Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7848
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorEmery, John J.en_US
dc.contributor.authorEgmond, Van Johnen_US
dc.date.accessioned2014-06-18T16:40:43Z-
dc.date.available2014-06-18T16:40:43Z-
dc.date.created2009-07-11en_US
dc.date.issued1978-12en_US
dc.identifier.otheropendissertations/310en_US
dc.identifier.other1304en_US
dc.identifier.other894563en_US
dc.identifier.urihttp://hdl.handle.net/11375/7848-
dc.description.abstract<p>The finite element method has recently become a well established technique in solving geotechnical problems, and has in the past few years been applied in glaciology to stimulate ice mass flow problems. In fact, the models available have advanced much more rapidly than knowledge of the physical parameters and laws which describe ice needed in the simulation process. In this thesis, several functional flow laws are developed.</p> <p>These laws, it is hoped, will lead to a better flow simulation for ice masses. Parameters such as grain size, age, and fabric, though poorly controlled in the testing of ice, are very important to the flow characteristics of ice as can be shown from a consideration of dislocation movements. A more systematic treatment of these parameters is needed.</p> <p>The influence of initial stresses on flow behaviour not considered in previous finite element method simulations of glacier flow, is shown to be significant. Two finite element schemes are compared, and a scheme based on an implicit approach appears to be somewhat faster in computer time.</p> <p>The importance of temperature to glacier flow is considered in this thesis. It is shown that non-isothermal conditions significantly affect the flow of ice masses.</p> <p>The functional flow laws, and the non-isothermal temperature distribution are used to stimulate flow of the Barnes Ice Cap. The simulation is found to be poor compared to observed results. It is felt that a consideration of initial stresses, better temperature distribution data, and improved flow laws are needed before the finite element method simulation will lead to satisfactory results.</p>en_US
dc.subjectCivil Engineeringen_US
dc.subjectCivil Engineeringen_US
dc.titleSimulation of Large Ice Mass Flowen_US
dc.typethesisen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreeMaster of Engineering (ME)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.1 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue