Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7704
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLitva, Johnen_US
dc.contributor.authorBi, Zhiqiangen_US
dc.date.accessioned2014-06-18T16:40:11Z-
dc.date.available2014-06-18T16:40:11Z-
dc.date.created2010-08-03en_US
dc.date.issued1994-04en_US
dc.identifier.otheropendissertations/2963en_US
dc.identifier.other3984en_US
dc.identifier.other1423088en_US
dc.identifier.urihttp://hdl.handle.net/11375/7704-
dc.description.abstract<p>In this thesis, issues related to the FD-TD method and its application are discussed. In particular, absorbing boundary conditions, use of signal processing techniques with the FDTD method, and the application of the FD-TD technique to analyzing microstrip antennas are studied.</p> <p>A new theory called dispersive boundary condition (DBC) theory is formulated and developed. The concept of dispersive boundary condition is introduced first. Based on this concept, three dispersive absorbing boundary conditions are proposed from differing points of view. These DBC's are applied to microstrip and waveguide component analyses. Using these dispersive boundary conditions, great savings in computer memory and significant improvements in the accuracy of the FD-TD method can be achieved for dispersive structure analyses.</p> <p>The use of digital signal processing (DSP) techniques for improving the performance of the FD-TD method is introduced. We demonstrate that the capabilities and the efficiency of the FD-TD method can be improved in several aspects due to the introduction of DSP. In the dispersive absorbing boundary condition studies, digital filter theory is applied to analyze and design DBC. Several DBC's have been unified by using digital filter theory, and it is expected that this will stimulate further development in absorbing boundary conditions.</p> <p>Also, modern spectrum estimation and digital filtering techniques are used to improve the efficiency of FD-TD method in solving eigenvalue problems. It is demonstrated by means of numerical and experimental results that the efficiency of the FD-TD method for dielectric resonator analysis improves by about one order of magnitude. This new result makes it possible for the FD-TD method to be used as a practical tool for analyzing dielectric resonators.</p> <p>The FD-TD method is used to accurately characterize complex planar printed antennas with various feed structures, including microstrip line feed, proximity coupled feed, aperture coupled feed, and coaxial probe feed structures. The validity of a coaxial probe feed model is demonstrated by a comparison of simulated and experimental results. For high dielectric constant substrate antennas, the dispersive boundary condition is employed to absorb strongly dispersive waves. In addition, several other new treatments have been tested for microstrip antenna analysis. All the numerical results obtained using the FD-TD method are compared with experimental results, and the comparison shows excellent agreement over a wide frequency band.</p>en_US
dc.titleThe Finite-Difference Time-Domain Method And Its Application to The Analysis of Microstrip Antennasen_US
dc.typethesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
4.66 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue