Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7150
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHaykin, Simonen_US
dc.contributor.authorSellathurai, Mathinien_US
dc.date.accessioned2014-06-18T16:38:20Z-
dc.date.available2014-06-18T16:38:20Z-
dc.date.created2010-07-07en_US
dc.date.issued2001-04en_US
dc.identifier.otheropendissertations/2440en_US
dc.identifier.other3483en_US
dc.identifier.other1385185en_US
dc.identifier.urihttp://hdl.handle.net/11375/7150-
dc.description.abstract<p>Wireless communications technology is presently undergoing a tremendous expansion, which is brought on by the proliferation of many diverse and very compelling applications. These trends are continually pushing the demand for substantially increased information capacity, which can only be realized through the development of novel communication techniques. In this context, we may mention a ground-breaking wireless communication technique that offers a tremendous potential to increase the information capacity of the channel, namely, the multi-transmit and multi-receive (MTMR) antenna system, which is popularized as the Bell-Labs Layered Space-Time (BLAST) architecture. In particular, the Diagonal-BLAST (D-BLAST) and the Vertical-BLAST (V-BLAST), developed by Bell labs of Lucent Technologies, permit signal processing complexity to grow linearly, with the capacity increase being made possible through the use of a large number of transmit and receive antennas. However, from a practical perspective, D-BLAST is inefficient for short packet transmissions due to its boundary space-time wastage. Meanwhile, V-BLAST suffers from error propagation due to deep fades in the wireless channel. In this thesis, we propose Turbo-BLAST, a novel multi-transmit and multi-receive antenna system that can handle any configuration of transmit and receive antennas. It presents a framework of simple yet highly effective random space-time transmission and iterative joint-decoding receivers for BLAST architectures. Specifically, we show that the embodiment of turbo principles and the BLAST architecture provides a practical solution to the requirement of high data-rate transmission in a reliable manner for future wireless communication systems.</p>en_US
dc.subjectElectrical and Computer Engineeringen_US
dc.subjectElectrical and Computer Engineeringen_US
dc.titleTurbo-BLAST: A novel technique for multi-transmit and multi-receive wireless communicationsen_US
dc.typethesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.77 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue