Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7619
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCarter, C.R.en_US
dc.contributor.authorEl-Sagir, Mohamed Soraysen_US
dc.date.accessioned2014-06-18T16:39:53Z-
dc.date.available2014-06-18T16:39:53Z-
dc.date.created2010-07-29en_US
dc.date.issued1980-11en_US
dc.identifier.otheropendissertations/2886en_US
dc.identifier.other3916en_US
dc.identifier.other1415301en_US
dc.identifier.urihttp://hdl.handle.net/11375/7619-
dc.description.abstract<p>The demand for significant improvements in navigation systems, which must include more accurate and reliable position location, has been continuously growing in the last decade and is expected to increase rapidly in the near future. The need for this advanced position location and navigation system extends, not only to the airspace, but also to the surface of the earth where ships, land vehicles and aircraft in distress exist. Investigations have shown that satellite-based systems offer a number of unique advantages which meet the required characteristics of the future position location and navigation system. Whether the satellite system is designed to serve the entire earth or a certain portion of the earth, it is required that one or more satellites be visible simultaneously to the user. This necessitates the use of a satellite constellation which provides a multi-fold continuous coverage pattern. In this thesis, a detailed study of coverage patterns and design of satellite constellations for position location and navigation is presented. The metod employed relies on mathematical modelling and computer search f or the configurations of the optimal constellations. The selected optimization criterion is based on minimizing the cost through the minimization of the total number of satellites and satellite altitude. Several new mathematical models have been developed which eliminate the need for computer modelling. Computer search has been conducted based on the different models to determine the optimal satellite constellation for multi-fold continuous coverage. Results are presented throughout the thesis. Specifically, the analysis has led to the development of the following: 1. A mathematical model for a constellation of satellites in an equatorial orbits. 2. Two different mathematical models for a constellation of satellites in a network of polar orbits. A major development is the concept of the interaction between orbits to maximize the coverage. 3. Two mathematical models for a satellite constellation in a hybrid network which combines a network of polar orbits with an equatorial orbit. This type of constellation has not received attention in the open literature to date. 4. A model for a satellite constellation in a network of inclined orbits providing single-fold continuous coverage. 5. Five different satellite constellations in synchronous orbits for three-fold continuous coverage of the Atlantic Ocean. Finally, conclusions and a number of recommendations for future research are provided.</p>en_US
dc.subjectElectrical and Computer Engineeringen_US
dc.subjectElectrical and Computer Engineeringen_US
dc.titleMathematical modelling and design of optimal satellite constellations with multi-fold continuous coverage for position location and navigationen_US
dc.typethesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
7.71 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue