Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7138
Title: The Second Chinburg Conjecture for Quaternion Fields
Authors: Tran, Van Minh
Advisor: Snaith, V.P.
Department: Mathematics
Keywords: Mathematics;Mathematics
Publication Date: 1996
Abstract: <p>This thesis is a part of a program to study the Second Chinburg Conjecture. Let N be a quaternion extension of the rational; containing Q(√d₁,√d₂), where d₁ ≡ 3 (mod 8) and d₂ ≡ 10 (mod 16). A projective Z[Q₈]-module inside the ring of integers ON is constructed and is used, together with a cohomological classification of cohomologically trivial, 2-primary Q-modules, to compare Ω(N/Q,2), Chinburg's second invariant, with WN/Q, the root number class defined by Ph. Cassou-Nougès and A. Fröhlich. The Second Chinburg Conjecture for this extension N/Q is confirmed. Together with results of J. Hooper and S. Kim this calculation verifies the Second Chinburg Conjecture for all quaternion extensions of the rationals.</p>
URI: http://hdl.handle.net/11375/7138
Identifier: opendissertations/2429
3494
1386425
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.42 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue