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Abstract

In this thesis, issues related to the FD-TD method and its application are discussed. In
particular, absorbing boundary conditions, use of signal processing techniques with the FD-

TD method, and the application of the FD-TD technique to analyzing microstrip antennas « -

are studied.

A new theory called dispersive boundary condition (DBC) theory is formulated and
developed. The concept of dispersive boundary condition is introduced first. Based on this
concept, three dispersive absorbing boundary conditions are proposed from differing points
- of view., These DBC's are applied to microstrip and wavegﬁide component analyses. Using
these dispersive boundary conditions, great savings in computer memory and significant
improvements in the accuracy of the FD-TD method can be achieved for dispersive structure
-analyses. '

The use of digital signal processing (DSP) techniques for improving the Derforma.nce
of the FD- TD method is introduced. We demonstrate that the capabilities and the efficiency
of the FD-TD method can be improved in several aspects due to the introduction of DSP.
In the dispersive absorbing boundary condition studies, digital filter theory is applied to
analyze and design DBC. Several DBC’s have been unified by using digital filter theory, and
it is expected tha-; this will stimulate further development in absorbing boundary conditions.

Also, modern spectrum estimation and digital ﬁltering techniques are used to im-
prove the efficiency of FD-TD method in solving eigenvalue problems. It is demonstrated
by means of numerical and experimental results that the efficiency of the FD-TD method
for dielectric resonator analysis improves by about one order of magnitude. This new re-
sult makes it possible for the FD-TD method to be used as a practical tool for analyzing k
dielectric resonators.

The FD-TD method is used to accurately characterize complex planar printed an-
tennas with various feed structures, including microstrip line feed, proximity coupled feed,
aperture coupled feed, and coaxial probe feed structures. The validity of a coaxial probe -
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feed model is demonstrated by a comparison of simulated and experimental results. For
high dielectric constant substrate antennas, the dispersive boundary condition is emploved
to absorb strongly dispersive waves. In addition. several other new treatments have been
tested for microstrip antenna analysis. All the numerical results obtained using the FD-

TD method are compared with experimental results, and the comparison shows excellent

agreement over a wide frequency band.
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Chapter 1

INTRODUCTION

In the last few years, the Finite-Difference Time-Domain (FD-TD) method for solving

- Maxwell’s equations has received a great of attention in the field of Computational Electro-

magnetics (CEM). This is primarily due to several desirable attributes. First, the FD-TD

method can be applied to problems exhibiting a complex structure which ma.y be very dif-

ficult to solve using other analytical or numerical methods. Second, the FD-TD is a time

domain method by which transient phenomena can be studied. Third, the Fourier trans-
form of the transient result of FD-TD yields frequency domain results over a large spectrum.
This is very elegant, since only one computation is required. Traditional frequency domain

methods require many computations (one frequency point at a time). Fourth, it can be ap-

plied to inhomogeneous, loééy, anisotropic, time varying and dispersive media. Most other:

approaches are not that flexible, The main disadvantages of the method are its require-

ments for, (2) large computer memory, and (b) long computational times when analyzing

both three-dimensional and large scale two-dimensional problems. Overcoming'chs'e limi-

tations depends on two aspects: the development of fast computers and improvement of the
method itself. The purpose of this thesis is to contribute to the development of the method
and to employ the improved method to study some microstrip antennas which might be

very difficult to analyze using alternate techniques.



2 - CEAPTER !, INTRODUITION

1.1 Literature Survey

Since Kane Yee [1] introduced the finite-difference time-domain method for solving Maxwell's
equations in 1966, the method has been widely used for solving many electromagnetic prob-
lems. In recent years, most of the research have been directed at achieving more accurate
discretization schemes [2]-{12], better absorbing boundary conditions [17}-[33], more effi-
cient implementations on supercomputers [44], and applications to various electromagnetic
problems. Examples of these problems are scattering problems [45]-[48], microstrip circuits
#nd antennas [49]-[57], waveguides [63]-[70], and problems related to medical a.pplica.tion.;,.v
The discretization scheme is crucial to modeling the physical geometry of the structures,
treating dielectric/magnetic materials, implementation, and accuracy. Absorbing bound-
ary conditions are crucial to reducing the size of the computatioﬁal domain, the number of

discretization nodes, and hence, computer memory and the computation time requirements.

1.1.1  Finite Difference Schemes

The rectangula.f grid is perhaps the most widely used form of discretization in computational
electrq_magnetics. In the rectangular grid, arbitrary geometries are approximated by using
staircases. In Yee's algorithm [1], the electric a.ﬁd magnetic fields are spatially interlaced.
Within a rectangular cell, electric fields are piaced along the edges, and mé.gnetic fields
are placed at the face centers. Furthermore, these electric and magnetic flelds are also
tempbra.lly interlaced, The spatial and temporal derivatives of the field components are
apprqx:imated in a central difference manner which provides accura.éy to the second order.
For the‘rectangula.r grid, keeping track of geometry is trivial.and only 'requires integer
“arithmetic. Conseqﬁeﬁtly, the implementation of FD-TD proceeds in a straightforward
mann_ér with a minimum requirement for the storage of data. Yee [1] applied FD-TD to
.. 'ixﬁtial boundary value prbblems in isotropic media. Taflove [46] employed the method

oo

w



1.1. LITERATGRE SUAVEY 3

to obtain frequency domain solutions to scattering problems. By exciting with incident
sinusoidal electric fields and waiting for the steady state, frequency domain solutions were
extracted from the time domain results: the stability criteria of the second order Yee's
scheme was also derived in Taflove’s investigations. Holland [47, 48] employed the FD-TD
to analyze electromagnetic pulse problems. These techniques have since been thoroughly
investigated and a considerable amount of effort has been expended in the computer code

development.

Although the rectangular grid provides the simplest discretization scheme, the ac-
curacy of the staircasing approximation is questionable when the space step is larger than
A/20..:To improve upon the staircasing approximation, a number of FD-TD conformal

surface models have been proposed. These fall into three principal groups.

= The models in the first group use globally-stretched grids. These efnploy available
numerical mesh generation schemes to construct non-Cartesian grids which are continuously
and globally st;‘:etched to conform with structure surfaces. E:{a.mples of this approach in-
clude the FD-TD algorithm in curvilinear coordinates (4, 5, 6], tangential flux co.nserva.tion

schemes (7], and the recent.ly{rtiil:aveloped triangular grid FD-TD algorithm [2].

1 i

The models in the second group use loca.lly—stretcheci grid models. These preserve
the basic Cartesian grid arrangement. of field components at all space cells except those
adjacent to the structure’s surface. Space cells adjacent to the surface are deformed to
conform wi:fh the surface locus. Only field components in these cells a._rehprovi‘(\led with
a modified time-stepping a.lgorithm. Examples of fhis approach include: tli;a contour FD-
TD scheme [3, 45], which is derived by numerically approximating Ampere’s and Faraday’s
i\l\é’egral equations, the mixed-polygonal modified finite volume method [9, 13],' and{%he finite

element derived time domain methods [9, 10].

The models in the third group include variable mesh algorithms 49, 2} and the
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multigrid algorithm [13]. Both of these algorithms use fine grids around discontinuities
with the grids evolving into coarse meshes near the wall of the computational domain. The
main differeace between the two algorithms is that the variable mesh uses only one time
step, determined by the finest grid in the entire volume, while the multigrid algorithm uses

several time increments corresponding to different spatial increments.

Research is ongoing for each of these types of conformal surface models and for
developing new finite difference schemes. Key issues include: ease of mesh generation; sup-
pression of numerical artifacts such as iﬁsta.bi].ity, dispefsion, pseudo-refraction, and sub-
" traction noise limitation of computa.tigﬁal dynamic range; coding complexity; and computer

execution time [74].

In Chapter 2, an alternative finite difference scheme for solving the Maxwell’s equa-

tion in the time domain will be presented.

1.1.2  Absorbing Boundary Conditions

In a finite-difference scheme, the grid that contains the points for finite differencing has to
be of finite extent due to the limits on computer memory and resources. In most cases the
finite-difference grid lies in a box. But in many a.pp]_.i.cations, the media are of infinite extent.
To simulate an infinite geometry, absorbing boundary conditions (ABC) are needed at the
surface of thekbox. The use of absorbing boundary copdjtigns reduces computer memory

‘ S
requirements since the size of the box can be made smaller.

There are several approaches to deriving absorbing boundary conditions. One popu-
lar approach involves factoring the wave operator into a product of incoming and outcoming
wave operators with respect to the computational domain. The operator or the wave equa-

tion that governs the outgoing wave field is then used to design the absorbing boundary
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condition. Because this approach is based on an approximation to the one-way wave equa-
tion. the derived absorbing boundary conditions are called one-way absorbing boundary

conditions.

This strategy was used by Lindman in 1975 [23], Clayton and Eagquits in 1977 [19],
Engquist and Majda in 1977 [20] and in 1979 (21], Mur in 1981 [22], and Lee in 1990 [2].
Several one-way absorbing boundary conditions under different coordinate systems have
been presented. These ABCs have been further developed and their performances have
been thoroughly tested by Halpern and Trefethen [24, 25], Blaschak [26], Moore [27] and
Fang [17. |

The other two ABCs which are becoming more and more popular are Key and
Higdon ABC [30])-[32], and Liao’s ABC [33]. These two ABCs together with the Bayliss-
Turkell ABC {28] which was developed under the spherical coordinates can be referred to as
) o-ne-dimenéio-nal ABCs. The reason for using this name will be explained later in Chapter

3. This new classification will provide some physical insights into these ABCs.

Recently, the FD-TD has been used to calculate complex microstrip circuits and
antennas (49}-[54},[56, 57], waveguide components [65]-[68], and guided-wave optical struc-
tures [69. 70]. All of these calculations ha,v;. shown the FD-TD to be a very powerful tool
for the above analyses. However, this method has one serious limitation when it is .a.ppli:-ed
to thé analysis of these structures. It is found that the accuracy of the FD-TD method

may vary as a function of frequency, that is, it may not have the required accuracy over

™

a wide frequency ré,nge. The reason for this is tied to the fact that when a pulse travels
on a particular structure, the vélocities of the fields are different for different frequeﬂcies ‘
due to the dispersive nature of the structure. When épplying the ordinary angle absorbing
boundary conditions to the boundary of the calculation domain, it is found that it falls short

of the mark because it is an optimal absorber of waves at only one frequency or for one

o



&

6 CHAPTER 1. INTRODUCTION

velocity. For the analysis of these structures, a new kind of absorbing boundary conditions
needs to be proposed, one which can absorb waves over a wide frequency band. We call
this kind of boundary conditions as a Dispersive Boundary Condition (DBC). In Chaprer

3, several DBCs will be presented and studied, and dispersive boundary condition theory

- will be systerria,tically formulated and developed.

1.1.3 The Applications of the FD-TD Method

. The wide applications of the FD-TD method were thoroughly reviewed by Tafiove in 146]

and Jurgens in {3]. We will review several of the latest developments on the applications of

the FD-TD technique.

In the last few years, a number of investigators have used the FD-TD method to
calculate the frequency~dependent: characteristics of microstri;g discontinuities [51, 52], mi-
crostrip circuits [49, 50], simple microstrip antennas (49, 50, .;54], and complex microstrip
antennas [72, 73]. All of these c:a\?lt_yﬁations have shown the FD-TD method to be a very
ppx‘verful tool for these analyses becﬁuse of its several highly desired atributes. Howevér,
in the case of the coaxial-line feed microstrip antenna problem the analysis is based on
assumptions that deviate from reality. For example, the discontinuity between the coaxial
line and patch region is replaced by an equivalent lump resistance, and, as well, the char-
acteristic impedance of the coaxial line is not included in the model (54].. Obviously, it is
very difficult to obtain an la.ccura.te éqﬁiva.lent resistance to incorporate all of the effects of
the discontinuity near the connector, especially if the modeling is being carried out over
a wide frequency range. On the other hand, although a number of researchers have given
attentiofi-to modeling line-fed printed antennas using the FD-TD method, as of yet, none

has addressed the problem of strong dispersion when the dielectric constant is high. For -
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microstrip circuit analysis. absorbing the strongly dispersive wave on high dielectric mi-
crostrip line also has not been studied so far. These two issues will be addressed in the

thesis.

Recently, work has been reported on FD-TD modeling of semiconductor devices.
Sano and Shibata [55] combine the conventional FD-TD form of Mascwell’s equations with
current continuity equations based on drift diffusion for both electrons and holes to abtain
a self-consistent solution for charge and fields in picosecond photoconductive switches. The
modeling of the generation and recombination of electrons and holes appears as current
density in Maxwell’s curl equations. Results are qualitatively compared with experimental
data. Another approach also has been reported on the FD-TD modeling of active circuits
[5_6]. In this approach, based on the relationships between the E and H fields and the
voltages and currents, the conventional FD-TD method is generalized so as to allow inclusion
of lumped elements within the grid. By specifying the appropriate -V characteristics of
the sources and elements, both passive and active, as weil as linear and nonlinear circuit
elements, can be treated. The va.].iglity of thgse two methods neéds to be further verified in

e
.

the future.

The FD-TD method has been used to calculate the properties of waveguide cﬁm-
ponents [63)-{68],[71] in the last few years. It has been shown that the FD-TD method
can be easily adapted to complex geometries. Howere_r, most of the papers are limited to

vsing monochromatic:vaves as the excitation for waveguide component analysis due to the
lack of a good dispersive absorbing boundary condition. This strikes 2 blow at one of the'-
most important advantages of time domain methods. That is, by using a pulse as exci-
tation, only one computation is required to get the frequency ‘dorﬂnain results ;:ver a large
frequency spectrum. The presented dispersive boundary conditions will be used to attack

this problem.
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It has been demonstrated that dielectric resonators can be analyzed very accurately
using FD-TD [91, 92]. The resonant frequencies for different modes can be obtained with
one computation. However, this method has one significant drawback, which is that it
requires a very long computation time before the resonant frequencies can be extracted
from the FD-TD results. This limitation can be overcome by incorporating digital filtering

and modern spectrum estimation techniques into the FD-TD method.

Recently, the FD-TD method has been generalized to treat frequency dispersive
_materials. For general dispersive materials, two approaches have been developed. In the first
approach, convolution integrals are employed {36, 37]. Since these convolutions are applied
to every discretization point at every time step, this approach is very time consuming
and requires": large memory. The second approach [2, 38] does not require time domain
convolution. The time domain models of the dispersive materials are written in the form of-
ordinary time differenti.al equations. This second algorithm is much .more efficient than the
first in terms of computation time and memory requirement. It can be shown that these

- two models can be unified if one applies systems analysis concept.

1.2 Description of the Thesis

In this thésis, issues related to the FD-TD method and its applications are discussed. In
particular, a finite difference time domain algorithm, absorbing bouﬁda.ry conditions, use
of signal processi'ng techniques with the FD-TD method, and applications of the FD-TD

technique for analyzing microstrip antennas are studied.

~

In Chapter 2, an alternative finite difference scheme for solving the Maxwell's equa-
tion in the time domain is presented. The new scheme provides greater fiexibility for
studying the finite-element time-domain (FE—TD) method, multigrid method, variable mesh

method, and the method of finite difference approximations to boundary conditions.

AN

#
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In Chapter 3. the concept of dispersive boundary condition is introduced. Based on
this concept. three dispersive boundary conditions are proposed and studied from different
points of view. Based on these studies, a theory of dispersive absorbing boundary éonditions
is systematically formulated and developed. These dispersive boundary conditions allow us
to achieve great savings in computer memory requirements when analyzing microstrip and

waveguide components.

In Chapter 4, digital filtering and spectrum estimation techniques are used with the
FD-TD method to improve its efficiency for solving eigenvalue problems. The considerable
improvement in the efficiency for the method is demonstrated by means of both numerical
and measured results. In addition, several imprerments té the present FD-TD method for
eigenvalue'a.na.lysis are presented. These include the analysis of open dielectric resonators,
the extraction of resonant frequencies and the calculation of the field distribution from the
FD-TD results. The result for the open dielectric resonator analysis is validated using the

measured data.

. In Chapter 5, the FD-TD method is used to accurately characterize complex planar
=f7-"J;>rintéd antennas with various feed structures, which include, microstrip line feed, pfoximity :
coupled feed, .aperture coupled feed and coaxial probe feed structures. A coaxial prbbe
model is developed by using a three-dimensional FD-TD technique. This model is shown
=40 be an efficient and accurate tool for modeling coaxial-line fed structures. On the other
hand, aithough a number of researchers have given attention to modelling line-fed printed
antennas using the FD-TD method, as of yet, none has addressed the problem of strong
dispersion when the dielectric constant is high. The situation will be addressed in this

chapter by means of the dispersive absorbing boundary condition presented in Chapter 3.

Chapter 6 summarizes the study on the FD-TD method and its applications to

microstrip component and waveguide component analyses.
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Chapter 2

A NEW FD-TD SCHEME FOR
SOLVING MAXWELL’S
EQUATIONS

2.1 Introduction

To date, Yee's FD-TD method has received a great deal of attention because it has a number
of desirable attributes. Recently, sew..feral other time domain methods have been presented. .
These have been developed to overcome the rectangular lattice limitations of the method.
Listed among of these are the finite element derived time domain methods (8, 9], the point-
matched time domain ﬁnite"element method [10, 11}, and the FD-TD method which uses
triengular grids [2]. All of these methods make use of the conforming ability of the finite

clement method to approximate physical boundaries more accurately.

The objective of this chapter is to investigate other forms of finite difference schemes,

and to improve the stability condition of Yee's FD-TD method. In what follows, we first

~ present a new FD-TD scheme. Then, we show that this scheme is of second order accuracy, -

and that it has a larger stability condition than Yee’s scheme. Finally, we discuss the

11
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relationship between the scheme presented here and the finite element derived time domain

methods (FE-TD).

2.2 Description of the New Scheme

Maxwell’s equations in a source free isotropic medium are

o 1 =
oE 1_ =

For ease of understanding, we introduce the algorithm by describing the two dimensional

case, and assume TM mode propagation. Under these conditions, Maxwell’s equations

become
8H, 19E.
5% - n 0y . (2.3)
08, _ 10E.
T op oz (2:4)
0E. 1 Q_I".Iy. 0H, o=
o T s oy (2:3)

Yee's method uses the central finite-difference approximation of both the space and the
time derivatives to discretize the Maxwell’s equations. The scheme presented here, which is
analogous to the Rotated Richtmyer Scheme [14]-[16], discretizes Maxwell’s equations into

the following finite difference equations:

) = m - A0 L s B

H: *(i,j) = H: (373) iy 2[E:(11-7)+E=(7"-7 1)]
1 A . . .
SIEG- L+ ENG-Li- 1) (26)

1746, 9)+ 5 {SUERG) + B2 = 1,9
voARIT A 12V z ’

l_— .
2,726, 9)

SIE - D+ ENG-LI- 1)) (27)
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EXNig) = E“("-‘-A—t- SES e L D+ TR
H (29.]) = I‘J)' AT .2[ ¥ (t' T )' ¥ (""Jl )]
1

i 1
ﬂ.-g-:.; -

—3Hy T+ L)+ HJ**(i-j)l}

At (1._nmid. o
——a-{§[H;+2(z-{-1,3+l)+H:+'(-a+l.J)]
1

~EE G )+ EE G (28)
The lattice used for implementing the proposed scheme is shown in region A of Fig. 2.1.
It differs from the conventional lattice used for Yee’s method; which is shown in region B
of Fig. 2.1. The new lattice is referred to as rotated lattice since this lattice rotates 7 /4
relative to Yee's. 'The proposed algorithm can be interpreted as an average finite difference
scheme. From ( 2.6)-( 2.8), it can be seen that this scheme consists of two steps. The first
step consists of finding average values for the components of the fields on fictitious nodes

such as those at p. p’ and ¢, ¢’. During the second step one uses the values obtained in the

first step to derive the centered difference approximation to Maxwell’s equations.

It can be shown that the proposed scheme is very compatible with the conventional
Yee's method. In region A of Fig. 2.1, the new scheme is used, and in region B, Yee’s method
is used. At the interface between the two regions, we use both algorithms to calculate the

values which correspond to the different schemes. In this way we can easily transfer from

ﬂ_qn_eiregidn to the other. The transition is guaranteed to have the same accuracy as either
[C—oer

\‘.
of the two methods, i.e., the second order accuracy.

i
.
e

e

2.3 Stability and Convergence of the Scheme

In this section, we discuss the conditions under which the approximate solutions derived
from the numerical scheme converge to the exact value. In any finite difference scheme, a

system of differential equations is replaced by a discretized one. The discretized system has .

”
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of course an exact theoreticai solution. Let & represent the exact solution of the discretized
system and § the exact solution of the differential system. Then, if ¥ and ¢ are the in-
dependent variables, the discretized system is said to be convergent to the differential one
when the difference between @ and [, at a fixed point (Z,t}, tends to zero uniformly, as the
computational net is refined in such a way that Az, At — 0 and m;,n —oc, (i =1.2,3),
with miAt(= z;) and nA#(= t) remaining fixed. In general, it is difficult to investigate the
problem of convergence. Fortunately, the convergence of discrete approximations to linear
hyperbolic differential equations can be studied by using the Lax equivalence theorem in
terms of stability and consistency. The theorem reads: If a finite difference approximation is
consistent with a properly posed linear initial-value problem, then stability is the necessary
and sufficient condition for convergence. Therefdre, once the consistency of the scheme is
demonstrated, we only need to examine the condition under which the scheme is stable, in

order to ensure convergence.

It can be shown that the new scheme is consistent. To start with, consider the hy-

perbolic system of Maxwell's curl equations (2.1} and (2.2) for ¢ > 0 with initial conditions:
E(70)=Gi(") and H(F0) = Go(D. (2.9)

On 2 domain without boundaries, the above system consists of a properly posed initial-
value problem called the Cauchy.problem. Consistency provides assurance that, as the
finite difference mesh is refined (i.e., as space and time steps tend to zero), the truncation
errors go to zero. Alternatively, one can say that the finite difference model approximates
the desired PDE and not some other PDE. For simplicity, a normalized form of one of

o :
Maxwell’s curl equations is examined. The model equation is

oU 0V, V. y
. 0t 98z oy (210)

As the Yee’s method, the following central difference approximation is used for the
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time derivative
U\ _ U™E-pnd
{E}n = At :

Using Taylor’s expansion

grtk =g 2 {ﬁ} +
n

U"_% =0" - {;—t{a_U} +

and by substitution, we have

e i B CUANNE U A
N {E}n']' ﬂ(.lt) ey + ...

n

In the case of the space derivatives, the new algorithm provides the following approximations

(refer to Fig. 2.2):

{%} w ﬁ{%[%@) + V()] - %[Vy(fi) + V,(1)}

vy N L l : _E
{a_y}(_.;) - A‘y{Q[VrM) - V“"'(B)] 2[V3(2) + Vx(l)]} |

Again, by Taylor’s expansion

V() = Vi(d) - {B_I}w Ty {'_y}(,u

3 +
ne = w5 {5 "QE{%}W

B (),
20\ 2 2 dzdy ()

(2.15)

(2.16)

(2.17)

(2.18)

and similarly for V,(3), V;,(4), Vz(1), Vz(2), Vz(3), V=(4). _Then from equations ( 2.17) and

( 2.18) and similar ones for the rest of node values, with the supposition that Az = Ay = 2h,

-

it
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and after carrying out the necessary subtractions, we have

11:{ [V,(3) + V(2] - 5V(4) + V(1))

% 2 2
{ u }H) - O(h?)  (2.19)

{[V(3 +,@) - 2@ + V] = {%‘;i}(_“w(hz). (2.20)

Finally, from equations (2.14),(2.19) and (2.20), we can have

ﬂ.-i-2 n—— ,
U__NL__ - i{%[vy(s) +V,(2)] - %[Vy(df) + (1]}
. 1 1 1
+ @ + V@) - 51V:2) + Vz(1)}
A |
= (-c’i_t "9z T oy )(A,n.At)

+ O(A) + O(h®) + ... (2.21)

From the above equation ( 2.21), we can see that when we usé the new scheme to approx-
imate the differential equation, the principal part of the local truncation error &ue to thé
displacement is O(A#?) + O(k?). This error approaches zero with the second order of the
mesh lengths At and h. Hence, the new scheme is consistent with the differential equation,

and the new algorithm is of the second order accuracy.

Under the assumption of no additional numerical boundary conditions, there are
several ways of analyzing the stability of a finite difference scheme. Using a method similar

to that used by Wilson [14], it can be proven that the rotated scheme is stable if

e(At)

Az

<1 (2.22)

where ¢ is the velocity of propagation, and Az = Ay. This stability criterion is independent
of the number of dimensions if the computational grid is uniform. This invariance with the
dimensions of the problems is considered to be an advantage of our scheme when compared

to Yee’s scheme. Yee's stability condition depends on the number of dimensions n as

cAt
-_— 2.9
2 < (2.23)

SIH
S
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Actually the condition ({ 2.22) reaches the upper limit of Courant. Friedrichs and Lewy
condition. On this basis, and aiso by examining the number of arithmetic operations in the

four schemes [14, 16}, Wilson concludes that the rotated scheme is the best algorithm.

We have carried out a numerical experiment to test the stability condition given
by ( 2.22), as well as to check the validity of the new algorithm. An H-plane rectangular
waveguide is chosen as the example [71] for our computation, where the excitation that is
used on the excitation plane consists of a monochromatic dominant TE,5 mode wave of unit
amplitude. Botdh Yee's scheme and the new scheme have been applied to this problem. The
stability factor, p = c(At)/Axz, is assumed to be 0.70 and 0.990, respectively, for the former
and latter algorithms. A comparison of the results obtained using these two techniques is
given in Fig. 2.3. The quantity that is being compared is the E, field at a reference point.
It is readily seen that by iteration 800 the new technique provides results covering a greater
amount of time than the Yee's scheme. It is in this sense that ﬁhe new method is considered
to be more efficient than Yee's method. Another computation was carried out to test the
sta.bility conditions for Yee's scheme and the new scheme, respectively. The results show
that once the stability factor exceeds 0.707186, Yee’s method begins to diverge. But, in the
case of the new scheme, the algorithm does not start to diverge until the value of stability
factor exceeds 1. In Fig. 2.4 is given the compatibility testing result of the new scheme

and Yee's method. In this test, the waveguide, as was the case in Fig. 2.1, consists of two

" regions, A and B. In region A, we use the new scheme, and in Region B, we use the Yee’s

scheme. The field is sampled in Region B. From this figure, we can see that the two schemes

are very compatible.



18 CHAPTER 2. A NEW FD-TD SCHEME FOR SOLVING MAXWELL'S EQUATICNS

2.4 The Relationship between the FE-TD and the FD-TD

It is shown in the appendix that the finite-element derived time-domain method [10. 11],
defined over a rectangular subspace and formulated using isoparametric functions, is equiv-
alent to the new finite-difference time domain method. This equivalence leads to simple

interpretation for the FE-TD method and allows for straight-forward error analysis.

s

2.5 Summary

A new scherﬁe of finite-difference time-domain computations for Maxwell's equations is pre-
sented. The accuracy of this new scheme is of second order accuracy in both time 2nd space
domains. The most important advantage of the scheme, compared with the conventional
Yee’s method, is in the value of its stability condition. The stability condition for the new
FD-TD exceeds that for Yee's method by a factor 1.4 and 1.73 for two-dimensional case and
tlhreefdimensi;églpal cases, respectively. As well, there are two other important ;mdvantages of

this method.

3
First, the new method is compatible with both the Yee's FD-TD method and the

recently developed finite-element time-domain (FE-TD) method. With the help of the new
scheme,'the conventional FD-TD and the newer FE-TD methods can be unified. One benefit -
that can be realized from unifying the FD-TD and FE-TD methods is that the'l conforming
boundary element method presented by Cangellaris [10,' 11] can be simplified in the following
manner. Cangellaris suggested that a few irregularly shaped quadrilateral elements are used
to conform the geometry of interest while the square grids are ﬁsed away from the boundary,
hence, making use of the attractive feature of the finite-difference method where the index
numbgrs of each node contain the nodal coordinates. Based on the above discussion, we

suggest that, near the structure, the quadrilateral elements still be used to conform the
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physical boundary, but away from the structure. the conventional Yee's method be used.

Second. the new FD-TD scheme provides greater flexibility for formulating and
studying the multigrid method, variable mesh method and the method of finite difference

approximations of the boundary conditions.

This chapter should not be concluded without mentioning that, although the stabil-
ity condition for the new FD-TD scheme is considerably improved over that of Yee's method,
the total computation efficiency of the wwo méthods is almost the same on most current
computers. This is due to the fact that, for the two dimensional TM wave case, the total
operation number of the Yee’s method at each time step is 15, while that of the'new method -
is 22 (it is 46% more than Yee's method). But, with the development of parallel computa-
tion, the new method has the potential to increase the efficiency of FD-TD methods. On
a multiprocessor computer (which can have tens of thousands of simple processors), the
computation time mainly depends on the time it také§ for the data communication between
the Qrocessor;:,TUSuaﬂy this time is several tens times longer than the computation time it
takes on th\é_/brocessprs. Thus, for a fixed total computation time, because the new method
needs a fewer number of time steps (this means less data commﬁnication is needed), it can

improve the total efficiency of the FD-TD methods.

i}
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2.6 Appendix: Finite Element Derived Time Domain Meth-

ods

In this appendix, first, the finite element derived time domain (FE-TD) methods are re-
viewed. Then, their relationship with the new FD-TD method is derived. The FE-TD
methods can be thought of as 2 hybrid approach. Its basic principle is that, in the Maxwell’s
equations given by (2.1) and (2.2), a finite-element basis function expansion is used to rep-
resent the spatial variations cﬁ' the solution while time derivatives are. approximated usiné

central differences.

We assume that the space domain in the two dimensions has been discretized into
quadrilaterals as depicted in 2.5. The electric-field nodes are represented by dots and the
magnetic-ﬁeld nodes by small circles. Those two sets of nodes are 'mutua.]ly interspaced to
form two complementary meshes such that an element of the former é;.lwa,ys encloses a nodal

point of the latter. We assume that E and H can be written in the general functional forms

" - 4 ' - .
E(Fty= Y eu(PE(L) | (2.24)
{=1
) .
A(F,t) = Y (R H(t), - (2.23)
I=1 .

where the E;'s and H ;'s are the nodal values of the electric and magnetic fields, respectively,
and the &;'s and ¥;’s are kﬁown basis functions which allow us to describe any desirable
variation of the fields within the elements. Using an appropriate definition for thessi func-
tions the field within an element can bve made dependent only on its values at the wnodes
of the elemt?nt. Substit_uting the above functional forms into the right sides of Maxwell’s
equétions (‘é-.l)'a.ild (2.2) and enforcing the point matching or the collocation on both sides
of the equations give | |

dﬁj - " B , .
_‘E‘ = —; Z(v¢l(r))F=f}'"x Ef“)! 7=12, '"?-N (2'26)
: =1
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dE; 1< o - .
- = ;Z(vw,(r))-=ﬂ x Ei(?), i=12,. M (2.27)
=1

where, .V is the number of magnetic nodes, and M is the number of electric nodes. Using
Yee's method as an analogy, we use central difference to approximate the time derivatives

in the above two equations and we can obtain the following explicit recurrence formulas

"ﬂ'i‘-lT —n._;- At 1 o Bn . 9 - . E.
HJ = HJ - FZ(VQI(T))FEFJ X Ef, j=1 2,4 N (2'28)
=1
T eI : 2.29) -
E‘- = E‘- - -E-Z(v’w[(T))?=ﬂ X EI T, 1= 1, 2, ceey ."’I. (2.29)
=1

Formula { 2.28) and ( 2.29) are the basic equations for the FE-TD method. The element is
not limited to the shape of Fig. 2.5. It can be other forms of qua.drila.neralé or triangles {9]-
[11]. But, in the following discussion of the finite element we only consider the quadrilaterals
in Fig. 2.5. ‘.

The arbitrary quadrilateral is very attractive not only because of its conforming
~ ability but mainly due to a very special interpolation scheme associated with it, which is
called the isoparametric quadrilateral. Its comstruction involves two successive steps: (i)
bilinear iﬁterpola.tion in natural coordinates £ and n on the unit square; (ii) mapping of the
unit square into a general quadrilateral in # and y coordinates. The bilinear interpolation

function on the square element in the natural coordinates £ and 7 ( Fig. 2.6a )is given by

4
é(Eﬂ?) = z -Ni(fi n)¢i ‘ (2.30)
o i=1
where |
Nigm) = 0+ EIA ), i= Lt (231)

and ¢;’s are the nodal values.

The mapping from the natural coordinates to the z and y coord.ina.l:es.( Fig. 2.6b )
is given by:
g = Loy Nil€, )z

. (2.32)
y =Yty Ni(&n)u -

0
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where V;(€,7).1=1,...4, are also given by { 2.31). The importance of this nonlinear mapping
is well illustrated in Fig. 2.6¢. First notice that £ and 7 form a curvilinear coordinate system
in the (z —y) plane where the quadrilateral lies. The origin of the natural coordinate system
is mapped onto the center of gravity of the quadrilateral. Finally, since the variation of z
and y is a linear function of £ and n along the sides, the resulting interpolation function will
also have a linear variation on the same paths. Hence, the isoparametric quadrilateral is a
€0 element as 2 linear function is uniquely determined by two points which are common to
two adjacent elements. The disadvantage of the isoparametric quadrilateral is that because
of the non-linearity of the mapping functions N;'s, equation ( 2.32) cannot be inverted to
express ml:erpola.t:on function ( 2.30) d_trectly in terms of z and y. Therefore for a given point
(z,¥), one has to solve the above non-linear equanons in order to obtain the correspondmg
natural coordinates £ and 7. This can be achleved by using the D \Tewton-R_.aphson method

[11).

The differentiation of element interpolation function can be calculated in the follow-

ing way. Differentiating N;(£, n) with respect to { and 7, we get

aN; oz 0 aN; ON;
| 3 ot || o = [J] % | (2.33)

ON; dx & AN; .
Sl 15 &l By

B

where J is the Jacobian of the transformation. Solving for %‘%’- and %i, we get

aN; aN; | -
Tz | _pe1| OF .
aN; |~ Ul aN; |’ (2:34)

By o0

'In the above equation, the natural coordinates for a given point (z,y) are computed using
Newton Raphson iteration. Once %I-V;i and'%“—;"— are known, the derivatives 3— and 3 a" can
be calculated from equation ( 2.30)

Zav : o (2.35)

i=1



2.5, APPENDIX: FINITE ELEMENT DERIVED TIME DOMAIN METHODS i

Now we check what happens for the above finite element derived time domain
method when the elements are rectangulars. For a rectanguiar element ( Fig. 2.7 ), the

mapping functions simplify to

m=(§+1)%§_+m1

2.37
y=(n+1)%2+y1- =
Since the transformation is linear in this case. The above equation can be inverted
2
= zzlz-=)-1 (2.33)

n= Az—y(y—yl) -1
- Substitution of { 2.38) into ( 2.30) yields
é by — &
fo-om) + BTRE-w)

By s, (29

Ga -
Az

+

Then it is straightforward o obtain the partial derivatives

do _ 0y~ +¢1—¢>2+é3—04(y_y1)

06 _ &4 = + ¢1-¢’2+G53—<f’4(x_x )
Ay~ Ay Azly 1
When (z,y) is on the center of the square, the above equation can be arranged into
¢ 9o _ ¢2“¢1+¢1—¢2+¢3—¢’4
Oz Az 2Az
1.1 1 2 -
= 3—5{5[9253 + ¢2.] - glda+ 1) S (2.41)
9 _ ¢4—¢1+¢1—¢2+¢3'—¢4
dy Ay 2Ay
1.1 1
= Ay §[¢4 + ¢a] — §[¢2 + ¢l]}- ‘ - (242)

Equations ( 2.41) and ( 2.42) are exactly the same as finite difference scheme quations (

2,15) and ( 2.16). Based on the above derivation, we can conclude that the finite element.

derived time domain method, when defined Uver a rectangular subspace and formulated

using isoparametric functions, is equivalent to the new finite difference time domain method.
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Figure 2.5: A space domain discretization of finite element time domain method

n
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(T4 W) ] =1 (173 1)
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Figure 2.6: (a) and (b): Mapping from unit square on (£ — 7) plane to a quadrilateral on
the (z — y) plané{ \") curvi-linear coordinate system (£ — ) in (z — y) plane.
.\'/.J‘ . : ’



CHAPTER 2. A NEW FD.TD SCHEME FOR SOLVING MAXWELL'S EQUATIONS

4

‘ Ay
3
1 | 2
111_———’} . g‘

P

N -
A

Figure 2.7: Rectangular finite element
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Chapter 3

DISPERSIVE BOUNDARY
CONDITIONS (DBC)

3.1 A DBC for Microstrip Component Analysis

3.1.1 Background

Recently, FD-TD methods have been used to calculate the frequency-dependent charac-
teristic of microstrip discontinuities [51]-[53], microstrip components and simple microstrip
antennas [49, 50, 54] and complex microstrip antennas [72, 73, 78, 79]. All of these calcula-
tions have shown the FD-TD method to be a very powerful tool for microstrip component
and antenna analysis because it has the following two desirable attributes. First, it can
be applied to problems exhibiting a complex structure which may be very difficult to solve
using other analytical or numerical methods. Second, only one computation is required to
get the ffequency domain results over a large fr;aquency spectrum. However, this method
has one sigﬁjﬁcant drawback, which is that it requires a very large computer memory, even

for the analysis of very simple microstrip lines and coplanar waveguides [51}-[53]. One of the
first approaches to be tried .for reducing the memory requirement is to use a good absorbing

boundary.condition so that a smaller computational domain can be used. The authors of

31
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earlier papers have used the one dimensional absorbing boundary condition or Mur’s first
order absorbing boundary condition (ABC), which is not accurate enough for microstrip
anﬁlysis, especially for high dielectric constant microstrip components. The reason for this
is tied to the fact that, when a Gaussian pulse travels on the microstrip line, the velocities
of fields are different for different frequencies due to the dispersion properties of microstrip
or coplanar lines. When applying Mur’s first-order ABC it is found that it falls short of the

mark because it is an effective absorber of waves at only one phase velocity or one frequency.

The objective of this section is to pfésent a dispersi\;e bouhda.ry condition ( DBC)
for microstrip component analysis, which can absorb waves over a wide frequency band.
The derivation of this DBC is based on wave decémposition and on an approach that is
analogous to that of Bayliss and Turkel [28]. The performance of this DBC is much better
than that of the présently used Mur's first order boundary condition 49, 30, 52, 33], and its
implenientation is much easier compared with that of “super boundary conditio;” treatment
of [52] and [53]. The significant improvément in perfor:hance of the. present DBC coﬁpared

with others will be demonstrated by carrying out a numerical analysis of a microstrip line.

3.1.2 Outline of Bayliss and Turcle’s ABC

Based on Wilcox's expansion of the scattered fields [43], Bayliss and Turkel (28, 29] derived
asymptotic absorbing boundary conditions in both the frequency and time domains. These
absorbing boundary conditions are applicable to circular boundaries. They have been shown

to be more absorbing than the boundary conditions derived by Engquist and Majda [20, 21].

In this absorbing boundary condition, it is assumed that the wave has the form {43

Bir,= 3 0D

i=1

(3.1)

r
in the vicinity of the box boundary. It should be noted that the above representation is

intuitively obvious since the far fleld from a source can be expanded in terms of spherical
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harmonics.

On defining an operator
o 148 i
cm | b e = 3.9
L (Br t c ot + r) T (3.2}

Ei(et - 7‘,9,‘6)

rt

we_can show that
L; = 0. (3.3)
Hence, if we apply Ly to ( 3.1), it will annihilate the first term in ( 3.1) and convert the

other terms to higher order terms, namely,

LiE(r, )= Z(l rf:; nbo) (3.4)

Consequently, Ly E(r,t) ~ O(r~3). Similarly, it can be shown that L3L E(r,t) ~ O(r ™)

and so on. Then, on defining

B = Lam-1Bm-1, | . (3.5)
Bll= L. | (3.6)

we have :
N TIRTICEI

Furthermore, it is easy to show that
B E(r,t)~ 0(1/:-2’"“) (3.8)

In fact, By, annihilates the first m terms in the expansion ( 3. 1) This property is, derived
by carrying out formal manipulations with ( 3.1) and does not use any other properties of

the wave equation. Hence, the relzlg.f{io'nship given by
B E(r,t} =10 (3.9)

can be used as an absorbing boundary condition. It is good up to O(1/r*™*+*). In particular,

if we assume that m = 2 explicitly, the bounda.ry condition is

8 18 9 13
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The boundary condition ( 3.9} become increasingly more difficult to implement whenr m
becomes large. Among these absorbing conditions. the second-order condition is the most
popular and has been applied to many problems. This boundary condition can be called
2 one dimensional ABC because its derivation is based the wave decomposition along only
the r direction. and because it involves only space derivatives of r. Now we are going to

use the above deriving strategy to present a dispersive boundary condition.

3.1.3 | Dispersive Boundary Condition (DBC)

In most ED-TD analysis of microstrip components. such as microstrip lines, basic microstrip
discontinuities and microstrip antennas, the major direction of the power flow is in the
waveguided direction (for a microstrip line, in the metal strip direction). The sideways
~ leakage and radiation are small due to the guiding nature of the metal strip and the high-

dielectric constant of the substrate, This is quite similar to the one dimensional propagation
- N _
case. Based on the above observation, papers {50. 32, 53] use the following one dimensional

boundary condition or Mur's first order boundary condition:

8 10\, _ |
(5 + EE)__E =0, (3.11)

where E represents the tangential electric field coﬁponents relative to the boundary wall and
v; represents the velocity of propagation of the fields. Since the above boundary condition
can only be optimized for ;. wave whose frequency corresponds to the velacity, v, the
magnitude of the ehergy reflected by the boundary can be quite large due to reflections at

other frequencies. Here, we use the strategy used in deriving Bayliss's ABC to present a

e
dispersive boundary condition which can absorb fields over a wide frequency band.

A dispersive wave can be decomposed into many different frequency components,
o

i.e.

E(t,2) = Ei(s — ut), (3.12)
=1

I
A

()
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[+
o

where each frequency component corresponds to a plane wave with velocity v;, which is

determined by the dispersion relation

v = v fi), (3.13)

where f is the frequency and u(f) is any form of function which depends on the analyzed

structures.

On defining an operator

a 18
5= (554 5a0) (@14
we can show that
B:Ei(z - vit) = 0. ' - (3.13)
Hence, if we apply By to ( 3.12), it will annihilate the first frequency component in ( 3.12)

and attenuate the other frequency components, namely,

B E(t,z)= i(l - :—;)E:(:: - vit), (3.16)

=2
where (1 — v;/v;) is called as attenuation factor. Similarly, it can be shown that BaSy will
annihilate the first two terms in ( 3.11) and further attenuate the other terms, namely,

ByB E(t,3) = i(lﬁ— %)(1 - BVEl (2 - nt), (3.17)

. 2
=3
whergi_(i — Jv1)(1=v;/v2) is the attenuation factor. This property is derived by applying
formal manipulations to ( 3.12) and does not use any other properties of the wave equation.

Hence, a boundary condition v

8 18 i} 14
(E + EE) (E + ;2-'5—{) E=0 (3.18)

- can be used as an absorbing boundary condition, which can absorb plane waves traveling to
the right with velocities v and v». By conca.ten;\a‘.ting several abs;rbing boundarf conditions
( 3.14), the number of the absorption velocities can be increased. If v and vy are determined
by the dispersion relation v = v(f), boundary condition ( 3.18) becorﬁes a multi-frequency

absorbing bourdary condition or a dispersive boundary condition (DBC).
\."‘_".//’ S
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3.1.4 The Relationship between the Proposed DBC and Key and Hig-
don’s ABC

Keys and Higdon’s angle absorbing boundary condition {30}-[32] can also be described in
terms of the disparsive boundary condition ( 3.18). In their work, they choose the velocity
v in ( 3.18) according to the relation v; = ¢/ cosf;, where ¢ is the propagation velocity
of wave, and 6; is the incident angle of the wave with respect to the z-axis. The reason
they can make this choice for the phase velocity is due to the following: A plane wave with

velocity ¢ and angle 6 can be expressed as
E(t,z) = E(ct - zcosf) = —-t - z) (3.19)

along the z-azis. Moreover, an arbitrary wave can be decomposed into a summation of

plane waves with different angles, i.e.:

o

¢
E{t.z)= Z Efct—zcos®;) = E B a);—s—it - z). (3.20)

This new description gives a one-dimensional interpretation to Key and Higdon’s ABC.
That is, the waves from different angles are first mapped into the waves travehng along
the z-axis with correspondmg velocxtles, then the waves with different \«elocn:les in one
dimension are absorbed. So, based on this discussion, Key and Higdgp’s ABC can also be

thought as a one dimensional ABC.

7

'3.1.5 Numerical Results .

The iﬁplementation of the dispersive boundary ( 3.18) can be realized bym employing oper-

“ ators. Let us define the shift operat;pfé 1, Z a.;}d K. by the.following:

1EF = B (3.21)

QO
7]

ZE} = E7 ' (3.22)
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r "o n 3 ey
K.Ef = E}, (3.23)

where i is the space position index and n is the time index. The difference equation for

( 3.11) is given by:

B = Exih - w(ES = E) =0 (3.24)
where
v = 1-p (3.25)
Pl4p o
u( fi)At
/= (_Al—"a (3.26)

Ejr represents the tangential electric field component on the boundary and Eys_; represents
the tangential electric field component a distance of one node inside the boundary. The

boundary condition ( 3.24) can be expressed by the operators:
[1-27'K; - w(Z7 - KIDIES =0 (3.27)

or

B:E} % 0 (3.28)

N
.
where, \

B,‘ =1- Z_IK:]‘ - ‘}’,‘(Z“1 - K;l) (329)

is defined as the difference boundary operator. The difference @g;mdary operator B for the

dispersive boundary condition given by ( 3.18) can be obtained in the following way:
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B = B;Bg
= [I-Z7'K' - (27 -KJ[I- 27K - (270 - K]
= [-2Z7'K7' + 272K+ (27 =227 KT + KJ9)

—(n + )27 - K- 27K + 2K (3.30)

From the above boundary operator, we can obtain the final second-order dispersive bound-

ary condition:

n -1 n=2
M 2 M=-1" EM-2

_*_

(1 +12) (B3t = Efy_y — By + Efh)

— mv(EN? = 2B + By (3.31)

- Using thelébove dispersive boundary condition, we carry out an analysis on a mi-
crostrip line. Fig. ( 3.1) gives the effective dielectric constant calculated using the FD-TD
method. The analysis is carried out by applying both the dispersive boundary condition
and Mur’s first-order boun&a.ry condition at the ends of the microstrip line. while at the
remaining walls wle only use Mur’s first-order boundary condition. The curve identified
by crosses was obtained by using a computation domain which is as large as that used in
[51] so that the time domain data can be truncated before reflections from the boundary
occur. This is an exact result in the sense that it is free of ‘any boundary effects. The
curve identified by circles was obtained by usi:lg the DBC and using only one third of the
former computation domain. In the DBC, the velocities #; and v, were determined by using
values 7.12 and 8.50, respectively, for the effective dielectric constants. The above two lines

overlap exactly in this figure. The dashed line results from using Mur’s first order ABC

and the smaller computation domain. In Mur’s first-order ABC, the velocity is determined

by using an effective dielectric constant of 7.12. It follows from this that the DBC leads to
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greatly reduced computation memory requirements. In Fig. { 3.2) is shown a propagating

E.-pulse in the time domain, as well as a residual signal due to reflections at the bound-

ary of the computation domain for both DBC and Mur’s boundary condition. Ir the DBC..

€reff1 = 1-122nd €c552 = 8.50 are used to determine the two velocities. In Mur's first-order
ABC, €7y = 7.12, 8.12 are used to determine the velocity, ;eépectively. From this reé;ﬂt
we see that in the time domain the reflections from the computation domain boundary are
greatly reduced using DBC: in fact, DBC reflections are an order of magnitude less than
those from the first-order boundary conditions. The numerical refiection coefficients for
both DBC and the first-order boundary conditions are given in Fig. ( 3.3). This figure
shows that DBC absorbs the wave over a large frequency band, i.e. the reflection coefficient

is less than —45 dB from. 0 to 20 GHz, where ¢..;51 = 7.12 and €r.5z2 = 8.30 are used for

the DBC. For the first-order conéiition, the reflection coefficients are less than —45 dB only

over the ranges from 0 to 3 GHz when €..5¢ = 7.12, or from 5 to 8 GHz when ¢.55-= 8.12.

3.1.6 Conclusion

The dispersive boundary condition allows the dispersive properties of waves to be incorpo-
rated into the design of an absorbing boundary condition. This feature can be very useful
when the dispersion for a major outgoing wave is known. Both the validity ‘and the efficiency
of the DBC have been demonstrated by carryiné out analyses on a microstrip line. With
DBC, the memory requirement for FD-TD analyses of microstrip circuits and antennas can

be greatly reduced.

0 A
The main difference between DBC and ABC is that DBC is designed to optimize the

boundary condition according to the dispersive characteristics of the waves, while ABC is

designed to optimize the boundary condition according to the propagation direction of the

waves, The introduction of the concepts which are the basis of DBC is specially important -

T
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for the study of absorption for strongly dispersive waves, such as occurs in conductor waveg-
uides and dielectric waveguides. Further applications of the proposed DBC to waveguide
component analysis will be investigated in the next section. Based on the ideas presented

in this paper, some ABCs can be modified into DBCs.

)

]
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1 2 3. 4 5 6 7 8 9 10
Frequency GHz

Figure 3.1: Effective dielectric constant of a microstrip line. The cross dotted line: Using
very large computation domain. The circular dotted lLine: Using DBC and smaller com-
putation domain. The dashed line: Using Mur’s first order ABC and smaller computation
domain.
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Figure 3.2: Field reflection in time domain due to boundary conditions. (a). Incident
waves and reflected waves from the boundary conditions. Solid line: first order Mur's ABC,
€reff = 71.12; Dashed line: DBC, ¢repf1 = 7.12 and €052 = 8.50. (D). Reflected waves from
the boundary conditions. Solid line: first order ABC, €ro5s = 7.12; Dotted line: first order
ABC, €rep5p = 8.12; Dashed Line: DBC, €,.p51 = 7.12 and €ropp2 = 8.30.
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Figure 3.3: Numerical experiment reflection coefficients for a microstrip line. Dashed line:
first order ABC, €r¢fy = 7.12; Dotted line: first order ABC, €5y = 8.12; Solid line: DBC,
€reff1 = 1.12 and €opp2 = 8.30. '
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3.2 Waveguide Component Analysis Using DBC

3.2.1 Background

Recently, the FD-TD method has been used to calculate the properties or characteristics
of waveguide components [65]-{68], [71]. All of these calculations have shown the FD-TD
method to be a very powerful tool for waveguide component analysis because it can easily
be adapted to complex geometries which may be very difficult to solve using other ana,lyticai
or numerical methods. However, most of the papers are limited to using mon&ch?omatic
waves as the excitation in waveguide ana.lys:s This means that the analysis has to be re-
peated for each frequency of interest. So, this strikes a blow at one of the most 1mportant
advantages of time doma.m methods (FD- .TD and TLM methods), which is that, by using
a pulse as excitation, only one computation is required to get the frequency domain results
over a large frequency spectrum. The reason that earlier workers chose a monochromatic
wave, rather than a pulse of some selectéd shape as the excitation, is because of the lack
of a good dispersive absorbing boundary condition which could be used with the FD-TD
method. That is, one that could absorb waves propagating on the FD-TD grid over a wide
frequency band. Oliver and McNamara [66] have responded to this limitation and have
presented a dispersive boundary condition. It is foﬁnd that the performance of the DBC
they used does not meet the rgquirements demanded that must be met for carrying out
highly accurate analyses. Recently, Alinikula and Kunz [68] used ﬁpulse as the excitation
in their analysis and tried to improve 1.:he efficiency of the FD-TD technique for waveg-
uide component analysis. It will be shown that their results suffer from large inaccuracies

because the boundary condition they used bnly absorbed waves in a very narrow part of
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the dominant mode bandwidth (although they state the reflections due to the absorbing
boundary condition (ABC) are less than —35 dB to —30 dB over $0% of the dominant mode
frequency range, it will be shown that this performance can be obtained for that ABC at

only less than 20% of the dominant mode frequency bandwidth.).

The objective of this section is to apply the dis;ﬁersive absorbing boundary condi-
tion (DBC) developed in the last section for microstrip component analysis, a case where
dispersion is weak, to a strongly dispersive case which occurs in conductor waveguides.
This DBC will allow a pulse to be used as the excitation, thereby greatly improving the
efficiency of the FD-TD method. The significant improvements brought about by the use

of the DBC for waveguide compoﬁent analysis will be demonstrated with both theoretical

and numerical results.

3.2:2 Reflection Coefficient for Dispersive Boundary Conditions

It would not have been possible for the ordinary angle absorbing boundary condition (ABC)
theory to have been developed so well if the refiection coefficient, R45¢, had not been used
to evaluate the performance of an ABC. Like ABC, the reflection coefficient for DBC, Rpge,

has to be formulated before we can carry out a study of DBC.

Tt is known [l?,k27] that the performance of a given ABC can be assessed by deriving
a reflection coefficient R, which quantifies the nonphysical reflection of a plane wave, as a
function of incident angle ﬂ', when it intera.cts‘with the grid boundary. Clearly, a goc;d ABC
gives a small value of R over a wide range of §. Like ABC, the DBC can also be evaluated
by the corresponding reflection coefficient R. But, for DBC, the reflection coefficient is a
function of the frequency, rather than the incident angle. A gbod DBC should give a small
value of R over a wide ranﬂge of frequencies. The reﬂeﬁtio_nccoeﬂicient R is defined as the

ratio of the reflected wave field to an incident plane wave. Consider a wave traveling to the
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right, The wave has the form

Eip = eflut=hel, (3.32)
When this wave strikes an artificial boundary, it produces the total wave field

Eor = e/@=F5) 1 peiletrha), (3.33)

where R is the reflection coefficient. This wave field satisfies the boundary condition so -

that R can be determined by substituting E;s into the boundary condition equation. By
substituting expression ( 3.33) into ( 3.11) and ( 3.18), the reflection coefficient expressions

as a function of frequency are obtained for ABC ( 3.11) and DBC ( 3.18). They are,

respectively,

—kv; +w

Ripc = o (3.34)

A+
1 s

and

I

B (—-kv1+w) (—kvg-i-w)
bBcC kv +w koo +w
i=1

where the propagation constart, &, is governed by the dispersion relation for the wave

k= k(w). (3.36)

From expressions ( 3.34) and { 3.35), it can be seen that the reflection coefficient
for DBC is directly coupled .with the dispersion relation. To continue the discussion of the
evaluation for the DBC, based on the refiection coefficient, let us consider the dispersion
- relation of the dominant waveguide mode,.TEq, for our ré.ﬂection‘ coeflicient calculation.
The amplitudes of reflection coefficients for ABC ( 3.11), DBC ( 3.18) and the DBC used
1n[66} are shown i Fig. 3.4, where kg is the free space proﬁa.gation constant, and w
1s width of the waveguide. The dashed lines are for ABC ( 3.11), the dotted line for the
DBC [66] and the solid line for DBC ( 3.18). From this result, it can be seen that the

—kv; .
- 1T (8:33)

o
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ABC ( 3.11) or Mur's first order ABC is a gocd absorber over only a very narrow range of
frequencies. However, DBC ( 3.18) is effective over aimost the total frequency band of the
TE;o mode. The reflection due to this DBC is less than —40 dB for almost the whole TE,y

mode frequency band. The performance of I'BC [66] is not as good as that of DBC ( 3.18).

3.2.3 Numerical Results

To test the validity of the DBC ( 3.18) for waveguide component analysis, we carry out an

analysis for a homogeneous waveguide. We use an electric wall.to launch the wave down the

waveguide. The incident_transverse electric field on the excitation plane is forced to be a
TE;o mode field distribution so that the wave that is launched approximates the TEqg mode.
The incident time-domain field is a sinusoid Qith a centre frequency oii; which is modulated
by a Gaussian pulse. The width of the Gausssian pulse is selected so that its spectrum
fills and overlaps the frequency band in which only the dominant mode can propagate. In
the calculation, the wide side of the waveguide is divided into 20 space steps, and the 3%
Gaussian pulse width is chosen to be abo.ut 140 space steps. At the end of the waveguide,
DBC ( 3.18) and ABC ( 3.11) are applied, tespectively. In Fig. 3.5 are shown the time
domain fesults. Fig. 3.5a shows a sinusoidal signal, modulated by a Gaussian envelope,

propagating in a very long waveguide. Fig. 3.5b shows the reflected wave for ABC ( 3.11),

and Fig. 3.5¢ shows the refiected wave corresponding to DBC ( 3.'18). From this, we see

that in the time domain the reflections from the computation domain boundary are greatly
reduced using DBC ( 3.18). The numerical reflection coefficients for both DBC ( 3.5.8) and
ABC ( 3.11) are given in Fig. 3.6. This figure further shows that DBC ( 3.18) is effective
over 80% of the frequency band corresponding to the dominant mode for waveguides, i.e.
the re};iection coefficient is less than —40 dB over this range of frequencies. For ABC ( 3.11),
the reflection coefficient is less than —40 dB over only 10% of the frequency band occupied

by the dominant waveguide mode.
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3.2.4 Conclusion

The dispersive absorbing boundary condition (DBC) presented in the last section for mi-
crost:ip component analysis, where the dispersion is weak and where very good results
have been obtained, is appliedr to the strongly dispersive case which occurs in conductor
waveguides. The excellent absorbing quality of the DBC for strongly dispersive waves has
been demonstrated by both theoretical anc. numerical results. The reflection coefficient is
formulated for the dispersive boundary condition. With the help of this tﬁeoreticai reflac-

tion coefficient, other dispersive boundary conditions can be more easily investigated and

" developed. One immediate benefit that can be realized from using the formula.t_ed reflection

. coefficient is that the DBC presented in [66] has been analyzed theoretically and has been

further developed in the next section.

£)

The workers ﬁsing Transmission Line Method (TLM) have been trying to find an
absorbing boundary condition to absorb the strongly dispersive waves occurring in con-
ductor waveguides for several years [39]-[41]. In the boundary condition they proposed.
convolution integrals are employed. Since these convolutions are applied to every nodal on
the boundary, for every time step, this boundary condition is very time consgming and re-
quires a large memory. Also, it should be noted that Simons [42] has demonstrated that the
absorbing boundary conditions developed for FD-TD method can be applied to the TLM
based on an established relation between the FD-TD and TLM methods. Using a method
be applied to tl{;\}I‘LM, and its implementation is much more efficient than that of the
method discussed in [39]-[41] in terms of computation time and memory requirement. We
have carried out a test that shows this DBC can be easily applied to the FD-TLM method
551 . .
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Figure 3.4: Theoretical reflection coefficients of DBC’s and ABC. Dashed line:
order ABC; D{ted line: DBC [66. Oliver]; Solid line: DBC (3.18).
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3.3 A One-Way Dispersive Boundary Condition (DBC)

In this section, we will, using the formulated reflection coefficient for DBC in the last
section, as well the approximation techniques developed in deriving an ordinary angle one-
way absorbing boundary condition (ABC), systematically generalize and develop a one-way

DBC. This one-way DBC is intended to be used for waveguide component analysis.

3.3.1 A One-way Dispersive Boundary Condition (DBC)

For a plane wave traveling to the right, the equation that must be satisfied in the frequency

domain is

iﬁ%"—) + jh(w)E(z,w) = 0 (3.37)

where the /! time depexidence is assumed, and k(w) is the propagation constant. For a non-
dispersive wave or TEM wave, k(w) = w/v, where v is the propagation velocity of the wave.
Substituting this value for k(w) into ( 3.37) and performing the inverse Fourier transform

on the equation, we get the exact absorbing boundary condition for a non-dispersive wave

\ or a TEM wave, which is equivalent to Mur’s first order ABC. But, for a dispersive wa#e,

since the propagation constant, k(w), is not sucii a simplg function of w, the inverse Fourier
transform cannot be performed to obtain an exact analytical absorbing boundary condition.
Oliver and McNamara [66] suggested using the Padé series to approximate the square root
in k(w). Then, the inverse Fourier transform can be perférmed to obtain an app;oﬁmate
absorbing bounda.rir éfondition for dispersive wave, i.e. to obtain a DBC. We note that

this kind of approximation to the square root is very similar to the approximation to the

-
<
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square root performed in deriving the one-way ordinary angle absorbing boundary condition
124, 23]. In the following, we will adapt the approximation techniques developed in deriving
one-way ABCs and use the reflection coefficient formulated for DBC to further investigate

and develop this class of DBCs.

Without jeopardizing the general validity of the theory in any way, a TE(q mode
dispersion relation of waveguide filled with free space is chosen for the following discussion.

The propagation constant for the TE;q mode is

o = 2= (5)]

= 2N<& (3.38)

where ¢ is the propagation velocity of the wave in free space, w; is the cut off frequency

of the TE;p mode, and s = w./w. A generalized approximation to v/1 — s* on the interval

5 C [0,1] by a rational function can be written as [24, 25

iy

V1i-s? = r(s? = gjgi))’ (3.39)

where P, and @, are polynomials of degree m and n, respectively, and r(s) is said to
be of type (m,n). By specifying r(s) as a general type (2,0) approximant, the radical is

approximated by an interpolating polynomial of the form
V1 — 5% = pg + pas’. o (3.40)

By substituting { 3.40) into { 3.37) and multiplying the resultant equation throughout by
[(jw), we have

. 0E(t,w 1 . w? ‘
Jw——éz ) +PDE(JW)2E(3H-'~") - Pz"c_E(zv“’)': 0. (3.41)

Then, after performing the inverse Fourier transform on the above, one obtains the second-
order approximate analytical DBC,

PE(z,1) | pod*E(z,1)
9zt ¢ ot

w2
P2t B(2,8) = 0. (3.42)
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Similarly, by using the general type (2, 2) rational function,
Vit BT P (3.43)
do + ¢25°
we get the third-order approximate analytical DBC,

FPE(z,t) . wzaE(z,t) _ @_BSE(z,t) CpawldE(z.t)

"0 T 5e T BT 5 c o8 ' ¢ ot

0. (3.44)

In deriving the one-way angle ABC [24, 25], the choice of the coefficients p; and
q; is determined by the method of interpolation. Standard techniques such as Chebyshev,
leést—squa.res, or Padé approximation are applied with the goal of producing an approximate
ABC whose performance is good over a wide range of incident wave angles. But, for DBCs,
the coefficients p; and ¢; should be determined to optimize the pt:érforma.nce of approximate
DBC accor'ding to the dispersion relation for waves. Seven techniques of approximation
are presented in detail in [24, 25]. These techniques are: Padé, Least-squares (or L? which
minimizes the I? norm of the error of the approximation), interpolation at Chebyshev
points, interpolation at Néwrﬂan points, Chebyshev (or L* which minimizes the L% norm),
‘Chebyshev-Padé (or C-P), and Chebyshev on a subinterval (or Lg® which minimizes the L>
norm on the subinterval). In this thesis, we have concentrated on the study of type (2,0) and
(2,2} approximate DBCs. The coefficients for seven families of type (2,0) and (2,2) DBCs
are given in [26]. Next, by using the formulated DBC reflection coefficient, we examine the

performance of these seven far.ilies of type (2,0) and (2,2) DBCs.

By substituting ( 3.33) into ( 3.42) and ( 3.44), reflection coefficient expressions are
obtained as a function of frequency for the general second- and third-order DBCs (type

(2,0) and type (2,2)). They are, respectively,
y 2
wk — B2 — pp2e .
R(g‘o) = CRQ ‘cuz (3.40)
-wk - : w? — pa—g-

and

2
Rz = —qow?k — quwlk + 008 + B2y,
2,2) —

— (3.46)
+gowk + gwik + %w:’ + Picu—"w > :
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o
o

where the propagation constant, &(w), is determined by the TE,y mode dispersion relation-

ship ( 3.38).

3.3.2 Conclusion

By using the reflection coefficient for DBC and by studying the relation between ABC
and DBC, a one-way dispersive boundary condition has been generalized and developed

systematically.

Figs. 3.7 and 3.8 show the behavior of the reflection coefficients for the two best-
performing second- and third-order DBCs, respectively, where w is the width of the waveg-
uide. The solid lines in the figures give the performa.nce of Mur’s first order ABC. From
Figs. 3.7 and 3.8, it‘ca.n be seen that, for a sinusoidal source excitation, the first order .L\BC‘
should be used and the second order one-way DBC used in [67] is not sufficiently absorbent.
Also, it can be seen that ;.vhen a pulsed excitation is used, the performance of the second
order one-way DBC used in {66} and the first order ABC used in [68] are lacking and at
least a third-order one-way DBC should be used so as to gnarantee accurate results in the
dominant mode’s bandwidth. Also, it can be seen that the third-order LY DBC performs

much better than the third-order Padé DBC. __
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3.4 Designing DBC by Using Digital Filtering Theory

The objective of this section is to present another dispersive boundary condition (DBC),
which can also absorb waves over a wide frequency band. This DBC is based on a new inter-
pretation to the boundary condition. To start with, the relationship between the absorbing
boundary condition and digital filters is discussed. Then, based on this new explanation
for the DBC, wé investigate the design of a DBC using digital filter theory. Finally, the
relationship betweén our new digital filter DBC and the other DBCs is investigated in the

next section.

3.4.1 The Relationship between the Boundary Condition and Digital Fil-

ter

As mentioned before, in many FD-TD analyses, the major direction of the poWer flow within
components, such as microstrip lines, feed lines for microstrip antennas and waveguides, is
in the waveguided direction due to the guiding nature of these structures. This is quite
similar to the one dimensional prqpagation case. Bgsed on this observation, many workers

use the following one dimensional boundary condition

8 148 " -
(mrem)E=0 64D

where E represents the tangential electric field component on the boundary wall and ¥;
represents the velocity of propagation of the field. This equation is easily discretized using

only field components on and just inside the FD-TD mesh wall, yielding the difference

o

4
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equation

~1 Y= pigpna o 1o
= By + 1+ (ESrt - E3y) {3.43)

where Eyy represents the tangential electric field component on the boundary, Eyr_y rep-
resents the tangential electric fleld component at the adjacent node which is inside the
boundary, and p; = y; At/ Az, It will be demonstrated., using the reflection coefficient given
by ( 3.51), that the above boundary condition can only be optimized for a wave whose
frequency corresponds to the velocity, v;, and that the magnitude of the energy reflected

by the boundary can be quite large due to reflections of waves at other frequencies. The

reflection coefficient R is defined as the ratio of the reflected wave field to an incident plane

wave. Consider a plane wave travelling to the right. The wave has the form
. Eip = ej(wnAt—.‘:ig'_\.:) (349)

where i is the space position index and n is the time index. When this wave strikes an

artificial boundary, it produces the total wave field

Epor = ej(wn&t—ki;.ﬁz) _:_Rej(wn.'lt-i-kigﬁz), (350)

where R is the reflection coefficient. Since this wave field satisfies the boundary condition.
R can be determined by substituting E:, into the boundary condition equation. By sub-
stituting expression ( 3.50) into ( 3.48), the reflection coefficient expression as a function of
frequency is obtained for the z_XBC { 3.48). That is

1.__ e-jwdttikdz _ %%(E-jwm — gikas)
1 — p-jwAt—jkAz _ ,}_;%(e-jwm — g-ikaz)

where the propagation constant, k = k(w), is governed by the dispersion relationship for

Rapec = (3.31)

the wave. The dispersion caused by the FD-TD algorithm is ignored because it is much
smaller than the dispersion of the wave itself. For further discussion of the DBC, based on
the reflection coefficient, the relationship for the dispersion of the dominant T Eq¢ mode for

an air-filled waveguide is used in the following analysis.
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The solid lines in Fig. 3.9 show the amplitudes of reflection coefficient ( 3.51) for
different wave velocities, where w is the width of 2 waveguide, which is divided into 20 space
steps, and kg is the free space propagation constant. From this result, it can be seen that
the ABC ( 3.48) or Mur’s first order ABC has very good absorbing characteristics over only
a very narrow frequency band. Qur objective is to develop a dispersive boundary condition
by modifying Mur's first order ABC so that it can be used to absorb waves over a wide
frequency. With this in mind, let treat the ABC ( 3.48) as 2 digital system, where Eyr,
denoted by y(n ) is thought to be the output of the system, and Epr—1 is thought to be the

input of the system and is denoted by z(n). Then, the ABC ( 3.48) can be rewritten as

p,

y(n) = z(n—1) + [y(n - 1) - z(n)]. (3.52)

Performing the z transform on ( 3.52), we have the following frequency domain function or

frequency response of the system

—Fw 1_ £
M & (3.33)
H(w) = H(2)|omaw = ——r 2. 3
e 1_ _
e T

Analyzing the amplitude and phase responses of the above system, we can see that the ab-
sorbing boundary condition ( 3.48) is nothing but an allpass filter. Further, speaking from
the digital filtering point of view, the function of the ABC ( 3.48) is t6 let all the frequency
components pass without any magnitude weighting, but to impose different phase shifts
on different frequency components as shown by the solid line in Fig. 3.10. For a dispersive
boundary condition, it should also be an allpass filter, but the phase response has to be mod-
" ified according to the dispersion relation for the wave. Now let us derive the optimal phase
respoﬁsq for the dispersive boundary condition system. The boundary condition ( 3.48) is
a non—dispersiv.e boundary condition, which is optimized for one frequency component with
. phase velocity v;. In order that waves at other frequencies are also absorbed, the velocity
v; in ABC ( 3.48) should be adjusted. This adjustment is equivalent to adjusting the phase

shift of the system ( 3.53) for that frequency. So, the phase shift of the DBC system for one
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given frequency can be obtained by following two procedures: (i) determine the velocity of
the wave in { 3.48) from the dispersion relationship of the wave at a particular frequency:
(ii) use the frequency response { 3.533) to calculate the phase shift that corresponds. to this
frequency. For the waveguide analysis, using the T Eyp mode dispersion. the phase respouse
of the DBC system is given in Fig. 3.10 (dotted line). At this juncture we arrive at an
important conclusion, that is, the design of a dispersive boundary condition is nothing more
than designing an allpass filter which has the required phase response (dotted line in Fig.

3.10).

3.4.2 Designing DBC Using Digital Filtering Techniques

An mth order allpass filter designed to approximate the desired phase response is usually

in the following form

y(n) + a1y(n = 1) + agy(n = 2) + ... + amy(n — m)

= boz(n) +hz{n — 1)+ baz(n - 2) + ... + bpz(n — m). (3.54)
The corresponding dispersive boundary condition is

' _ n n—1 n—1 n=m
M = bO—E_.\;!-l + bl M=1 + b'.! M-1 + ..k bm M-1

~(@EN + aoEirt 4 F am By, _ (3.55)

The reflection coefficient for the above DBC is

Z?—D ape—ijtp _ ejk;k: Z;n_o bpe-—jwtktp

R= - - -
m —jwAt —jkaz gom —jwiitp’
) g GpeTIVEP — €7 > p=0 bpe—Iwalp

(3.56)

There are several methods that can be used to design an allpass filter whose phase
response approximates the desired dotted curve in Fig. 3.10. Here, an equation error

method [94, 96] is used to desiga the filter from the desired data. One third-order filter -

,-,'\\.
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which was designed using this method is given by

. yln)+ayy(n = 1) + aay(n — 2} + agy{n — 3}

= boz{n)+ biz(n — 1) + bhaz(n — 2) + baz(n - 3) (3.57)

where @ = 1.000, a1 = —0.9673, ag = —0.1499, a3 = 0.1210, by = —0.3335, b =
1.2101, by = —0.5159, b3 = —0.3628. The phase response of this filter is shown in Fig. 3.10
by the dashed line. The amplitude of the refection coefficient of the corresponding DBC is
shown in Fig. 3.9 by the dashed line.‘ From Fig. 3.9, it can be seen that ABC ( 3.48) can
absorb waves in only a very narrow range of frequencies, whereas DBC ( 3.57) can absorb
waves over a larger band of frequencies. The absorbing quality of the DBC can be improved

by increasing the order of the DBC and by investigating other filter designing methods.

()
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3.5 The Relationship between the Digital-Filter DBC and
Otk=r DBC’s

In this section, it will be demonstrated that several other dispersive boundary conditions

can be interpreted and developed using the digital filter dispersive boundary condition.

It is well known that digital filters are classified into two types. One is the Finite
Impulse Response (FIR) filter, the other is the Infinite Impulse Response (IIR) filter. In the
above, we have used the IIR filter to design the dispersive boundary condition. The FIR
filter can also be used to design the dispersive boundary condition. But. usually FIR filters
have much more coefficients and delays (much higher order) than IIR filters with the same
specifications (impulse frequency response). So the main rleason for our choosing a recursive
'@igital filter (IIR, filter) is that IIR filters need much less computation time and memory
_slize than FIR filters. For the FD-TD method, the saving of computation time and memory
- size is very important because the absorbing boundary condition is applied at every node
on the boundary walls and for each time step. The number of the nodes on the boundary

of the calculation domain for most practical structures is very large.

In the past few years, a dispersive boundary condition has been proposed in [39]-
[41] for use with the Transmission Line Matrix (TLM) method. This boundary condition is
based on a convolution of the streams of TLM impulses that are incident on the boundary
with a sequence so-called numerical Green’s function to obtain the time-dom’\g.in reflection
sequence of wide-band absorbing terminations. From the view point of the &jgital filter
DBC, it can be seen that this numerical Green’s function is nothing more than the impulse

response of the dispersive boundary condition system, and that the convolution is nothing
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more than the implementation of 2 FIR filter. So. this dispersive boundary condition can be
thought of as a special case of the proposed dispersive boundary condition. In this special
case, a FIR filter has been used to design the DBC. This FIR DBC is very time consuming
compared with the [IR DBC because FIR DBC involves a convolution of two very long

sequernces.

The time domain data from the FD-TD method is an over sampled signal (Chapter
4). Further the TEyo mode band is very narrow and is located in the very low part of
the frequency spectrum. These properties of the time domain method require that the unit
impulse .response of the FIR DBC system has to be very long in order to accurately describe
the non-linear phase response of the allpass filter in the corresponding T E1g mode band. In
paper [39]-[41], the length of the numerical Green’s function is about 2000. Implementing
convolution with such a long sequence at each time step, an'aiat each node on the bound-
ary wall is very time consuming so that this DBC is not efficient. However, there is one
important advantage with the FIR, DBC, which is that it is always stable because of the

characteristics of FIR, filter.

Another dispersive boundary condition is the One-Way DBC, which was originally
presented in [66] and which has been systematically developed in Section 3.3. This DBC
'\\can also be interpreted using the digital filter DBC. From ( 3.42) and ( 3.44), it can be

/;s‘een that the second and the third order one-way DBCs involve only first order derivatives
R g along the z direction. So, they can be discretized using only field components which lie
on the boundary and the first node inside the FD-TD mesh wall. Then they can then be
written in the standard IIR, DBC form ( 3.54). Once they are writtén in a standard form,
their stability can be S;;I{:d.;led using the sta.biﬁty theory developed in the digital filter and
control theory. This is 01;3 benefit we bring to the DBC by using digital filter theory. On
the other hand, the benifit that we can bring to digital filter theory"by studying DBCs is

that digital filters hlight be designed using the wave equation. This point can be explained
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in the following.

It should be noted that although we have designed an IIR DBC using digital filter
design techriques, the performance of the DBC is not good enough, i.e. the designed phase
frequency response does not approximate the required phase response accurately. But; if we
design the IIR DBC using the one-wa.; DBC technique, we can get a desired phase frequency
response more accurately. This result might bring a new approach to designing digital filters.

This example demonstrates the importance of studying the relationship between different

fields.

The DBC discussed in Sections 3.1 and 3.2 can also be interpreted using the IIR
DBC. For the second order DBC, the discretized boundary condition is ( 3.31). Similarly,
let us take this DBC as a multichannel digital system. Here Ejy is thought to be the output
of the system and is denoted by y(n); Epr-.y is thought to be ﬁhe first input of the system
and is denoted by z1(n); finally £ys_» is thought to be the second input of'the system and

* is denoted by z2(n). Then the DBC ( 3.31) can be written as

yn) = 2r(n-1)~z2{n—2)
+ (n+7)yn=1)=zi(n) =~ z1(n - 2) + z2{n - 1))

= m72(y(n - 2) — 281 (n - 1) + 22(n)). (3.58)

Once the DBC is written in this form, its stability can be studied using the stability theory
developed in digital filter and control theory. In addition, another multichannel digital filter
DBC can be designed from the above model using a technique similar to that used in the
last section. i
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3.6 Summary and Discussions

In this chapter, a theory for dispersive boundary conditions has been svstematically formu-
lated and developed. First. based on wave decomposition and using an approach which is
analogous to Bayliss and Turkel’s. we derived a dispersive boundary condition. This DBC
has been applied to microstrip and waveguide component analyses, and the significant im-
provement in performance of this DBC compared with others has been demonstrated with
numerical results. Then, in order to theoretically analyze the performance of DBC. and
to further develop other DBCs, we have formulated reflection coefficients for DBC. Using
the formulated DBC reflection coefficient, as well as approximation techniques developed
in deriving one-way Absorbing Boundary Conditions, a one-way DBC was generalized and
developed. Finally, by studying the relationship between digital filter and dispersive bound-
ary conditions, we presented a‘-‘Digita.l Filter Dispersive Boundary Condition. It has been
found that three other DBCs can be interpreted using digital filter DBC. By using digital
filter and control system theories we can throw further light on the properties of these three

DBCs.

The main difference between DBC and ABC is that DBC is designed to optimize the
boundary condition in accordance with the dispersion characteristics of the waves, j-vherea.s
ABC is designed to optimize the boundary condition based on fhe propagation direction of
the waves. Based on concepts presented in this chapter, ABC and DBC can be developed

side by side.

For example, Liao’s ABC [33] was presented .for absorbing wave in a wide range of
angles. This ABC can be modified into a DBC in the following way. In Liao’s ABC, there
is a constant a, which is called as the artificial transmitting coefficient, and which is usually
chosen to be 1. Suppose that we know the dispersion for the wave. Then, we can op'”l:imize

]
o by calculating the reflection coefficient of Liao’s ABC. With the optimized o, Liao’s ABC

P
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can be used as a DBC.

Another example is that given in Section (3.1}, where Key and Higdon's ABC has
been described in terms of dispersive boundary conditions. This description gives a one di-
mensional interpretation of Key and Higdon’s ABC. That is, the waves from different angles
are first mapped into the waves traveling along the z-axis with corresponding velocities. then
the waves with different velocities in one dimension are absorbed by the dispersive boundary
condition. This one dimensional explanation makes it easier for us to understand Key and
Higdon’s ABC. Furthermore, let us consider that Liao’s and Bayliss and Turkell's ABCs
have been derived based on the one dimensional wave decomposition models. Then, we
can classify Key and Higdon’s, Liao’s, and Bayliss and Turkell’s ABCs as one-dimensional
ABCs. In this way, we can simplify the analysis of these ABCs and we can study these
ABCs in one dimension rather than in two or three dimensions. Several authors ha.ve; men-
tioned the advantage of these ABCs, which is their easy implementation even at the corners
of the computation domain. This classification will tell us why, because all of them are one

dimensional ABC and they have been applied to absorb the waves in multi-dimensions.
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Chapter 4

USE OF DIGITAL SIGNAL
PROCESSING FOR, FAST
FD-TD ANALYSIS OF
RESONATORS |

In this chapter we discuss the use of digital filtering and spectrum estimation techniques
for improving the efficiency of the FD-TD algorithm in solving eigenvalue problems. The
great improvement achieved in the efficiency of thé method is demonstrated by means of
both numerical and measurement results. In addition, several improvements to the present
FD-TD method for eigenvalue analysis are presented. These include the analysis of open
dielectric resonators and the extraction of the resonant frequencies from the FD-TD results.

The result for the open dielectric resonator analysis is validated by using measured data.

4.1 Introduction

The optimization of the performance of resonators in microwave circuits requires accurate

and efficient methods for calculating the resonant frequencies and the spatial distributions
. .\KQ‘
7l



72 CHAPTER 4. USE OF DIGITAL SIGNAL PROCESSING FOR FAST FD-TD ANALYSIS OF AESONATORS

of the fields. Various methods have been developed to study the resonant frequencies of
resonant structures. Most of them, such as; the mode matching method, integral equation

method, and finite element method, are carried out in the frequency domain {90].

The finite-difference time-domain (FD-TD) method has been widely used for solving
electromagnetic problems. Resently, it has been used to solve eigenvalue problems associated
with resonator structures [91, 92] and to calculate critical parameters for complex microstrip
antennas [T?. 79]. All of these results have shown the FD-TD method to be a very powerful
tool for eigenvalue analysis, priﬁzarily because of two desirable attributes. First, it can be
applied to problems exhibiting a complex structure which may be very difficult to solve
using other analytical or numerical n;é‘t‘pods. Second, only one computation is required to
get the frequency domain results over a large frequency spectrum. ﬂowever._ this method
has one significant drawback, which is that it requires 2 very long f3\‘:‘(;01111311.1:a.I:it:tn time for
extracting the resonant frequencies from the FD-’J;_D results; for exam\ﬁle, in the case of the

problem discussed in [91], the time iteration IV has to be as large as ¥ = 215,

The main purpose of this chapter is to introduce the use of digital flltering and
modern spectrum estimation techniques with the FD-TD method, as a means for overcoming
the above limitation. By using numerical results, it will be shown that modern spectrum
estimation techniques can reduce the time taken to solve a problem, such as that discussed
by [91], by one order of magnitude, without any loss of accuracy in calculating the resonant
frequencies. It fq]lows from this e.ta;mple, that, in general, the FD-TD computational time
for these types of problems can be reduced by one order of magnitude. In addition, several
other improvements to the method used in [Ql] are presented. These include the ability to

analyze open dielectric resonators, the technique for extracti{ig the resonator frequencies,

_as well as the calculation of the field distribution, based on the FD-TD results.

b
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4.2 FD-TD Method for Resonator Analysis

For ease of description, the method is described by referring to the generalized cylindrical
shaped dielectric resonator (DR) in Fig. 4.1. This structure is rotationally symmetric. Since
T Egs medes are the most commonly used for DR applications, only the TEp modes are

discussed. The relevant form of Maxwell’s equations is

a dH, BH. X
gl Ee) 3z or (1)
d _ 0E .
E(."'Hr) = 5 : (+.2)
2 _ }3(1‘199) ’ ‘
gl = 2= (4.3

Using a central difference scheme similar to that used by Yee [1], the above equations can

be discretized as:

nil . amboon L At 1 ]
Eg 2(id) = By *(i)+ (HNGT+5) - BT - 5)

- SN+ 5.9 2= 3.9 (44)
HMY(ij-5) = H“(z,s—-—)+ [E"“(,) EFtE,5- 1) (4.3)

At

. 1 1
Hzt-rl‘_;l_..,' = H:"J,--' 1) e ——
PR = B3

T A S
(rip By 2(i+ 1,7)~ riBy 2 (i,5)] (4.6)°
where ¢ and j are space indices and n is time index.

The computation domain diagram is shown in Fig. 4.2. The ha.ngen\ti:i electric
field components are located at the interfaces between different materials and on the outer
boundaries of the computation domain. The fields at the interfaces between different mate-
rials can still be calculated using { 4.4), if it is remembered that average of the two dielectric
constants, (€1 +¢€2)/2, has to be used 1’n place of ¢ in the equation. Using a derivation similar

to that used in [52], it can be proved that, for the fields at an interface between three media,
. A
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the effective dielectric constant becomes (& + €2 + €3)/3. and for four media, it becomes

(€ 4 42 + €3 + €3)}/4

Previous analyses, such as given in [91, 92}, are limited to a consideration of a closed
resonator, where the tangential electrical fields on the outer boundaries are forced to be zero.
Actually, by using the well developed absorbing boundary condition (ABC) in conjunciion
with the FD-TD method [17], the method can be extended so that it can deal with the

open structure problem. In this study, Mur's first-order boundary condition [22] is used:

a 18 -
(a“*‘v—pﬁ) E=0 (4")

where E represents the tangential electric field component relative to the boundary wall
and v, represents the phase velocity of the field. One way to impose { 4.7) to second-order

accuracy is to discretize ( 4.7) at z = (M — 3)Az Atz = (M-3Azandt=(n+ L)AL,

3‘ . +- n+ i .
Eﬂ-’:ﬂ‘:: M-1a: & (Ef\:l - EyfR). (4.8)
19 ., . el " :
_'a_tE("‘*t)‘é=(n+—;-)At CAt(EM"‘ - EM_J.)' (4.9)

In this manner. the finite difference approximation is accurate to the second order. But
since the values at the half grid points and half time steps are not available for E fields, it

is expedient to approximate

Enth (Eﬂ+1+E )s (4.10)
B ~—(E a +ER). (4.11)

The above approximations are also second-order accurate if E(z,t) is a smooth function.
: RS
Consequently, using ( 4.8)-( 4.11) in { 4.7), one obtains

- Az — vyl _ .
B = B+ ASTRRNE - By 0 (D

where Ejs represents the tangential electric field component on the bounda.ryfind Exr—1

represents the tangential electric field component a distance of one node inside the boundary.

i}

i
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o

The other absorbing boundary conditions [17] can be applied to improve the accuracy. But,
according to our experience. the first order ABC has sufficient accuracy to deal with high

dielectric constant resonators.

To start the computation, the initial electric and magnetic fields are set to zero
throughout the grid, except at one selected point. Here the electric field is set to 1. This unit
impulse source will excite a large number of modes. Using the above algorithm, Fig. 4.3a
gives the computed electric field in the time domain at thé point of observation. The
resonant frequencies can be obtained by taking the Fourier transform of the computed time
domain response. The field distribution for any particular frequency can be obtained by
performing a Fourier transform at each point in the computation domain at that frequency.
With the objective of getting more accurate estimates of the resonant frequency and field

distribution than that have been obtained in the past, the following procedure is put forward.

The procedure to be followed is based on the signal analysis of the FD-TD time
domain results. In this section, it is assumed that the sequence length of the FD-TD data
sequence {z(n)} is very long, where z(n) is one of the field components. If one follows
common practice in FD-TD analysis, the fast Fourier Transform (FFT) algorithm is used
to calculate the discrete Fourier transform (DFT) of {z(n)} to get the spectrum, X(f), of
z(t), where 2(n) = 2(t)|t=na: and At is the time step used in the FD-TD algorithm. For
some applications, this method is deficient, both in terms of its efficiency and its accuracy.
The reason for this is that the :V/2 values of DFT are uniformly distributed over a very
large frequency bandwidth, extending from 0 to f,/2 Hz, where f, = 1/At is the sampling

frequency, and because the frequency resolution, which is given by

1

Ame. y

(4.13)

where IV is the length of the sequence {z(n)}, is too coarse to accurately determine resonant

frequencies. In practice, only the lower part of the band is of interest. One method that has

N

J
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been suggested here is to do-the numerical integration of Fourier Transform of z(t) directly

in the interested frequency band

X(f)

i

foo z(1) exp(—j2w ft)di
0

2

NAt
] z(t) exp(—J27 ft)de
0
N-1
a Y z(n)exp(—j27 frAt)AL (4.14)

n=0

The advantage of this method is that it removes ambiguities sometimes encountered with the

discrete Fourier Transform, due to narrowband signal components with center frequencies

~that lie in the gaps between the N/2 frequency points evaluated with the DFT. It wil

be shown in the following that, when FD-TD method is used for resonator analysis, the
time domain results are signals which consist of many narrowband signal components, The

accuracy of caléﬁlating the spectral peaks, i.e. the fleld distribution, is also enhanced by

‘using ( 4.14).

The efficiency for evaluating ( 4.14) can be greatly improved by using the following
method. Instead of using the original sequence {z(n)} directly from the FD-TD analysis,
a new sequence {z1{n)} is used in ( 4.14), which is obtained by decimating the {ztn)}' at
a certain rate. The desampling rate is determined by the ratio of onre-half the sampling
frequency f,/2 to the maximum frequency fmqc of the long sequence {z(n)}. Because
{z1(n)} is much shorter than the original sequence {z(n)}, the time required to analyze
the new time domain sequence can be greatly reduced, with no reduction in the accuracy

of the result. The theory:which supports this treatment is Nyquist sampling theorem [93].

In order to illustrate the method clearly, let us refer to the dielectric resonator
problem given in Fig. 4.1. In Fig. 4.3a is given the time domain results for the observation

point shown in Fig. 4.2. This result was obtained directly from the FD-TD analysis. The

~ DFT spectrum correspondﬁng to this result is given in Fig. 4.3b. The parameters used in

the calculation are



42, FD-TD METHOD FOR RESONATOR ANALYSIS i

Dimension: D = 6.26 mm, L = 4.22 mm.

Ly/L =0.943 mm, Ls/L = 0.166 mm

€1 =36.2. €2=9.3

Mesh dimensions in dielectric region: 24Az x 18Ar
Az=0.17383 mm, Ar=0.17382¢ mm

At = .63(Az + Ar)/(2c), cis the speed of light in free space

According to the Nyquist theorem and from the spectrum in Fig. 4.3b, it follows that
the original sequence {z(n)} is a much over-sampled time domain signal, and that a new
sléﬁuence {z1(n)} can be obtained by using a desampling rate of about 10. In Fig. 4.3¢, the
solid line gives the res.ult obt'ained by applying ( 4.14) to the long sequence, and the dashed
line gives the result obga.ined by applying ( 4.14) to the decimated sequence {z,(n)}. The
two results are exactly the same and therefore the dashed line is obscured by the solid line

in Fig. 4.3c.

After getting the much shorter sequence {z;(n)}, the numerical integration of ( -4.14)
can also be calculated using a FFT program in the following manner. First, pad zero values
to the decimated sequence {1(n)}, then apply FFT to the padded sequence. The number

- of padded zeros is determined by the required frequency resolution.

Another ph_gnom?pon that needs some explanation is why the FD-TD results, {z(n)},
which can be thought E}.f:/é. unit impulse response of the system under test, only cor_}tain com-
ponents at the lower end of the frequency spectrum. The answer lies in the dispersion that
is introduced to the results by the FD-TD algorithm itrelf [45]. Another simpler explana-
tion to this phenomena is that the wavelength of the waves which can freely propagate on
the FD-TD grid should be at least two grid spaces. Otherwise, the grids are too co;xrse
to describe (support) wave mo-v'é-men’t, ;iu;reby preventing waves from propagating on tlile

FD-TD grid. The corresponding cutoff frequency is the maximum frequency of the FD-TD

o
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time domain result, which is equal to about fma = v/(2AR) . where v is the speed of light
in the dielectric materials and Ah is the grid size (where a uniform grid is assumed). For
dielectric resonator analysis, since most of the energy is centred in the material which has
the largest dielectric constant, the velocity v = ¢/\/€maz should be used to determine the
maximum frequency of the time domain result of FD-TD method, where ¢ is the velocity -
of light in free space. Once the maximum frequency fmaz is known, the desampling rate is

easily derived.

4.3 Use of Digital Filtering and Modern Spectrum Estima-
tion Techniques with the FD-TD Method

The objective of this section is to use digital filtering and modern spectrum estimation
techniques to extract the resonant frequencies of a dielectric resonator from a short sample
of FD-TD data, given by {z2(n)} . Suppose {z2(n)} consists of the first two thousand data
points in {z(n)}. The DFT spectrum of {z3(n)} is shown in Fig. 4.4a. After desampling
{z2(n)}, using a desampling rate of (fs/2)/ fmaz. which is about 10, we get a sequence
{z3(n)} whose DFT spectrum is shown in Fig. 4.4b. Because we are interested in the
lower frequency band, we further process the signal {z3(n)} by using a decimating filter to
get {z4(n)}, whose DFT spectrum is shown in Fig. 4.4c. When applying the decimating
filter [95], we first pass the data through a low-pass digital filter, then, according to the
.ma‘\'.imum frequency of the filtered output, we desample the filtered output to get the final
output signal. In order to improve the a.céiracy of estimating the resonant frequencies
of the first few modes, we further process {z4(n)} with a low-pass filter and get {y(n)},
whose DFT spectrum is shown in Fig. 44d In all cases, ninth order Butterworth filters
are used to carry out t:,he ﬁiteﬂng. In the filtering process, the data are filtered in both the

forward and backward directions, thereby eliminating all phase distortion and minimizing

N
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filter startup transients {96]. In the next phase of the work we carry out a search for a goed
high resolution spectrum estimator, with which to extract the resonant frequencies {rom

the data set {y(n)}.

From the beha.vior.of the spectrum of {z(n)}, based on the results given in Fig. 4.3c.
it seems reasonable to assume that {y(n)} is composed of sinusoidal components. One of the
best methods for estimating the frequencies of sinusoidal components is the multiple signal
classification {MUSIC) method {97}-[99]. This method belongs to the eigendecombosition- _
based class of super-resolution spectrum estimation methods. The term “super-resolution”
refers to the fact that this class of methods have the ability to surpass the limiting behavior of
classical Fourier-based methods. There are a number of reasons for our choosing the MUSIC
algorithm from amongst this class of methods. These are: (i) it is easy to implement, (ii} it
provides good performance, (iii) it is used as a benchmark in the field of signal processing,

and (iv) it provides a good introduction to modern spectrum estimation.

The general aim of eigendecomposition—i)ased methods is to exploit the eigenvalue
decomposition of the correlation matrix of & signal consisting of p uncorrelated complex
sinusoids and additive complex white noise. The signal is:

y(n) = L A;exp(j2n finAt + 9,-).+ w(n) _ (4.15)

i=1

where the amplitudes {A;} are real-valued positive constants, the initial phases {8;} are
independent random variables distributed uniformly on [0,2x}, and the frequencies {fi}
are distinct, A? is the sample interval of the signal {y(n}}, and {w(n)} is complex white
noise with zero mean and variance ¢2. Although here we discuss frequency estimation
for p complex sinusoids in comple\: white noise, the same methods generally apply to real
sinusoids in real white noise if p is chosen to be twice the number of real sinusoids. The

autocorrelation function of the above signal is

o rk) = Ely(n)y(n- k)
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P
= Z Afexp(j2m fikAt) + o28(k) {4.16)

i=1
where E denotes the expeciation operator and ~ denotes complex conjugate. The corre-

sponding (M + 1) x (M + 1) ensemble-averaged autocorrelation matrix

) (D) o (M)
r(=1) r(0) . T(M-1)
R=| B o (4.17)

r(-M) r{-M+ 1) .. n0)
for M > pis

R =SDS¥ +4°1 - (4.18)

where Iis the (M +1)x (M +1) identity matrix, the rectangular matrix S is the (M +1)xp

. sinusoidal signal matrix defined as

S = [s1, s2, .. Sp)
1 "1 ' o 1 1
exp(—jZWflAt)ﬁ exp(—j27f2At) ... exp(—j2mfoAt)
exp(—j27 f12A8)  exp(—j2w f2A8) .. exp(—J27 fr2At)

= |. : . , (4.19)

exp{—j2x fiMAL) exp(—j2x oM At) ... exp(—j27 LM Al)
D is the p x p correlation matrix of the sinusoids, and H denotes conjugate transpose. Note
that the Ith column of the matrix S, namely s; is a signal vector of dimension (M + 1)

carrying the Frequency information of the /th complex sinusoid. Let M 2 Asue 2 Aargr

denote the eigénvalues of the correlation matrix R, and vy 2 va2... 2 var1 denote the

Ia
"
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eigenvalues of SDS# . respectively. Since S is a full rank matrix and D is positive definite.
it follows {100 that

A= ' {4.20)
o i=prtl M1
Let vy, Va,.... Virur denote the eigenvectors of the correlation matrix R. All the (M +1- )

eigenvectors associated with ihe smallest eigenvlalues of R satisfy the relation
Rv; =c%vi, i=p+1,..M+1 (4.21)

or, equivalently,

(R=-0)vi=0, i=p+l.,M+1 S (4.22)

Using ( 4.18), the above equation can be rewritten as

SDSHv; =0, i=p+1,.,M+1 (4.23)

It readily follows that
SHv; =0, i=p+1l,..M+1 (_4.-34)

or more explicitly

i=p+l,aa M+1
SFV,‘ = 0, (425)
i=1,2,..,p

where the vector s; constitutes the /th column of matrix S.

A fundamental property of the eigenvectors of a correlation matrix is that they are
orthogonal to each other. Hence, the eigenvectors v1,...v, span a subspace that is the or-

thogonal complement of the space spanned by the eigenvectors vp41, .. Var4r. Accordingly,

it follows from { 4.25) that

span{si, ..., Sp} = span{vi, ..vg} | (4.26)

The span{s;, ..., 5p} refers to a subspace that is defined by the set of all linear combinations

of the vectors sy, ...,Sp. The span{vy, ..., vy} is similarly defined.
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Based on the above discussion. we can conclude the following important property of
the eigenvalue decomposition of the (M + 1) x (M + 1) correlation matrix R of the signal

defined in ( 4.13), which is

The space spanned by the eigenvectors of R consists of two disjoint subspaces.
One called the signal subspace, is spanned by the eigenvectors associated with
the p largest eigenvalues of R. The second subspace called the noise subspace. is
.spanned by the eigenvectors associated with the (3/ 41— p) smallest eigenvalues
of R. These two subspace are the thhogona.l complement of each other and they

satisfy ( 4.25) and ( 4.26).

Various eigendecomposition-based methods exploit the above property, i.e. the existence of
two subspaces, in different ways. The approach used in the MUSIC algorithm is to estimave
the frequencies of the complex sinusoids by searching for those sinusoidal signal vectors s;

that are orthogonal to the noise subspace. This follows from (4.25).

In practice, the implementation of all of these different methods use the sample
S

estimation of the ensemble-averaged correlation matrix R. One of the best estimations for

R [98] is
R= -—+1-—§ (4.27)
= 3K - M) =
where K is the sequence length of {y(n)} and & is
& =AfA (4.28)

AN
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where A¥ is defined as

SO e gE-1) g0 e g (E-M1) ]
(M =1) . y(E-2) y(1) e YK =M+
A |7 o - o _ . {429
| ¥(0) v Y E=M+1) y (M) o y(E-1)
Let ¥y, ¥2,..., v+ denote the eigenvectors of the estimate R. Owing to the presence of

uncertainties in the eigenfector estimates, ¥y, ¥2, ..., ¥¥*1 arising from the limited number
of samples that are available in practice for deriving the estimate, R, the orthogonality
relations of ( 4.23) no longer strictly hold. -Accordingly, the MUSIC algorithm bases its
estimates of the frequencies of the complex sinusoids in the data vector on locating the

peaks in the expression

~ 1
Yuvsic(F) = St ag e (4.30)
Ziﬁj}-l s |2
where the frequency scanring vector s{ f) is defired by
s(f) = [1,exp(~j2r FAL), ....exp(—j27 f M AL)T (4.31)

where 7 denotes transpose. It should be pointed out that MUSIC spectrum Yuus ie(f)is
not a-true power spectrum since it does not preserve the power of the signal nor can the

autocorrelation sequence be recovered by Fourier Transforming the frequency estimator.

The MUSIC algorithm can be summarized below
N |
1. Set up data matrix A using ( 4.29) and calculate the estimate R of the (M+1)x(M +1)

correlation matrix using { 4.27). Computer the eigenvalues and eigenvectors of R.

2. (iven that there are p complex sinusoids in the input signal, with p < M, classify the

eigenva.lues into two groups: One consisting of the p largest eigenvalues and the other
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consisting of the { W = 1 — pj smallest eigenvalues. The first group spans the sample

signal subspace, the second group spans the sample noise subspace.

3. Use the eigenvectors associated with the second group to caiculate the MUSIC spec-
trum ( 4.30). Determine the frequencies of the complex sinusoids by locating the

spectral peaks of Yvusic(f)-

4. In place of proc:edure 3. the frequencies can also be determined by using root-MUSIC

[100].

4.4 Numerical Results

An analysis of signal {y(n)} was carried cut using the MUSIC algorithm. Tt should be
noted that this data sequency resuited from the filtering operation carried out in the last
secl:i:m. The result is shown in Fig. 4.5. The dashed line was obtairied by applying a Fourier
\;ransforrﬁ ( 4.14) to a very long FD-TD sequence, corresponding to 20000 time iterations in
the FD-TD aj:gorithm. The dotted curvei;givgs the result from Fourier processing ( 4.14) of
the first two thousand points in the former sequence. This shortened sequence corresponds
to 2000 time iterations of the FD-TD algorithm. From this curve we see that for short
data records, the resonant frequencies cannot be accurately estimated using the Fourier
transform. Biases occur in the locations of the 'ﬁrst and fourth resonant frequencies and
the second and third resonantffrequencies are missing .altogether. The solid line gives the
result of application of digital filtering and the MUSIC spectral estimation technique to the
shorter data sequence, In the MUSIC algorithm, the data length of {y(n)}, K, was equal to
100; the order of the correlation matrix, M +1, was determined by the relation M = 2K/3.
The accuracy of the method_‘increases with increasing M [97). However, M + 1 should not
be larger than the number of data points. The choice for the order of the signal subspace,

p, is based on the eigenvalue spectrum of R. For our example, p was equal to 21. When
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p was changed from 21 to a higher value, we still got accurate frequency estimates. This
suggests that the method is robust. Comparing the solid and dashed lines. it is seen that
the same order of accuracy is obtained in the resonant frequency estimation by applying
signal processing and spectral estimation to a short data set as that obtained by applying

a Fourier transform to a much longer data set.

A semi-open dielectric resonator coupled to a microstrip substrate { Fig. 4.6 } is also

studied. The parameters used for this analysis are

Dimension: D = 11.06 mm, L = 4.99 mm,
L{ = 1.39 mm, L3 = 518 mm

&1 = 39.76, €2 =22

Dielectric region: 154z x 18Ar

Az = 0.33267 mm, Ar= 0.32529-4 mm

At = 0.65(Az 4+ Ar)/(2¢c), cis the speed of light in free space

The calculated and measurement results are given in Table L. In the calculation, the resonant
frequencies are determined by the method presented in this cha.pter, where only 2000 time
iterations are used in the F;‘D-TD calculation. For the experimental results, the DR was
mounted on a substrate, and the measurements were carried out with an HP8510B network

analyzer.

4.5 Summary

There are fhree main results coming from the present study of j:he FD-TD method. Dig-
ital filtering and modern spectrum estimation teck-miqiies were‘ successfully incorporated
with the FD-TD method as a means of improving its efficiency for carrying out eigenvalue
analysis. The efficiency and validity of the method are demonstrated using both numer-

ical and measured results. Another relatively new spectrum estimation method, which
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is called Thomson’s multiple-window-method (MWM} [101], was also tested with FD-TD
data. Equally good frequency estimates were obtained using MWDM. The second main
outcome of this research was the application of signal analyses to the time domain data
obtained using the FD-TD algorithm. It has been shown that the FD-TD time domain
signal for dielectric resonator analyses is much over sampled. The data that are retained for
later processing can be greatly compressed, without degrading the accuracy of the analysis.
This conclusion is valid when the FD-TD method is used to analyze microstrip components
and antennas. In these latter cases, the maximum frequency of time domain result, fmaz.
which sets the desampling or compressing rate, is not determined by the cutoff frequency
of the FD-TD algorithm itself, but rather by the maximum frequency of the excitation
ga.ussian‘pulse.- According to our experience, for the analysis of microstrip antennas and
componerts [72, 79], the data from the FD-TD results can be compressed by at least one
order of magnitude. So, based on this conclusion, both the memory requirements for the
FD-TD time domain ;esults and the time it takes for processing the data can be reduced by
at least one order of magnitude. The third result that was demonstrated by this research is
that good results can be obtained by using a.bsorbiﬁg bounda.r'y conditions when applying
the FD-TD to open dielectric resonators. The vaJiflity of the analysis was demoﬁstrated
by a comparison of measurements and calculated results. All of the above conclusions are

applicable to other time domain methods, such as the Transmission Line Matrix method.

In coﬁclusion, it :should be u;éntioned that signal processing and spectrum es-
timation techniques can greatly improve both the capaBility and the efficiency .of time
domain metimds. This point ‘has been reinforced in this thesis and by several papers
i70, 75, 83, 86, 102, 103], where the authors have to greater or lesser degree drawn on
signal processing techniques to”\impmve the performance of their numerical algorithms.

i

More discussions on this point will be carried out in concluding Chapter.

N
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Figure 4.6: Semi-open dielectric resonator on a microstrip substrate.
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- Table 4.1: Resonant frequencies for the TEg;s mode of a semi-open DR.

L’ FD-TD results | measured results
(mm) (GHz) (GHz)

1.59 4.9680 1.9832
3.18 47770 4.7918




Chapter 5

MICROSTRIP ANTENNA
ANALYSIS USING THE FD-TD
TECHNIQUE

Unemm
=T

5.1 Background

The popularity of planar printed antennas has steadily increased over the past decade, or
so, due to a number of advantages: such as, low cost, 1ow weight, low profile, conformability
with existing structures, and ease of fabrication and integration with active devices. During
this period of time they have become an important area of study within the antenna com-
munity and have led to a major innovation in antenna theory. Usually printed antennas are
fabricated on af,substrate, or on a number substrates backed by a metallic sheet (the ground
plane}. The ra:dia.ting elements, consisting of thin metallic patches or slots in metallic sheet,
are located at an interface, commonly consisting of a dielectric and air. .Multila.yered or
stacked structures are often used to increase antenna bandwidth. This can be achieved,

for example, by simply introducing an air-gap between the dielectric layers. Usually the

bandwidth can be increased to more than 10 percent. Practically, there are three common

95
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structures that are used to feed planar printed antennas. These are coaxial probe feeds. mi-
crostrip line feeds, and aperture coupled feeds. The coaxial-fed structure is often used in a
single element or a small array because of the ease of matching its characteristic impedance
1o that of the antenna; and, as well, the parasitic radiation from the feed network tends to
be insignificant. Furthermore, it can also be used as the transition from a printed circuit
located on one side of a substrate to the printed antenna on the other side. Compared to
probe feeds, microstrip line-fed structures are more suitable for large arrays due to the ease
of fabrication and lower-costs, but the serious drawback of this feed structure is the strong
parasitic radiation [58]. The aperture-coupled structure has all of the advantages of the
former two structures, and isolates radiation from the feed network, thereby leaving the
main antenna radiation uncontaminated. All three of these practical feed structm"es. will be

discussed in this chapter.

To date, many numerical techniques [58]-[63] have been developed to analyze planar
printed antennas in the spectral domain. For coaxial-fed patch antennas. the earliest model
to be adopted for full-wave analysis is the delta current source model {59]. The model is
based on the use of sinusoidal efpansion modes and the assumption that the current on the
probe is constant. The a.ssumption‘restricts the model to the point where reasonable results
can only be obtained near the resonant frequency of the patch antenna. Another popular
model is based on sophisticated attachment models [60], in which the excitation current is
Spre_:id over a charge cell. This model was developed to be compatible with roof-top basis
functions. Unfortunately, the resulting matrix needs to be carefully treated because it is
severely ill conditioned in the vicinity of the resonant frequency. Recently, a more accurate
spectral domain model was developed [61}, in which the fringing field is replaced by a frill
of magnetic current. However, the discc;ntinuity between the coaxial line and the patch
substrate, as well as the higher order modes near the connector region, cannot be easily

accounted for, even though a primary TEM mode excitation concept is incorporated in the
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model. It is found that, spectral domain methods can provide a more accurate model for
microstrip line-fed antennas than for coaxial-fed antennas. even though some non-practical
assumptions must be imposed in the line-fed model. A number of assumptions. such as the
transverse directed currents [62] not being taken into account and little consideration being
given to contributions from higher order modes propagating down the feed line, will cause
the numerical results to diverge as the frequency increases. Furthermore, when an antenna
consists of a multilayered structure, the spectral domain methods become more difficult to

use because of the complexity of the Sommerfeld-type integral treatment.

The Finite-Difference Time-Domain method has been widely used to solve electro-
magnetic problems since 1966. Since Maxwell’s equations are diséretized directly, using
central difference, in both space and time, the FD-TD method is more flexible for modeling
complex structures. In the fast few years, a number of investigators have used the FD-TD
method to analyze microstrip problems [49]-[54], but in the case of the coaxial-line feed
problem, the analysis is based on assumptions that deviate from practice. For example, the
discontinuity between the coaxial line and patch region is replaced by an equivalent lump
resistance, and as well, the characteristic impedance of the coaxial line is not included in
the model {54]. 'Obviously, it is very difficult to obtain an accurate equivalent resistance
to incorporate all of the effects of the discontinuity near the connector, especially if the
modeling is being carried out over a wide frequency range. On the other hand, althodgh
a number of researchers have given attention to modeling line-fed printed antennas using |
the FD-TD method, as of vet, none has addressed the problem of strong dispersion when
the dielectric constant is high. This situation will be addressed in this chapter using the

dispersive boundary condition presented in Chapter 3.

(U '
In this chapter it will be shown that the FD-TD method provides a technique for

accurate modeling of planar printed antennas. There are three features of this full-wave

analysis technique that will be highlighted. First, rather than being limited to treatment
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of simple printed antenna structures. this study focuses on complex printed antennas. such
as microstrip line-fed aperture coupled stacked microstrip antennas and coaxial-fed stacked
microstrip antennas. Second, a coaxial feed model is presented, which provides a robust
description of probe feeds, as well as allowing for modelling of complex printed antennas.
The model takes into account contributions from the higher order modes at the junction
between the probe and the antenna. The validity of the model is demonstrated by a com-
parison of simulated and experimental results. The example, which will be discussed in
detail, is the coaxial-fed stacked microstrip antenna. The third feature of this paper is the
novel use of a dispersive boundary condition. Its implementation will be shown to be guite
straightforward. This boundary condition is useful in analyzing printed antenna struciures

which contain microstrip lines, where the dielectric constant of the line is high.

The antenna structures that are analyzed in this chapter can be considered to be
representative of printed antenna structures. As well, the results of the sophisticated nu-
merical treatment will be shown to be in excellent agreement with the experimental results
over a very wide frequency range. The experimental results that are used to validate the nu-
merical modelling were obtained using an HP8510B network analyzer. Det;a,ils with regards

to calibration and measurement error will be provided in the following sections.

5.2 Discretization of Maxwell’s Equations

The generalized microstrip antenna under analysis is shown in Fig. 51, where the patch, feed
line, and the ground plane are made of a perfect conductor {0 = o0) and the substrate has
La. relative dielectrig constant of ¢,. The structure is assumed to be in an open environment,
that is, above the dielectric and the metal strip .surface, free space is assumed to extend

to infinity; in the horizontal direction, apart from the discontinuity region, the substrate-

ground structure also extends uniformly into infinity.
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The Maxwell equations governing the solution of this problem are

9f 1 - -
i v xH (3.1
oH 1 =
ey =~;‘:vxE (5.2)

where i=1.2 represents the substrate and the free-space region, respectively. At the interface

of the two regions, the field continuity conditions are enforced.

For the uniqueness of the solutions to these Maxwell equations, the following conkdi-
tions must be satisfied: (i) The initial condition for the fields must be specified on the whole
domain of interest; that is, E(7,¢ = 0) and HA(F,t = 0) must be given everywhere inside the
computation domain; (ii) The tangential components of E and H on the boundary of the
domain of interes‘ﬁ:must be given for all ¢ > 0. For the boundary at infinity, Sommerfeld’s
radiation condition must be satisfied, that is, the wave at infinity must be of an outgoing

type.

In a rectangular coordinate system (X.y,2). Maxwell’s curl equations may be written

in component form as,

a;itry";% (aaiz _ 6£z) (5.4)
aéi;; _ i( aa%f 6£y) (5.3)
aa% _ %(%Hyz _ 35’1;5: | | (5.6)

The system\i;\-‘f the above six coupled partial differential equations of ( 5.3)-( 5.8) forms .
the basis of the FD-TD algorithm for electromagnetic wave interactions with general three-

dimensional objects.
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In order to find an approximate solution to this set of equations, the problem is dis-
cretized over » finite three dimensional computational domain. Discrete approximations io
these continuous partial differential equations are obtained by using the centered difference

approximation to the first-order partial differentials in both the time and space domains,

8f _ flz+Ae/20) = flz—Az/2t) | 0 )
3z = e + 0(Az7) (5.9)
8f _ flz,t+ At/2) — fz,t — At/2) .

5 = ~ + O(At%). (5.10)

To achieve the accuracy of ( 5.9), and to realize all of the required space derivatives of the
system of { 5.3)-( 5.8), Yee {1] positioned the components of E and H about a unit cell of
the lattice as shown in Fig. 5.2. To achieve theq..g-curacy of ( 5.10), he evaluated Eand A
at alternate half time steps. To be more specific, if the components of E is at time nAt,
the components of H are calculated at (n + 1/2)At. For this reason, this algorithm is also

called the leapfrog method. The explicit finite difference approximations to ( 5.3)-( 5.8) are

L -1 At
gh(a,J,k) = Hg 2(3,].&')—?

, [E';(-i,j.k) — En(i,i = 1L,k)

Ay
1 -1 :
mH R = B -
Eg(i)jrk)_E;(isj:k_l)
' Az
e N o LY PR : 1 .
_Ez(z,j,k) AE;(Z laja!")] i (5_12)
%
ntl -% d
H:+°(i,j,k) = H: ’(i,i,k)-%
] E;‘(Lj'k)—E;(l_l:j,k)
Az
E2(i,j.k) = E2(i,§ - 1, k)] -
- 3.13
= (5.19)
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EXFli 5 k) = E;‘(i.j.k)+‘\‘—€t-

] . n l‘
H~+“(a LR - HETRGL G
Ay
n.+,. n :1,- .
(L7 6+ ) - H +‘(z 7oK (5.10)
Az o
ESfi k) = Bk + =
Atk . nek ..
+2(‘L.j’,k+ 1)——H:+’(z.j..1c)
' Az
L nk
H;‘h(i.}.1,j,k)—Hx+z(-l,J,k) (5.15)
Az T
A
E?+1(i,j, = _-_- 3.7'.' +-'_t .
+=(e+1 ik = PRk
Az
. _
CHEH LK) - BTG (5.16)
Ay o

The entire computational domain is formed by stackjﬁg the basic rectangular cells:
into a rectangular vdlume shown in Fig. 5.1. With the system of finite-difference equations
tepresented by ( 5.11)-( 5.16) the new value of a field vector component at any lattice
point depends only on its previous value and on the four surrounding previous values of the
components of the other field vector. Therefore, at any given time step, the computation of
a field vector can proceed either one point at a time; or, if p parallel proce;sors are employed

concurrently, p points at a time.

(s

The above FD-TD scheme is specially suitable for microstrip component analysis
due to the following advantages. First, there is no need for special treatment at the edge of
a microstrip antenna or transmission line if the tangential E and vertical A components are

located on the metal strip and only the parallel components of the electric field are located
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on the edge of the strip. Second. because the discretization steps used in the analysis
of microstrip components are very small, the numerical dispersion of the above scheme

is negligible compared to the physical dispersion of the microstrip structure. Finally. the

central difference nature of the leapfrog method makes it a relatively accurate method

(second-order accuracy in both time and space), and makes it a very direct method from a

mathematical point of view compared to the other time domain methods.

For finite difference scheme ( 3.11)-( 3.16), a stability condition must be found
which guarantees that the numerical error generated in one step of the calculation does not
accumulate and grow, and which guarantees that the approximate solution derived using
the numerical scheme converges to the theoretical one. The stability condition of Yee’s
algorithm is [46]

1
Umaz * D £ . (5.17)
L. 1_, 1
Az? T Ayt T Azl

For the special case of Az = Ay = Az = Ah, ( 3.17) becomes

1
tmaz - O < == Ak (5.18)

where viaz is the maximum electromagnetic wave phase velocity within the media being -
modeled. Usually the space steps in the FD-TD technique are determined in such a way
that the fine parts of the structure can be modeled accurately. Then, the time step is limited

by the above stability condition.

The finite difference form ( 5.11)-( 3.16) of Maxwell’s equations is derived in the

_uniform region of the medium and therefore cannot be applied directly to the nodal points

located on the dielectric-air interface, on conductors, or on the boundary planes of the finite

difference mesh. All these points require special treatment.

The field components which lie on the dielectric-air interface are the tangential

components of E(Ey and E.) and the vertical component of H(H.). In calculating H,

a
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the difference equation similar to { 5.11) can still be used because the value of p does not
change across the boundary, and because the £y, and E; components used to calculate H,
are the tangential components with respect to the interface and are thus continuous across
the boundary. To calculate E, and E., however, finite difference formulation other than
( 5.15) and ( 5.16) must be derived from the field continuity conditions across the boundary

[52]. The derived result is that E, can be obtained by the discretization form of

aat+e OB, O0H, AH:

— hd '3 1¢
2 at 0z Az (5.19)
and E. can be obtained through
€1 + €2 8E, _ .'.'.}.Hy dH, = o
2 & T Az dy (3.20)

In other words, the average value of ¢ is used in { 5.13) and ( 5.16) for the calculation of

the interface F, and E; nodes.

The microstrip and the ground planes are assumed to be perfectly conducting and
have zero thickness and are treated by setting the tangential electric fields, £, and £,

and normal magnetic fields, H, to zero. In Yee's FD-TD scheme, the boundary condition

. imposed on the normal magnetic field is automatically satisfied by the finite difference

calculations if the tangential electric fields have been specified.

The computation domain can be reduced by one-half if one applies a magnetic wall

boundary condition at the center of the structure if the analyzed structures are symmetric.

‘In some analyses, we apply a direct magnetic wall boundary condition, that is, the tangential

magnetic components and the normal electric components are forced to be zero on this wall,
instead anti-symmetrical tangential magnetic field condition and symmetrical tangential
electrical field condition are applied. In this way, the geometry of the analyzed antennas

can be more accurately aligned.

Since the computation domain cannot include the whole space, the finite difference
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mesh must be truncated to accommodate the finite size of computer memories. The trunca-
tion planes are the side, top. and end surfaces ( Fig. 5.1 ). The numerical algorithm on the
truncation planes must simulate the propagation of the outgoing waves: this is known as
the artificial absorbing boundary condition (ABC). In order to achieve an accurate result, a
good ABC has to be used. In the next section, we will discuss the used absorbing boundary

conditions in details.

5.3 Absorbing Boundary Conditions

The primary propertfy" of the boundary condition is that the boundary is transparent to the
wave propagating out with respect to the computational domain. There are several ways
to simulate this property. Perhaps the simplest and most obvious means of eliminating

reflections at the mesh walls is to pad the computational domain with lossy regions which

absorb the incident waves [54]. But, it has been demonstrated that the layer should be

relatively thick in order to absorb the outgoing waves without generating significant reflec-
tions’:.. The second way to obtain this propertj' is to impose an artificial boundary condition.
The most common methods used to derive absorbing boundary conditions are based on
asymptotic expansion of the one-way wave equatlion. Many researchers have developed the-
ories to deﬂve these approximate Eounda[ry conditions {19]-[27). Here, a derivation of the
one-way absorbing boundary condition based on the work of Mur [22} is presented in order

'to understand ABC, and to further study the relationship between the ABC and DBC.

Dl

Without loss of generality, 2 wave inside the computational domain is assumed to

be travelling in the +z direction incident on the mesh boundary at z = MAz. A continuous
space is first assumed and the boundary conditions required to prevent reflections at the
: = MAz boundary are derived. The medium is assumed to be lossless and uniform,

without free currents or charge density. Any single component of the electric or magnetic

<

\‘\

4
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fleld, represented by o, satisfies the scalar wave equation in cartesian coordinates,

-——nm e m— e ———

[a-'a'zia‘.‘ 132 . ..
\6‘1:- dy* ' 92 2ot =0 (3.24)

A plane wave travelling in the computational domain in the > direction can be expressed
as,

&= ej(u:—k::—kyy—kg z) (52.3)

For perfect absorption the wave must satisfy the one-way or first order wave equation,

d 138Y,
AN Wi I 5.9
(3:-: Vs 3t> e=0 (5.23)
or
¢ k.0
— 4= : < 9,
(33 w 3t) =0 (3.24)
where k? = k2 + k2 + &7 and therefore k. = (k* — k2 — k;)%. Substituting for &,
g 1 k' v 0
—_ = 5.25
(Bz “e -2 % Bt) ¢=0 (5.25)

where k = w/¢. The first approximation to this equation is to assume approximately normal

. incideniié:, or k, ~ 0 and ky ~ 0. In this case the boundary condition simplifies to

5 18\, ]
(az * “5’5) =0 (5:26)

This equation is readily discretized by using centered differences at z = (M - 1/2)Az and

att = n + 1/2 in the following manner,

+ +1 . : AT :
1 (S5 = dhin LSO L ‘PJ P - % L oy = S _ 0 (5.27)
2 Az Az 2¢ At )

At

which reduces fo,

, ‘n— 1=p, .21 : -
R = Shrla + i"_i_—P(GRI - ®hr-1)s . (5.28)
where ¢y represents the field components on the boundary, ¢as—1 represents field compo-
nent a distance of one node inside the boundary, and p = cAt/Az. This is the so-called

first order ABC which was presented by Mur [22] for application to the FD-TD method. -
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For the microstrip antenna analysis. on the feed lines the waves are normally incident
to the mesh walls. It should be noted that the normal incidence assumption is not valid for
the fringing fields which are propagating tangential to the side walls, therefore the side walls
should be far enough away that the fringing fields are negligible at the walls. Additionally,
radiation is not generally normal to the mesh walls. Therefore a higher order absorbing

boundary condition is necessary to handle problems in which radiation is a significant factor.

The one-way wave equation ( 5.25) is again considered, and it is observed that if the
directions of propagation, i.e. k- and ky, were known, then this expression could be used to
develop an exact absorbing boundé.ry condition for the specified direction of propagation.
Using this idea the more general case where the direction of propagation is near normal
with k; < 0 and k, < 0 is considered. In this case the square root in ( 5.25) may be

approximated to yield,
a ] 1 1 2 .2 i Lon = o
[E Te (l ~ ke ’“v)) at] 2=0 (5.29)

If this expression is differentiated with respect to time,

32 1 32 c2 . a1 ag , ]
[ T S 2y - 9 =0 '
[azat ‘e (6t2 9 kz + ’y)wz ET) p=0 (5.30)
For plane wave solution the following relations hold

o2 , &

e (5:31)

Using these relations to go back to a differential equation,

1 1982 1(8 & ._ .
¢ 9z0t + 22 2 (_3_3—5 ™ 3_3,2)] ¢ =0, (5.32)

which is the continuous second order absorbing boundary condition. The finite difference
approximations for this equation make use of time and space averaging to achieve centered
differences in space and time in a manner similar to the first order absorbing boundary con-

dition [49]. The above equation is much more absorbent than the strictly normal incidence
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boundary condition ( 3.26) although it still assumes that the angle of incidence is close to
being normal. However, for microstrip component analysis, this second boundary condition
has a number of disadvantages when compared with the first order boundary condition.
these are (i) the implementation of the boundary condition is much more complicated than
the first order boundary condition since the discretized second order boundary condition
needs the values on nine neighboring nodes while first order ABC needs the value only on
one neighbor node; (ii) because the metallic or dielectric boundaries intersect the outer
boundaries, this makes it very difficult to apply the second order boundary condition: (iii)
the corner treatment of the computational domain with ( 5.32) is not as easy as with the
normal incident boundary condition { 5.26). Overall, the normal incidence boundary con-

dition is much easier to apply for these situations as it has no derivatives tangential to the

-walls.

Considering the above factors, Mur’s first order absorbing Eoundary condition ( 3.28)
is used to evaluate the tangential field components on almost all the mesh walls. The most
impottant factor to be considered when #pplying the boundary conditions is the proper‘
selection of the phase velocity. For aperture-coupled stacked antennas and for the side and
the end walls, we choose local phase velocities, that is, inside the dielectric the velocity is
determined by the local ¢, and below and above the dielectric the velocity is determined by
& = 1.0. On tixe front feed line wall, 2 new 'bounda.ry condition, the dispersive boundary

con&z'tion (DBC), is applied to absorb the dispersive wave on the microstrip line.

In the FD-TD simulation of microstrip circuits and antenna;. if ﬁras observed that
most of the energy propagating towards the radiating element comes out or is reflected back-
oﬁto the feed stripline. So the accuracy of the frequency domain res?ﬂts is greatly dependent
on the absorbing boundary condition applied on this wall. Usually, nearly applying the

Mur’s first order ABC will leave a visible amount-of reflection. ';I‘lu’s is mainly due to the

velocity of the wave on the stripline not being a constant but rather being a function of

N
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frequency [52. 49]. In order to absorb this dispersive wave, Zhang and Mei [32] have used
the super boundary condition treatment proposed by Fang {17, 18]. This treatment consists

of four steps:

1. Apply Mur’s first order ABC ( 5.28) to the tangential electrical fields on the boundary

walls;

9. Tse the electrical field values calculated in procedure 1 and use the finite-difference

equations to calculate the tangential H next to the boundary;
3. Apply the same kind of boundary coudition on the tangential H next to the boundary;

4. Compare the values obtained in procedures 2 and 3. These two A fields will always
have the property that the errors contained in them due to imperfect treatment of the
boundary condition will have opposite signs and the magnitudes of these errors will
ma.inna.inra, known ratio. By using a weighted average of these two H we get an error

cancellaﬁdn effect and obtain the final H.

The fortuitous cancellation of errors that occurred above can actually result in an improved
_performance for the boundary condition. However, it is felt that the derivation of boundary
condition needs both simplification and a strong theoretical foundation. Therefore, a new
boundary condition should be presented which takes into account the dispersive charac-
teristics of the microstrip line. This bognduy condition is called as dispersive boundary

condition (DBC), which has been discussed systematically in Chapter 3. For high dielectric

constant microstrip component analysis, the DBC (3.37) presented in Chapter 3 is used.
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5.4 Designing the Excitation

The FD-ID technique used for microstrip component analysis cousists of three key com-
ponents: i.e. the finite-difference scheme, the boundary condition used to truncate the
computational domain, and the source of excitation that is used to get the whole process

going. This section will discuss the types of sources that are used to provide excitation for

FD-TD analysis.

In the case of planar printed antenna problems, microstrip lines and coaxial probes
are the basic structures which are used as feeds. When ¢ = 0, all the fields in the computa-
tional domain are set to zeros. Then, 2 Gaussian pulse is used as the source of excitation
in the time domain because its smooth Gaussian shaped spectrum can provide information
from DC to the desired frequency simply by adjusting the width of the pulse. In the spatial

domain, the fields on the excitation plane are specified with a desired mode distribution.

5.4.1 Source Treatment for Line-Fed Microstrip Antennas

In the case of microstrip line or microstrip line-fed problems, in order to simulate a voltage
source excitation it is necessary to impose the vertical electric field, Er, in a rect;ngular
region underneath the stripline. The remaining electric field componénts on the source
plane might be specified in different ways. In [52], an electric wall source is used; i.e. the
remaining electric .ﬁeld components on the source wall of the mesh are set to zero. An
unwanted side effect of this type of excitation is that a sharp magnetic field is induced
tangential to the source wall and that the pulse is reduced in magnitude. This will cause
trouble in the absorbing boundary condition treatment [52]. Another excitation scheme is
to simulate a magnetic wall at the source plane [50]. The source plane consists only of Ez

and E, components, with the tangential magnetic field components offset by xAz/2. If

the magnetic wall is implemented by setting the tangential magnetic field components to
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zero just behind the source plane, then significant distortion on the pulse still occurs. If
the magnetic wall is enforced directly on the source plane by using image theory: ie. Hian
outside the magnetic wall is equal to -Hion inside the magnetic wall. then the remairing
electric field components on the source plane may be readily calculated using the finite-
difference equations. Using this excitation, the induced tangential magnetic field can be
greatly reduced. Fig. 5.3 shows results for testing different sources. Lhe dashed lines are
obtained using an electric wall source, which show E fields just underneath the microstrip
line at different locations. The solid lines are obtained using a magnetic wall source. In
our analysis, we use the magnetical wall source. Although in the above 2 fictitious source is
used, the boundary conditions will force the field to take on the realistic distributions after
the wave propagates a distance of a few lattices. Once the Gausssian pulse is well clear of
_the front plane, the front plane is shifted forwards about ten lattices and is transformed into
an absorbing boundary condition. Because the dominant mode for the micrbstrip line is
the quasi-TEM mode, which is known to be dispersive, the dispersive characteristics of the
waves propagating on the line must be taken into account by using a dispersive absorbing
condition. This becomes more important when the dielectric constant of the substrate is

very high, for example €. = 10.2

5:4.2 Source Treatment for (!.:‘;oaxial-Fed Patch Antennas
by

The coaxial line-fed connection is a critical part of coaxial-fed patch antennas and needs
a special treatment. The curved boundary of the inner and outer conductors of a coaxial
line is approximated by staircasing, and the tangential components of the electrical field

are forced to zero at the conductor surface.

-+ As shown in Fig. 5.4, the inner cbnductor of the coaxial line is attached to the

patch antenna going through the dielectric substrate and outer conductor is connected
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to the ground plane. In the coaxial-fed model. the antenna is divided into two regions
for the purpose of easy computation. Ome is the coaxial line region and the other is the
patch antenna region. These two regions are carefully merged near the ground interface.
Although, the boundary of the coaxial line is approximated by using staircasing, the extent
to which waves are scattered into the coaxial line is largely determined by the characteristic
impedance of the coaxial line, Le. its electric characteristics, but seldom upon the specific
shape, L.e. its physical characteristics [78]. It is interesting to observe that a very good
aumerical result can be obtained provided that the numerical characteristic impedance of
the coaxial line is almost the same as that of the coaxial line used in the measurement. The
importance of the model is that the corﬁi:ﬁta.tional effort needed for the coaxial line region

is less than 2% of that for the patch antenna region.

From a knowledge of the modes that exist on a coaxial line, a simple field distribution
can be specified at the excitation plane in such a way that the field components in the
rectangular coordinate system take on the pro jected values of the analytically radial field
distribution. The non-TEM modes which are excited by the non-physical excitation will
decay after propagating at most a few lattices. The only mode which is able_ to propagate
down the coaxial line is the TEM mode. Since the TEM mode is a non-dispersive wave, the
first order absorbing boundary condition will absorb almost all of the wave that is reflected
by the antenna and which travels backwards towards the excitation plane of the coaxial

line,

5.5 Variable Mesh and Multigrid Methods

In microstrip circuits or antennas, the thickness of the substrate is very small compared
with the dimensions of the other parts of the structure, and all the discontinuities are:

located on the surface of the substrate. These properities restrict that a few grids must be
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piaced under the substrate in order to model the discontinuities accurately. If 2 uniform
grid is used in the vertical direction, two obvious problems arise. The first is that if using
the same grid size we are going to have too many grids in the vertical direction. The
second problem relates to complications that arise when implementing absorbing boundary
conditions. The latter usually requires a reasonable separation between Fhe boundary and
the source. Typically, it should be.0.25 to 0.5 wavelength. With a fine mesh size, these
‘separations require the displacement of a large number of lattice points, both in the vertical

and horizontal directions.

There are two methods which can be used to solve these problems. They are multi-
grid {13. 12] and variable mesh methods. In the first method, a locally fine uniform grid is
embedded into the coarse grid. Inside each grid part, the ratio of At to Ak is kept the same
so that in all subareas of the mesh exactly the same FD-TD algorithm can be employed.
The coarse and the fine grid regions are solved simultaneously, and the bouqda.ry conditions

between two regions are enforced to ensure a smooth transition.

The variable mesh method uses a mesh whose size changes gradually with distance.
Only one fime step is used throughout the mesh ia this method. which is determined by
the finest grid, while in the multigrid method each subgrid domain uses its corresponding
time step. In both of these two methods, the \_E'ee’s FD-TD scheme should be used in the
subdomain in order to obtain the second order accuracy relative to the local grids. The
key issue that must be addressed when impleménting these methods is how to deal with
the traillsition between the coarse and fine grids. Considc-::ring that the transition with the
variable mesh method is much more simplier than that of the multigrid method, the variable
mesh method should be used for microstrip compoment analysis. By using this method,
_the node number in the computational domain can be reduced by about one-half, thereby

the computational time can be reduced by about half.
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Consider an interface between two latices. each with its own latice spacing, as shown
in Fig. 5.5. It is observed that centered differences are maintained for all field values except
E;. At this point, a higher order finite difference scheme can be derived by fitting a second
degree polynomial to the magnetic fields at three points. Here, we adopt an alternative
scheme used by Sheen [49]. In this scheme, one lets Ay = A,/3, then centered differences
are maintained by differencing H;+, and H;_1,

n+d ety

33) Hyy —Hi :
— = . 3.33
( dz 2t B; point Al ( )

The above discretization is of second order accuracy relative to the coarse grid, Ay.

5.6 Numerical and Experimental Results

Numerical results have been computed for four microstrip antennas. a line-fed rectangular
patch antenna, a proximity coupled triangular patch antenna, an aperture-coupled stacked
rectangular patch antenna, and a coaxial probe-fed stacked rectangular patéh antenna.
‘These antennas have dimensions on the order of 3 cm, and the operating frequency ranges
are all less than 10 GHz. These antenna structures are chosen to be representative of
printed antenna structures. As well, in each instance, we try to introduce new techniques for
improving the performance of the FD-TD method when applied to analysis of the microstrip.
Fq:r}t}.'\{ample, the conforming method will be tested with the proximity coupled triangular
patéhi antenna; the dispersive boundary condition will be employed in the aperture-coupled
stacked microstrip rectangular patch antenna analysis; and coaxial-fed microstrip antenna

model will be demonstrated and validated by analyzing a coaxial-fed patch antenna.

All the numerical results obtained by the FD-TD method are compared with ex-
perimental results. These measurements of the input characteristics of the planar printed

antennas under discussion are carried out on an HP8510B network analyzer. To set the



114 CHAPTER $. MICROSTRIP ANTENNA ANALYSIS USING THE FD.TD TECHNIQUE

reference pl.ane at a specific location, two kinds of calibration techniques are used: one is
the standard coaxial line calibration and the other is the TRL calibration. The former
can only he used to set the reference plane at the interface between the coaxial-cable and
SMA conﬁector. The latter can be used to set the reference plane at any place on a line,
so that the effect of the coax-to-microstrip trar_xsition can be eliminated from the measured
results. In the TRL calibration, three calibration kits were required; a Thru line of length
lihew, an open-circuit Reflect line of length lopen = lenru/2, and a delay Line of length
lopen = lthrw + Al .-‘T\he resulting reference planes are defined at a distance {tpro/2 from the
‘connector to the patch antenna. The characteristic impedance and propagation constant
of the three lines must be known at the center of the frequency band being tested and
must be the same as those for the line, on which the reference plane is located. Usually
Al = Xg/4, where A, is the waveguide wavelength corresponding to the center frequency in
the frequency range of interest. A limitation of the TRL calibration is the fact that the only
values of impedance and propagation constant for the line that are used in the calibration
are those at center of the frequency band. As is well known, the characteristic impedance
and effective dielectric constant for a line vary with frequency. The effects of dispersion
on the microstrip line cannot be taken into account by means of experimental techniques.
The limitation brought about by dispersion restricts the bandwidth of the measurements,

as well as causing measurement errors, especially when the dispersion is serious.

5.6.1 Line-Fed Rectangular Microstrip Antenna

The dimensions of the microstrip antenna to be analyzed are given in Fig. 5.6. To model
the antenna accﬁra.tely along the z-direction, Az is chosen.su;:h that the distance between
four nodes exactly equals to the thickness. In order to correctly fno;iel the dimension of
the antenna, Ay and Az have been chosen so that an integral number of nodes will fit the

rectangular patch accurately. The computational parameters used in the FD-TD analysis
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are

Ah =1.59/4 mm

Az = Ah, Ay =1.9132Ah, Az = 1.8416AA
At = 0.515Ahk ¢

Computation domain: 304z x 53Ay x 160Az
Microstrip line width: §Ay

.

Use of symmetry: magnetic wall divides antenna into two equal parts.

The spatial distribution of E-(y, z,t) just .beneahh the microstrip at 450, 600, 800,
2000, and 6000 time steps is shown in Fig. 5.7. The plots in this figure show, respectively,
the Gaussian pulse traveling down the microstrip line (¢ = 450At), the moment when the
pulse enters the patch (¢ = 600At and t = 800At), the picture at the state of resonance
(t = 2000At), and the residval wave after some time (¢ = 6000At). Notice that most of the
energy propagating toward the radiating element is reflected back from the feed stripline. So
a good absorbing boundary condition should be used at the front wall. For this example,
the first order.ABC is/_11.séci.on the front wall since the dispersion of the feed line is not

serious due to its low'dielectric constant.

There are many techniques that can be used for deriving the antenna's radiation
pattern. For example, one can take direct advantage of the FD-TD method, because the
field at any time step in the computational domain is known during the simulation process.
Using an equivalence principle and assuming that the substrate is infinitely large, the air-
dielectric interface can be replaced by a conductor sheet on which is superposed a magnetic

current. By applying image theory, the surface magnetic current J,, can be written as

Tn(f) = 26(/) x n (5:34)

where E(f) is the electric field on the air-dielectric interface at a particular frequency and n-

is the outward unit vector perpendicular to the interface. After obtaining J» and using the

AN
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free space Green's function for magnetic current. the radiation pattern is easily obtained.
Fig. 5.8 shows the amplitude distribution of the equivalent magneric current at the first
resonant frequency. Clearly seen in the figure is that the field has iittle variation along
the width of the antenna. The variation along the length of the antenna is sinusoidal like.
This implies that the cavity and transmission line models are reasonable. It also should
be noticed that the FD-TD method has taken into account the effect of the microstrip line

feed.

The scattering coefficient for the antenna is given in Fig. 5.9. This result shows

good agreement with the measured data. There is close agreement between simulated and

measured values of the antenna's resonant frequencies. The scattering parameter S11(w)

has been obtained by simple Fourier transform of the transient waveforms as

AVA0) (5.35)

) = F) 35

e
. i

e

where Vi(t) and V,(t) are the incident and reflected voltages, respectively, which are ob-
tained by numerical integration of the vertical electric field underneath the center of the
microstrip line. The input impedance for the antenna may be calculated from the S13(w)

by transforming the reference plane to the edge of the microstrip antenna,

(w0 = 1+ Su(w)es?rt)l -
Zlﬂ(w) - Zo(w) 1 _ Sll(w)ejgaf(w)[‘ (0-36)
where 7¥(w) is the wavenumber on the microstrip and is calculated by
e--r(u)(zj—:.') —_ F{V(ZJ?t)} - . (537)

F{V(z,1)}’

L is the distance from the edge of the antenna to the reference plane, and Zo(w) is the

characteristic impedance of the ‘microstrip line.

In the above analysis, the use of a uniform grid in the vertical direction resulted in a

large memory requirement, thereby long computational time. In order to save the memory,
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the variable mesh method discussed in the last section can be used without degrading the

analysis accuracy [49].

5.6.2 Proximity Coupled Triangular Patch Antenna

In this subsection, we discuss the analysis of a triangular microstrip antenna, which is
proximity coupled to a microstrip feed line. The reason that we choose the triangular shape
is that we want to test the application of conforming models to microstrip component

analysis.

Proximity coupling is of interest because it allows for ease of fabrication, as well as
flexibility in the design of microstrip antennas. The input impedance df the antenna may be
matched by varying the length of the coupling region. Additionzﬂly, the substrate is often
thicker which causes the bandwidth to be- larger. The actual antenna under consideration

is shown in Fig. 5.10. The computational parameters used in the FD-TD analysis are

Ah =1.59/4 mm

Az = Ah, Ay = 1.4305Ahk, Az =24780Ah
At = 0.515Ahk/c

Computation domain: 304z X 55Ay x 1404z
Microstrip line width: 8Ay

Use of symmetry: magnetic wall along the centre plane.

In the calcula,tiop, a conformal method has been employed to treat the triangular edges of
the antenna. As discussed in Introduction, several conformable surface models for scattering
problems have been developed to ov;rcome the shortcoming of the staircasing a,pproxima.tioh
used with Yee's scheme. The contour finite-difference time-domain meihod (CFDTD) 3, 45].

has been chosen in our analysis for its straightforward physicalQ?:fterpretation and the ease
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with which it can be implemented. In computational fluid dynamics (CPD), this method is
called finite volume method (FV) {9, 13]. It is derived by integrating the basic equations to
be solved over a grid element (a finite volume) and then discrete approximations are applied
to the resulting integral quantities on a grid element. In computational electromagnetics, the
basic equations are the Maxwell’s differential equations. Integrating these equations yields
the Ampere’s and Fa.rgday’s integral equations. The integral equations can be discretized on
non-rectangulér lattice, which is the general CEDTD method. The CFDTD method can be
interpreped as the géneralization'of the Yee’s method because the discrete approximations

to the integral equations over surfaces of Yee’s unit lattice produces the exact Yee's scheme.

Fig. 5.11 shows the characteristic impedance of the microstrip feed line. Fig. 5.12
shows the amplitude distribution of the equivalent magnetic current at the first resonant

frequency. The scattering coefficient results, shown in Fig. 5.13, show fair agreement with

_the measured data. There is close agreement between the resonant frequencies derived from

the simulated. and measured results. The dotted line is obtained by applying a CFDTD
scheme to the edges. This is similar to the one used in [3]. This result demonstrates that

the improvement brought about by using the the CFDTD is very small. This is because of

the very small grid size. In microstrip antenna analysis, the patchs are typically discretized

using 20 to 40 grid' spacings. Thus, the space steps are on the order of A/60 to A/100 in

size.

5.6.3 Aperture—Coubled Stacked Microstrip Rectangular Patch 'Antenna

il

- The-topology of the aperture-coupled patch antenna [64] is similar to that for a traditional

rmcrostnp a.ntenna.,{e.\cept for the fact that.the mlcrostnp pa.tch antenna is located on -

one substrate, with a relative dielectric constant €p,, and the feed network is located on

another substrate, with relative dielectric constant €. Usually, €, is higher than e, in~

.
i
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order to reduce the dimensions of the feed network. These two substrates are separated by
a common ground plane. In order to couple electromagnetic power {rom the feed network to
the patch antenna, an electrically sﬁaﬂ opening or aperture is made in the ground plane.ras
shown in Fig. 5.17. Since the radiator and the feeder are separated by the common ground
plane, the radiation from the feed network can be eliminated from the field pattern. As
well, the feed network will be decoupled from the antenna. Because ¢, usually hias a large
value, the microstrip line will be strongly dispersive, thereby degrading the performance of
the first order absorbing boundary condition. Fig. 5.14 shows the numerical experiments
in the time domain, where the curfres show the reflected waves of a Gaussian pulse from
different absorbing boundary conditions. It is observed that the reflected wave for a first
order boundary is about ten times greater than that from the dispersive boundary condition
(3.73), a.n_d that the refiection from super boundary condition treatment i‘s also greater than
that from dispersive boundary condition. Therefore, the dispersive boundary condition is
used in the analysis to be carried out. In this example, the distance between the open end
of microstrip line and the center of the aperture is 3.8 mm. The two velocities that are
selected for designing the absorbing boundary condition are v = ¢/ VT.12 and vy = ¢/V/8.5.
These correspond to frequencies 1 GHz and 8 GHz, respectively, where ¢ is the speed of

light in free space.

Fig. 5.15 and Fig. 5.16 show the amplitudes of magnetic-currents on the upper patch
and lower patch, respectively. Fig. 5.17 shc;ws a Smith Chart for the inpui impedance of
the a.perture"coupled stacked patch antenna. The coupling aperture length is c;ilosen to
be equal to 30 grid spaces and its width .to two grid spaces. F;a.irly good agreement is

observed between calculated and measured results over the frequency band from 3 to 5.6

GHz. This is the band in which the antenna operates most efficiently. Because of the

serious dispersion in the microstrip line (Fig. 5.18 shows the characteristic impedance of

the microstrip line which has been calculated using the FD-TD method), it is difficult to

{1

s
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develop 2 TRL calibration which is accurate over a wide frequency band. The measurement
repeatability of the return loss is about =0.05 dB, and phase is about =80, The observed
experimental error is primarily due to the uncertainties inherent in the calibration kits that

were used for the TRL calibration.

5.6.4 Coaxial Probe-Fed Stacked Rectangular Patch Antenna

The FD-TD coa.xial-féd microstrip antenna model haé been demonstrated and validated in
[78] using both measured and numerical results. To show the applicability of the coaxial
probe-fed model to more complicated printed antenna structures, the coaxial probe-fed
stacked patch antenna is investigated. As shown in Fig. 5.10 the antenna consists of two
patches. The coaxial probe is connected to the lower patch. An air gap is introduced
between the two patches in order to increase the bandwidth of the antenna. In this example,
the feed probé is located at a point which (12.5, 4) mm from the low left corner of the lower

“patch,

Fig. 3.19 gives the measured and calculated results for the reflection coefficient of the
stacked patch antenna. It is obvious that the comparison between theory and measurement
is excellent both in magnitude and phase within a wic}g frequency range. From the reflection
coefficient we discover that the antenna has a baﬁc{width that exceeds 16 percent at the

first resonate frequency. The return loss for this band of frequency is less than —10 dB.
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Figure 5.1: A generalized microstrip antenna enclosed in the computation domain .
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W=30.19 mm.
w=4.36 mm
1=32.21 mm

Figure 5.6: Line-fed rectangular microstrip antenna.
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Time domazin Ex field just undemeath the microsuip line

=4504dt

t=6000*dt

Figure 5.7: Time domain £ -field just underneath the microstrip line.
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Equivalent magnetic current density distribution jmy at f=3.0 GHz

Equivalent magnetic current density dismibution jmz at £=3.0 GHz

Figure 5.8: Equivalent magnetic current density distribution at {=3.0 GHz. (2) Jms; (b)
Jm.y- -
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L=42.0 mm
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Figure 5.10: Proximity coupled microstrip antenna.
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. ABC Testing on Microstrip Line
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Figure 5.14: Reflected waves from different absorbing boundary conditions.
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Figure 5.16: Equivalent magnetic current density distribution at f=4.9 GHz, on the lower
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5.7 Summary

By carrying out 2 numerical analysis of a number of complex printed antennas, it has been
shown that the finite-difference time-domain (FD-TD) method is a very powerful tool for
analyzing planar printed antennas. The method can be used to accurately predict all of
the antenna parameters of interest over a wide frequency range, based on one simulation in
the time domain. It can provide not only input information for the antennas, but also very

detailed field djstributi'ons, including the near and far fields. The three-dimensional FD-TD

coaxial feed model provides a means to address more complicated, but practical printed

" antenna prodlems. The validity of the model is demonstrated by comparing the numerical

and experimental results. The disﬁersive boundary condition was successfully used for
analyzing components of printed antennas with large dielectric constant substra,nés. It has
been demonstrated that the implementation of the DBC is much simpler than that for the
super boundary condition, and that DBC’s performance is better than both that of the first

order ABC and super boundary condition.

i
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Figure 5.18: Characteristic impedance of the feed line for the aperture-coupled stacked
antenna.



140

~HAPTER 5. MICROSTRIP ANTENNA ANALYSIS USING THE FD-TD TECHNIQUE

= L
2 |
: |
E |
> 1
= i
!
i
i
oo }
: ]
_____ measured !
o ¥ 3 9 10 i
Frequency (GHz}
‘.'00| .
;. o ‘ |
1504\\ . e i =
. calculated . :
100H - B . _\)7:
N, measured ;
5 L)
g '
=
3 -
: |
c ;
= =
|
i
i
i
i
il

Frequency (GHz)

Figure 5.19: Reflection coefficient of a coaxial probe-fed stacked patch antenna.



Chapter 6

CONCLUSIONS

The main contribution of this dissertation is summarized below. In Chapter 2, a new scheme
is presented for deriving finite-difference tiﬁle-domain solutions of Maxwell’s equations. In
Chapter 3, a new theory of dispersive boundary condition (DBC) is systematically formu-
lated and developed. By using theée dispersive boundary conditions, one can analyze many.
dispersive structures with a much higher accuracy and a much smaller rnemofy. In Chapter
4, modern spectrum es_tima,tion and digital filtering techniques are used with the FD-TD
method to improve its Vefﬁc‘:iency for solving eigenvalue problems. The major improvements
that can now be achieved in the efficiency of the FD-TD method are demonstrated by means
of numerical and measurement results. In Chaﬁter 5, the finite-difference time-domain tech- |
nique is used to analyze complex planar printed antennas with various feed structures. In
addition. the publications [71]-[89] are representative of the contributions this thesis has

.made to the FD-TD method and its applications.

We have adopted many cc_:’iﬁ:epts from djgi:ti.al filter and control theories and in-
corporated them into the FD-TD algorithm in Chapter 3. Actually, these concepts can be
eﬁlployed to help develop the FD-TD technique in at least other two aspects. One is disper-

sive material analysis by using the FD-TD. The other one is finite-difference time-domain
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implementation of surface impedance boundary conditions [34. 33].

Only recently, the FD-TD method has been generalized to treat frequency dispersive
materials. For general frequency dispersive materials, two approaches have been developed.
In the first approach, convolution integrals are employed (36, 37]. Since these convelutions
are applied to every discretization point, as well as for every time step, this approach is time
consuming and requires a large memory The second approach [2, 38] does not require time
domain convolution. The time doma.m models of the dispersive matena.ls are written in the
form of ordinary time differential equations. The second algorithm is much more efficient
than the first in terms of computational overhead and memory requirements. These two

models can be unified by using a system concept.

The main issue that must be dealt with in order to generalize the FD-TD technique
for analyzing dispersive materials is the development of an efficient time domain model.
This model should describe the relationship between D and E or B and H in time domain,
where D and E are the electric flux density and electric field intensity, respectively, and B
and H are the magnetic flux density and magnetic intensity, respectively. In the case of

'electnca.l dispersion, 1et us consider the dispetsive material as a linear system, or have E
as the input of the system, and D as the output of the system. Then, the relation between
D and E can be described by an ordinary time dlﬁ'erenual equation, by a time convolution
integral, or by 2 frequency domain system function. The first two models are in the time
domain and the th.lrd one is in the frequency domain. These three models can be derived
from one another, i.e, they are just three different ways of describing the system. The use of
the differential equation model prc;r_luces the most efficient FD-TD algorithm for analyzing
dispersive structures. In most practical problems, the dispersive characteristics of a material
are described by a collection of discrete data poincns contained within some frequency band.
Using these data as the frequency response of a system, the differential equation model

of the dispersive structure can be obtained by designing an appropriate filter or system.
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The above can also be applied to develop finite-difference time-domain implementation of

surface impedance boundary conditions [34, 35].

In Chapter 3, it has been shown that several absorbing boundary conditions can be
written into digital systems. It is expected that digital filter theory or system control theory,
which are well developed, will be employed to develop a comprehensive absorbing boundary
condition theory. Neural network theory might also be employed to further develop the

theory developed in this chapter.

By carrying out analysis for a number of complex printed antennas in Chapter 3
and {79], it has been shown that the FD-TD method is a very powerful tool for analyzing
planar printed antennas. However, it should be noted that there are tl'i‘\?o main drawbacks
with regards to the use of the FD-TD method for microstrip component analysis. They
are: the requirement for a large computer memory, as well as long computatieg run-tiré;é.‘
The first problem is mainly due to the grid having to be very small in order tc‘__@odel the
discontinuities on the substrate surface accurately. This can be overcome to some riegree by
using a variable mesh along the thickness direction of the substrate. The s“é'cond problem
can be overcome by using digital signal processing techniques. Several methods have been
tried for reduing the corﬁputationé,l time. They are the Prony [103}, Modern Spectrum Es-
timation (MUSIC)[TIG], Multiple-Window-Method (MWM) (76], and System Identification
[104) methods. From a spectrum estimation point of view, all these methods are to estimate
the spectrum of FD-TD time domain data in a very short period of time, and all of then;
are spectrum estimation methods. It should be emphasized that for different structures, the
signal models of the time domain data should be analyzed first, then according to the signal ..
models, different methods are chosen. Otherwise the quality of results deri'ﬁgd from the data
will be less than optimal. For example, in the case of dielectric resonator a-na‘lys’is, the time
domain sequence consists of very narrow band signals, which resemble sinusoidal signals.

Tﬁese kinds of .s:ignals can be analyzed best by using methods like MUSIC. They could not
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be analvzed well by using System Identification method used in [104], which actually is the

so-called ARMA spectrum estimation method in the signal processing techniques.
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