Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7503
Title: Inelastic Response of Reinforced Concrete Frames to Seismic Ground Motions Having Different Characteristics
Authors: Zhu, Tian-Jian
Advisor: Heldebrecht, A.C.
Tso, W.K.
Department: Civil Engineering and Engineering Mechanics
Keywords: Civil Engineering;Construction Engineering and Management;Engineering;Geotechnical Engineering;Structural Engineering;Civil Engineering
Publication Date: Nov-1989
Abstract: <p>Observations of structural damage following recent major earthquakes have indicated that ground motion characteristics have a significant effect on the damage of building structures. An analytical study is undertaken to investigate the effect of ground motion characteristics on the inelastic response of multistorey reinforced concrete frame structures and to evaluate the seismic performance of reinforced concrete frame structures designed in conformance with current Canadian seismic provisions. In addition, the possibility of using simplified analysis procedures to estimate inelastic response is studied for regular building frames subjected to different types of earthquake ground motions.</p> <p>An earthquake data set consisting of 45 horizontal components of strong motion records is selected and subdivided into three groups representative of seismic ground motions having low, intermediate, and high peak acceleration-to-velocity (A/V) ratios. This data set is analyzed to investigate the significance of the A/V ratio as a parameter to indicate the dynamic characteristics of earthquake ground motions resulting from different seismic environments. Four regular moment resisting reinforced concrete building frames having different fundamental periods are designed for combined gravity and seismic effects determined in accordance with the 1985 edition of the National Building Code of Canada (NBCC 1985). The structural members are proportioned and detailed to satisfy the requirements of the 1984 edition of the Canadian Concrete Code (CAN3-A23.3-H84). These four frames are used as structural models having very short, short, moderate, and long fundamental periods.</p> <p>To gain insight into the inelastic behaviour of the designed frames, the inelastic static responses of the frames to monotonically increased lateral loading are examined first. Following this inelastic static analysis, the inelastic dynamic responses of the frames to the three A/V groups of earthquake accelerograms are analyzed statistically. In addition, the elastic dynamic responses of the frames to the three A/V groups of earthquake records are obtained to provide a reference for the evaluation of the inelastic dynamic responses. In the course of the dynamic analyses, overall energy indices are defined for multistorey building frames and their numerical computation is implemented in a computer program.</p> <p>A simplified analysis procedure is proposed to estimate both overall and localized inelastic deformations for regular building frames. This simplified analysis procedure is evaluated based on a comparison of the inelastic deformational demands estimated from the procedure with the statistical results obtained from the inelastic dynamic analysis of the frames.</p>
URI: http://hdl.handle.net/11375/7503
Identifier: opendissertations/2778
3798
1408103
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
15.86 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue