Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7546
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWilkinson, D.S.en_US
dc.contributor.advisorEmbury, J.D.en_US
dc.contributor.authorGammage, Justin J.en_US
dc.date.accessioned2014-06-18T16:39:41Z-
dc.date.available2014-06-18T16:39:41Z-
dc.date.created2010-07-22en_US
dc.date.issued2002-11en_US
dc.identifier.otheropendissertations/2817en_US
dc.identifier.other3759en_US
dc.identifier.other1406058en_US
dc.identifier.urihttp://hdl.handle.net/11375/7546-
dc.description.abstract<p>The role of damage on the mechanical response of a heterogeneous material was investigated through both mechanical testing and x-ray tomography. X-ray tomography was used to obtain quantitative information on the evolution of damage through processes occurring at both the local and global scale. The results indicate that heterogeneity in the spatial distribution of particles does influence the damage process. However, the influence of having one particle or more interacting with another is limited to reducing the tensile deformation required to initiate damage. The rate at which damage evolves is similar for both isolated and non-isolated particles and increasing the number of neighbors around a non-isolated particle was determined to have no additional influence on the evolution of damage. These results, coupled with mechanical testing measurements of both global and local properties, were used to develop models describing the flow response of composite materials as damage accumulates. Models were developed to predict the effects of both particle multiple cracking and micro-crack linkage on the composite flow response. The models predict that both damage processes reduce the load bearing capability of the material over that of an undamaged composite, however the loss in load bearing capability is much more severe when micro-crack linkage occurs. Micro-crack linkage rapidly leads to a loss in global stability so that the strain at which the composite fails is significantly less than previous models suggest. The experimental behavior of the composite materials investigated in the modelling work favors that predicted by the micro-crack linkage model. Ductility predictions resulting from the micro-crack linkage model were sensitive to both the volume fraction and the matrix work hardening exponent. By varying the matrix work hardening exponent the micro-crack linkage model captured the experimentally observed range of ductility values present in literature.</p>en_US
dc.subjectMaterials Science and Engineeringen_US
dc.subjectMaterials Science and Engineeringen_US
dc.titleDamage in heterogeneous aluminum alloysen_US
dc.typethesisen_US
dc.contributor.departmentMaterials Science and Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
8.42 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue