Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7587
Title: Partial Response Signaling with a Maximum Likelihood Sequence Estimation Receiver
Authors: Chan, N.
Advisor: Anderson, J.B.
Department: Electrical and Computer Engineering
Keywords: Electrical and Computer Engineering;Electrical and Computer Engineering
Publication Date: Dec-1980
Abstract: <p>This thesis evaluates a bandwidth efficient data transmitting system which is modelled as a PRS system. A maximum likelihood receiver implementing VA is assumed at the receiving end. An algorithm is developed to compute a fundamental performance parameter of the system, called the free distance. 99% energy bandwidth and intersymbol interference (lSI) degradation are used to measure the performance of the system. Nonlinear programming and minimax methods are applied to find the optimal channel codes under different criteria. Three different sets of optimal channel codes have been found; first, the worst-case channel codes in terms of lSI degradation, secondly, the minimum 99% energy bandwidth channel codes and finally the minimum 99% energy bandwidth channel with fixed lSI degradation constraint. Two PRS systems with different pulse shaping filter are considered. First, an ideal low pass filter with minimum Nyquist bandwidth is evaluated for channel lengths up to twelve. Then a spectral raised-cosine filter with roll-off factor equal to one is evaluated for channel lengths up to four. The two PRS systems show that a longer channel can have better performance in consideration of both bandwidth and lSI degradation. The raised cosine filter causes no performance penalty in narrow band channels.</p>
URI: http://hdl.handle.net/11375/7587
Identifier: opendissertations/2855
3873
1413297
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.86 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue