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ABSTRACT

This thesis evaluates a bandwidth efficient data transmitting
system which is modelled as a PR§ system. A maximum likg]ihood
receiver implementing VA is assumed at the receiving end. An algor-
ithm is developed to Eompute a fundamental performance parameter of'
the system, called the f}ee distance. 99% energy béndwidth and
intersymbol interference (ISI) degradation are used to measure the R
performance of the system. Nonlinear programming aﬁd minimax methods
are applied td find the optimal channel codes under different criteria.
Three different sets of optimal channel codes have been found; f?Lst,
the worst-case channgl codes in terms of ISI degfadation, secondly,
the minimum 99% enérgy bandwidth channel codes and finally the mini-
mum 99% energy bandwidth channel with fixed ISI degradat{on constraint.
Two PRS systems with different puise shaping filter are conside;ed.
First, an ideél low pass filter with minimum Nyquist bandwidth is
evaluated for channel Tengths up to twelve. Then a spectral raised-
cosine filter with roll-off factor equal to one is evaluated for
channel lengths up to four. The two ng systems show that a longer
channe]!fan have better performance in consideration of both band-

width and ISI degradation. The raised cosine filter causes no per-

formance penalty in narrow band channels. ’
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. . CHAPTER T . . -
INTRODUCTION

1.1 A.Digital Communication System

Increasing demand for faster, bandwidth efficient and reliable
data transmission has caused interest in various signaling schemes and
receivers to fulfil these objectives. For instance, on a satellite
communication Eystem and. a mobile radio system, both the transmission
bandwidth and signal to hoise ratio (SNR) are of concern. Siqce the
demand™for commuhication-is increasing rapidly, the efficient use of
channel bandwidth is important to reduce the channel cost directly
and conserve the radio spectrum. The immense transmission distance,
Timited power supply and/or unfavourable channels of these‘cdmmun-
"jcation sy§tems)increase the importance of reliable datg transmission
with ménageab]e transmission power.

The primary sources of distortion in a'high data rate trans-
mission system are intersymbol interference (ISI) and noise. ISI is
produced by the tail of a baseband pulse at each symbol period which
interferes with the néighbour pulses. Multipath interference has a
similar effect.

The purpose of this thesis is to design a bandwidth efficient
transmitting system, a so\ca]]ed partial response signaling (PRS)
system or correlative encoder. A maximum likelihood (ML) receiver ‘

employs the Viterbi Algorithm (VA) to decode the received sequence.
1
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Fig: 1.1 shows the digital communication s?stém model that is used in
our work. The input data is assumed to be a sequence of impulse {0,1},
aﬁd the transmitting filter correlaﬁes the input sequence for spectéal
shaping to achieve better bandwidth performance. A bandlimited channe)

corrupted by white Gaussian noise is.assumed. On the receiver's side,

a mq}ched filter and a maximum 1ikelihood sequence estimator implementing
the VA are used as an optimum receiver. o \

Kabal and Pasupathy [1] presented a de%ai]ed study of dtfferent
PRS schemes from the viewpoiht of spectral properties.. PRS schemes are
based on the idea of introducing some correlation (or ISI) among the
data for spectral shaping so as to increase banéwidth efficiency.
Since the controlled amount of ISI is introdqcéd to the adjacent
symbols in a finite discrete way, the ISI can be eliminated at the
receiver by subtracting the pfevihus weighted symbols from gresent
symbol. v | A

Various receiver structures have been proposed to combat
the effect éf IST [2]-[5]. One simple structure used in practice is
called the Jihear equalizer. Its performance has been ané]ysed by
Lucky [2]. Another kind of recéiver that implements a non-linear
technique, called the decision feedback equalizer, was ana]ysed by
Price [3]. A more recent nonlinear receiver was proposed by Forney
[5] which consists of a whitened matched filter, a Samplér with symbol
rate and a recursive nonlinear processor, called the Viterbi Algorithm
(VA). The VA was devised by Viterbi [6] as a decoding algorithm for

convolutional codes.  Omura [7] pointed out that the VA can be con-



3
sidered as a dynamic programming solution to the decoding prob]em.'»

Forney [3] and Kobayashi [8] “showed - that the VA is indeed a

(MLSE) in pu]séyamp]itude modulation (PAM) system with ISI. The
performance‘anaiysis of a MLSE imp]ement}ng fhe VA w
by Forney [3], t9]. A simi]argreceiver was proposed by Ungerboeck
[4], in whfch the VA was modified to deal with corre]agive no{se
Qirectly without a pre-whiterding filter. An,adaptixewfehewe for the

receiving filter is 51éo¥groﬁosed in the same paper. ﬁagee [10]
proposedAéﬁothér adaptive ML receiver which combines #orney's receiver
wjt@ a channel esfimator so that it can be app]fgf t@\an unknown slowly
time-varying dispersive channel. | )

Forney showed that the probability of error of MLSE is domin-
ated by the minimum distance at moderate SNR [5]. Magee and Proakis
[11] suggested a method to estimatelfhe worst possjb]E performance
over a chennel with a fixed energy finite duration pulse response.

The results for estimated worst performance We}e shown for channel
Tengths up to ten.. Anderson and Foschini [12] later provided a
procedure for computing the minimum distance for classes of a’ few
hundred states. A combined‘functional analysis and cbmpufer segrch

| approéch was used to find the miniﬁum distance. Their results indic-
ated that Magee's results [11] were only true for the channel lengths
less than seven. '

An gva{uation on power, bandwid%h and comp]exity in MLSE -

was done by Wong [13]. The transmitter was ﬁodel]ed as a partial



Jresponse signé]ing system, wh%]e Forney's receiver'waséapplied at
the receivin§ end. ‘A double dynaMicAprogramming technique was
developed and used for cemputation of the minimum disgance. Poﬁér,
bandwidth and complexity wer; evaluated for chapnel lengths up to
four by plotting the corresponding contour maps.

\
1.2) Organization of the Thesis

In_Chapter 2-of this thesis; the PRS system.and ips equivalent

e

PRSI

finite state mqghiﬁéimodel isﬂdiscuSSed}w‘%ﬂ;Chapte; 3,’a}ME;?éEE?ver
pfoposed by Ungeréoeck,[4] is presented and compared with Férney's
receiver [5]. ’A ) ‘

| A modified stack algorithm iS\dgﬁived in Chapter 4 for com-
putafion of the minimum distance,' Efficiency of the algorithm is
discussed and‘compared with the double dynamic programming method.

An optimization technique and the corresponding computer package are

“introduced in Chapter 5. The computer package is used to solve the

2

frea M Chapter 6 and optimizing bandwidth in

problem of optimizing d
Chapter 7 and 8.

- Combining the®

algorithm and technique proposed in Chapter 4

° and 5, we have found the worst degradation of the MLSE for channe€l
1engﬁhs up to 12 in Chapter 6, while in thapter 7, we optimize‘thé
bandwidth:with and withoutrtgg‘power constﬁaint for channel lengths
up to 10. Finally, a sbectrai raised cos%ne function is introduced

for pulse shaping rather than the rectangular spectral function used

'”‘““«~inngeyious chapters. The same optimization problems in Chapter

A ]
—

4 A



6 and- 7 are done for the modified system.in Chapter 8.
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CHAPTER 2

A BANDWIDTH EFFICIENT SIGNALING SCHEME:
PARTIAL RESPONSE SIGNALING

In communication systems, most channels are bandlimited
in some sense, so that efficient use of bandwidth is one of the .
objects of a transmission system. In this chapter, partial response

signaling is introduced as a bandwidth efficient signaling scheme.

. ’
. o

2.1 Partial Response Signaling System (PRS)

Lender {14] first introduced PRS for data transmission. A
PRS system is based on the allowance of a controlled amount of inter-.
symbol interference (ISI)which is used for spectral shaping so as
to redistribute the spectral energy of the signal. Most of the
energy concentrates in low frequency region or some other frequency
region depending on the correlation introduced among the signals.
Since the ISI is knan, its effect can be removed or diminished at
the receiver. In comparisan, a conventional pulse amplitude mod-
ulation (PAM) system eliminates ISI by creating a large number of
signal levels. A PRS system can achieve high data rate by signaling
at a higher rate with fewer levels. Therefore, PRS system will have
better error rate performance than the conventional PAM system [2].

A PRS system can be considered as a cascade of a digital

7
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transversal filter F{w) ana a pulse shaping filter G{w), as shown in
Fig. 2.1 [11, .
The digital transversal filter F(w) is equivalent to a shift
register with K taps. It correlates each input datum with L = K - 1
succeeding input data. By controlling the tap coefficients, we can
acﬁieve the desired spectrum at the output of F{w). In our study,

the tap coefficients can be any real numbers.

The transfer function of F(w) is

A .
Flw) = £ e79¢T

g 1 (2.1)

i o~1 -

i

where L is number of delay units,

fi is a tap coefficient

T is one tap delay time which is equal to one symbol period.

Its impulse response is

F(O) = .., f. p’ (2.2)

where D is the Huffman's delay operator [5].
F(w) is a periodic function with period 1/T. The analog

filter G(w) converts the samples Y, to an analog waveform and in 50"

K
doing bandlimits the resulting system function, hopefully without too"
much change to the sample values introduced by F(b). The choice of

G(w) will be discussed in more detail in next section.

\\\\\-I//’//z,“\\\ The analogy between PRS and convolutional coding was pointed

&
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10
out by Kobayashi [14] and Forney [5]. A PRS system can be considered
- as a simple type of linear finite-state machine defined over the
real-number fig]d as- opposed to a Galois field aver which a binary
convolution encoder is defined. Therefore, a PRS system is actually

equivalent to a real number convolutional encoder.

2.2 - Choice of Pulse Shaping Filter G(w)

For our work, the reqdirements of the pulse shaping filter
*G(w) are that G(w) must be bandlimited and satisfies Nyquist's first
criterion [2].

Nyquist's first criterion states that the impulse response
of a function G(w) has zeroes at uniformly spaced intervals except

for a central peak, i.e.,

g(KT) = 0 for K # 0
(2.3)
0

g(0) #

This zero crossing property ensures the samp?e values introduced
by F(D) without change after passing through G(w). There existf
many different filters that satisfy Nyquist's first criterion.

These have different bandwidths, but are all called Nyquist filters,
Two different Nyquist filters G(w) are considered here. )

First, a rectangular spectral function that occupies the

‘minimum Nyquist bandwidth 7/T radians with transfer function
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\

e T lglt < w/T
Glw) =¢ (2.4)
- 0 Jol > w7

Its impulse response is a sinc pulse

g(t) = f]_"j_:_?_ (2.5)
Tt

shown in Fig..2.2. (i;}

LS
This filter is equivalent to an ideal Tow pass filter with

1
cut—of;_;;;aﬁeﬂcy)at w=7/T. The discontinuity at w = 7/T causes

two disadvantages.

(1) It is physically unrealizable and difficult io
approximate.

(2) 1t results in slow decay of the pulse tail. The °
pulse response decreases at 1/t for‘1arge t and

a small timing error.may introduce large ISI {15].

-

Another class of Nyquist filter called the spectral raised-
cosine function [2] is commonly used infp}actice. A raised-cosine
characfer consists of a flat amplitude portion and a roli-off portion
wﬁich has a sinusoidal form.

Ve
L The transfer function and its impulse response are

| 0 W E(]--' ) .
6lo) | Shelsy (=8 (2.6)

FO -sin Ghlo- N T0-8) <que T+ 8)
0

Otherwise
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sin 7 t/T _EQE%E%LIE 0<8 <1, (2.7)

9(t) = —r— 1487 - -

where 8 is called roll-off factor.. Plots of G(w) and g(t) with three
different values o;'s are shown in Fig. 2.3. For 8 = 0, it becomes
a rectangulaﬁ function with minimﬁm bandwidth w/T. As 8’> 0, the
excess bandwidth is measured by 8. When 8 = 1, a maximum bandwidth
2n/T is required. The advantage of the raised-cosine function is
that it can allow a moderate timing error without causing serious ISI.
This is due to the gradual roll-off of the cut-off frequency, which
causes the pulse response to decrease asymptotically as 1/t3 [2].
However, since the bandwidth of the'faised'cosine function is larger
than /T, it will cause aliasing when the output of such system is
sampled at the symbol rate T. This degrades performance. ‘

Both Ngquist filters are considered in this work. The
rectangular function is first implemented aﬂd evaluated in Chapter
6 and 7, whereas the raiggd-coSine function is treated in Chapter 8.

2.3 - Epergy and Bandwidth of PRS System

We have mentioned that the bandwidth of a PRS system depends
on the choice of G(w) function. However, one should notice that
energy of the system does not uniform]y\djstribute over the system
.bandwidth. Adjusting tap coefficients fi of F(w), we can con%ine
most of the energy within the frequency band a. Therefore, the

energy carries very little information outside frequency o and can
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be discarded. 99% energy bandwidth was used by Wong [13], meaning.
the bandwidth containing 997% of the total energy of the system.
Using this définition, we can compute the effective bandwidth
requingg by a PRS system for data transmission.

S

Théxenergy density of a PRS system is defined as
Energy density 2 |F(w) G(w)l2 (2.8)

Then the energy contained within bandwidth o is

A 4 2 ‘ :
. E(a)= P IF(w) G(w)} dw . (2.9)
~270 ‘ )
where -0 < a < 1/2THz for a réctangu]ar function of G(w)
0 <a< 1/THz for a raised-cosine function of G(w).

b

With (2.9) we can compute the 99% energy bandwidth. That

will be done in more detail in Chapter 7.

2.4 Finite State Machine

The PRS digital filter F(w) in Fig. 2.1 is a discrete-time
shift register. The process'is a finite-state discrete-time Markov
process [16]. |

A finite-state discrete-time Markov process is characterized
by the states, with the state at any time being given by the L most

recent inputs. Define stete

s (X 15 Koo v %) (2.10)

k

[ >3
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The number of possible sstates is.mL for an m-ary input to a

shift register with L delay taps.

2.5 Tree and Trellis

A tree is used to represent exhaustively all states and
stages of a discrete deterministic process, as shown in Fig. 2.4(a).
The nodes of a .tree represent the states. Input sequences are indic-
ated by the paths fo]]éﬁedhin'the tree diagram, while o&tputs are
indicated by symbol along the paths.

The trellis diagram is another representation of a %inite
state machine introduced by Forney [16], as shown in Fig. 2.4(b).
It is a tree-Tike structure with rejoining branches, in which two
nodes at*Fhe same level in the tree are coalesced if they represent
the same output sequence for the saﬁe inpbt sequence. It shows the
time -evolution of the state transitions. The most important property
of a trellis diagram is that to every possible state sequence {Sk},
there corresponds a unique path through the trellis and vice-versa.
Therefore an estimation of state‘sequences is equivalent to a

searching of trellis paths.
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CHAPTER 3
MAXIMUM LIKELIHOOD RECEIVER

Many different kinds of receivérs have been proposed [2]-[5]
to combat the effect of ISI, with varying success. The first non-
linear receiver structure implementing MLSE to remove ISI was proposed
by Forney [5]. The performanee analysis ef this étructure indicated
its superiority over the conventional equalization receivers. Unger:
boeck [4] later proposed a similar non-linear receiver structure that
is coqsidefed more general and practical; its perforhance {s the same
as Forney's Etrugture [4]. In our wark, Unger?oéck's receiver struc-
ture is asggmed at the receiver end of our digital communication

system.

3.1 A Nonlinear Receiver Structure

With a Tinear carrier-modulated data transmission system, a
nonlinear receiver structure implementing MLSE in the presence of
IST was proposed by Ungerboeck [4]: The same receiver structure is
applied to our~basebaﬁd PAM transmission system, as shown in Fig.
3.1. The receiver contains a matched filter followed by a sampler
saﬁp]ing at each Syﬁbol period T, which provides a set of sufficient
statistics for estimation of the input sequence. Finally, the

" sampled value of the matched filter output is fed into a nonlinear
17
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recursive pfocessor that performs a modified yA to decode the sequence
in an optimum way. The modified VA has the capability to deal with

correlated noise as opposed to the 6rigina1 VA-used in Forney's struc-

“ture which can only be applied to statistically independent noise

¢ " "
samples. Therefore, a whitening filter is no longer required in
Ungerboeck's receiver.
"In our work, we assume that the channel is corrupted by white

Gaussian noise n(t). Therefore, the observed signal r(t) is

¢

r(t) = y(t) + n(t) (3.1)

>

where y(t) is the output of the PRS filter

- y(t) = L x h(t-k) (3.2)
k

K
where h(t) is the impulse response of the PRS filter.

The observed sequence r{t) is the input of the matched .
filter which is designed to maximize the SNR. The transfer fungtion

of the matched filter is

T}
—_
e
~,
—

[0S

(89
~—

GMF (w)

i}
B3
epl
€

where ~ represents complex conjucate.

The impulse response of matched filter is

gMF (t) = h (‘t)

H
~h
—_—
!
ot
S—
»*
el
—
i
ot
~——
—
L0
i~
—
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where = represents convolution,

The output of the matched filter is sampled and has sample value In.

. an\= gM}; (t) = r(t) | t = ng)

gup (t) % (y(t) +n(t)) | t = nT

= {gye(t) = y(t) + gue(t) x n(t)) | t = nT

EgMF(t) . x..p h(t)) | t=nT +n
_ L
= X sy + n, (3.4)
where Sp T Oy (t) «h (t) | t=10T. ¥ (3.5)

sg,is called the sampled value of the overall PRS and receiving matched
filter, or it can be considered as the autocorrelation function of the
" overall channel. Here ﬁn is the noise sémb1e that is correlated after

passing through the matched filter. .

3.2 Maximum Likelihood Sequence Estimation for- PRS Systems

~

Maximum 1ikelihood sequence estimation (MLSE-) is defined as

the choice of a transmitted input sequence X that maximizes the
probability density function P[r(t)/{xn}]. We express the probabil-

ity density function as the-likelihood function L.

L 4 PLr(6)/{x ] - (3.8)
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-

From (3.1), we have the noise term

a(t) = r(t) - y(t)
= r(t) - £ x h(t-nT) : (3.7)
nTel

where I is time interval that the receiver observes r(t).

-

Since we have assumed the noise added in the channel is White

Gaussian noise, the likelihood function becomes [4].

—
n

PIr{t), tel/{x}]

p,[n(t)]

({3

¢ exp (- -2-}-%- £y )2 at ) (3.8)

where ¢ 1s independent of Xn

Substituting (3.7) into (3.8) we have

L =c-exp{- f%a { [r{t) - T x h(t-iT)12 dt (3.9)

nTel

Multiple out the terms and discard those terms that are independent
of {x '}, (3.9) becomes
1
L=exp {or 2 (2x_ 2)- L T OXe S. o4 X ) (3.10)
Mo rep TN gl kTer KK
“where In and s is defined by (3.4) and (3.5),
Because the natural ﬁog fuqction is a monotone function,

k)

the maximization of L is equivalent to maximizing In(L). Therefore,
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a MLSE is to find the maximum of

r, ({xn}) I 2x. I - I S X.S S (3.11)

nTel ™7 §Tel kTel ! i-k k

-

»

Fn is also called a "metric value" of {xn}.

3.3 Modified Viterbi Algorithm

One way to solve (3.11) is to search among all possible input
sequences {x .} and select the one Yhat maximizes . This brute force
method can never be applied in practice because of the extremely large
number of possible input sequences {xn}, Formulating (3.1f3 into
recursive form, we can apply dynamic programming techniques [13] to

select the optimum sequence in a much mere efficient way.

The autocorrelation function is symmetric i.e. ;= s and rewrite

(3.11) into recursive form, we have

-

[}

T ({Xn}) = I’n_]({xn_]})+ Xp (2Lp=soX- 2 kzn—l Sn-k N (3.12)
. } L
= Tn_]({xn_] )+ x, (22 -s x -2 E S xn-y} (3.13)

where L is the constraint length of the ISI or equivalently the
channel memory length.
In a PRS system, the input sequence {xn} and the state

sequence {SH} corresponds one tc one. The estimation of an input
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sequence is then equivalent to the estimation of a state sequence
and it is usually more convenient to search a state sequence because
these sequences have a trellis structure. Therefore, we rewrite (3.13)

as a function of state,

Po(S)) =Ty (S )+ x (22 ) - F(S__, ) (3.14)

L

where F(Sn—l’ Sn) = XS X ¥ 2 ?§] 5, X

. (3.15)

We can apply (3.14) and the dynamic programming concept to
derive the modified VA for optimum decoding. A dynamic programming
approach is actually an efficient search along a trellis. For instance,
in a trellis of depth N, instead of choosing one path through the
trellis that gives a maximum metric, the selection is decomposed into
N incremental choices. For every depth n > K, we select a path among
the m paths terminating at the same state U, that gives the maximum
metric. State U is called the survivor state and the corresponding
metric is called the survivor metric. There are mL survivors at each

stage. Mathematically, the survivor can be represented as

A

Iy (U) = max {anzn_F(vi’U)’ for each 1 < i <m,

such that (Vs xn) =y} (3.16)
where §(V, xn) means the state transition of V with input data Xp e

Therefore, we select one survivor from m different paths that

merge at the same state and each state will have one survivor., We
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can represent the recursive equation (3.14) in terms of survivor

sequence.

T (Sn) = 2_] (Sn—i) + gma>]<S {2ann-F(S
n-17n

n_1,Sn)} (3.17)
where gn-l is the survivor state sequence from time zero to time n-1.

Thé modified VA i; Just the implementation of the nonlinear
recursive equation (3.17). T,

Considering of complexity of this modified VA, we estimate
the memory and computation requirementsto implement the algorithm.

In terms of memory, 2mL memory locations are required to
store  previous and présent optimal value metrics En(gn) and
En-1(§n—1)‘ F(gn-l’sn) may be computed in advance and stored for
table look-up; then it requires s memonj-to store the table. In
term§ of computation, in each symbol period there are mL+] operations,
each involving a multiplication 2ann, and an addition followed by
(m-l)mL binary comparisons.

Both memory and computation requirements are exponentially
increasing with the channel constraint length L, just as io the
original VA used in Forney's structure. However, in consideration
of computation, this modified VA has some advantage over the original
VA because here only multiplication, addition and comparisons are
required to be done in real time. The original VA requires sub-
traction, squaring, addition, and comparisons in real time. In
other words, a multiplication operation replaces both subtraction

and squaring.



25

3.4 Performance of the Receiver

Ungerboeck [4] provided a performance analysis of the receiver
in a way simjlar to Forney [5], showing that the same probability of
error applies to both receiver structures. .

The error sequence and error event concepts will be used in
deriving the probability of error. We define error sequence as the

difference between an estimated sequence and the actual input sequence.

~

e} 4 X1 - {x) . (3.18)

An error event is defined as an error sequence extended from time 0

to H.
€ {en} = ---0, 0, €, €15 =77 ey 0, 0, ---  (3.19)

where e | and |e,| >0, H> 0.

yl
Define E as the set of all error events permitted by the
coding rule. Using the union bound [19], we have that the probabil-

T
ity that any e¥ror event occurs is upper bounded by

P.E) < eiE P.(e) (3.20)

-

To compute the probability of an error event, we observe that for a
distinct error event £ to happen, two sub-events €4 and €y must occur

(4.

é1 : {xn} is such that {xn} + {en} is also an allowable

. . input sequence.
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v

£ * the noise terms are such that {xn1 + {en} has greater

likelihood than {xn}

Accordingly
Pr(s) = P (e]) Pr(az/eq) (3.21)

r

where the conditional probability is

P lepfey) = atl(smedie)e) (3.22)

The error function is defined as

0x) & L [ exp (-y52) dy (3.23)
V27 :
X
and the SR is
S/N & s /N (3.24)

where N is one-sided noise spectral density.

62(5) is the square distance between any two different trans-
s _ ™~ ’
mitting sequences normalized by the PRS system energy.-sz(e) can

also be considered as the energy of the signal that restits from passing

the error ‘'sequence ¢ through the PRS filter.

LR
P I
i=0 k=0

6 ()

ue>

n

dz(e)/so (3.25)

Therefore, the error function can be rewritten as
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J(s/M2(e) /2

S 2
QFI_Q do(e) 5]
. : N s /2

0 0

Q[d(e?/ZfN;]

Qld(e)/20] ) (3.26)

- where 02 is the noise variance.

Equation (3.21) becomes

p,(2) = Qdle)/22] P, (<)) (3.27)
Accordingly
P (E) < T 0alea) ey
< L, G LRle) (3.28)

where D is the set of all allowable distances d(e), and E, is the

subset of all error events for which d(e) = d,

At moderate SNR, Pr(E) will be dominated by the term involving
the minimum value of d(e) because Q(x) is an exponentially decreasing

function [4]. We have

P.(E) = Q(d . /20) " K, .

= L
where K Pr(g])

] EEEd
: \
min \

4

—
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and K] only depends on the coding scheme.

The minimum square distance is defined as

-
5 H H
d Amin {§ I e, s

A . e} ’ (3.30)
m.'n ~ € _i=0 k=0 1'k k .

. 2 L2 . c1 s .
The free distance dfree is m;n dmin' This probability of error is
the same as that of Forney's receiver [5].
The probability of symbol error can be found by weighting
each error event by the number of decision errors. It was shown [13]

that the probability of symbol error is upper bounded.

P(e) < ¢ Né(e) P(e )
eek

1A

£ W(e) P (ey) I Q(d/20)

gek r deD
= KZQ(dfree/ZO) (3.31)
where K, = by NH(s) Pr(81) and
esEd
free

wH(e) is tE@ Hamming distance of the error event ¢,

3.5 Some Discussion

In the above sections, we have already shown that Ungerboeck's
receiver is another nonlinear receiver implementing MLSE besides

Forney's receinver. Both recejvers have the same error performance.
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However, we féet that Ungerboeck's receiver is more realistic
beca;se no whitening filter is required. In Forney's receiver, the
sfatistica] independence of noise samples aé the output of the matched
filter is essential and hence a whitening filter with transfer
function 1/F(w) [5], must follow the matched fi1ter~to decorrelate
the noise. It is obvious that the whitening filter will become
unstable if the transmitting filter F(w) has some zeroes located
outside the unit circle in the Z-plane. This will cause the receiver
to collapse. From this paint of view, a receiver without use of a
whitening filter is necessary condition in many channels, for instance
multipath channels. .

Moreover, in terms of computation, Ungerboeck's receiver is
a little more efficient than Forney's receiver because no squaring
and subtraction are required but only multiplication.

We have shown that complexity of this kind of receiver is
exponentially increasing as the channel length. Therefore, it can
only be practically applied to a short channel length. However, the
complexity brings a reward of better performance. Wong [13] has
shown the performance of MLSE receiver is better than a receiver
based on decision feedback equalization in both probability of
symboT error and SNR. Conventional equalization methdds apply a
linear filter to eliminate the effect of ISI and %t is inevitable
that the noise is enhanced. An MLSE receiver eliminates ISI‘wfthout

increasing noise because it exploits the discreteness of the ISI

and it makes a decision on the sequence rather than symbol by



symbol_as in the equalization receiver. A more detailed analysis
of zero forcing equalizasion and decision feedback equalization
was presented by Messerschmitt [31] using a geometric approach.

is reviewed in Wong [13].

30
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CHAPTER 4

COMPUTATION OF MINIMUM DISTANCE - dfree

The minimum distance dfree is a fundamental performance

parameter of maximum }ikehood sequence estimation. The properties

2

and an algorithm for computation Of*dfree

L. . q
of minimum distance free

are presented.

2

4.1 Representation of dfrge_

The minimum square diétance-d%r can be represented in

ee
quadratic form [4].

H H ‘ S
2 MApminff I e s .e.? (4.1)

d 2
fr‘ee = e 1i=0 J=O 1 1-1 L‘I

J
where H is the length of an error event E
SQ js the pulse autocorrelation sequence
Fgr a given PRS scheme, the éutocorreiation sequence S

2
free

q.

is known and fixed, so the determination of d depends on the

selection ofrerro;\event E. To find d2

free’ one can search overall

allowable error sequences to find the specific sequence that assoc~

ates with & ~ \
iates wit fr‘ee' - -

-

Another representation of d%ree is given from signal space

concepts [17]. We can consider d%r as the minimum sduare‘ﬁistance

ee
31
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between any two sequences among all possible transmitting sequences.’

Since a PRS system can be represented by a shift register (a finite

.

state machine), all the transmission sequences can

-3

represented by a tree or trellis. One should keep

be comple®ely

in mind that the

groub property of a binary convtlutional encoder does not hold far

a PRS system even though it is a real number convolutional encoder.

The operation is in the real number field with reducdancy introduced

amplitudewise. The mathematical representation of the above defined

2

d%.00 15 [13]. ]
a2 Bomin. min[]] Y, (D}-Y (D)]l2 for each j # 1, 1
free = ", . i J ’

T~ ] '

N, K<N< @)

/

for each 1 <1 <m

) N
where [|¥;(D) - Y;(D) ﬁ§= i ViV

2.
free

so-called brute force method that computes all the

One straightforward approach to find d

<i<ny

(4.2)

by (4.2) is the A

possible codewords

and then compares the distances among those codewords to choose the

minimum square distance. However, this method can

never be used in

practice because of the large number of possible codeword pairs

equal to (m-1) (2m-1)N'].

The computation and memory are expon-

. etically increasing with N, so only a very.small value of N and m

may be dealt with by the brute force method.

Wong proposed [13] a method called double dynamic program-

ming that is more efficient than the brute force method. . However,

(8 )
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14

the memory requ%rement and computational time are still exponentially -
increasing with the channel constraint length (though not with N). As

a result, it is only suitable for‘channe1s with short constraint length.

2

4.2 Properties of dc ..

Some important propertieé of d2 will be mentioned and used

free
for deriving an algorithm to compute'diree in a more efficient way.

2

From (4.2), we observe that dfree

has the additive property,
which means the distance is accumulated at each symbol interval and
increases along with symbol time. The additive property induces
another fact that diree is upper bounded. Wheneyer a distance is
found for one sequence pair, d?reé is upper bounded by the found

distance. Hence, if any distance due to other pairs of cqdewords

exceeds such an upper bound, it will not be the d?ree and can be

discarded.

2

When we view d by the error. event space concept as in

free
(4.1),'d%reé of a fixed PRS system depends only on error event
.{eo, s «n- eH}. For binary input data {0, 1}, the error sequence

" can only be a sequence containing 0,1 or -1. When a pair of code-
words at time t expands to time t+1, there will be four new pairs of
codewords as shown in Fig. 4.1. Therefore the four possible error

signals e are as below.

1.2 3 4

Pair of { Transmittiné sequence‘= T 0, 0, 1, 1
codewords | Neighbour sequence = N 0, 1, 0, 1
Error sequence = e 0, -1, 1, ©

-



W

One symbol
interval

T sequence

— — — N sequence

Fiz. 4.1 Expan<ion of 2 pair of codewords at z.

Ascuning chanrel constraint lenath 1c

equal to three.

34
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We observe that two error Sequence elements e are the same

(0), S0 we only need consider one of them. As a result, when we

2

search for dfree

along a trellis diagram, for each pair of codewords
at time t expanding to time tt+l, we need consider only three of the

four new grown pairs of codewords.

2

4.3 An Algorithm for Computation of dfree—

A fast sequential algorithm was introduced by Aulin and
Sundberg [18] for computation of the minfmum distance of M-ary
correlative encoded continuous phase frequency shift keying with a
MLSE receiver. The algorithm is based on the-facts that the minimum
distance is additive and upper bounded. A phase tree was developed
for computing minimﬁm distance which is a function of the modulation
index h.

‘ Using the same concept, we have developed an algorithm to
compute the minimum square distance d%ree of a correlative encoder
with MLSE receiver. This algorithm is similar to a stack algorithm
proposed for sequential decoding [19], which is ‘based on "metric
first" searching of a tree. In this type of search, new searching
occurs only in front of the node most likely to Tead to the best

outcome.

2

The modified stack algorithm for computation of dfree is

an algorithm to search on a state trellis diagram for all possible

2

free’ Applying the incre-

potential codeword pairs that may cause d

mental and upper bounded properties of d2

in si
free 1N S gnal space, we
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can 1imit the number of possible potential codewords into a manage-

able size,
. el 2 2
First, an»1n7t1a1 upper bound of dfree’ called dB’ must be
provided. We do not have any idea of the possible value of diree of

a channel code at the beginning, but we can assume as an upper bound

an allowable error sequence that caused a distance. The error event

e = 1-D is chosen to initialize the upper bound. Thus we have
5 T 1
Initial dB = I I e.s. .e.

i=0 j=0 ' ' J

_ 2 2
= eo so + e] §G + eoe]s_] + e]eOs]
= (e 2 4 e 2) S + ece.s since s, = s
0 1 0 0171 7 -9
= 250 - Zs] , since eo =1, e.| = -]

Three stacks are required for implementing our algorithm.
Two stacks, called TS and NS are used for storing all possible pairs
of sequences that have square distances not exceeding the upper bound
dBZ. The corre§ponding distance is stored in a third stack called
DS. Each word in the TS and NS stacks represents one sequence.
Since a sequence can only contain a binary number {0, 1} for binary
input data, each bit of a word in TS and NS is then used to represent

one symbol of a sequence. The algorithm is implemented on a CDC 6400

computer, in which each word has 60 bits, so one word can store a
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sequence with a maximum 60 symbols.

Congider searching on the trellis diagram. Assuming the
first symbol of all possible error sequence is one, at the first
symbol time interval we can only have one pair of sequences. We
proceed to next symbol interval, and one pair of sequences will expand
to‘three new pairs of sequences (two of the four pairs of sequences
have the same error and will result in same distance, so only three
pairs are needed to be considered). _Those expanded new sequence pairs

are stored in the two stacks TS and NS if their distances are less

than dB2 - fi_], otherwise they are discarded. We can discard the
sequence pairs with distance greater than dB2 - fﬁ_] rather than dBZ,

because we observe that the final increment to d2f e that occurs just

re
before a merge is always equal to fk-1; i.e.,

2
Wiy = Yo

= fk—] (4.4)
where two séquences merge at stage N.
This can be explained by the states of two sequences that can

only be different in their final symbol just before merging into the

same state. Therefore the distance contributed at this stage can

. .. 2

only derive from the last tap coefficient fk-]' From (4.2), dfree
is the cumulated distance of two diverged sequences. So whenever a
non-merged sequence pair has a distance greater than dB2 - fi_], it

can never lead to diree‘ A1l the sequences stored in TS and NS must

satiéfy the following conditions
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(i) A1l are unmerged sequences

(1) d.% < dg® - L, (4.5)

where di is the unmerged distance of the sequences pair.

A1l the merged-sequence distances will be compared with dBZ.
If the merged-sequence distapce is smaller than dBZ, it updates the
value of dBZ,and tightens the upper bound.

When the TS and NS stacks have more than one sequence, we will
select the pair for expansion with the smallest distance. If the
merged distance is smaller than the smallest distance stored in the
stack, then we can claim that the merged distance is diree as Qe]].
Otherwise, we will expand the selected smallest distance sequence pair

and repeat the comparison procedure as mentioned above.

The logical flowchart of the program is shown in Fig. 4.2.

4.4 Complexity and Efficiency of the Modified Stack Algorithm

The algorithm presented in last section has successfully
computed the minimum square distaﬁce diree for channel lengths up
to twelve. The efficiency of the algorithm depends on the following
facts. -

First the tightness of upper bound d 2. The number of

2
fr

If a tight upper bound is set, the algorithm finds d

B
ce greatly depends on

2
free .

possible pairs sequences that may cause d
2
dg°.

much faster. In our simulation, the initial upper bound is set up

by considering the error event 1-D that causes de. In general

”~
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Read the tap d2 = g2
N e L
£f1c2ents fl
N
| 1
] ' Y rs
Store all possible | Stors the pairs
states transiticn a of codewords into
for table look-up swack T3, NS and
! the corresponding
distances into
it
Y stack DS

f

Initialize the

vpper bownd c.g

|
| ]

Maxumm stack length

M5L = 500,
el &&= 9999
: Select the pair of
I coderword with run, Y
\r ‘ dastance d.% £rom
> the stacks

Start tracing on a trellis

and assuwe the first error

symool heing one.
I

Expand a pair of codewords

mnto 3 new pairs

a

Corpute the corres-onding -

b
squa. & » .
ruare distance dx et

¥

e

Fig. 4.2 Flowchart of the rodificd stach algoritrm .
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-

this initial upper bound is quite tight, especially for channel
lengths less than eight, because the error sequence 1-D is the

error sequence that causes d2 for a short channel length. If

free
the initial guessed upper bound is not a tight one, dB2 can still

get’ tighter during the search. However, the speed of convergence to

2

dfree

The second important factor that affects the efficiency of
our algorithm, is the characteristics of the channel code. 1If a

channel code has a very long decision depth which is defined [13]

as the heast depth in a trellis at which all pairs of sequences,
either merged or not, have Euclidean distance between them greater

than the free distance d2

free’ the algorithm will regquire more memory

locations and computational time to get the diree' We have to trace
on the treilis for more symbol intervals. There are some channels
that can'.cause catastrophic error propagation, which means décision
depth is infinite. Wong [13] presented some specific examples and
described the nature of these codes. For these, we have to decide
the minimum merged distance in a finite symbol intervals eventhough
there are still some nonmerged pairs of sequences with smaller '
Euclidean distance. Of course, these codes will not achieve the
pérformance predicted by the free distance for any finite decoder
memory. In our work, we take a maximum of sixty symbol intervals;

after that a guess at d2 has to be made.

free
Memory requirement and computational time are used to count

the complexity of the algorithm.

will be slower than that of a good initial guessed upper bound.
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The memory requirement of this algorithm depends on the size
of the three stacks that are used to store pairs of sequences and
corresponding distances. Since the number of possible pairs of
sequences is different for different channel codes, no fixed memory
requirement of the three stacks can be presented for differént channel
lengths. However, through the simulation we observe that in general
a stack with 200 memory locations is enough for most codes with
channel length less than twelve. 1In order to provide a larger margin,
. we set stack length equal to five hundred. Therefore the memory
required for the threé stacks is 3 . (500) = 1500 mémory locations.

On the whole, the stack length increases as the channel ]engfh increases
because a longer channel length will cause a Tonger decision depth and
so more possible pairs of sequences.

The memory requirement is much legs than that of the double
dynamic programming. The memory required for the double dynamic
programming is exponentially increasing as the channel length. It
was shown [13] that 2 - (mZL) memory locations are necessary and some
more memory may be required for tracing the pairs of sequences. In
general, the double dynamic programming method is only suitable for
a shorter channel. '

The c&hputationél time requiréd for executing the algorithm
depends on the channel chgracteristic as well. In general the
computational time is proportional to the channel length provided the
code is non—cagggtrophic and the initia]'upper bound dB2 is good.

-Experience indicates that usually less' than ‘two sec CP execution



" time is required for computation of d2

free with the channel length

less than twelve. In comparison, with the double dynamic programming
method the computq;fon time is-exponentially increasing as the channel
length. For instance, about 60 sec CP execution time js used for a
code with channel length equal tb seven. ‘fhe same code computed by
the modified stack algorithm only needs ]égs than one sec. For a
shorter channel length (K less than five), the two algorithms do not
show much difference in computation time, but in a longer channel
length the modified stack algorithm will be much more efficient than

the double dynamic programming method. Especially when we handle the

optimization problems that will be discussed in Chapter 5 to 8, we

2

Free many times in searching an optimal solution and

need compute d

.. . ' . .2
the efficiency in computation of dfree

success in solving the optimizafion problems,

is extremely important for



CHAPTER 5
OPTIMIZATION TECHNIQUES

This chapter introduces an optimization technique called non-
linear programming (NLP) and a éomputer package Flopt 5 that was
designed for solving different kinds of optimization problems. The
analogy between the nonlinear programming problem and the minimax

problem is also discussed.

5.1 Problem Statement

An optimization problem is usually a probiem to find a
minimum or maximum of an objecf?be function subject to equality and/
or inequality constraints. The constraints can be linear and/or
nonlinear. This kind of optimization problem is the so-called con-

strained NLP problem [20]. It can be formulated as following

Min U(x) . S (5.1)

subject to m inequality constraints gi(i) >0 i=1,2,...m
§ equality constraiﬁts hj(é) =0 j=1,2,...0
where x is a vector of K independent variables.
In a desigﬁ problem, x may be the désign parameters and
the objective function U(x)may be a cost function. The coh§traints

91(5) and h.(x) can be the specifications.

J
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There are various methods for solving the above optimiz-

ation problem., Basically, it can be divided into two classes.

(a) Analytical Approach

The fundamental tools of this method are differential calculus
and variational calculus. When the problem has inequality constraints,
Lagrange multiplier and constrained variation are the basic techniques
to solve the problem [21]. In order to apply this technique, the
mathematical terms in the problem must be manipulated by certain
available rules. The advantage of this classical method is tEat an
exact solution can be found in closed form; However, in many problems
that may consist of highly nonlinear functions, it may be impossible

to find a solution analytically.

(b) Numerical Approach

The numerica] approach is to solve the optimization problem
by means of some efficient iterative procedures. A careful formul-
ation of the problem and the iteration procedure can generate a
so]ut%on as accurate as that by an ana!&tica] method. There are many
different algorithms available for solving the NLP problem [20]. -
Usually these a]gorithms consist of the formulation of an objective
function, a routine to search the minimum value 5f the objective
functjqn by gradient seaéch methods or other efficient.searching

algorithms. We will usé‘ihis approach to solve our optimization

problems later on.
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5.2 The Kuhn-Tucker Conditions

The necessary conditions for optimal solution of a NLP problem
defined by (5.1) were derived by Kuhn and Tucker [22] and known as
Kuhn-Tucker conditions.

The Kuhn-_Tuck'er conditions state that the necessary conditions
for a point x to be a local minimum (or maximumj of U(x)subject to

9:(x) > 0 are

m .
W(x) = £ u, vg.(x) (5.2)
- i=p ' T
T LY
and u g(x) =.0 (5.3)
where . u b ju >0 .are called Kuhn-Tucker

multipliers.

-
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Under convex programming [20], which means U(x) is convex
and 91(5) is concave and the feasib1e region is nonempt&, then the
necessary conditions will become sufficient for x to be an optimal
sofution. In practical problems, the sufficient conditions are quite
restrictive but if we have been using a reliable optimization method
and if the relations are satisfied, we can be reasonably sure that
a lTocal minimum Qas been attained even if the convexity requirement

is not met [23].

5.3 Techniques to Solve the Constrained Problem

It is usually easier to solve an unconstrained NLP problem =
than a constrained NLP problem. Therefore, a constrained problem is
usually converted into an unconstrained problem. There are several
techniques for reformulating a constrained optimization problem.

A method which has been Wide]y used is the penalty method,

It transforms the objective function of a constrained minimization
problem by some functions of the constraints and the constrainéd
minimum is obtained as the limit of a sequence of unconstrained
arinima of the modified objective function. Various penalty fdnctions
for inéqua]ities and/or equalities have been proposed and the most
relev;nt are due to McCormick [24], Fletcher [25]. The main drawback
of applying penalty functions is that ill-conditioning will happen

as the control parameters of the penalty function tend to zero or.

' infinity.

Bandler and Charalambous [26] suggested to transform a

«
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.. constrained optimization.prob1em into an uncongtrained minimax
problem. "The o}iginal NLP problem is formulated asban uncon-
strained minimax problem. Under reasonable restrictions, it is
shown that.a.poiht satisfying the necessary conditions for a mini-

~max optimum also satis%ies the ang;Tucke} necessary conditions for
the original probiém." pp. 627,. [26].

The transfonngtion of a NLP problem into an unconstrained

minimax problem is shown below.

NLP Problem:  Min U{x)

subject to gi(ﬁ) >0, i=1, :.1, m.
. i '
Unconstrained Minimax: Min‘V(x,y) = max[U(x), U(x) - v;9 (x)] (5.4)

Problem:

Poan N Y

1<izm

where v, > 0, i=1, ... m, Y; is similar to a weighting function,
_ T

and l - [lY" ,YZ’ t e Ym.] .

It has been shown [26] that the condition for optimality

of the minimax objective function V(x,y) with respect to x is that,

W™~ 3

'[ (u'i/Y'i) <1 . ’ . (5‘5)

-i

where u; are the Kuhn-Tucker multipliers.- )

So it is important to choose ¥ large enough such that (5.5) is
satisfied, otherwise the optimal point may be selected in the

nonfeasible region.
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Bandler and Charalambous [26] poinfed out that the minimax
objective function V(x,y) will have discontinuous first partial
derivatives at points where two or more of the function (5.4) are
equal to V(x,y). This disadvantage can be removed by smoothing the
function at the po1nts at wh1ch the function is not differentiable.
This can be done by introducing the generalized least pth obgect1ve
function [27]? which is a pth norm-]1ke function. The minimax
solution will be approximated as p approaches infinity. An.accel-
erated least pth atgorithm for minimax optimization'was developed
by Charalambous [28], which approaches the minimax solution much
faster and overcomes the il];conditioning when approaching the mini-
max solution.

The overal] procedure for so]v1ng a constrained optimization
prob]em by the minimax techniques and least pth approximation is
shown in Fig. (5.1). This technique will be applied to. our con-
strained problems in Chapter 7 and 8.

The unconstrained minimization of the least pth objective
function can be done By ény efficient uncbnstrained minimization
algorithm. Vanious methods that work with or without employing
gradient information are available [23]. An algorithm proposed by
Fletcher [29] is used heré, which applies gradient vectors to

"estimate the search direction.’

5.4 ‘A Computer Package Flopt 5 o

An optimization program called Flopt 5 was designed by

ey



Original prodlem:

CMin. U(X)

S.T. 9; (x)=20

v

Equivalent

T,

minimax problem :

Min mex{U(x) , U()-ug, )}

Formulate into an uncontrained
least pth object function

Minimization of the
wmconstrained least pth
objeétivg function

Fig. 5.1 'An approach to solve a contrained NLP
problem, where S.T. means subject to.
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Bandler and Sinha [30]. It is a program designed for minimax
optimization using the accelerated least pth algorithm. Optimi-
zation problems ranging from unconstrained to constrained problems
can be solved by Flopt 5.

Flopt 5 is a package of subroutines and three of the most
important subroutines are
-- FLOPT 5 which executes the accelerated least pth algorithm.

-- LEASTP5 which formulates the least pth objective function.
-- QUAST 5 which performs unconstrained minimization using Fletcher
algorithm.

In order to use this package, the user has to provide a main
program and a subroutine called Funct 5. 'The main program provides
1nitia1'va1qes of certain variables and calls ‘subroutine Flopt 5.
The subroutine Funct S.is used to define the problem to be soTved

- ‘and provides the gradient functions.

5.5 Application to Our Work

Flopt 5 will be applied to solve our op;imization problems
in the following Chapters, including one unconstrained problem énd
two constrained problems.

First, minimization of diorm.
Second, minimization of bandwidth with the 99% energy -band-
width constraint.

Third, minimization of bandwidth with the 99% énergy bandwidth

constraint and ISI degradation constraint.



CHAPTER 6
. |
MINIMUM FREE DISTANCES OF PRS SYSTEMS
WITH CHANNEL LENGTHS UP TO TWELVE

’ In Chapter 4, we showed that the free distance of a real
number convolutional code can be found by the modified stack algor-
ithm. A compgter package Flopt 5 was introduced in the last chapter
for solving several kinds of optimization problems. This chapter
will apply the modified stack algorithm and Flopt 5 to find the
worst possible performance of a.PRS system with a ML receiver for
channel lgngths up to twelve. The pulse shaping filter is an ideal

Tow pass'fi]ter of width 1/2T Hz.

and Degradation

2
free

. 2
6.1 Normalized dfree

The minimum square distance d has been. defined as

2 ) H H :
 dg Smin {v 5 e,s, .e.} (6.1)
ree = . .
e i1=0 j=0

If we scale up the tap coefficients, the minimum square distance

2

dfree

will be increased accordingly. This also increases the power
of the PRS system. Therefore, we may change d%rée to any value we
wish by scaling the tap coefficients fi’ at the expense of more

transmitter power. In.order to give a fair comparison between a
: 51
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PRS system with different sets of tap coefficients or with different
cﬁannel constraint lengths, we have to normalize the Q:nimum square

distance diree by the output variance of the PRS filter.

T 2 . .
Hence, ‘a norma]1zed e e 15 defined as [13] '
2 A 42 2
norm = dfree/oy . (6.2)
2,2 '
= dfree/GXR(o) | (6.3)

where R(0) is the energy of the PRS system,
oxz is input variance of the m-ary input data and is defined

as [13] -

0,28 (mt-1)/12 . (6.4)

The degradation of a PRS system in comparison with a single

pulse PAM system can be defined as

Degradation (DB) & 10 log, (d°  of PRS/4  of PAM)
= 10 log,, (d5_ /R(0))
. .
since dnorm of PAM = 1/ax .

Whenever we mention the degradation, we mean that the degrad-

ation in dB of a PRS system caused by ISI with respect to a single,
s
' /
2

pulse PAM system. For BPSK (m=2}), the dnorm is equal to 4 in our

convention. Thus, when a binary system has a normalized minimum e

square distance d2

orm equal to 4, it means no degradation in this
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2

system caused by ISI. If the dnorm

2
norm

is less than 4, for instance
d =2, i1t means the'binary system will lose 3 dB in performance

compared with BPSK.

6.2 Computation of the Worst Possible Degradation

It is desirable to know the worst possible degradation that
can happen in a channel with a fixed constraint length. The problem
can be formulated as an unconstrained optimization probliem.

The problem statement is to maximize the absolute value of
- degradation (DB) for a fixed channel Tength.

2 /R(0)H

max (0B) free

max|{10 log,, d
fi | fi 210

11

/R(0)) since ]og]0 (d2

. 2
min (d free

free
f;

/R(0))<]

. 2 2
min (dnorm (Ox))
f \
3 )
min (dnorm)
f

since ox2 is independent of f..
Therefore, finding the worst possible DB is equivalent to
finding the minimdm.dﬁorm over the tap coefficients space. The

2
computation of dnorm can be done by using the modified stack algor-

ithm while the minimization of diorm over fy can be done by applying
the optimization package Flopt 5. The overall organization of

computing min (dﬁorm) is shown in Fig. 6.1. The gradient vector of
£,
2 A

drorm 15
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2 3 (42 _
Y orm = 5?; (dnorm) i=1,2,...,K1
A - ~
- of (dfree/R(O)) . (6.6)

For a PRS system with a %ectangu]ar function as a pulse shaping
filter, the energy of the PRS system is
K-1

RO)= I f.
j=0. Y

2 (6.7)

-

2
free
2
free

d was defined in (4.2), which indicates that as soon as we found

, we know which two output sequences Y(D) cause the d2 Since

free’
Y(Q) is a deterministic function of fi’ we can compute thé partial

2
free

d
derivative of d analytically in terms of the.fi. Similarly, the
.partial derivatives of R(0) can also be found to be 2fj. Therefore,

2

the partial derivative of dnO in (6.6) can be represented in closed

rm
form as soon as diree‘has been found.

It should be pointed out that the derivatives of dgorm may
" not be continuous in the whole tap coefficients space. From WOné‘s
contour maps [13], we f{nd there are points that have discontinuous
derivatives. Fortunately, the number of discontinuous points is very
small and will not.affect the use of the gradient method in our optim-
ization problem. éVen if the'discontinuous partia]‘derivatives point
is hit during the minimization procedure, we can change to anéther

starting point and restart the minimization procedure. However, this

condition has never happened in our computation of the worst degrad-
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ation.
The results of the worst degradation for channel lengths up
to twelve are shown in Table 6.1 and the corresponpinglcurve is shown

in Fig: 6.2. : .

6.3 Analysis of the Results

From Table 6.1,.wé observe that no degradation for channel
Tengths less than or equal to two when MLSE receiver is employed. For
channel lengths between three and six,the worst degradations are caused
by the same error event € = 1-D. However, when the -channel lengths
are greater than six, the error event ¢ = l-D—DZ+D3+D4—DS will cause
~ the worst degradation.’ This is indicated by the degradation curve in
Fig: 6.2, where there is a éharp change of degraaaiion from the trans-
ition'of\K=6 to K=7. fhese results confirm the results of Magee [9]
for channel lengths less than seven. Anderson [12] provided a result
for K=7 only, which is also the same as ours.

Another interesting property of the worst-case channel codes
is that the tap éoefficienté are symmetry about the central tap coef-

ficient, i.e. f. = f ., 0 <1 <K Although no proof for this

K-1
property is availazle for channel lengths greater than twelve, it is
reasonable to assume that this property will still hold for other
channel lengths. Hence we can reduce the numser of variables f; of
the optimization problem from K-1 (since we assume f =1) to [Eél .

The reduction im the number of variables will make the optimization

procedure converge to the optimal point faster. Therefore, when we
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(S}

find the worst degradation channel code, we assume the symmetric
property being true for the tap coefficients f; and do the optimiza-
tion. After we get the optimal code, this is.used as the initial
starting point for the optimization program but no symmetric property
is assumed at this time. However, if the symmetry property is true,it"
will approach to the optimal solution immediately since the starting
point is actually the optimal point as well. As a rgsu]t, this
approach can save a lot of computaﬁiona] time for optimization and
still make sure the real optimal solution is obtained.

A PRS filter is equivalent to a finite impulse response filter
(FIR), so it is desirable to know the locations of zeroes of the
ftlter in Z-plane because it can provide‘some information about the
energy distribdiion of the PRS filter. To find the zeroes of a
.channe1 code, we only need to convert F(D) into Z domain and then find
the roots of the Z polynomial.

For instance, when K53, the channel code F(D)'= 1+ 1.414p + 02

gives the worst degradation. The Z-transform of F(D) is-

1 -2 1

+ Z 7 since D = 7~

Z[F(D)] = 1 +1.4142"

, =772 (2% +1.4182 + 1)

272 {7 + (0.707-30.707)] [Z + (0.707 + j0.707)]

Thus, the zeroes of this code are -0,707 = j0.707l The same approach
has been applied to all other worst degradation chénnél codes and .the
. zeroes and their locations on the Z-plane are shown in Fig. 6.3.

We observe that the zeroes of all the worst degradation
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channel codes are located on the unit circle. A zero on the uniy
circ]e‘with an angle w radi&ns represents a null at frequency
radians injthé frequency spectrum. A null at frequency w wi]]rresult
iﬁ pu]]ing down thé energy around w. ‘As the chénne] 1eﬁgth K increases,
the ndmber of zeroes on the unit circle will also increase and hence
‘more nulls will be introduced in the frequency s;éctrum. We also
observe that the increasing number of zeroes.extendgtfrom the left-
hand side to the right-hand side of the unit circle as shown.in Fig.
6.3. This means that the energy of the PRS filter will be further
pulled down in the lower frequency region in additional to the pu]iing
down at high frequencies as K increases. Therefore, we can expect

that the bandwidth requiremeni decreases as K increases. This will

be illustrated in éhapteV 7. ,

o~

Moreover, the wbrst degradation caused by ISI for a longer
- channel 1en§th is quite large even with the application of MLSE at
the receiving end. For instance, when K is greater than eighi, the

. degradation DB is larger than 10 dB.. i . ‘
. Eixs
%

a
-
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rig. 6.3 Zero- locations m the Z-olane for PRS filter
with the worst deqradation.

iy
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Fig. 6.3 Zero locations in the Z-plane for

PRS filter with the worst deagradation.
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CHAPTER 7

 MINIMIZATION OF BANDWIDTH WITH AND WITHOUT
DEGRADATION CONSTRAINT -

Bandwidth and power aré the two costs in a communication
system. It‘is desirable to have a system that requires as little
bandwidth as possible while sti]ltmaintaining the performance in
a certain degree( However, the saving of bandwidth is usually paid
for by the degradation of noise performance or by increasing the
system power, For different communication channels, the importance
of baﬁdwidth and power will also be different. . Therefore, the trade-
off between bandwidth and power of the transmission system is worth
investigating. '

¢

7.1 Definition of 99% Energy Bandwidth

The 99% energy bandwidth is usually used®to measure the
effective bandwidth of the transmitting system. A PRS system
.introdhces correlation between input signa]é, re&istribufes tﬁe
energy of the signal, with the result that most'of the.energy is
located in certain f;equency régions,'for‘instance, the'1ow fre-
quency region. Therefore, the high frequency region contains very
Tittle energy and may be discardedlwith'little loss of informatioﬁ.

As a result, some bandwidth can bé saved.
63
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The 99% energy bandwidth is defined as the bandwidth
which contains 99% of the total energy 6f the original transmission.
ﬂaving defined the 99% energy bandwidth, we can investigate how much
bandwidth can be saved by discarding 1% of the total transmission
energy. In the fé]]owing, whendver we mention the banﬁwidth (BW),
we mean the 99% energy bandwidth. )

In Chapter 2, we have defined the energy of a PRS systemv
as

270,

El) = 5 7 lolu) F)[? d L)
270 . . .

where 0 < a < 1/2T Hz.

In this chapter, we consider ‘G(w) as an ideal Tow pass filter of

width 1/2T Hz, so G(w) is equ§1'to one. Then equation (7.1)

becohes
L T2 4
E(a) = 5= J |[Fw w
(®) Zm -27a
p 2T 2
== 1 [F)]® do (7.2)
P

When a =-1/2T Hz, E will Ep the total energy of the PRS system

and we will have

T .

Fw) ]2 @

Y.

E(a) =

O =M

k-1
= R(O).: b

£2 (7.3)
=0 1. . ,
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Let o be the bandwidth that contains 99% of the total energy;
then combining (7.2) and (7.3) we have \

E(a) _
RO 0.99 ‘ (7.4)
which implies
27ma
% é Flw) 2 dw
T — = (.99 (7.5)
v .2
i=0 fi
1 27a 2 k-1 ?
or - [ [F(m){ do ~0.99 (¢ f;") =0 (7.6)
LY i=0 : .

For instance, when k = 3, we have
k-1

2 1z
i=0

i

IF(w)] —jwiTlZ

fi e

2 o
| Ty 2y cos w2y, cos w ik 2Fy cos Zu

un
—_
4
-t

Substituting |F(w)|2 into (7.6), we have’

2ma s .
T g (1 # £y7 #0F,)0 + 2F) cos w + 2fyf, cos w + 2, cos w) dw
- 0,99 (14 £,%+ f22) =0 . (7.7)
2, .2 2f) 2
or (1 +f" + 1) ) (2¢ - 0.99) + — sin 2na + sin 2mo

2f2 . ' . :
= sin d4na =0 (7.8)



A similar computation approach can be app]igd to other

channel 1eng{hs as shown in Wong's Appendix [13].

7.2 Minimization of Bandwidth

Before we minimize the bandwidth with degradation (DB)

constraint, we first investigate the minimum obtainable bandwidth

for channel lengths up to ten. It provides the maximum bandwidth

that can be saved when we sacrifice one percent of the total trans-

mission energy.

The problem statement is

Min  a . %

S.T. (i) E(a)/R(D) = 0,99
]

7.9
(i1) 0<a<sr - (7.9)

where S.T. means subject to.

This optimisation problem is equivalent to a NLP problem
with two inequalities and one equality constraints, To sb]ve this
constrained problem, we at first reformulate the constrained NLP -

-, problem into an unconsfrained minimax problem as described in
Chapter 4,

The problem transformation procedure is shown below.

. "
Original defined :
problem statement : min ¢

s.T.$ (i) E(a)/R(0) = 0.99

(1) 0 < a < /T

66
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A NLP problem with four  min
inequality constraints : _ ‘
with the form 91_3.0 S.T. (i) E(a)-0,99R(0) > O

=1, .4 (i1)

(E(2)-0.98R(0)) > 0

(iii) @ > 0 (7.10)
(iv) 1/2T -a> 0

An unconstrained : " min max{a o - Ys gi} (7.11)
minimax problem, :

where gi‘aré the four inequality
constraints in (7.70)

¥; is a positive real number :

The reformulated problem (7.11) can be solved by the applic-
ation of Flopt' 5. We compute the minimum bandwidth fer channel -
lengths up to ten and the results are shown in Table 7.1, where the
bandwidth (Bw) is normalized by ‘the minimum Nyquist bandwidth 1/2T
" and mulfip]ied by 100%. For éxampfe, BW = 81.6% for k = 2, means
that 99% of thé energy is confined wi;hin 81.6% of the minimum

Nyquist bandwidth 1/2T Hz.

7.3 Discussion of the Results

Fig. 7.1 shows the bandw{dth (BW) vs. different channel
lengths k. It indicates thét the BW decreases as fhe'chanpe]
length increases. However, the speed of decreasing in BW s]bwét
&own when k becomes larger. Thus, évén if we further extend

channel length beyond ten, the minimum obtainable bandwidth BW
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should not be much different from that-obtained at k equai to tenl

The higher bandwidth efficiency for a longer channel 1éngth
can be exp]@iﬁed by the Tocations and number of zéroes of the PRS
filter. The zero locations on a Z-plane are shown in Fig. 7.2
for different channel lengths. We observe that all the zeroes are
located on the unif circle. As @e have mentioned in the last chapter,
a zg}o on a unit circle represents a null in the frequency spectrum,
which results in pulling down the energy'around the ' null. Therefore,
for a longer channel length, there are more zéﬂges and thus more
nulls, and more energy is suppressed in the higher frequency regions.
Fig. 7.3 shows the frequency spéctrum of the minimum bandwidth channel
codes; it reflects the energy distribution caused by the number of
‘nullﬁ. .

When we compare the minimum bandwidth channel codes and the
worst-case chénne] codes obtained in the last chapter, we find that
both channel codes have many similar properties. For instance, they
aré both'symmetry about the central tap gain and have all zefoes
located on the unit circle. Comparing the degradation in both sets
of codes, we see they both suffer nearly the same degradation for
the channel Tengfhs less than eight; the difference becomes larger
for k greater than or equal to eight. ~Therefore,'1f_we want to obtain
a minimum bandwidth, we have to pay the performance 1oss nearly equal
to the worst-case. |

We have seen that the minimum bandwidth codes suffer high

_degradation for exchange of bandwidth. For instance, when k is
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equal to ten, only 22% of the minimum Nyquist bandwidth is required,
" but the degradatiqn causéd by this channel code is about 12 dB.
" " This.may be intolerable. Even if these minimum'bandwidth channel
codes may not he used in practice, they provide a'theoretica11y
obtainable minimum bandwidth of PRS sysfems with different channel,‘
lengths.

1

7.4 Minimization of Bandwidth with DB Constraint

In the last section, we saw that if we‘only pay attention
to system bandwidth in findingﬁan optimal channel code, noise
degradation may be high."Therefore, the consideration of PRS
system power is also ihportant, or egujva]enf]y the dégradation,
since degradation can be compensated by inpreasing the signal power.
This can be formulated into a constrgined problem of minjmiiing the .

bandwidth with fixed noise degradation.

The problem statement is

Min o ) : o

S.T. (i) E(a)/R(0)=O..99 Y :
(i1) joB] < C . o (7.12)

(iii) 0 <a < V727

where DB is degradation in dB. and C is a positive'real number.

Since DB is a function of dﬁérm’ constraint number two

can be converted into the following form.

e s
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[B] <¢
is equivalent to DB‘3 c . ‘ since DB < 0 -
or 10 Tog.. (& _/a)>c¢ (-
_ 10 *“norm” ** = {
2 4 (1p-0.1C °
or dnorm -4 (10 ) >0 . (7.13)

N

This constrained optimisation problem can be first transformed

into an unconstrained minimax optimization problem as shown below.

Original - problem . Min «
Sstatement

. S.T. (i) E(a)/R(0) = 0,99
(i) o8] < : (7.14)

(iii) o <a<n/T

An NLP problem with - Min a

five inequality con- @ -
straints with the §.T. (i) E(a)-0.99R(0) > 0
form 95 >0, ., . -
i=1, ...5 " 1i1) -(E(a)-0.99R(0)) >0  (7.15)
RN -0.1C
(i11) dnorm - 40107 ‘) >0
(iv) a>0

( L (v) 12T -a>0

3

An unconstrained

: .
Min max {a, o - v, g.} (7.16) .
minimax problem L

where g, are the five inequality ton-
straints shown in (7.15)

.v; Is a_positive real number
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The formulated minimax problem is soiyed by applying the

- computer package Flopt 5. We have found the minimum bandwidth

channel codes with different noise degradation constraints ranging
from 1 dB t§ﬂs‘d8. The computatioﬁ has been done for channel lengths

up td ten. The results are shown in Table 7.2, where DB is the given

4
noise degradation constraint and BW is the minimum bandwidth obtained
with the corresponding DB constraint. Various curves of BW vs. DB

for chanoel lengths up to ten éré shown in Fig. 7.4, where each point

" on each curve is the code.with minimum bandwidth at a given noise

degradation and k.

. 7.5 Discussion of the Optimal Bandwidth Chanel Codes with DB

L4

Constraint . i

The results indicate that there are twd different ways to save

~ ‘the bandwidth. First, in a fixed channel length, the bandwidth

requiremént will be smaller as we loosen the noise degradation
constraint. In other words, in order to incﬁeasé_bandwidth effic-
Jency, we can pay for by highertdegradation or the perfbrmance can-

be kept by increasing the ?ranﬁmissioﬁ powey. Thé.other'way to

“increase bandwidth efficiency fs to increase the channel length.
, We.observe that under the same degradation constraint, the channel
 with longer constraint Tength will have better bandwidth performance. '

“It is well known that the complexity of a MLSE receiver increases

exponentially &% the: channel Tendth increasés. Thus, this improve-

ment in bandwidth performance is exchanged by- increasing the receiver



k . BY DB Charinel oodes F(D)
75.96% 1.0 1+44.583D+3.5810°
3 71.043 1.5 142.8977+1.397D°
65.0% 2.0 1+1.327D+D°
X 2, .3
72,72 1.0 1+1.274D-0.050°0.57D
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69.923 L5 “1+1. 50D+0. 4030°=0. 327D
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72.48% SEEN 1-0.57D-3.13160%-2.0140°+0. 240"
691163 L5 1+1.415D+0.6220°-0.1270°+0.090% »
64.322 2.0 141, 6270+0.9310%~0.0540°-0.010
2. wpnd 4
57.133 2.5 1+1.6520+1.2870%40.2870°-0. 0"
5 ' ‘ 2 3 1
55.11% 3.0, 1+1.9050+1.8270°+0.430°-0.. 2420
. y g 3 4
53.21% 3.5 1+1,965D+1.824D°+9.730°-0. 129D
- N y 2 3 4
50,931 4.0 142.050+2,9650°+1.040°+0. 0130
i ' " 0e 3,9 2475}
a2 | 4 142.19D+2, 12D°+ 1. 420740, 2470

Tasle 7.273) The rinimen bandwadths writh DB cenzraings for

K=JtarR=5
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X By DB Channel codes F(D)
] 2 3 : 5 .
71.28% 1.0 142..150-0.430%-2,540°-0,7%0"+0. 79D |
!
o] 2 ]
68.063 1.5 141.04D-0.620°=1. 270°-0.020*+0.550° i
2 3 4 5
61,63 2.0 141.66D+1.030%40,020°-0, 150749230
57.12% 2.5 141,850+ 1.430%40, 280°-0. 350%+0. 020°
6 | 53.57 3.0 142.69D+2.47D°40.830°-0.560 0. 520°
ey : 2. .,..3 4 5
51.03 3.5 142.00D+1, 820°+0. 660°-0.490°-9. 52D
‘ 2. .3 1 5
48.95% 4.0 141.97D+1.950%41. 250°40.090-3. 390
2 3.4 5
46.35% 4.5 142.050+2.220%+1, 510°+0. 350%-0. 200
TR Y 5
49.4% 6.0 142, 25D+2.950%+2., 580 +1. 440° 40,220
2 3 . yand 5 6
69.773 1.0 141.220-0. 13D%~0. 840°~0. 120%+0.060°-0. 270
. . 3.3 4.5 6
§7.923 1.5 3+1.230-0. 1900, 870°-0. 110 *+0. 370°-0.04D
59.13 2.0 141.68D+1, 310%40.04D°-0. 180%+0, 180°0, 46D°
. . 2n agnd 4 5. aynb
55.023 2.5 141.93D+1, §30°40. 370°~0. 33040.0050°+0. 31D
) 2 3.4 .5 6
7 |53 3.0 142,05D+1. 73040, 46D°-0.490%-0. 310°4+0. 130
50.043 3.5 1+3, 33D+3.880%+2,193°-0. 080" 1.94p°-1. 310°
) i mend 4 5 6
46.263 4.0, 1+1.880+1.525°+1,060°-. 130%~0.800°-0. 580
’ . ' 2 3 4 Y
43.313 4,5 142,050¢2. 320%41.730°40, 610%-0. 30p%-0. 50
- s 502 .04 5. .6
R E T 6.0 142.000+2. 72042, 4553+ 1. 450440, 37D°-0. 260

Table 7.2(b) The minimgm bamdwidths with DB contraines for
K= 6 and 7. A
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A Table 7.2(c) Tie minimum bandridths vith DB contraints for K = 8 and 9.

l K BW B Channel codes F(D)
| 69.665° | . 1.0 1+0.980-0. 3¥0°-0,990°-0. 150%-0. 130°-0, 440%~0. 180
]
s .
64.343 1.5 1+1.530+0.930%-0. 13°+0.020%+0. 090°-0. 230%-0. 4807 |
2 3 4 5 6 7
$8.98% 2.0 21, 62D+1. 24040, 020°-0. 170°+0. 200°+0. 450%40. 0D
« 2 3 4 5. 6 7
54,783 2.5 \142.520+2.550%40,530°-0. 520740, 010740, 960%+1. 000
2 3 4 5 .6 7
8 | 52.618 3,0 1+1.930+1. 54D°+0, 32070, 520%-0.290°+0.5208+0. 390
49.98% 3.5 142,02D+1. 73D+, 810°-0. 550 =1.010°-0. 32060, 025
. - 2 3.0 4 5 ¢ 7
45.29% 4.0 1+1.930+1.900°+1.24p°+0. 140% 0. 730°-0.530°%-0. 16D
43.11% 4.5 1+1.94D+2.09D°+1. 300°40. 340%-0. 56070 49050, 3707
37.13% 6.0 1A1.96D+2. 72D%+2.46D°+1. 75040, 4905~0. 22080, 5107
68.03 1.0 141.09D-0.530%-1.09D°-0. 050°+0.410°+0. 030840, 33 +0. 473
64.13 1.5 142.070¢1, 140°~0. 320°~0. 600 +0. 240%-0. 72081, 2807-0.8703
" 53.23 2.0 141.59D+ 1. 130%#0.06D°-0. 15040, 130%40. 07054, 40 7~0. 350°
53.31 2.5 | 141.93D+1.560°+0.330°-0. 340" +0. 06070, 350%0.27-0. 160°
9 | s 3.0 1+1.91D+1. 660%+0,620°-0.420%-0.610° 0. 260%-0. 2900, 310°
49.7% 3.5 1+1.84D+1.5803+o.ssa3'-0.59o4—0.sogf’;o.3406—0.151)7-0‘. 18
: o . 20 .3 .4 .5 6 o 1] 3
45.064 4.0 1+1,93D+1,930% 1. 340740, 170% 20, 770°-0. 640%-0. 150740, 050
42,453 4.5 1+1,350+2.040%+1. 39040, 360*~0,620%-0, 570%-0, 3007-0. 010°
. 35,83 6.0 142.3303. 0405+ 3. 240°+2. 24041, 215° 0. 15:)6-0.9‘907-0.4009
] .

-
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K=6,

- — ' DB constraint = 1.0dB.

Zeroces = -1.81, 0.96, 0.45,
' ~0.38+ j0.43.

DB constraint = 3.0dB.

Zerces = -1.44, -0.85, 0.52,

~0.46+ 30.77.
X =6, ,
D3 constraint = 4.08B.
Zeroes = -0.95% j0.302, 0.308
~0.23+ §0.974. ;
. 9 o

Fié. 7.5 Zexc locations in Z-plane for PRS filter
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complexity. Howe?er, Fig.‘7.4 shows that at' some region, even if
we increase the channel leﬁgth, the bandwidth efficiency will not
be improved significanf]y. - For instance, the minimum bandwidths

are nearly the sige at 4 dB noise degradation for channel lengths
" between eight to ten. In genefal, the improvement in bandwidth'

berformaﬁce_becomes smaller as k increases.

_Fig..7.5 shows the zero locations on Z-plane of some of
the optimal channel filters found in ;his section. Unlike the worst-
case channel codes or the minimum bandwidth channel codes, the zeroes
ﬁre not all docated on the unit circle. Some of the zeroes are
located closely on the unit_éirq]e and some ma} be located far .
.inside or outside the-ﬁnit circle, and the Tocations change for the
_channel codes with different degradation constraints.. However, in
general, for a fixed channé].]ength more zeroes wi]li]ocate on the
1eft-haqd Z:p]ane and: more will be closed to the circumference when
the degradation constraint is loosened. This'wilj pull down the
amplutide resporise at the higﬁer frequency region and make the PRS
system require- less bandwidth.

We have mentioned that when a receiver is ‘of the structure
- suggested by Forney [5], a whitening filter is required. The trans-
';er function of the whitening filter is the inverse of thé trans-
© mitting filtér Flw), i.e. 1]F€;). We have found fhat some of the
opt1mal codes obta1ned in the last section have zeroes, located -
outsmi the unit circle. In other words, the wmtemng Filter mﬂ

have some poles 1ocated outside the unit c1rc1e and results in an
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unstable system. From this point-of-vigw, Forney's receiver
‘structure cannot be applied for some of the channel codes. This -
is one of the reasons why we consider Ungerboeck's receiver structure

[4], which requires no whitening filter.

b2

P



CHAPTER 8~

CONSIDERATION OF RAISED-COSINE FUNCTION
° FOR PULSE SHAPING

N

In the previous chapters, all the optimization is done under
the assumption that the pulsing shaping filter of the PRS system is
a minimum Nyquist bandwidth filter, or equivalently an ideal low pass
filter (LFF) with one-side bandwidth 1/2T Hz. Howevef, an ideal LPF
is not on]y.unfealizab]e but also undesirable for pulse shaping
because of the‘s1ow decay of the pulse tail in the time ﬁomain.
Serious ISi may result for a small timing error.

In this éhapter, we consider a spectral raised-cosine function
as the pulse shaping f%]ter of the PRS systeﬁ. The performance is
-evaluated and compared with the resu]ts obta1ned in the previous two
chapters. The raised-cosine function is chosen because it sat1sf1es
Nyéuist first criterion and has a very fast decay1ng pu)se tail,
résulting in less sensit}vity to timing error in a synchronous’ commun-
ication system. ’

-

8.1 - Bandwidth of a PRS System with the Raised-Cosine. Filter

We hgvé mentioned that a PRS system can be considered as a
transmitting filter F(m} cascades with a pulse shaping filter G{w).

F(w) is a periodic function with period 1/T . Therefore, with
84
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different choice of G(w), the PRS system bandwidth will be changed
accordingly,

The raised-cosine function consists of a flat ampliitude
portion and a roll-off portion that has a sinusoidal form, as defined

in Chapter 2.

(T 0 < |w| <m/T (1-8)
6u) ir/z (-sin[T/28(w-m/T)1}  7/T (1-8) < fol< m/T (1+8) (8.1)
0 Otherwise

with impulse response

in mt/T  cos @nt/T
g(t) = 2T, (8.2)
mt/T 1-4 &%)

Here, we only consider the roll-off factorB =1, then G(w)

is called 100% roll-off ‘ahd G(w) becomes

T/2 (1+cos wT/2) 0 < o] <2m/T

G(w) = (8.3)

0 Otherwise

‘./"/V

Therefore, the total system baquidth is 2n/T, twice as that
of a PRS system using an ideal LPF with minimum Nyqq&;t bandwidth.
However, fhe energy distribution of a PRS system is most
concentrated in certain frequency regions and in our work, we design
the PRS filter that has most energy in the low frequency region. From
the QieWpoint of 99% energy, bandwidth, a PRS sysiem using a raised-
cosine function may ﬁot,necessari]y have twice the bandwidth (here and

in the following, bandwidth will be.interpréted as 995 erérgy band-
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width unless o;herwise specified).
Using: the definition of energy density of a PRS system, we are
going to derive the bandwidth requirement of a PRS filter that uses
.a raised-cosine filter for pulse shaping. Tﬁe energy density of a

PRS filter H(w) is

n
@
——
£
P
(%]

Energy Density

i
n
-
——
£
"
[op}
—
£
N
[pW]

Flw) Flw) 6(w) Glw)

(-1 K-1 k
- -JwkT z JokT )
= (1 + § fk e V) (1 + k=1 fk e )
k=1
[7/2 (1 * cos wT/z)]Z. (8.4)
The energy within the frequency band la'] is
. z,n.aL
B = L )12 (5.5)
0 .

Substituting (8.4) into (8.5) and taking the example of k=2,

then the energy within ja'| of a PRS filter wﬁth F(mf having two taps

~is [Appendix A]. _ . ZLv
2ma’ . . ,
£=r /(e ) (147,97 [172(14c0suT/2)) d i
0
- _§_ 2 1 J_ ' .2 sinma'
= 7 (1+f] ) o' g fla' + (1+f] +f]) —

2) v 34 p) Sndrel, L sindral 1 o sindml (g )

+ [1/8(1+f, i L B PR



Arplitude

1

Frequenc:

M Vs =1/2T 0 12T % S

Arplitude

Frequency
(Hz2)

& - 99% energy banlvidth
Glw) — raised-ccsine function
X

Flw) — digital transversal filter

rig. 8.1 99% cnorgy bandvidth of a PRS system using a

radsed-cosine falter.
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The total energy R(0) of the PRS system is found by substituting

a's1 into (8.6),

R(0) = % (1+f}2) R T (8.7)

s
el

Fig. 8.1 shows the idea of 99% energy bandwidth of a PRS system with

a raised-casine funct1on

8.2 Minimum Bandwidth of the PRS System with A Raised-Cosine Filter

The 99% energy bandwidth is defined as

L)

ECq) |

‘R—(ﬁ')'- 0.99

or E(¢)~0.99 R(0) = 0 . ' . (8.8)

Substituting (8.6) and (8.7) into (8.8), we have

2 | 2 < sinm'
(36 (1+6,°) + 178 £,] [a'-0.99] + [(1+F)%) + £,1

+ []/8 ‘('H'f 2) + 3/4 f]] S]nﬂZTTO. + ]/3 f S1n3'7TCt + ]/]6 f Sinino,. } O

1
(8.9)

Now, welwant to find the minimum bandwidth o' such that (8.9)
holds. It is the same optimisation problem as defined in section 7.2

but with diffeqent function definitions.

The optimisatfon problem is,

~
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Min‘ o' ¢ ‘ ) F%
Subject to (i)  E(&)«0.99R(0) > O
(i1) -~(E(c/)-0.99 R(0)) > 0 \
(ii1) a'> 0 | (8.10)
(iv) YT -a2>0

~w

which is equivalent to the minimax problem ,

 Min Max fa', o' - v, 9.} (8.11)
i

~

where 9, are the four inequality constraints in (8.10), i=1, ...4.

With application of Flopt 5, we computed the minimum band-
width for the PRS filter with k=2 to k=4, where k is the number of
tap coefficients of the traasmitting filter F(w). ‘

The results are shown in Table 8.1. Here we use &' and o
to represent the minimum bandwidth Sbtained:by two different PRS
fi]ten§ respectively; o' is obtained by a PRS system using a raised-
cosine‘function while o is obtained by a PRS system with an ideal LPF.
The same convention will be used in the following section ;oo.

We observe that all the transmitting filter codes are
symmetric about the central tép and the longer codes require less
bandwidth; these are the same properties thét we have found in section
7.2. The propertie$ can be againexplained by the zero locations on
t@e Z-plane. The zeroes of the minimum bandwidth channel filters are
all Tocated on the unit circle respectively assshown in Fig. 8.2.

More zeroes imply further suppression of the amplitude at higher

frequency regions and result in less bandwidth requirement.

[
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Fig. 8.2 Zero leccations in the Z-plane for . /
the PRS filiter with minimum bandizidth. 7
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When we compare the two sets of minfmum bandwidths o' and g,
we observe some fnterestiﬁg results. For k equal to two and three,
a' are gqgfter than a, although o' is nearTy equal to o for k=3. for
k=4, o' becomes smaller than g and wé can expect that this is also.
true for&k greater than.four. At the begiqning of this chapter, we
said that the raised cosine function G'(w) has twice the minimum
Nyquist bandwidth, so we expect that this PRS system will require
more bandwidth than the PRS system using an ideal LPF of minimum
Nyquist bandwidth. Thus, the resul ts showq here seem to give a little
surprise. When we take a close look to the characteristic of the F(w)
and the raised cosiné filter G'(w), the results can be explained.

Since the transmitting filter F(w) is designed to concentrate
most of the energy in the low frequencies in order to narrow the
bandwidth, F(w) will have frequency response simi1;r to a Tow pass
filter. The raised-cosine function G‘(wj has low amp?itude‘réggonse
in highe frequéncigs but does have excess bandwidth. The frequency

e of the PRS system is H(w) = F(w) G{w), which has relatively

l§ttle amplitude at higher frequencies, but the amount of suppression
greatly depends on F(w) because of the second "replica" in the spectrum
of the discrete F(w). When F(w) has longer memory, F(u.) can have a

very narrow band in Ehe low frequencies, and the excess ggndw1dth of
G(w) will then have little effect and the roll-off characteristic of
G(w) can help to further suppress the amplitude at the high‘frequencies.
As a resqjt, the bandwidth of this PRS system can be even smaller than

that of a PRS filter using an ideai LPF with minimum Nyquist bandwidth.
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8.3 Degradation of the PRS System

In the last section, we have seen that a PRS system using a

‘raised-cosine function can have better bandwidth performance than that

of a PRS system using an ideal LPF when the tfansmitting filter has
memory longer than three. However, the results should not be over-
emphasized before we investigate the degradation caused by such two
systems because ISI ﬁegradaﬁion is crucial to the system as well.

The excess bandwidth of the raised-cosine function will
introduce aliasing when the outputs of the system are sampled at
the symbol rate., This will result in degradation.

The definition of degradation was defined in Sec. 6.1 and it
is a function of d%ree and the system energy. When an ideal LPF
with minimum Nyquist bandwidth is used in a PRS syste%, the degradation -
caused by ISI will originate only in the transmitting filtersF(y), and
the ideal LPF G(w) has no effect. Hence, when we compute the degrad-‘
ation or equivalently the normalized diree’ only F(w) needed to be
considered. When a PRS system uses:.a raised-cosine filter G'(w) for
pulse ;Bap1 g, the degradation caused by the ISI is not only dependent
on F{w) but also depends on the aliasing caused by G'(w). As a result,
the algorithm derived in Chapter 4 to find diree cannot be applied to
this system because the algé}ithm is based on the assumption that all
the Iél are introduced by F(w) only.

. To find the degradation of this particular system, we have to
consider the characteristic of the whole system function. Equation

(3.30) defines the minimum square distance that is a function of input

{f
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error sequences and the autocorrelation function Sp+ Sy is defined

in (3.5) and it characterizes the discrete naéure of the system. It
also reflects the constraint length L of the total ISI of the system;
it means Sy = 0, for|fi>L. Since we assume that the transfer

function of the PRS filter is known, we can find {sz} by using (3.5).

2

Therefore, we can apply (3.30) to find the dfree

of this svstem.

Rewrite the definition of Sy

5y a gye(t) * h(t) t=¢T *
= 5] (6,,-(w) H(w)) =T © o (8.12)
where H{w) = Flw) 6'{w) 0 < |wl <20/T
K-1 T ,
=1 I e YY) (172 cos wT/2) (8.13)
GMF(UJ) = H(‘-U)
Kst - o
=1+ k2 o 39Ty (172 cos wT/2) (8.14)
Then
. K- . K1 L
S * F_] {((T+ 1 fk erT) (T/2 cos wT/2) (1 + ¢ fk e'kaT)-
k=1 (@} k=1
) (T/2 cos wT/2)} | t-¢T : (8.15)

l .
If F(w) has two taps, K=2, we have

.
¥
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4 ] )
Flu) =1+ 5 f, e 3T
k=1
=1+ e JeT” .

Using (8.15) we find {s,} for k=2 are [Appendix B].

2 1
(1465 + 3

(72}
u
= w

]

S, =8 , = f1/8

wy
It

0 for [{] > 2

These results indicate that the constraint length of the ISI
is equal to 2 for a PRS system using a raised-cosine function, while
it is one for a PRS system using an ideal LPF. In other words, when
the raised-cosine function is applied to a PRS system, it may suffer
more degradation from the longer ISI that is introduced. This is
also true for other channel lengths; the_@utocorre1ation function
{sy} for different constraint lengths are shown in Appendix B.

1

Rewrite the definition of dir

’ ee
2 4 H H )
d > min { I Toe. s, e} . (8.16
free = j=0 k=0 1V i-k k-

~We can apply (8.16) to compute dirse as soon as we know {sg}.

This is done by searching on an error sequence tree as shown in Fig.
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8:3. Here each branch corresponds to an element of a possible error
sequence. The tree with depth N can represent all possible error
sequences with length less than or equal to N. Searching on the eror
tree, we compute the resulting distancesof all possible error events

and select the sequence with minimum distance, as the error event

that causes d2

free’ This method is only suitable for a small N due to

exponentially growth of the error tree. In.this wo;k, we use it to

N
compute dgree for K less than five, assuming N is equal to five. In
other words, we assume the error sequence that causes diree: will not
be longer than five error intervals. This assumption is acceptable
for a short chénne1 length since from previous experience, we observe

that the error sequences resulting in d%r are rarelyagreater than

ee
three for channel lengths less than 5.

In order to show whether this PRS system suffers more degrad-
ation than that of a PRS system using an ideal LPF, we compute the
deg;adations (DB) of the two PRS systemé with the same F{w) and
compare the results; see Table 8.2. The results show that under the
same F(w), the raised-cosine PRS system must suffer more degradation.
For a worse degradation channel code, the percentage of difference in
degradation between the two PRS systems bécomes smaller, and the
longer channel length, the smaller percentage difference in DB. There-
fore, we expect for a longer channel code or a low bandwidth/high

degradation channel codes, the difference in power performance of

the two PRS systems will become smaller.
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8.4 The Worst Possible Degradation °

To find the worst degradation is equivalent to solve an
unconstrained optimisation problem defined in section 6.2.

The problem statement is

Max
§i (0B

= win 1) (8.19)
£i

Using Flopt 5 and the same techniques discussed in section 6.2, we

have found the worst degradation for k’5_4. The results are shown

4

in Table 8.3. | ﬁ

We observe that the error event 1-D causes the worst degrad-
ation. A1l the transmitting filter F(D) codes have the symmetry
property and the zeroes of those filters are all located on the unit
circle. Moreover, a longer channel 1eng§b causes worse degradation
than a)shorter channel Tength. A1l the above properties of the
worst-case codes are the same as those of a PRS system with an ideal
LPF in section 6.2. However, thé two different PRS systems have
different worst degradation channel codes and different degradations
too. As what we expect, the raised-cosine PRS system has worse worst
degradation than an ideal LPF PRS system.

L

8.5 Minimization of Bandwidth with Degradation Constraint

Here we will minimize the bandwidths with different degrad-
ation constraints. It is equivalent to solve a constrained optimiz-

ation problem that has been formulated in section 7.4. Setting up
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K o3 DB F(D) Error event

2 | 0.67 0. 14D 10

34 2.8 2.32 1+1. 3080+D° 1-D

4 | 4.4 4.13 | 1+1.436D+1.4860°+0° 1-D g
p3 -~ the “worst dearadation for a paRS System using

[y

a rairsed-cosine fll;cr.
»
p3 — the vorst degradation for a P&S system using

an 1deal lov pass falter,

Table 3.3 The vorst Jeqradatisn for Arfatwhe channal

lengtn
Optimal DB ‘ 0;_,'.}1 ;s
contrant
0.38 2.0 141, 482040° 0.325 16.92%
- bl
3 0.455 1.5 1+1.23040.2350° 0.355 28.173
0.379 1.0 1#0. 5140402 0.33 52.6%
. m aen2. 3
0.263 4.9 142.35D42. 350740 0.255 3.29 1
2 3
0.308 3.0 141,740+1.1730°+0. 11D 0.202 5.413
i 2 3
N 0.33 2.0 1+1,803D+0. 340°=0. 1320 0.323 8.36%
y ,
0.445 1.5 1+1,9960+0.6330°-2.1130° | 0.33 27,148
! , N
0.614 1.0 1+2.1750+0. 523070, 144D 0.354 68.753

¥

* & 1s the optiral bandvidth of the correspondina DB oontraints of the
PRS system wath an ideal WPF; the correspending (D) are ddffsrent

from those shown here. Please refer Table 7.2

Tavle 8.4 Mini-um bandwidin wisn difforant 08 contrawnts for a PRS

system using a raisec-cesine filser,
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the 997% energy bandwidth and degradation constraints, we can write

down the problem statement as below.

)

Min «

Subject to” (i} E(«)-0.99R(0) > 0

(ii) -(E(2)-0.99 R(0)) > 0 '
(if1) dﬁorm -4 (]0‘0'10) >0 (8.18)
(iv) o'>0

(v) 1/T-a>0

or equivalently

>
Lo

Min Max {o, - vy 90 =1, ....5 (8.19)
@ ¢ )
where g; are the five inequality constraints in_(8.18).
Using Flopt 5 and the same techniques discussed in section
7.4, we have computed the optimal codes for k up to four and the
- results are shown in Table 8.4, We observe that for a fixed chanqel
length, the bandwidth decreases as degradation increases. The longer
codes can obtain better bandwidth performance under the same degrad-
ation censtraint. Those are the same properties as for the PRS
system discussed in section 7.4. s
A comparison of the minimum bandwidth obtained with certain
degradation constraiﬁts between the two different PRS systems is
shown in Table 8.4. Computing the percentage difference of band-

rwidth between the two systems, we find that under the same channel

length, the percentage becomes smaller when the degradatioh constraint
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P ]

allows more degradatioﬁ. Ear instance, when kf4 and DB=4 dB, the
percentage differepce is only 3.29% in comparison to 27.1% for DB=1.5
dB. When we allow higher degradation, we can choose a set of code f;
such that most of tpe energy concentrates in the low f;équencies.
This will make the F{w) filter have.a narrow band and the excess
bandwi&th of G'(w} has Tless effect 5n the system. Thi's property .-
is also true for a longer channel length.

Y

' On the whole, we find-that a PRS system with raised-cosine
function has worse performance than the PRS system with an ideaT LPF
%or k- Tess than/4. As fhe ch;nne1 length increases, the PRS system -

with a.raised-cosine function becomes more competitive, especially

when we allow moderate degradation. In certain senséé, for iﬁstance
minimizationAof'bandwidth without DB constraint, it can even have

better bandwidth perﬁgrmance for k greater than 3. Moreover, the

system is less sensitiveto timing error.
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CHAPTER 9

CONCLUSION
>

In this thesis, we model a digital communication system by
a PRS system and a MLSE receiver. Two diffefent pulse shapiqg filters
are considered for the.PRS system, first an ideal low pass filter with |
minimum Nyquist bandwidth and then a raised-cosine function with roli—
‘off factor equal to one. ‘

A modified stack algorithm has been de%e1oped to compute the

. . 2
minimum square distance d

Froe The advantage of this algorithm is

that the compdtationg] time and memory requirement db not expon-

entially increase as the channel length. This makes it possible to

2
free

.

compute d for channel lengths up to twelve.
A numerical optimization method called Nonlinear Programming

is introduced as an approach to solve our optiTisafion prob1emsl

"Three different optimisation problems.were 1“V95E1§559d in this work.

First, ;he worst-case ISI degradation and the corresponding channel

codes' have been found for channel lengths up to twelve. Secondly,

minimizations of system bandwidth under the 99% energy constraint

have bgen done for channel lengths up tg‘ten. Thirdly, we find

‘the minimum 99% energy bandwidth and the corresponding optimal channel

codes with different degradation constraints for channel lengths up

N

to ten.
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The second and third problems are cénstfained NLP problems.

To solve the constrained problem, we at first reformulate it into an
unéons?rained minimax problem. All the three optimisation problems
are solved by the app]icqtio; of the computer package Flopt 5.

The computatdon results show that the worst degradation
increases qs_the channel length increases. For k=3, the possible loss
in poﬁer'ca; be at most 2.323 dB; however, when k goes up to twelve
the loss increases to 16.37 dB. The differenée is 14.07 dB. Some
properties qf the worst degradation channels are observed. First,

they are all symmetrical channel codes and the zeroes of the filters

are all located on the unit circle. The error event that causes the

worst degradation, is e=1-D for k=3, to k=6, while for k=7 to 12,

€=1-D-d2+D3+D4—D5 is the error event causing tﬁe worst degradation.

In.the computation of minimum 99% energy bandwidtg, we observe
that the longer ch;;ﬁe1 length can obtain a smaller minimum 99% energy
bandwidth. It requires 81.6% of the minimum Nyquist bandwidth for
k=2 and only 22% of the minimum Nyquist bandwidth when k=10. The saving
in bandwidth slows down as k increases and when k goes beyond ten, the
saving in bandwidth will not be changed very sign{ficant1y. The prop-.
erties of the minimum bandwidth channel codes are the same as those of
the worst degradation channel codes, perhaps because the minimum band-
width channel codes are always located near the worst degradation
codes. The number of zeroes and their locations on the unit circle

give an explanation of the obtained minimum bandwidth of different

-

~ channel lengths.

In consideration of the importance of both bandwidth and power,

-
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we have tried to find the optimal bandwidth with different const?aints
on ISI degradation. The results reflect that a Tonger chanﬁg] always
has better bandwidth performance whatever the degradation coﬁstraints
are, when comparéd to a shorter channel length. Ho@ever, the longer
channel length usually cauées longer decision depth and so the complex-
ity of receiver increases accordingly.

On the whole, to save more bandwidth, we can either increase
the channel length or increase the system power., These tradeoffs can

be changed according to different appligations.

The three optimisation problemg are also considered for k up
to four in the case of a PRS system using a spectral raised-cosine
function for pulse shaping. Since the excess bandwidth of the raised-
cosine function causes ISI in addition to that from the transmitting
filter, the system usually suffers more degradation when both PRS
systems have the same channel code.

The computation of the worst degradation channel of this PRS
system shows that the longer channel length can cause worse degrad-
ation. A1l the other properties of the worst-case channel codes of a
PRS system with an ideal low pass filter witﬁ minimum Nyquist band-
width are still true. However, the two different PRS systems have
two different sets of worst degradation channel codes. The PRS system
with a raised-cosine function has worse worst degradation in comparison
to the PRS'system with an ideal low pass filter, but the difference

becomes smaller -as k increases. il

The minimuﬁ bandwidth channel codes also show the same
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properties as found beforef’ We observe that the PRS system using a
raised-cosine function does not need twice the bandwidth of the previous
PRS system and even require less bandwidth for k=4 in a m&nimum band-
width channel. We can expect this is also true for k > 4. Of course,
this is paid for by suffering more degradation. '
Infconsideration of both bandwidth and degradation, this PRS
system usually has an overall worse performance in the short channel ~
codes. The difference betwééﬁ the two PRS systems becomes smaller as
k becomes larger and the system bandwidth is reduced. Generally
speaking, a narrow band system should employ a raised cosine filter.
Due to the large amount of computation required for eval-
uating the PRS system using a raised-cosine fi]ter, only channel
lengths up to four are investigated. However, we can expect that
the performance of such system wi]i become better and better as k
increases.
In this work, we do not implement the féceiver buF only
assume the reeéiver structure is the type 5uggested by Ungérboeck
[4]. Even ;;;ugh Forney's receiver structure [5] is more widely
known and used in most other literature, we still prefer Ungerboeck's
receiver structure. The reasons are that no whitening filter is
required and computation is more efficient.
For a multipath channel, the transmission medium usu%1]y
changes randomly as opposed to the ISI channel considered here in

which the channel is time-invariant. An adaptive receiver 1s

usually required for a multipath channel. Since the IS! introduced



106

by the multipath channel changes randomly, it can happen that the
channe]'wi]i have zeroes located outside the unit circle in the Z-
plane. If Fomiey's receiver structure is used, the receiver will
fail in a multipath\channel because the chanﬁel can cause an unstable
whitening {11ter. Therefore, a receiver without whitening filter

1ike the Ung 's receiver structure must be used for the multi-

path channel. In short, we believe that Ungerboeck's receiver is
more p¥actical. Yy
|

;
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APPENDIX A

Derivation of the Energy of a PRS System with Raised-Cosine Function

For k=2, F(w) =1+ f]e'jw

The energy of the PRS f{]ter is

-~

l
fjje!

2 i
E = 1 / [H(w)[z dw
™0 .

- )

mo' ' s i : 1 >
(1 + £1e79¢) (1 + £1e7) [5(1 + cos§)I® du

=

O

2

A “ju L Jeyg ] w, 2
I [] + 1 + f] (e + g )] [‘Z(] + 2c05% + COS
0

F|—

2

2 .
j%é 1+ f]2 + 2fy cosw + 2 cg;g + Zf]chs§ + 4fy cos

W

2

> COSw

+ cos2 % + f]zcos2 % + 2f, cos2 % cos w] dw

2na
] . ,
= o= é {1+ f12 + 2fy cosw + 2 cos% + 2f1zco5§ + 2f]‘(cos%‘3 + cos—‘é—’)
1 flz f]
+ §»(] + cosw) + 7?-(1 + cosQ) + f]cosw + 77(] + ¢c0s2.) tdw
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2o’

fi 2

2,1 ]

iy (T R%rgr 5
. 1

2’ fi,l

f-'
1 1 ]
+7) dw+6 (.21".l +§+—2——+f])c05w dw

§+

2! 2na! 2ra!

S {2+ 2f12 + 2fy) cos% dw + S 2f; cos%? dw + f fy cos2w dw}
0 0 0

7

Fl

&
F0+R9a s Fha s (0 f?) sime

] 2 sin2ra!
gl r 6 ¢ A0

/

/.
Lo sindma’ Py \
ot 3 f] - + ]_617? Sindna :

-

Using the same ¥

-

roach, we ¢an compute the energy of the PRS
system with k > 2,

Y
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APPENDIX B .

4

w

Derivation of Autocorrelation Function {s}} for a PRS System with Raised

Cosine Function

For k=2, Flw) = 1 + f]e-jw

Al

GluwRF % (1 + cos 2) 0 5_w’§-ﬁr

2

The transfer function of the PRS system is H(w)

LN

H{whs= G(w) Fw)

(1 + cos%) (1 + f]e'jw)

o} —

The match filter transfer function is GMF(w)

GME(w) = H(w)

5
<«

- -;- (1 + cos) (1 + Fel)

The signal element S, is

(72}
1

¢ = gMF(t) * h(t)]t=fT

-1

Fo Gy (W) H(w)} =T
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= F-]{l(1 + 2cos¥ + cos® ¥) U+ £ ¢ (o7 gdw )Yiit=iT
4 2 2 1 !
= F']{%{] + f]2 + f](e'j“+ ej“) +2 (1 + flz + f](e‘3“+ eI¥).

cosy + (1 + f]z + f](e-j“+ e )) cos? %} | t=(T

I

|

$in2rt/T sin(2=-2-t/T)
{3(7 + f] ) (—?Ef7T—_) + 3f] 27-27t/T

Y, +§% 0+, ) [51 Zr2/T) |, sin(20-27t/T,

~+2 t/T 2n=-2nt/T
*
f . i
1 sintt/T 51n(47 2% t/T) sin(4n+27t/T), ot
5 [2 oat/T t 27t/ T Gr+27t/7 L] =
) .
i 2 5in2-t/T 1 in(2-+2rt/7)
g B0+ 15« (152055 [3fp30 + £,9)) (3L T
4. Sin(2n-2x t/T) [S1n (47+27t/7) + Sin(4r-2+ t/T)} | t=IT
- 2“t/T 4r¥2wt]T 4n-2at/T R
, Therefore, for k=2
_ 3 2y .1 \ i
So T U )+ g o
- _ 3 1 2
st firg (R0
f
S, =8 5, = "]
2 -2 5

S{= O, for

oy
| v
(%)
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Using the' same approach, we can find the signal element Si

for k > 2 as shown below.

For k=3
2 2-
fot 1+ f. 4 f
1 2 2 sip2nt/T 2 ] 2
T BT v f NPl Sgppyr + 137,36, £ 5 2 I

SIn(2142 £/T) | sin(2m-2ut/T) sin(4n+27t/T)
oL + Zn-2nt)T 1t (3F *’z'fﬁ“f f2) oot

s Sin(nomtm), | % -2 (sIn(re2nt/1) | sin(er-2nt/T)

Im-2mE)T BT+ 2TE/T T | T

.

Therefore, for k=3

T3 2 2y 1

So =7 (1 + F RN g (F Ay

‘- 3 ] 20 2001

LS I R RAUTVRS NERE S MRFRAS-RPE

Sp TS, =Rt v L (f v g

2 " P27yl g fy e e, \_

_ =1

S3Ts3%35f,

w
n

0 for |1 >4
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For k=4
1 2,.2, . 2 sin2nt/T .
sp =g B0+ F70) 500 4 (Fyr £9 40, F0)] S + B3(F +F 46, F )
1 2ec 2,02y . 1 sin(2m+21t/T) . sin(271-21t/T) .
Py (0 B0 v o ()] g * ot/ T

1 1 sin( 4n+21t/T)
£3) + 5 (F4F)F,40,05) + 5 ] +

+L3(FHf 1F275,73 T2/ T

1

sin(4n-2nt/T) 1
dn-2mt/T ]+ [3f5+§(f2+f]f

sin(6m+2nt/T) | sin{6m-2nt/T
1 Comzrr— * ereamit

-

t={T

Therefore, for k=4

1

i

2,6 2,02y .1
(1 + f,%+f, +f3 ) + 7 (f]+f]f2+f2f3)

3 1
+z(f]+ff+ff)+'8-(f2+ff

2
) RPPLE 13)

1 2,02
=g (1+ £,54F,%f

w
—
t

3

3 ] ]
s.p =g (T # Fyfg) + g (f) + ffaf,fa) + 5 (f))

-2
-3 1

373 (fy) +g (f+ fify)
=1

47313

0 for |f]

v
wn
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