effect of the mean value of strong ground motion duration (t, - t,) on the

cable response, the mean value of the duration for soil-site records is reduced from 10.0 s to
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5.0s. Figures 6.12 and 6.13 show the effect of reducing the mean value of the duration on
the cable maximum displacement and tension, respectively. The difference in the maximum
displacement in both directions is relatively small. Fof example, for a peak ground
acceleration of 1.0 g, the mean value of the maximum cable transverse displacement is
reduced from 260.4 cm to 230.2 cm with a percentage change of 11.5% when the duration
is reduced to the half. The maximum vertical displacement is reduced from 174.2 cm to 132.4
cm with a percentage change of 24% when the duration is reduced to the half. The reason
is that the response is mainly governed by the first mode. Away from the first mode
frequency, the cable response is very small and the duration has no effect on the response.
The results in figures 6.12 and 6.13 suggest that there is confidence in the analysis using

strong ground motion duration of 10.0 s.

6.5.3 Probability Distribution of the Ground Motion

The probability distribution of the ground motion predominant frequency w, was
assumed to be normal. To examine the effect of this assumption on the results, the probability
distribution of w, is assumed to be lognormal and the results are compared to that of the
normal distribution as shown in figure 6.14. The results indicate that the effect of the
~ difference in the probability distribution for , is small and does not exceed 10% which

endorses the use of normal distribution for its simplicity.
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6.6 SUMMARY

The characteristics of the response of transmission line cables to seismic excitation are
analyzed. 'fhe cables are modeled as fixed at both ends and the interaction effects with the
towers are neglected. Generated ground acceleration time histories are used in the analysis.
Monte Carlo simulation method is applied to determine the statistical properties of the cable
response to transverse and vertical seismic ground motions.

The analysis shows that the cable response due to artificial ground motion is close to
its response using actual earthquake records. It also shows that the local soil conditions have
a significant effect on the response of cables to transverse and vertical ground motions. The
soil site records where the frequencies of ground motion are relatively low, have larger effect
on the cable vibration than the rock site records with a higher frequency content. The tension
produced in the cable due to vertical ground motion is much larger than the tension produced
due to transverse ground motion. The transverse vibration of cables is of a swinging type and
does not produce significant stress.

The probability that the dynamic cable tension produced by vertical ground motion
exceeds the static cable tension is high in several cases which suggests that the seismic loading
needs to be considered in the design of the cable. The displacement of the cable due to
transverse and vertical excitations can be significant and should be taken into account in

examining the allowable clearances of transmission lines.
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Table 6.1 Statistics for the Clough-Penzien power spectral density function

(Hz)

Ground condition Mean Coefficient Mean Coefficient
of variation of variation
Rock Horizontal 4250 0.398% 0.35® 0.391®
Vertical 6.18® 0.398® 0.46® 0.391®
Soil  Horizontal 3.04M 0.425® 0.32® 0.426®
Vertical 4.17® 0.425® 0.469 0.426®
(1) Lai (1982)
(2) Elghadamsi (1988)

(3) assumed
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Table 6.2 Maximum cable transverse displacement

——_—-——_—'—____—_——_———__—————=_—_—_———_——_

Peak Ground Soil sites Rock sites

Acceleration Mean Coefficient Mean Coefficient
(PGA) (cm) of variation (cm) of variation
025¢g 70.1 0.58 35.0 0.57
050g 138.7 0.59 72.5 0.59
075g 201.0 0.59 105.5 0.60
1.00 g 260.4 0.58 142.3 0.60

Table 6.3 Maximum cable vertical displacement
—_

Peak Ground Soil sites Rock sites

Acceleration Mean Coefficient Mean Coefficient
(PGA) (cm) of variation (cm) of variation
025¢g 35.0 043 30.2 0.47
050g 76.2 0.44 63.2 0.48
075¢g 122.7 043 91.5 0.49

1.00 g 174.2 0.43 132.0 0.50
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Table 6.4 Dynamic to static cable tension ratio due to transverse excitation

Peak Ground Soil sites Rock sites

Acceleration Mean Coefficient Mean Coefficient
(PGA) of variation of variation
025g 0.071 0.45 0.041 0.49
050g 0.151 0.46 0.081 0.50
075g 0.229 0.46 0.132 0.49
1.00g 0.316 0.46 0.180 0.50

Table 6.5 Dynamic to static cable tension ratio due to vertical excitation

Peak Ground Soil sites Rock sites

Acceleration Mean Coefficient Mean Coefficient
(PGA) of variation of variation
025¢g 0.180 0.34 0.152 0.41
050g 0.392 0.38 0.306 0.43
0.75 g 0.605 0.37 0.487 0.45

1.00 g 0.822 0.36 0.670 0.45




Table 6.6 Description of the used ground motion records

(Naumoski et al. 1988)
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T

Rec. Date & Event Magn.  Station ‘Horizontal Soil
No. Component Condition
1 1966 56 Temblor No. 2 N65W Rock
Parkfield
2 1966 5.6 Cholame, NS8SE Rock
Parkfield Shandon No. 5
3 1957 53 Golden Gate Park S80E Rock
San Francisco
4 1957 53 State Bldg. SO09E Stiff Soil
San Francisco
5 1935 6.0 Carroll College NOOE Rock
Helena
6 1970 5.4 Wrightwood, S25W Rock
Lytle Creek California
7 1975 57 Seismogr. Station NS3W Rock
Oroville
8 1971 6.4 Pacoima Dam S74W Rock
San Fernando
9 1971 6.4 Lake Hughes, S21W Rock
San Fernando Station 4
10 1985 6.9 Site 1, Iverson LONG Rock
Nahanni
11 1971 55 Yoneyama Bridge TRANS Stiff Soil
Central Honshu,
Japan
12 1972 5.8 Kushiro Central NOOE Stiff Soil
Near E. Coast Whraf
Japan
13 1966 54 Hoshina-A NOOE Stiff Soil

Honshu, Japan



Table 6.6 (cont.) Description of the used ground motion records

(Naumoski et al. 1988)
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Rec. Date & Event Magn. ~ Station Horizontal Soil
No. Component Condition
14 1979 54 Albatros Hotel, NOOCE Rock
Monte Negro Ulcinj
15 1981 6.1 Seism. Station, NooOw Rock
Benja Luka Benja Luka
16 1940 6.6 El Centro SOOE Stiff Soil
Imperial Valley
17 1951 7.6 Taft Lincoln S69E Rock
Kern County School Tunnel
18 1951 7.6 Taft Lincoln N21E Rock
Kern County School Tunnel
19 1968 6.5 San Onofre SCE NSTW Stiff Soil
Borrego Mtn. Power Plant
20 1968 6.5 San Onofre SCE N33E Stiff Soil
Borrego Mtn. Power Plant
21 1971 6.4 3838 Lankershim S9O0W Rock
San Fernando Blvd,, L.A.
22 1971 6.4 Hollywood N9OE Stiff Soil
San Fernando Storage P.E. Lot
23 1971 6.4 3407 6th Street, N9OE Stiff Soil
San Fernando LA
24 1971 6.4 Griffith Park SoowW Rock
San Fernando Observatory, L.A.
25 1971 6.4 234 Figueroa St., N37E Stiff Soil
San Fernando L.A.
26 1974 6.1 Kashima Harbor NOOE Stiff Soil
Near E. Coast Wharf

Honshu, Japan




Table 6.6 (cont.) Description of the used ground motion records

(Naumoski et al. 1988)
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Rec. Date & Event Magn.  Station Horizontal Soil
No. Component Condition
27 1971 7.0 Kushiro Central N9OE Stiff Soil
Near S. Coast Wharf
Honshu, Japan
28 1979 7.0 Albatros Hotel, NOOE Rock
Monte Negro Ulcinj
29 1985 8.1 E! Suchil, SO0E Rock
Mexico Guerrero Array
30 1985 8.1 La Villita, N9OE Rock
Mexico Guerrero Array
31 1933 6.3 Subway Terminal, NS1IW Rock
Long Beach LA
32 1933 6.3 Subway Terminal, N39E Rock
Long Beach L.A.
33 1934 6.5 El Centro SOOW Stiff Soil
Lower Calif.
34 1971 6.4 2500 Wilshire N61W Stiff Soil
San Fernando Bivd., L.A.
35 1971 6.4 3550 Wilshire WEST Stiff Soil
San Fernando Blvd., L. A.
36 1971 6.4 222 Figueroa S37TW Stiff Soil
San Fernando Street, L.A.
37 1971 6.4 3470 Wilshire S90W Stiff Soil
San Fernando Blvd., L.A.
38 1971 6.4 4680 Wilshire NI15E Stiff Soil
San Fernando Blvd., L.A.
39 1971 6.4 445 Figueroa St., S38W Rock
San Fernando L.A.




Table 6.6 (cont.) Description of the used ground motion records

(Naumoski et al. 1988)
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Rec. Date & Event Magn.  Station Horizontal Soil
No. Component Condition
40 1971 6.4 Hollywood SoowW Stiff Soil

San Fernando Storage, L.A.
41 1968 7.9 Muroran Harbor NOOE Stiff Soil
Near E. Coast
Honshu, Japan
42 1973 7.4 Kushiro Central NOOE Stiff Soil
Near E. Coast Wharf ’
Honshu, Japan
43 1985 8.1 Zihuatenejo, S00E Rock
Mexico Guerrero Array
44 1985 8.1 Teacalco, NOOE Rock
Mexico Guerrero Array
45 1985 8.1 Mesa Vibradora NIOW Rock
Mexico C.U,, Mexico City
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CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 SUMMARY
A comprehensive study of the dynamic characteristics and seismic response of

transmission lines is presented. The research is carried out in the following stages:

a) A finite element formulation for the cable dynamics is developed. The cable is
modelled by a two-node straight element that allows for the cable geometric
nonlinearity. The natural frequencies of the in-plane and the out-of-plane vibrations
are evaluated and the cable response to seismic ground motion is determined.

b) The dynamic characteristics of steel latticed transmission towers are determined. The
seismic response of an intermediate span of the transmission line is evaluated for the
case of uniform support excitation. The effect of different modelling assumptions on
the response is evaluated.

) The internal forces in the tower members caused by the earthquake ground motion are
computed and compared to those caused by the code defined wind and/or ice loads.
The code considered in the analysis is the National Electrical Safety Code (NESC,

1993).
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The effect of multiple support excitation on the response of transmission lines is
investigated. The effects of both incoherency and wave travel are considered in the
analysis. |

A closed form solution for the cable response to multiple support excitation is
presented. The cable is modelled by a two-degree of freedom model. The interaction
between the in-plane and the out-of-plane vibrations is considered in the analysis. The
effects of cable sag, cable damping and the phase difference between the ground
motion excitations at various supports are investigated.

A probabilistic analysis of the cable seismic response is carried out. Probabilistic
measures and probability of exceedance curves are presented for the cable tension and

the cable maximum transverse and vertical displacements.

7.2 CONCLUSIONS

The following are the main conclusions arrived at from the analysis:

The analysis of the dynamic characteristics of transmission line elements indicates that
for taut cables, both the in-plane and the out-of-plane frequencies are widely spaced
and the response is mainly governed by the fundamental modes of vibration. For
sagged cables, the in-plane frequencies of vibration are closely spaced and the higher
modes contribute significantly to the response. The response of transmission towers
to transverse excitation is dominated by the first mode contribution.

The study of the transmission line response to earthquake ground motion indicates

that the cable response to earthquakes with low A/V ratio is much higher than their
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response to earthquakes with high A/V ratio. Large displacements result in the cable
due to transverse and vertical ground motions. The displacement caused by the
longitudinal ground motion component is insignificant.

Due to the separation between the vertical and transverse fundamental frequencies of
vibration for towers and cables, the contribution of the towers to the seismic
behaviour of transmission lines is negligible. For the purpose of evaluating the cable
displacement, the line can be modelled by cables fixed at both ends.

The forces developed in the transmission towers due to earthquake ground motion
may exceed the forces caused by the code defined loads particularly in areas of high
seismicity and low wind velocities. This suggests that earthquake loads should be
considered in designing transmission towers.

The analysis of multiple support excitation of the transmission line indicates that the
case of uniform support excitation does not necessarily cause the maximum forces and
displacements in the line elements. The multiple support excitation which is a more
accurate assumption can result in larger displacements and internal forces.

The analytical solution of the cable equations of motion produces accurate results as
compared to the finite element solution. The accuracy of the solution increases for
cables with a small sag to span ratio. The analytical solution can be used to examine
the nonlinear cable behaviour near resonance. The analysis shows a softening
behaviour for sagged cables and a hardening behaviour for taut cables.

The probabilistic analysis of cable vibration indicates that there is a reasonable

probability that the cable tension due to seismic excitation exceeds the static cable
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tension. Moreover, there is a high probability that the transverse and the vertical
cable displacements exceed large displacement values depending on the site conditions
and the peak ground acceleration. This suggests that the common approach in design
to neglect the earthquake load and consider only wind and ice loads may not be a

conservative design.

7.3 RECOMMENDATIONS

Based on the research presented in this thesis, the following recommendations for

future work are suggested:

1.

The results obtained from the current analysis shows that the forces produced in the
transmission towers due to seismic ground motion may exceed those produced by the
code specified wind and / or ice loads in seismically active areas. On the other hand,
the overstrength design factors specified for the code loads are very high and result
in a high cost for the design. It is recommended that the earthquake load is
introduced in the design codes as a step to reduce the overstrength design factors and
the line cost. Ifall the design loads are accounted for in the design, the overstrength
factors can be reduced.

It is shown from the analysis that substantial displacements may result in the cable due
to earthquake ground motion. It is therefore recommended to verify the line
clearances indicated in the design codes against the seismic loads to ensure that during

earthquakes, the cables do not touch each other or any other structures.
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The analysis indicates that large cable displacements may result from earthquake
ground motion which indicates the importance of developing a technique to damp
these vibrations. One of; the most promising techniques is the use of self damping
conductors and more research is required in this area.

There is a lack of experimental work in the area of seismic behaviour of cables. It is
recommended that shake table tests on cables be conducted to examine the effects of

different parameters on the cable vibration.
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