Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7953
Title: Stabilization of the Skyrmion by the Quantisation of Collective Vibrations and Rotations
Authors: Abdalla, Hussain Abdalla
Advisor: Preston, M.A.
Department: Physics
Keywords: Physics;Physics
Publication Date: 1994
Abstract: <p>The classical solitons of the minimal σ-model, the Skyrme model without the quartic term, are known to be unstable to scale variations (Derrick's theorem). Although it has been suggested that these solitons might be stabilized by quantum effects, this possibility has not been adequately investigated. Existing treatments lead to new instabilities due to the improper introduction and treatment of collective and intrinsic degrees of freedom.</p> <p>In this work, we detail the quantisation of collective vibrations and rotations of the Skyrmion in the Dirac formalism for constrained Hamiltonian systems in which we include intrinsic pion field fluctuations. We show that in the absence of the quartic term, the soliton, which disappears in the classical limit, is stabilized by quantum effects alone. The coupling between rotations, vibrations and the intrinsic pion field is found to play an important role in the stability of the soliton.</p> <p>We derive and solve the Skyrmion equation of motion which now includes quantum corrections leading to the stability of the soliton. The stable soliton is shown to possess a symmetry under scale transformations. In either limiting case of rotations or vibrations only, the soliton is shown to be unstable. On the other hand, the rotating vibrating Skyrmion is stable yet it has different properties in different quantum states, a desirable physical property exhibiting the fluid nature of the Skyrmion.</p> <p>Comparison with the static properties of baryons and the conventional Skyrme model shows that the qualitative agreement with experimental results is not significantly altered by the presence or absence of the quartic term.</p>
URI: http://hdl.handle.net/11375/7953
Identifier: opendissertations/3195
4211
1466700
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.3 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue