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Abstract

This thesis is a part of a program to study the Second Chinburg Conjecture. Let
N be a quaternion extension of the rational; containing Q(v/d;,/dz), where d; = 3
(mod 8) and d; = 10 (mod 16). A pr;a.jective Z[Qs]-module inside the ring of
integers Oy is constructed and is used, toééther with a cohomological classification
of cohomologically trivial, 2-primary Q-modules, to compare Q(N/ Q! 2), Chinburg’s
~sccond invariant, with Wx,q, the root number class defined by Ph. Cassou-Nouges
and A. Frdhlich. The Second Chinburg Conjecture for this extension N/Q is con-

firmed. Together with results of J. Hooper and S. Kim this calculation verifies the

Second Chinburg Conjecture for all quaternion extensions of the rationals.
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Preface

Let K be an algebraic number field and N/K be a finite normal extension with
Galois group G. Now let On be the ring of algebraic integers of N. By Noecther's
theorem, Op is projective as a Z[G]-module if and only if N/K is at most tamely
ramified. In this case, Taylor proved that [On] = Wi,k in the class group CL(Z[G))
(Frohlich’s Conjecture), where Wik is the root number class defined by Cassou-
Nogués and Frohlich by means of the Artin root numbers of the irreducible symplectic
representations of G.

Chinburg defined Galois invariants Q(N/K,i),i =1, 2, 3 of N/K in CL(Z[GR)),
proved Q(N/K,2)} = [Op] for arbitrary extensions N/K which are at most tamely
ramified, and conjectured (The Second Chinburg Conjecture) that UN/K,2) =
Wiy

This conjecture has a considerable amount of supporting evidence. In the first
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place it generalises the conjecture of Fréhlich. As to further evidence, several wildly
ramified examples have been verified for K = Q. The case where Gal (N/Q) = Qs
and the prime 2 is not totally ramified was proved by Kim. The case where N is a
p-cyclotomic extension of degree p* over Q, for an odd regular prime p, was verified
by Snaith. Recently, Greither has shown that this conjecture holds for all abelian
extensions of Q with odd conductor. Apart from this direction, 1lolland proved that
Q(N/K,2) — Wyyk is in the kernel group D(Z[G]).

The purpose of this thesis is to study the Sccond Chinburg Conjecture for two
families of quaternion fields over the rationals in which the prime 2 is totally ramified
using the techniques of Snaith [32]. This work consists of three chapters.

Chapter 1 deals with definitions and basic propertics that lead to the statement
of the Second Chinburg Conjecture. The main materials for this chapter can be
found in Snaith [32, 33].

In Chapter 2, two local quaternion extensions (Qs-extensions) of Q, are intro-
duced. A special map k is defined and proved to be injective. We also present some
computational results using Maple which enable us to proceed with the third chapter.

Chapter 3 is devoted to verifying the Second Chinburg Conjecture for quaternion
extensions over the rationals whose 2-adic completion is one of the Qg-extensions
of Section 2.1. Section 3.1 is concerned with the proof of the main result and .‘thc
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introduction of three Z[Qs]-modules used to compare Wy;q with Q(N/Q,2). The

classes of these modules in CL(Z[Q3)) are computed in Sections 3.2 to 3.4.
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Chapter 1

Introduction

The goal of this chapter is to present basic definitions and results which enable us to
state the Second Chinburg Conjecture and provide prerequisites. A more extensive

reference for the material of this chapter are Frdhlich [11] and'Snaith [32, 33).

1.1 Class Groups

In this section we briefly introduce Frahlich’s Hom-description of the class group of

finitely generated, locally free modules.

Let K ;‘f\BJé an algebraic number field, i.e. 2 finite extension of Q. Denote by

Ok the ring of algebraic integers of K. A prime P of K is an equivalence class
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of valuations of K. There are two types of primes: finite (non-Archimedean) and
infinite (Archimedean). The finite primes belong to the prime ideals of K. The
infinite primes correspond to the embeddings of K into R or C. We write P Joo if
P is finite and P | oo if P is infinite. Each prime P determines a completion K of
K. If P Joo, then Kp is a P-adic number field. If P | co, then Kp» = R or K» = C.
The adéle ring of K is defined to be the ring given by the restricted product
J(K)= ]I Kp,
? prime
where [T’ signifies that we take those elements of the direct product [, Kp for which
almost all entries lie in the ring of iﬁtegers _O;\-,,. When P is an infinite prime we
A/gdopt the convention that Ok, = Kp. .‘

The group of idéles J*(K) is the group of units in J(K)
J*(K) = {(zr) € J(K) | zp # 0 and almost everywhere zp € Ok,.}

where, as usual, O denotes the multiplicat;ive group of units in Og,,.
The unit idéles is the subgroup of J*(K) in which every entry is a unit,
3 e
U©x) =T Ok,
P prime

Now let G be a finite group. Wé may extend the definitions of adgles and idéles
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to the group-rings, Ox[G] and K[G]. Define

JKIG) =Tl prime K#IG)

J(KG) ={(ar) € JK[G])|ar € Ok,[G]" for almost

all P and ap € Kp[G]* otherwise},
U(Ok[Gl) =Tlp prime Ox»[G]"-
We now suppose that E/K is a finite Galois extension with Galois group G(E/ K).

In this case G(E/K) acts on the set of primes of E and hence acts upon the groups
J*(E),U(Og), J*(E£]|G]) and U(Og[G]). If Q is a prime of E which divides the prime
P of K, then G(Eg/K>p) is a subgroup of G(E/K) which is called a decomposition

h group for P and depends only on P, up to conjugation in G(E/K).
QT\_

—-—

Suppose now that E is large enough to contain all |G|-th roots of unity. Denote
by Rg(G) the subring of R(G) which is genera.ted bj\f\xrepresentations of the form p :
G — GLo(E). In this case (see Snaith [1994a), Theorem 4.1.9(i)), R£(G) = R(G)

and G(&/K) acts upon R{G) by the entry-by-entry action on a representation
T :G = GL,(E).
Therefore we may consider the group of G(E/K)-equivariant maps
Homge/x)(R(G), J*(E}) = {f : R(G) = J*(E) | f(g(2)) = g(f (zl)

for all g € G(E/K),z G R(@)}.

g

‘J\.'
o

i
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Example of such function can be found in Section 1.3.

More generally, if L/K is a Galois extension which contains E/K then G(L/K)
acts on R(G) and J*(L), since E/K is Galois and G(E/K) is a quotient of G(L/K).
Therefore we may pass to the absolute Galeis group Qi which is the topological
group defined by

Qx =limG(L/K)
where L C K¢, a chosen algebraic closure of K, and the groups G(L/K) are the

Galois groups of fini‘e Galois extensions L of K. In this case we have
Homgq, (R(G), J°(E)) = Homggx)(R(G), J*(E)).

Let M be an Ok[G]-module of rank one which is locally free. This means that
M®o,. Ok, is a free OK,[G]-module on one generator zp for each prime P of K and
that M ®o,. K is a free K[G]-module on one generator, zq. Incidentally, a finitely
generated module over Z[G] is locally free if it is, for example, a summand of a free
module. Since K[G] and Ok, [G] are subrings of K»[G] we may compare these bases

for the Kp[G]-module M ®go,. K. This means that there is a unit,

Ap € Kp[G]'
which is defined by

Ap 29 =zp € M Qo Kp.
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In fact, Ap will almost always lie in OA,EG']' so that we obtain an idéle
(A) € J(KIG)).

More generally, if M is a locally free modulé'gf rank n this comparison of bases

will yield an invertible n x n-matrix with adélic entries

(%) € GL(J(KIGD).

If R is a ring then we may define the first algebraic K-group, K. 1(R),astht. a_belian-
isation of GL(R) = UGL,(R) where GL,(R) is included into GL.,“(R‘)‘“B; sénding
2 matrix, X to the direct sum of X with the 1 x 1 identitj matrix. The commﬁt\zz-tléls N
subgroup of GL(R) is the subgroup E(R) generated by elem.entary matrices so that
K\ (R) = GL(R)/E(R).
Hence we obtain
(o) e UKIEN = [T Ku(KplGD
P prime
where the weak product indicates that almost all of the entries are in the first alge-

braic K-group K;(Ox,[G]).

Now suppose that T is a Tepresentation

T : G — GLn(E).
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We may apply T to each A\p € GL.(K7[G]) (or Xp € K1(Kp[G])) to obtain an
invertible matrix

T(’\P) € ﬂ{mn( ’1’ Ox E)

where M,(A) denotes the n x n matrices with entries in A (or T(\p) € Ky(Kp ®x

E) = (Kp ®x E)*). There is a ring isomorphism of the form

Kp®x E& II Eo.
alp
@ prime of £

Therefore we obtain an element

det(T(Or))e [ Ea

eP
Q prime of E

Since (Ap) € GLa(J(K{G])) we obtain an Qx-equivariant map, given by det(T(Ap))

at the primes of E which divide P,
Det((Ap)) € Homq,(R(G),J"(E)).

o Now 1e_t‘us ‘consider the dependence of this construction upon the choices of the
basis elemeﬁfs, zo and zp. The discussion is similar in the case of modules of rank
greater than one. If we replace zp by another generator, =%, these choices will be
related by an equation

Zp = upzTp
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for some up € Of,[G]" so that we obtain a unit idéle
u = (up) € U(Ox|[G])
and Det((Ap)) will be altered by multiplication by
| Det(u) € Det(U(Ox[G])) C HomnR(R(G),J;(E)).

Also, there is a diagonal embedding of E* into J *(£) which induccs" an inclusion

.- ~
.

Homgq, (R(G),E*} C HomnK(R(G),J'(E)), -

By a similar argument, changing o to zj will change Det((Ap)) by a function

which lies in the subgroup Hormg, (R(G), E*). Therefore we have associated to each |

finitely generated, locally free Ox(G]-module, M, a well-defined element

Homg, (R(G),J*(E))
Homa (R(G), E°) - Del(U(Ox[G])’

Det[M] €

Now let us recall the definition of the class-group, CL(Ok[G]). This is defined to
be the Grothendieck group of finitely generated, locally free Ox[G]-modules. To be
precise, consider tlié set of isomorphism classes of finitely generated, locally free
OK[G]-modules, Mod.l.f.(Ox[G]). This set is a monoid if we endow it with an

addition operation defined by

(M]+[N]=[M @& N]
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where [-] denotes an isomorphism class. We now define an equivalence relation on
Mod.l. f.(Ok[G]) which is generated by two types of relations:
() M|~ [N]‘iff‘br some m,n,
M e (Ox[G])™ = N & (Ox[G])"
and
(i) |4l +[C] ~[B] if there exists an exact sequence of Ox[G)-modules
0—mA—B—C—0.

- Definition 1.1.1 Witk the above notation,

CL(OK(G)) = {Mod.L.{.(Ox[G} ~.

Incidentally, it is known that CL(Ok[G]) is generated by locally free Ox[G]-modules
of rank one. The following connection between the Det-construction and the class-

group is called the ‘Hom-description’ .a.nd is due to Frdhlich.

Theorem 1.1.2 (Curtis and Reiner [7], page 334; Frchlich [9]) With the notation
introduced above there is an isomorphism

Homaq, (R(G), J*(E))
Homg, (R(G), E*) - Det(U(Ox[G)))

Det : CL(Ox[G]) =

" which sends a locally free module, M y to the class of Det((Ap)) defined in Section

1.1.
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Definition 1.1.3 The kernel group, D(Ox[G]). An Ox-order, A in KI[G], is a
subring containing Of, which is ¢ finitely generated, projective Ox-module such that
K ®o, A = K[G]. Suppose that A is a maximal Og-order of KiG), then we may

define the kernel group, D(Ox|[G]) by
D(Ok[G)) = ker(CL(OK[G]) — CL(A))

where CL(A) is the class-group of A, defined by a Grothendieck group construction
analogous to that of Definition 1.1.1. The group, D(Ox|G]), defined in this manner,

is independent of the choice of A.

There is a Hom-description of this gi'c;up also.

To describe this we need to introduce a subgroup
Hom, (R(G),0%) C Homq, (R(G), OF).
A complex representation T is symplectic if it is of the form
T:G — GL,(H} = GL;,(C),

where H = R[i, j, k] is the division ring of real quaternions and ¢ is the complez-

ification homomaorphism, i.e. if we write X = Y + W3, where Y,W € GL.(R[i]},
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then

Y -W
oX)=

W Y

- A character x is called symplecticif it is the character of a symplectic representation.
_ _Sﬁppose that x is a symplectic character. Then complex conjugation fixes X in R(G)

so that if [ € Homgq, (R(G), E*) and if K is a subfield of the real numbers R, then

f(x) lies in R for every Archimedean prime of FE which extends KX C R. Therefore

it makes sense to define Hom§, (R(G), E*) to be
{f € Homq, (R(G), E") | f(x) is positive, x symplectic }

where positive means that f(x) is positive under every Archimedean place of E which

lies over a real place of K.

Similarly we may define
Homg, (R(G), Og) = {f € Hom{ (R(G), E*) | im(f) C O3}

Theorem 1.1.4 (Curtfs and Reiner [7), page 334) The isomorphism of Theorem

1.1.8 induces an isomorphism

Homg, (R(G), U(Ox))
Hom} (R(G), O) - Det(U(Ox[G]))’

Det : D(Ok[G]) =
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Remark 1.1.5 Og,[G] is a maximal Og,-order in Eg[G] for all primes, Q, which
do not divide the order of G. Using this fact one may rewrite Theorem 1.1.4 as an

isomorphism of the following form.

Homa, (R(G), ojie) Ok.)

Det : DIOKICD = g7a RG),O%) Det(lIge; OmalGT)

Remark 1.1.6 Let Qg be a quaternion group of order §, i.e.
Qs={z,y|2* =y’ y' = Layz™' =y},

then CL(Z[Qs]) has order 2 (Martinet [25]). A new definition of the isomorphism of
the form

n :CL(Z[Qs]) — (Z/4)" = Z/2,

can be found in Snaith [33], Section 5.2.

1.2 Artin Root Numbers

Let L/K be a finite, Galois extension of number fields and let ¥ be the character
of a finite dimensional complex representation of G(L/K). The extended Artin L-
function, Ax(s,x) (see Snaith [33], page 334), is a meromorphic function of the

complex variable, s, satisfying the following properties:
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(i) Ax(sx1®X2) = Ax(s, X2)Ax (s, x2);
(i) 1K CLCNisa chain of finite Galois extensions and G(N/K) — G(L/K)
is the canonical map, then
Ax(s, InJEET (%)) = Ax(s,X);
(iiiy If F is an intermediate field of L/K and ¢ is a character of G(L/F), then
Axls, Indgizjry(#)) = Ar(s, )
(iv) IfX denotes the complex conjugation of x, then

Ax(l - s,x) = Wrk{x)Ax(s,X),
where Wi (x) is a compleJ; number of absolute value one.
The invariant Wi (x) is called the Artin root number of x It satisfies the following
properties:
| () Wk(x1 @ x2) = Wr{x1)Wi(x2);
(i) If K C L C N isa chain of finite Galois extensions and G(N/K) - G(L/K)

is the canonical map, then
| WilInfgiphe) (0) = Wi(x)
(iii) If F is an intermediate field of L/K and ¥ is a character of G(L/F), then

Wic(Indgiim () = Wr ().

G
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The Artin root number Wi (x) may be determined locally in this casc. If v is a prime
of K and w is a prime of L above v with the corresponding decomposition group
G(Lu/K.), let xo = ResGyk.,(x) and W, = Wy,. Then by a result of Tate in

1950, (see Snaith [32], Theorem 1.4.11),

WI\’(X) = H Wu(xu)-

In the above formula, the term W, (x,) is called the local root number associated to
X- To give the definition of the local root number, we first define the abelian local

Gauss sum.

Let K/Q, be an extension of local fields. We define the non-trivial additive

character ¥x : I — C* as the composition of the following four maps:

Tr .
K =5 Q-2 Q,/2, 44 Q/2 B ¢ '-

where:

(i) Trgjq, is the trace homomorphism,

(ii) A is the canonical projection,

(iii) u is the canenical injection which maps Q,/Z, onto the p-component of the
divisible éoup Q/Z,

(iv) ezp is the exponential map z + 3",
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For every z € Q,, there is a rational number r, uniquely defined modulo 1, such that
z—1 € Zy. Then ezpopo A(z) = ezpo po A(r) = 2",

The codifferent of K, Dx}, is defined to be the largest fractional ideal of K for
which ¥y is trivial.

Now suppose that L/K is a Galois extension of local fields and that 8 is the
character of a one-dimensional Galois representation.” We may factor  uniquely
through the abelianisation G(L/K)®. From local class field theory, there is a natural

isomorphism of the form

G(L/KY*® = K*[Nyx(L%),

:-T\“\:

and hence we may identify & with a unique continuous homomorphism of the form
0: K*—C"
-which is trivial on Ny 5(L").

Making this identification, we define the associated abelian local Gauss sum 7(6)

by the formula

0= > | 0(z/c)x(z/c)

zEU}/U;(O)
where n(f) is the least integer such that the character 4 is trivial en the subgroup
UE® and c is a generator of the ideal f (6)Dx. Here, f(6) = PE? is called the local

Artin conductor ideal of 8 and Dy is the different of K.
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The local root number of the character 8 of a one-dimensional Galois representa-
tion of a local field K can be defined explicitly in the foliowing manner.
(i) I K =C,set Wg(0) =1.
(i) TK=R, set
" 10 s trivial

Wi(0) =

—1 otherwise.

(iii) If K is non-Archimedean, set

- Wk(0) = v(0)/(YN(/(0))).

Now let L/K be a Galois extension of local ficlds. By a result of Tate [37], the
abelian root number defined above can be extended uniquely to the local root number

homomorphism

Wi : R(G(L/K)) —s C

which takes values in complex numbers of norm one and satisfies the following prop-

\\‘\_

erties:

() Wk(x1 @ x2) = Wk(a)Wxk(x2);
(iiy If K C L C N isa chain of finite Galois extensions and G(N/K) — G(L/K)
e

is the canonical map, then

. Wi (In fg((fj;ﬁ? (x)) = Wk(x);
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(iii) If Fis an intermediate field of L/K and x is a character of G(L/F), then

Wi (IndSEi B (x — dim(x))) = We(x).

Note that Wk(1) = 1.

The non-agbelian local Gauss sum is defined from the root number by the formula

Wr(x) = 7@/ (VN (x)-

1.3 Root Number Classes

.In this section we shall describe the root number class which was introduced by
Cassou-Nogués and Frohlich (see Snaith [33}, Chapter 7).

Let L/ K be a finite, Galois extension of number fields and let  be the character of
a finite-dimensional complex representation of G{(L/K). To this data, in Section 1.2,
is attached the Artin root number of x. If x is a symplectic character, then it follows
from the functional equation of the extendéd Artin L-function that Wi (%) = Wx{x).
Hence if x = X, then Wx(x) is real; as it is of absolute value 1 it must be +1.
Therefore, if x is symplectic, then Wi(x) € {£1}.

In terms of these invariants of analytic origins we may define a class

Wik € CL(Z[G(L/K)))
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in the following manner. We shall use the Hom-description of Theorem 1.1. Let
E/Q be a large Galois extension of the rational numbers, as in Section 1.1.
The absolute Galois group Qq acts transitively on the infinite places of E. Let

Yo denote one of these places. Define a homomorphism
Wik € Homaq(R(G(L/K)),J*(E))

by the following formula for the v-th coordinate of Wik(x), where yx is any irre-

ducible character:

,
1 ifvis ﬁnitq

Wrilv=14 1 if x is not symplectic

‘ o (Wk(a(x))) if x symplectic, v = 0™ (v), @ € Qq.

By construction, Wy x(x) is Qq—equi\l{a.riant and therefore represents a class, WL/K,
in the class-group. However, we must show that the construction of Wik is in-
dependent of the choice of v,,. In the tamely ramified case it is possible to define
Wy x without making a choice of v, and in this form the construction of Wik was
introduced by Ph. Cassou-Nogués [1]. The definition of Wik for wildly ramified

extensions L/K is due to A. Fréhlich [10] (see Chinburg [3], page 18).

Proposition 1.8.1 The class, Wik, defined above is independent of the choice of
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Vs and salisfies

2Wrix = 0 € CL(Z[G(L/K))).

Proof The fact that Wik is 2-torsion follows from the fact that Artin root
numbers of symplectic characters lie in {+1}.

If x is a character of G’(L/K), let N(f(x)) denote the absolute norm of the
| Artin conductor ideal of Section 1.2. Write m for the positive square-root

of N(f(x)). Since \/N(f(x)) is 2 positive real number, the elements

o (YN f(a(x) = o« (N F(x))) € Eo1(ve0)

are positive reals at all infinite places a~!(v,,). Hence we may define
h € Homq,(R(G(L/K)),J"(E))

by replacing o~} (Wi (a(x))) with a"l(m) in the definition of W7,k (x)..
The resulting class is equal to one at gll finite places and is totally positive on sym-
plectic representations at all infinite places. By Taylor [38], page 9 (see also Chinburg
[3], page 19,(2.6.1) (proof)) & is a determinant and represents the trivial element in
CL(Z[G(L/KY))). Hence Wi,k may be represented by W} /i -h~'. However, when x
is irreducible and symplectic, |

a Y (Wk(a(x))) = Wi (x)
a({/(Nfa(x)) (Nf(x)




CHAPTER 1. INTRODUCTION 19

{Chinburg {5], page 327) so that the a~!(v.)-component of this representative for

WLk is independent of  and hence does not depend on the choice of v,,. 0

1.4 Local Chinburg Invariants

We are now in a position to describe the local Chinburg invariants (c.f. Chin-
burg [4]). Let L/K be a Galois extension of p-adic local fields. If U C L" is a
Z[G(L/K)}-submodule which is cohomologically trivial and L*/U is a finitely gener-

ated Z{G(L/K)]-module, then there is an exact sequence of the form
L’/JU— AJlU— B— 2,

where A and B are cohomologically trivial, and both A/U and B are finitely gen-
erated Z[G(L/K)]-modules. This is because H*(G(L/K);L*/U) = Btk
classifies such exact sequences as 2-extensions. This exact sequence is described in
Snaith [32], Section 2.2.2, and represents the preimage of [L : K]~! under the natural
canonical isomorphism inv : H*(G(L/K); L‘/ U)=Z/[L: K] C Q/Z (for more de-
tails on this cann;mical embedding see Serre [28]). In any case, a finitely generated,

cohomologically trivial Z[G(L/K)]-module, X, has 2 finitely generated projective
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resolution of the form

0—P —F—=X—70

and therefore defines a class
[X] = [R] - [P] € CL(Z][G(L/ K))).

Therefore we have classes [A/U] and [B] in CL(Z[G(L/K)]), and we may define a

class, which we shall call the local Chinburg invariant
Q(L/K,U) = [A/U] - [B] € CL(Z[G(L/K))).

Proposition 1.4.1 (Snaith [82], page 47) The class Q(L/K,U) is independent of

the choice of A and B in the 2-extension

L*'/U-— AlU—B— 2.

Proof Let

L*’U —- AU — B —Z
be anqther 2-extension, with A'/U, B’ finitely generated and A’, B’ cohomologically
trivial, and which represents inv='({L : K]™') € H*({G(L/K);L*/U). Therefore
there is a commutative diagram resulting from the equivalence of these two 2-

extensions:
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LU AU B Z
1 a Jéj 1
L*/U AlU—% . B ¢ y4

We may form a chain complex of Z[G(L/K)]-homomorphisms

0— AU B AU %y B 0.

21

It suffices to show that this sequence is exact, since exactness implies the relation

[A/U] +[B] = [A/U @ B = [B@ A'/U) = [B] + [A'/U] € CL(Z[G(L/K))).

However, at the left, if (a, a)(z) = (0,0} then 2z € L°/U C A/U and then 0 = a(z) =

z. Also, at the right, if &' € B’ we may choose b € B such that e(b) = ¢'(b') and then

b — B(b) € ker(¢') = im(a’). Finally, if b € B and z € A'/U satisfy 8(b) = a'(z)

then €(b) = €/(a'(x)) = 0 so that b € im(a) and b = a(y). Therefore

¢'(z—afy)) =p(b)-d(aly)
= B(b) — B(a(y))

=0
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so that z = a(y) + w for some w € L*/U and

(@, a)(y+w) = {u{y) + a(w), «(y) + a(w))
= (a(y), aly) + w)
= (ba .'I:)

which establishes exactness in the middle. (|

1.5 Global Chinburg Invariants

Let L/K be a finite Galois extension of number fields. In Chinburg [4] three class-
group invariants, Q(L/K, i) € CL(Z[G(L/K))), were constructed in a cohomological
ma1ner which is analogous to the construction of the local invariant of Section 1.4.
We shall now give a definition of Q(L/K,2). This defiition (Snaith [32]) is an
adaptation of the original definition and is due to S. Kim [21] (see also Kim [22]).
and is also used in Wilson [41).

For each finite prime P < Ok, choose a prime Q <« Oy, lying over it, so that
the decomposition group of @ is isomorphic to G{Lg/Kp). We shall say that P is
tam'e if Lo/Kp is tamely ramified and that P is wild otherwise. By a theorem of E.

Noether (see [9]), if P is tame then O, is a free Ok, [G(Lo/Kp)]-module of rank
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one. Therefore we may choose an adéle

(ap) =ae HOLQ
P

(the product being taken over finite primes of K with Q being the chosen prime over
P) such that

(i) ap € Or, and Kp[G(Lo/Kp)lap = Lg for each P and

(1) Ok,lG(Lo/Kp)lap = OLQ for each tame P.

There are isomorphisms, as in Section 1.3, of the form

L®x Kp 2 ] L = IndSi/%) (L)

RIP
and
O Qoy Ok, 1{% OLe = Indgelik \(Ore)
so that

(i) Kp[G(L/K)lap = [Igjp Lr for each P and
(i) Ox,|G(L/K)]ap = [Ig)p OLy, for each tame P.

We will abbreviate Ok, [G(Lo/Kp)ap to Xg and set X = Ok[G(L/K))a. This
is to be interpreted as meaning that X is the intersection of L with the product of

its P-completions, Xp, where both are considered as subgroups of the adéles. Hence
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X is a locally free Og[G(L/K)]-module whose P-completion is
Xp = O [G(L/K)lap = Indgir Lk \(Xo).

In addition, we shall assume henceforth (by replacing X by mX for a suitable

integer, m € Z, if necessary) that the Q-adic exponential defines an isomorphism
exp: Xo =1 +Xo C qu

for all wild Lg/Kp.
Since X is locally free, it is cohomologically trivial and so also is X o for each Q.
Hence X defines a class in CL(Z[G(L/K))). Therefore we may define an element,

which we shall call the second (global) Chinburg invariant, by the formula

QL/K,2) = [X] + 2 Indgiig/is)(ULe/Kp,1+ Xo))

P wild

in CL(Z[G(L/K))). Here Q(Lg/K»,14Xg) is the local Chinburg invariant of Section

1.4. The assumptions of Section 1.5 ensure that 1 + Xg is cohomologically trivial.

Proposition 1.5.1 The definition of Q(L/K,2) is independent of the choice of X,

salisfying the conditions of Section 1.5, (i) and (i).

Proof Suppose first that Y is another choice of lattice and that X ¢ Y. In the
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notation of Section 1.5, one easily obtains the following relations in the class group:
[¥]-[X] =[¥/X]
=2y wild [Yr/Xp]
= Lp wild Y7l — [X7]

= Tp wild Indag ol 1(Ya] - [Xal)

=Zp wild T "dgngﬁfﬂ\]'p)](ﬂ(LQ/ Kp,1+Y0)
—Q(LQ/I{p, 1+ XQ))
This proves the result when X C Y. Given two general lattices X and Y, we may

find a third lattice W, which lies in X NY and may apply the preceding argument

to the pairs, (X, W) and (Y, W) to complete the proof. D

Remark 1.5.2 When Lo/ K is tame for all P we say that L/K is tame. Observe

that

QL/K,2) = [0L] € CL(Z[G(L/K)))

when L/K is tame.

We are now in a position to state the Second Chinburg Conjecture (sce Chinburg

[3, 4, 5]).



T
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Conjecture 1.5.3 (The Second Chinburg Conjecture) Let L/K be a finite Ga-

lois extension of number fields. Then
QUL/K,2) = Wk € CL(Z[G(L/K))).

This conjecture has a considerable amount of supporting evidence. In the first
place it generalises, by Remark 1.5.2, a conjecture of Frohlich which states, if L/ K

is tamely ramified, that
[O1] = Wik € CL(Z[G(L/K)}).

This case was proved by M.J. Taylor {39] and is also described in Fréhlich [9]). A
sketch of a slightly different proof of Taylor's result can be found in Snaith [32],
Chapter 3.

As to further evidence, several wildly ramified examples have been verified for
K = Q. The case where Gal(L/Q) 2 Qs and the prime 2 is not totally ramified,
is treated in Kim {21, 22] (see also Snaith [32), Chapter 6, for a new proof). The
case where L is a p-cyclotomic extension of degree p" over Q, for an odd regular
prime p,:is proved in Snaith {31]. Recently, C. Greither [17] has shown that this
conjecture holds for all abelian extensions of Q with odd conductor. Apart from
this direction, M. Rogers has proved that Q(L/K,2) — Wk is in the kernel of the

map from CL(Z[G(L/K)]} to Go(Z[G(L/K))), the Grothendieck group of all finitely
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generated Z[G(L/K)]-modules. In fact, (Chinburg {5], page 327) D(Z[G(L/K))) is
contained in this kernel and D. Holland [19] (see Snaith [33], Chapter 7, for a new

proof) has shown the stronger resuli that
Q(L/K,2) - Wk € D(Z[G(L/K))).

In the remaining chapters of this thesis, we adopt the techniques of Snaith [32] to
show that the Second Chinburg Conjecture also holds for two families of quaternion

extensions of Q in which the prime 2 is totally ramified.



| Chapter 2

Local Quaternion Extensions

2.1 The Two Extensions

Let N/Q be a quaternion extension, i.e. a normal extension with Galois group

isomorphic to the quaternion group of order eight

QS = {z,y | 2 = yQ’ y4 = 1$$y$-1 = y-l}:

such that the prime 2 is totally ramified i.e. there is only one prime of Oy, over the
prime 2 of Q whose ramification index is 8.
In this section we are going to study two local quaternion extensions L/Q, which

are totally ramified. There are exactly four such extensions (see Jensen and Yui [20],

28
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Kim [22], and Snaith [32]).

Lemma 2.1.1 Let N be as above cnd let H be the bi-quadratic subfield of N. Suppose
that N, contains Q2(V/3,v10) where v is a prime of N above the prime 2. Then

H = Q(vd\,V/d2) where dy, dy are square-free integers, d, = 3 (mod 8), and

d =10 {mod 16).

Proof Without loss of generality we may assume that d, is odd. Since the prime
2 is totally ramified, dy = 3 (med 8). It follows from FrShlich [14], Theorem 5,
that d = 2 (mod 8). This means that either d; = 2 (mod 16) or d; = 10

(mod 16). From the given hypothesis, we have that N, contains Qg(@), 50

d; =10 (mod 16). a

Throughout this chapter, we let E = Q,(v/3,/10). As usual, we use 7p to denote

a prime element of the local field F'. We let
Ly = E(ay)

where

a} = +(1+ V3 + V10/10 + v/30/10)

We are now in a position to prove the following lemma.
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Lemma 2.1.2 If L = L; and a = ay then L is a qualernion eztension of Q.
containing B, 7 = 7 = 1+ a, and the Galois action of Qg on L/Q; is given by the

Jollowing formulae.

z(a) = (1 — v10)a/3, z(v10) = =10
y(@) = (V3 = 1)a/v/Fv, y(vI0) = VIO
z(v/3) = V3, y(V3) = -3

where v € Qj and v¥ = —1/15.

Proof It follows from Jensen and Yui [20] that L./Q; are precisely the two
non-isomorphic quaternion extensions of Qz which contain the biquadratic subfield
E= Qg(\/:?, \/ﬁ) It remains to show that the defining relations for Qg holds for

the action on a. We consider the following elementary computations:
z(a) =(1+V10)z(a)/3
= (1 + VI0)(1 — VI0)a/9

— —a’

¥(@) = (~v3 - 1)y(e)/(—V30u)
L = (B+)(VI- /(307

= —a



CHAPTER 2. LOCAL QUATERNION EXTENSIONS 31
and
zyz(a) =zy((1-vi0)a/3)
= z((1 - V10)/3(v3 - 1)a/V/30v)
= —(1 4+ V30)(v3 - 1)(1 — V10)e/3v/300v
= (V3 - 1)a/V30v

= y(a).
To show m = w1 = 1 + a we abserve that both Ny q,(1 + a4) = 166/25 and

Niq,(1 + a-) = 6/25 have valuation 1 in Q,. o

2.2 The Fundamental 2-extension

Let K, denote the maximal unramified extension of K. Since Ly is totally ramified
we have Ly N Qe = Q2. As in Snaith [32], Section 1.2 (see Serre [28], page 202;
and also Snaith [33]), letting F denote the Frobenius automorphism of Q2.-/Q; and
Lo = L4+ Q3 s, we have the following 2-extension:

Ly — 0Bz,
where F denotes the automorphism of Ly which is the identity on L and is equal to

F on Q2. The existence of the above sequence implies the existence of

i, € L
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such that
' F(wxt)/wty = y(z)/x € L*

F(t2)/tz = z(n)/7 € L.

We observe that the above relations are not changed when we multiply ¢; or ¢; by
any element of L*.

As in Snaith [32], Section 6.1.4, we introduce the following commutative diagram:

d
Ker(d— Z[Qs| ® ZIQs) — Z[Qs] — 2

k J 1 1

L3 L il Iy Y. z

Here the upper line is the beginning of the standard, periodic Z{Qs]-resolution
of Z. Hence, if b, are the two free generators ( see Snaith {34}, page 19), then

d(b) = = — 1 and d(¥') = y — 1. Hence Ker(d) is the Z[Qg]-submodule generated by
a=1+z)b-1+y}

and
c2 = (zy+1)b+(z —1)¥.

In the upper line, the map ¢ is defined by ¢(g) = 1 for g € Q5. The map i is given

by i(1) = m € L* C Lg. The map j is defined by j(b) = ¢; and j(}') = =t;. The
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homomorphism & is determined by the following formulae:

k(er) = tax(ta)(mtay(mty))™
and
k(c2) = tazy(ta)z(mty)(nts) .
The map k plays a very J;mportant role in our study. In the next section we shall
show that k is injective. The strategy of our prcof of the injectivity of k will be
explained later in the proof of Theorem 2.3.8.
We now find some elements of Ly which depend on #, and #; but belong to L*.

The following Lemma will be used very often in Section 2.3.

Lemma 2.2.1 Fort; and t; defined above, we have the following.

(1) (1+z+2*+3%)(t) € Qa(V3),
(2 Q+z+22+231 +y)(t2) € Qq,
(3) (1+y+y*+°)(t) € Qx(V10),

(4) (1 +zy+2* + (zy)°)(t2/mts) € Qa(V30),

and
(6) K(-2")er—e)) € L™

Proof Leto; =14 x4 2?4 2% Since oy = NLo/ Qe (V3 WE have a,(t;) €

Q2,»r(v3), and since Q2.4-(V3) N L = Q;(V/3), to show (1) it suffices to shoﬁr that
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oy(t2) € L, i.e. we have to show that {F/1)(o1(t2)) = 1. We consider

(F=1)(e1(t2)) = o1(F(t2))/ou(t2)
= (F(ta)/t2)z(F(t2)/t2)2(F (t2) /t2)2*(F (t2) [t2)
= ((m)/x)(=*(m)/=(m))(z3(x)/*(x)) (z*(x) /=% (x))
= 1.
Thus (1) is now proved. Statements (2), (3), (4), and (5) are proved in the same

manner. O

The following arguments will give the images of 7 under the actions of z, y and
zY.
Since L/Q; is totally ramified, we have v(a) = vz (a) = vq,(Ny/q,(a)) for all a € L*.
Hence, to express a unit a of L in terms of x we first have to compute v(a —1). If
v(e—1) =m, then a = 14+ #™ + ... The value of v(a — 1 — 7™) will determine
the next term for a, etc. With this observation, using Maple we have the following
identities. For a = ay,

z(m) = 71+ + 2+ 7%+ 754 2° + 710 4. 116 +'7':7‘ )a ‘

TN
R o

y(#) = n(l+mr+7’+7+ntb a4 a0 B
1r“+1r15+1r"+---),
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and for ¢ = a.,

g() = a(l+r+n'+2° 478+ 2% 420427 2124
.ﬂ.13+ﬁ14+ﬂ15+ﬁ17+___),

y(@) = m(l+a+r i+t a8 ol p a2 a5y
PSLITY |

zy(m) = 7 +r+a’+a +a’ 4704t palSp a4,

2.3 The Injectivity of k

We start this section with the notations of the following four important clements of

Z[Qq]:
o= (1+z+2"+2%)(1+y),

T=(14+z+2*+2%)(1-y),
A=(1+y+¢¥*+(1-12)
and

p=(1+zy+z*+(zy)*)(1 — 2).

Unless stated otherwise, throughout this chapter we let K = Qu(v/3), V =

Qz(v10) and W = Q;{+/30). It is easy to see that we may choose mx = 1 4+ /3,
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v = V10 and mw = /30. With the above notation, Gal(L/K), Gal(L/V) and
Gal(L{W) can be identified with < z >, < ¥ >, and < zy > respectively.

The purpose of this section is to prove that the map k, defined as in the previous
section, is injective using some suitable choices for ¢, t5, and their images under the
actions of 4, 7, A, and p. From the previous section we know that z(7)/7 € U$ and
y(w)/w € UL. It follows from Serre [28), Proposition 15, Chapter 13, that ¢; € Ui,

and ¢) € U] . This allows us to write
ta=(1+aam’)(1 4 aur‘)(l + asm®)ug

where ug € Ufo, as, ¢4 and as are either 0 or roots of unity of odd order in Q2,4
Using the facts that F(t;)/tz = z(w)/w and F(1+ai7') = (14a?n') for i = 3,4, 5,
we have
" al+a;+1=0 (mod 2).
Hence a; must be a primitive cube root of unity, i.e. a; = € or £ where £ # 1 and
£ = 1. We may multiply ig by 1+ n* if necessary to assume that a; = ¢ for all

¢+ = 3,4,5. Thus t; may be chosen to be of the form

iz = (1 + f-;ra)(l + {'.rr‘)(l + E‘Jr5)u6. : ::’N\

Using similar arguments, we may assume that ¢, = (1 + ém)up with u, € Ufo.
3

Before going further in this direction, we prove the following usefal result.
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Proposition 2.3.1 For ¢ defined as in the beginning of this section and u = 0 or

an odd root of unity, we have the following.
1) Q+z+22+2%)(14ur™)=1 (mod P§ ) for alln > 16
(2) o(14+ur™)=1 (mod 32) foralln>16
3) (I+y+¥*+¥)(1+ur™) =1 (mod PE) for all n > 12
and

(4) Q+zy+a*+(zy)®)(1+ur™)=1 (mod Pi,) for all n > 12

Proof To prove statement (1), we observe that 1 4 x + 2 + 2% = (1 + z)(1 4 «?).

Recall from Section 2.1 that E is defined to be the bi-quadratic subfield Q,(v/3, /10)

of L. We consider
(1+2)(1+ur™) =1+ ulr g, (7") + u Ny (1)

Since vy, (z*(w)/r — 1) = 7, it follows from Serre [28], page 83, that for n > 16,

Triqe,(m") € Pg;. Together with the fact that Ny, /g, (") € PR, we have
(1+2)1+ur™)=1 (mod P) forall n > 8.

Since vg, (3(7!‘150)/ TE, — 1) = 3, using similar arguments for the extension Ey/ Ky, we
conclude that

(l+z+22+2%)(1+ur")=1 (mod PL ).
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Statement (2) is proved by applying the above results and using the facts that

VK, (y(WKo)/WKg) =1.

To prove statements (3) and (4) we use identical arguments and the following

facts:
I+y+y*+y® = (1+y)(1+2%),
1+zy+2*+ (:::y)3 = (I+zy)(1+ 32),
B (y(n5,)/n5, 1) =1 and vg,(oy(ns,)/rz, — 1) = 1. 0

To obtain more information about #; we let

2= (1+&n°)(1 + €&xV)(1 + én) (]_1_5_[(1 + a.--n'“)) g

1=6
where uyg € U},S and ¢; is either 0 or an odd root of unity in Qg 4, and prove the

following lemma.

Lemma 2.3.2 The element, t;, may be chosen so that
o(t) =(1 +z+a?+ )(1+y)(22) =13 (mod 32).
Proof Using the facts that

Fl4+za™)/(1 4 2z™) = (1 + 225™)(1 — 2n™ + 222%™ — 222%™ 4 ..)
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where z is either 0 or an odd root of unity lying in Q,,,, and for a = ay.,

Fi)te =z(m)fn =1+ 40t 4+ 4784 n¥ + 704 216 4.,

we have the following identities, modulo 2,

and

where 27 = ag + a2 + ¢?

ag+ai+& = 0,
ar+ai+1 = 0,
ag+ai4 & = 0,
ag+a; = 0,
ae+ah+£& = 0,
an+tal,+¢ = 0, ]
ajz+a, +ag+ad = 0,
ap+alz+¢& = 0,
ayu+a,+y+ai+1l = 0

as+ais+1 = 0,

(mod 4). In this case we may choose a7 = § and ag = 0.
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We observe that, modulo 2,
(as + as) + (as + as)® = (ag -+ a2) + (as + a)=8+=0.

Thus modulo 2, as + a5 = 0 or 1, and multiplying ¢, by 1+ #8 if necessary, we may
assume ag + ag = 0 (mod 2). For the same reason, we may choose a;o and @y SO
that aip+ a1 + =0 (mod 2).

To compute a(t2) modulo 32 we observe that

o1 +€n%) =144+ 16¢,
o(l+§n%) =1+16 +16¢,
o(l+&xs) =1 +8+8§‘,

o(1 + agn®) = 1 + 24ag + 8a?,
o(l+én") =148+ 16¢,

o(1 + agn®) =1 + 1642,

o{l + agn®) =1,

o(1 + a107'%) = 1+ 1640 + 1642,
o(1+an7!t) =1+ 16ay, + 1643,

0‘(1 + an?rn) =1+ 16ay,,

>
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o(1+ a13n’d) =1 4 164,3,
O‘(l + 01471'14) =1+ 16014)

0'(1 + 0.1571’15) =14 16015

and o(1+ur*)=1 (mod 32) for all n > 16, and u = 0 or an odd root of unity {by

Proposition 2.3.1(2)). Using all the above identities together with results of 2.2.1(2),

we have, modulo 32,

o(t2) =13+ 16(v + €+ a1z + ara + arg + ais)

is an element of Z;. In the case a = a_, we use similar arguments and obtain the

same formula for o(2). Since o(t2) € Z3, modulo 2,
Y+€{+taz+aatautas=0orl.

Muliplying ¢; by 1+ n4 if necessary, we may assume that the above identity is 0.

Therefore,
o(ta)) = (1+y)(1+ = +2* +3°)(t) =13  (mod 32),
as desired. o
A
Corollary 2.3.3 With the choice of t; as in Lemma 2.5.2, (\\

Q+z+2’+28)(t) =1+ nf +nk +1h + 7% (mod PL),
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where 1 = 1+ /3 is a prime element of the field K = Q2(V3).

Proof As in the proof of Lemma 2.3.2, if we let oy = 1 + z + z? + 23, then direct

computations show that, modulo 'Pﬁ»o,

o1(1 + €n%) = 15 + 86 + 6v/3 + 1263,
(14 &nt) =14 86+4/3,

ar(1 + €n%) = 5 + 12¢,

o1(1 + as®) = 1+ 12a¢ + 4a2 + (1245 + 12a2 + 8ad)V/3,
o1 (14 €x7) =1 + 8¢ + 123,

o1(1 + agn®) = 1 + a2 + agV/3,

o1(l + agn®) =1,

o1(1 + @107'°) = 1 + 8ay0 + 8al, + 8a?,V/3,

o1(1 + ann!') =1 + 8ay; + 8ad, + 8a%,V/3,

o1(1 + a127®?) = 71 + 8aj; + Sﬂiz\/g,

o1l +aprd) =1+ 8G13:“+ 8a13v/3,

o1(1 + aiqm™) =1 + 8ay4 + 82143,

01(1 + a157'%) =1 + 8a15 + 8ay5v/3

and o1(1 +urk) =1 (mod Pf,) for all n > 16, and u = 0 or an odd root of unity -

(by Proposition 2.3.1(1)). Multiplying the above and using the result of Lemma
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2.2.1(1) and the identities of Lemma 2.3.2, we have, modulo P&,
A+z+22+28) (L) =147k + 7 + 7d + Cn®+ D7

where for v defined as in Lemma 2.3.3, C = € + a;p + ay (mod 2) and D =

Y+as+ai+ay+ a3+ a+a55 (mod 2). Recall that in the proof of the last lemma
we chose the coefficients so that, modulo 2, ag + a2 = ag + a2 = €2, ay + 2y = ¢

and ¥ + £ 4 ay2 + @13 + @14 + a35 = 0. Therefore,
(P+z+2+2°) () =1+ 7} + 0k + 7k + 7k (mod PE),
as desired. ]

As before,‘ to find the first few terms of ¢5/¢; we let

tafty = (1 +¢m) (ﬁ(l + bi“i)) U2

=2

where b; = 0 or an odd root of unity, and u;, € U3,

Lemma 2.3.4 The unit t2/ty may be chosen so that, modulo PS,

l+mwt+nd +7fy fa=a;
NLo/Wo(h/tl) =

14+ 7w + 73 fa=a_,

l\*-’)

where Tw =~'—V*§fl¢i:§>a prime element of the field W = Q,(/30).
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Proof We observe that, for a = a4,

F(taft1)[(t2/t1) =

(F(ta)/ta}(t1/F(t1))
z(m)/y(m)

l+w+n+7°+7%+ 78+ 71% (mod PJY).

44

Now using the same method as in Lemma 2.3.2, with the help of Maple, we have the

following identities, modulo 2,

i

: :\{3

o

-

W

o -

ba+ b2+ ¢

by + b2

by+ b3 +bE 4034 ¢

bs - bg

m+£+m+$

by + 3 + b3 + 53 + bg + b + bg + B2

B + b3 + B3 + baby -+ b3by

v

bo+bp+b+d+1-

AN

B+ b+ 841

bo+ 5 +By41

i

1]

[l

p—14

—

.'0:‘

0"

(2.3)
(2.4)

2.5)

~

(26)

@27)

@8 _°

(2.9)

10

The dlement § in Equations (2.9) and (2.10), satisfies b+ B3+ £+25 =0 (mod 4).
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From Equations (2.2} and (2.4) we can choose b3 and bs so that by = bs = 0. It

follows from (2.1}, (2.3), and (2.5) that, modulo 2,
b +b = (b +07)? =¢7,

by +bI=b2+03+¢

and
bs -+ b = b3 + b3.
Substituting the above identities into (2.6), we have
br+b3=0 (mod2).
Thus we can choose b; = 0. We also observe that if we let n = £2 + b3 -+ bg, then,

modulo 2, \/‘

nn? = 140358458+ 88

1]

14 (b + b3)°
= 141=0.

Multiplying t2/t; by 1+ #®, if necessary, we may assume that p =0 (mod 2). This

assumption will be used in the next corollary.

It now follows from the above identities and some direct computations using

Maple that, modulo P,

NLo'/Wo(l + le')
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Negpwo(1+b27%) = 142(83 + 283 4+ b3) +
2(b, + 353 + 253 + 2b3)m,
Negpwo(1 + ban?) = 14 4(by + b2) + 4bymyy,
Nropwo(l +867%) = 14 4(bs + b2) + 482wy,
Negwo(1 +be7®) = 1,
Nioswo(1+ be7°) = 14 4b2my,
‘ii\‘ngl‘Vu (145107’ = 1+ 4dbyomw,

Npgpwo(L+bun't) = 144bymw

T
=

T

It

and Npywo(l + b,7™) =1 for all n > 12, where b, = 0 or an odd root of unity (by

Proposition 2.3.1(4)). Hence, by Lemma 2.2.1(4),
Niopwo(te/t1) =1+ 7w + Any + Brjy + Cndy + Dy (mod yP§,

where A = f+b§t+b;, B=a+dq+1,C = b3 + by + b + b + B} + €% and
D=a}+aj+as+ai+apn+an+d+1.
Now since by + b = b3 + b3 +¢ {mod 2l) and bf + bf = b} + 0§ +£% (mod 2),

we have

butb = 14+8+8+8+5 (mod?2) (2.11)
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From (2.1), we have b2 + b3 =¢? (mod 2) and
1=(G+ 03P =0 +b]+ 05+ (mod 2).

Putting (2.11) into the expression of C' and using the above facts, we obtain C = b3

(mod 2). Using identity (2.1), we have, modulo 4,

£+ b2+ b e+ 428

—-1 4283,

Thus, modulo P§,,
Anfy = (=1 + 23)ndy = my + (1 + B3)mi.

From the identity b2+ b3 = ~£+26 (mod 4), we have b3+ b3 = €242 (mod 4).

Hence
bo+ 83 =1+2(14&+ 8+ b2+ b2).

It follows that, modulo P¢,

By = (b +b+1)my
= (b + 83+ & + 8)miy.
Therefore, with this choice of {3/t; and o = ay,

Nrowi(te/t1) = 147w + Anfy + Brjy + Crfy + Dy (mod Pfy)

= 1+ 7w+ mly + 3 + Damly,
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where Dy =1+ b3+ b + b6+ b3+ bjo+ by +4. Since Dy =0or1 (mod 2) we may
assume that D; =0 (mod 2) by multiplying #; by 1 + #'! if necessary.
In the case a = a_, modulo P}?,

x(ﬂ-)/y(ﬂ-)E1+1r-]-173;.|-1r5+7r8+7r7+7r11

Hence, b: + b3 =1 (mod 2), and we may choose b; = £. For simplicity, we assume

bs = 1 instead of 0. In this case, we have, modulo P§, ,

Negwo(1 +&m) = 142+ 57w,
/ Npgwo(1+82m%) = 1+2(53 4203 + b)) +
«"41‘/ 2(3bg + b2 + 2b3 + 20Dy,
K( Nigwo(1 + ') = 14 4(by + b3) + 4bymy,
Npgw,(1+7%) = 1+ 2my,
Nipypwo(1+867°%) = 14 4(b6 + B2) + 4b2miy,
| Neowo(1+€n") = 5+ dmw + 4¢nw,
Npowo(1+b7%) = 1,
Negwo(1+ bet®) = 1+ 4b3my,
Npowo(1+ z_’mﬂ'm) = 1+ 4byorw,
P Nrgpwo(1+ bur'') = 1+4bnmw
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and Np, s, (1 + baw™) = 1 for all n > 12 (by Proposition 2.3.1(4)). As in the case

a = a4, multiplying all of the above and assuming, without loss of generality that
Dy=¢+b3+bj+bs+bi+bo+bu+d=0 (mod?2),

we obtain, modulo P§,

Npopwo(ta2/t) = 1+ mw + 7y,

as desired. , a

Corollary 2.8.5 With the units t; and t3ft) chosen as in Lemmas 2.3.2 and 2.9.4,

modulo P§,

l+mptap+ay+ay+ny fa=ay
Npyvy(tr) =
147y +nd+nd fa=a..

where my = V10 is a prime of the field V = Qz(\/E).

Proof We use the fact that Nz /v (h) = Nipgw(t2)/Niov, (t2/t1) to prove the

corollary.

=

For the case a = ay., we have the following, modulo P§,,

NLoIVo(l + fﬂ's)

342 + 2my + 6y,

Negjwp(1+§nt) = 1+ 46ny,
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NL\:IV& (1 + fﬂ's) 5+ b7y + 6wy,

1]

NLo/Vo(l + Gsﬂ's) = 14 4(06 + ag) -+ 4(‘16 + aé)ﬂv,

Nyove(1 +€xT)

9+ 4émy,

1]

N-l'-»o/%(]' + ag':ra) 1,

Niovo(1 +a107™%) = 1+ dayeny,

Negwvo(l+anm) = 144dapny

and Ni,/v, (1 + a,7") =1 for all n > 12 (by Proposition 2.3.1(3)).

In the case a = a_, the only two differences are, modulo P,

Npovi(1+ &n°) = 3 4 26 + 267y + 67y
and
NLO/%(IC-}- {'n's) =5+ 2y + 27y
In both cases, we have, modulo ‘P{;ru,

Npowvi(ta) =1+ Env + (€ + as + ag)nd + (a6 + a2 + ayo + ayy)nd.

Since ag + a3 = ¢ (mod 2), and since we already chose, in the proof of Lemma

2.3.2, ayp and ay; so that a0+ ayy =¢€*  (mod 2), we obtain

Npyvo(ts) =1+ &) (mod PF,).
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To compute Np, /v (t2/t1) for the case a = a;., we observe the following, modulo

Pi,s
Nigv(l+€&x) = 5+ 3y + 6¢ny,

Npowvo(1+ 62.71'2) = 1+ 2(b2 + b3) + 2(by + b))y + 483,
Npgvo(1+bam%) = 1+4(by + 83) + dbymy,
Nrpojvo(1 -+ ben®) = 1+ 4(bg + B2) + 4(bs -+ b2)wv,
Npov(1+8g2%) = 1,
Niovo(1 +ben?) = 14 4b2my,

Npovo(1 4 b107%%) = 14 4byemy,

Negvo(1+buw'') = 14+4by7y

and Ngg v, (1 + ban”) =1 for all n > 12 (by Proposition 2.3.1(3)).
In the case a = o, recall that we chose b; = 1 and b; = £, and hence have the

following changes, modulo P§;,

NLoIVo(l -+ &r) = 1+ 5ny + 6émy,
Npovo(l +827%) = 14 2(b5 + 83) + 6(b; + b3)mv + 483,

Npgvo(L+7°%) = 1+6ay

" and Nipyw(l+ &n7) = 5 + 4€nv. Using the above facts, we have the following,
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modulo Py,

1+ 7y + &) + &)y + Mandy + Msm}y ifla=ay
Nigpw(ta/t1} =
Lty + Enf + ) + Nonh + Nor® - ifa=a,

where, modulo 2,
M= Ny=1+ by + b + by + b3 + bg + b3,
Ms = €+ b§ + b3+ bio + buy + &,
Ns=14b{+b8+bp+bn+6
and 2§ = b2-+b3+¢  (mod 4), defined as in the proof of Lemma 2.3.4. It follows from
the computation of B (in the proof of the previous lemma) that by -+ b3 + bg + b2 = €2
(mod 2). Together with Equation (2.1), we have My = Ny =0 (mod 2‘). With

Dy, Dy and n defined as in the proof of Lemma 2.3.4, we have M; = D2 +7=0

. (mod2) and N5 = D3 +7n=0 (mod 2). Hence, modulo P§,,

1+av+Eni+&ny fa=ay
Niopvo(ta/h) =
14y +8af+8n5 fa=a..
By Lemma 2.2.1(3), Npo/vi(t1) = Niyw{ta)/Nriopv,(t2/t1) € V, we therefore have

for the case @ = ay., modulo P§,

1+ &y
1+ 7y + &} + €y

1+ my + 7 + 7% + 7d + 75

NLo/% (tl)




A
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Similarly, in the case @ = a—, modulo P§,
Neypwo(h) =14y + 7y + 7y,
as desired. a

More details on the method of computations of the following result can be found

in the proof of Proposition 3.4.5.
Corollary 2.3.6 With ¢y, ¢; and the map k defined as in Section 2.2,
K(1=-z*) a1 —e)) =1+7+ 724 7® (mod P8).

Proof We observe that
K1 =25 (er - ) =(1-2)k(((z ~ zy)b~ (= + y)b))
= (1—2%)(z - zy)(t2) - (2* = 1)(z + y)(mta).
With the choice of ¢; and tz/tl as in Lemmas 1.3.2 and l1.3.4, and using the identity

t1 = ta/(t2/t1), we have, modulo P},
(xz — 1)(m + y)(ﬂ-tl) = 1 + 1!'8 + 7.[.13 + E?,HJA + 621‘.15 + 6211.13 + fﬂ'l?

and

(1 - 2)(z — 2y)(tz) = 1+ €20 4 Ex'° 4 ' 4 ¢V,
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Multiplying the above results, we obtain

k(1—2*) e —e)=1+78+ 724+ 2" (mod PJB),
as desired. O

Before proving the injectivity of the map k, we state and prove the following

corollary.

Corollary 2.3.7 Witk the elements 7, A, and p defined as in the beginning of this

section
7(t2) =25 +12v3  (mod PY),
A(mt1)) =3+2V10 (mod P§),
and

p(ta/(nt1)) =15+ 430 (mod PY).

Proof We observe that, for a,u € U, modulo Py,

1+ air} + unk
1+ y(ank) + y(un})

= (1+ank + umie)(1 - y(amk) — y(unf)

(1~ y)(1 +ank +unk) =

- + y(an%)® + y(and)®)

= (1-y)(1 +an}) + (und - y(urd).
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By letting u = 4o + w17k + - - -, where u; is either 0 or 1, it is straightforward that

ung —y(unk) =0 (mod P¥). Thus
(1= y)(1 +ank +unk) = (1~ y)(1 +en}) (mod PY)

It now follows from Corollary 2.3.3 and the definition of 7 that if we let Tk = y(rg) =

1-— \/E’ then

(t)) = (1-y)(1+rnk +ak+ 5 +78%) (mod P}?

1+ % + 7k + 7k + 7k
1+ (mk ) + (vk)* + (nk)® + (nk)

25+ 12v3 (mod PP).

(mod P}

This completed the proof of the first statement. To prove the second statement in
the case a = a., we use the same arguments together with the results of Corollary

2.3.5, the fact that Npv(r) = —16/5 — 3v/10/5, and consider, modulo P8,

Arh) = Mh)-Q—-2)1+y+y°+°)(n)

147y + 7y + a3 +nf + 7 (1-2) (__1_6__ ;3__@)
l—my+al —n) + ¢ —nf 5 5
111 +111V10 16+ 310
111 - 111v/10 16 - 310

(111 + 111v/10)* (16 + 3v/10)?
1112 - 111210~ 256 — 90

3 +2v10.°

]
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Since Npyw(l+7°) = 1+ 7%, (mod P§), Npyw(l +7%) = 1+ 7%, (mod Py)
and Npsw(l47%) =1 (mod P§), we may multiply ¢,/¢; by 1 + 78 and/or 1+ w18,
if necessary, without affecting the results of Corollary 2.3.5, to assume the results of
Lemma 2.3.4 modulo P§,. Hence in the case a = ay, to prove the third statement

we use Lemma 2.3.4 and the fact that Nypy(n) = —14/5 — +/30/5 and observe that

plta/(vt1)) = pltaftr) - (z — 1)1 + 2y + 2 + (zy)?)(r)

1+mw+nd +78 14—/
1—mw+ g + 78 14+ /30
931 4+ 30 14 —+/30

931 — /30 14+ /30

(931 +v30)® (14 — /30)?
9312 -30 196 — 30

15 + 4v/30.

1]

In the case a = a.., we have
(1+y+y* +3°)(r) = 4/5 - V10/5
and |
(1 + 2y + 2* + (zy)*)(n) = 6/5 + V/30/5.

The proofs of the last two statements for this case can also be carried out in the

same manner, e ' (m]

We are now in a position to prove the main result of this chapter.
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Theorem 2.3.8 The homomorphism k is injective.

Proof From the formulae of Section 1.2

Jer) = taz(ta)y(aty) " (wty)

and ‘
3(ea) & tazy(ta)a(mty)(mt)

we see that vL(j(cl)) = —2 and vr(j(c;)) = 0 so‘.that the homomorphism
. vpok: Ker{d) — L* — 2Z
i§ oﬁfo. Therefore to prove k is injective, it suffices to ghow that
k: Ker(d)nk™(0}) —~) 0y

is injective. As in the proof of Snaith -[32], Theorem 6.1.7, to prove the injectivity of k,
it suffices to show that o(t}), f(t';‘), A((m4)?), p((t2/(7t1))?), and k(1 — 22)(¢, — c3)
have infinite order in @} where o, T, A and p are defined as in the begining of
Section 2.3, and ¢;, c; are defined as in Section 2.2. The desired result now follows

from Lemma 2.3.2 and Corollaries 2.3.6 and 2.3.7. 0



Chapter 3

The Second Chinburg Conjecture

3.1 The Main Theorem |

In this section we shall study the:Chinburg invariant YN/Q,2) of Section 1.5 in the

case when N/Q is a Galois extension with Gal(N/Q} = Q5 whose 2-adic completion

is one of the Qg-extensions, L, / Qg of Section 2.1. Sy
Suppose that Y is a finitely generated Z[G)-module which has no Z-torsion, where :

,l_f

.}ll-

Gisa finite group. In this case the universal coefficient theorems for homology and
cohomology (Spanier [3:6j, Page 222 and page 236) imply that, for { > 0,

GY ®z2Z;)

A

= =
58 : i

Hi(G; Y) ®RzZ; = H.(
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and
H(G;Y)®zZ: = H'(G;Y @z Z,).

Consequently, even for i = 0, —1,
H(GY)®2 2. = H(G;Y 2 Z3).

In particular, if G is 2 2-group then each A “G;Y) is a finite 2-group and under
the identification a ® (Ziom a;27) ~ aeizm °"2j, where a € G, m € Z, and a; =0or

1, we have

. H(GY)2H(GY)erZ, = H(G;Y 82 2,)
%,

foralli€Z. N\
orallze \\\\\
Let Y denote ti\e\t\??_@iic closure of Y. Let L = Ly and k: K er(d) — L* be as
in Theorem 2.3.9. For abbreviation, set —
Yy = Ker(d)n k™1 (0}).
The commutative diagram of Section 2.2 implies that
k. : H*(G; Ker(d)) = H*(G; L")

is an isomorphism for all G < Q5. Hence

ko (G Yh) -2 H(G;0%)
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is also an isomorphism for all G < Qs. Since
YL=Y.8z2Z,

we see that

ko HY(G;Y ) =5 A*(G; 07)

is also’an isomorphism for all G < Q.

By Theorem 2.3.9 we have an injection of the form

k:Yy=TKer(d) nk10f) — O}

which must have a finite cokernel, M, since O} contains a copy of Zz[Qs] of finite
index. Hence M is a finite 2-group. It follows from the long exact (cohomology)

sequence associated with
0-—YL—0;—M—0

and the fact that k : Y — O} is a cohomological equivalence, that M is a coho-
mologically trivial Z[Qg]-module.

Recall that the residue field I has order two, that there is an isomorphism of the
form

O3/(k(¥x)) = L [(RRer(d),
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and that there is an exact sequence of the form
0 — Y — k(Ker(d)) — Z —» 0.
The fact that L* = O} @ Z implies that as an abelian group,
Ker(d) =Y. Z.
With this identification the commutative diagram of Section 2.2 becomes

d
.02 —2Q ©ZQ)—— Z[Q) — Z

k j i 1
L* — L <. 2 oz

By pushing out the upper 2-extension along k, we obtain an intermcdiate diagram

of the following form, in which j' and k are injective.

d
Y102 —ZQs| ® Z[Qs)— Z[Q] — 7

k | L 1 1

I — A . Z[Q) - zZ
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In the above diagram,

A= (L @ Z[Qs] ® Z[Q4])/ S,

where § is the subgroup of L* & Z[Qs] & Z[Qs] consisting of all (k(a),~a) where
a € Yy, ®Z. The map j' is defined by 7 (b,¢) = (0,8, c)+ S.

If X and X; are as in Section 1.5, fhen
QL/Q2,1 + X3} = [A/(1 + Xa)] € CL(Z[Qs]))
and
QUN/Q,2) = [X] +[A/(1 + Xa)] € CL(Z[Qs]).

We also have an induced commutative diagram of exact sequences of the following

form.

’

Ker()— Y202 —— L*/(1+Xs)— Coker(k"

~ ~d
= —1

Ker(j") — Z[Qs] ® Z[Qs] —I— A/(1 + X;) —— Coker(;")
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Therefore, in CL(Z[Qg)),

[4/(1+ X)) = [Coker(5")] + [2(Qs] © Z[Qs]) — [Ker(5")]
= [Coker(j")] - [Ker(j")]
= [Coker(k')] - [Ker(k')].
and

QN/Q,2) = [X] + [Coker(k)] — [Kar(i)].

If we choose X3 C 80y then the homomorphism
1+ X — L* — LY(M(Yr @ Z,) 9 2)) = M

will be zero, by the calculations which will be culminated in Section 3.9. Therefore

Coker(k') = (L*/(1 + X2))/('(Yz ® Z))
= (L°/(1+ X)) [(k((Yz © Z:) © 2))
= L*/(k((Y2 ® Z2) © Z))
& M.

Combining the above results, we obtain

QN/Q,2) = [X] + [M] - [Ker(K)] € CL(Z[Qs)).

We now state and prove the main theorem.
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Theorem 3.1.1 Let N/Q be a Galois extension with Gal(N/Q) = Qg whose 2-adic
complelion is isomorphic to one of the extensions, L+ /Q,, of Section 2.1. Let Wrrq

denote the root number class of Section 1.8. Then
UN/Q,2) = Wiyq € CLEZ(Qa]) = {21).

Proof It will be shown in Section 3.2 that in CL(Z[Qg]), [M] is trivial in both
L+/Q: cases. The results of Sections 3.3 and 3.4 indicate that [X] = —Wnq and
[Ker(k')] is non-trivial in the L, /Q; case, and [X] = Wi;q and [Ker(k')] is trivial
in the L_/Q2 case. The desired result now follows from the formula preceding the

statement of the theorem. ]

3.2 Computation of [M]

Recall that in the previous section, the cokernel M = L*/(k(Ker(d))) is a finite 2-
group which is a cohomologically trivial Z[Qg)-module. The purpose of this section

is to show that [M] is trivial in CL(Z[Q]) = Z/2 = {+1}. We define

—~
o

My ={z € M| z%(z) = £z},

where z € (g is defined as in the beginning of Section 2.1. o
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Lemma 3.2.1 Let M9 be the subset of elements of M fized by Qs. Then
M =7/,

Proof Since M is cohomologically trivial Z[Qs]-module, from the short exact
sequence

0 — k(Ker(d)) — L* — M —» 0,

we obtain an exact cohomology sequence
0 — k(Ker(d)) " — (L*)% — M9 — H'(Qs; k(Ker(d))) = 0.

Hence,

M o~ (L-)Qa - Q; .
K(Ker(@) ™  (i(ob),5(ob"))

It follows from Lemma 2.3.2 that

3(0b) = o(tz) = 5+8a € UL, \ U,
generates U3, for some a € Z;. Using Theorem 2.3.7(2), we have
H(0¥) = o(nt) = o{m)((1 + £)(1 4 my + ] + 7+ urd)) = 26,

where V = Qu(V10), 7y = V10, u € Oy, 7 = 7, and ¢ € UJ,. Since the element
j(ob) generates UQ,, it generates c. Therefore, 2 ~ 1 in M@ and M9 = Z/2, as

desired. - " ()



CHAPTER 3. THE SECOND CHINBURG CONJECTURE 66

By Snaith {32], page 149-151, M_ is a principal left Hz-module, |M_| > 4 and

L*/E*

M- = e, He)y”

IR

where ¢; and ¢; are the generators of Ker{d) defined as in Section 2.2 and Hgy is the
ring of integral quaternions.

To compute M_, we prove the following proposition.

= b
T

Proposition 3.2.2 The images \chl and c; under the map k are given as follows:
1 2 4
(1) k(1) =;2-(1+1r+1r + umr?)

and
(2) k(ec)=1+ a4l (mod 'Pﬁ),

for some u € Of.
Proof It follows from the commutative diagram of Section 2.2 that

k(CI) = ‘t‘l—t‘:"i% - and k(CQ) = tgmy(tg)%

* Asin Section 2.3, for some v, w € U}, wehavet; = 14¢nd+untand ty = 14+-€6mr4wn?,

where { is a primitive third root of unity. We consider

t2z(ts) = (14 €nd+on)(1 + &x(n®) + z(vnt))

14+§(x° +2(z°)) (mod P}).

[
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Since z(7®) = 73(1 + #® + at .- )3, we have trz(t;) =1 (mod Pi,)-
Using the identity y(7) = 7+ 7?4+ 73+ 7'+ - and the fact that w4 y(w) € Pias

we have

ty(t) = (14 &r +wa?)(1 + Ey(n) + y(wr?))

1+ &(m + y(m)) + (wr? + y(wn®) + Exy(r) + Eny(wr?)

+ fwny(n) (mod Pi,)

1]

14+ 47 +7%) + (@ + 7% (mod Pi,)

1+ 7% +7° (mod PL).

The above results together with the fact that my(r) = 7*(1+ 7+ a%+7%+-..) imply

that
v taz(t 1
L )

for some u € Of (here we have O instead of Of, because k(c) € L*). This

completes the proof of statement (1).

To prove statement (2), we use the identical method and obtain, modulo PL,

taxy(ts) = 1+ &nt,

z(x)

1+ 47t nt g
w Nl
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and

——-xgt‘) =1+ €&nt + 75,
1

Therefore, modulo P§ (here k(c;) € L*),

k(cz2) A+ &)1 +7° + 7t + 7% (1 + ént + %)

= 147n%+7,
as desired. m
We are now in a position to compute M_.
Lemma 3.2.3 4s an abelian group, M_ = Z/2 ® Z/2.

Proof It is easy to see that in

(k(er), k(ea))’

1 = mg ~ mw?u7 for some uy € Uf \ U}. It now follows from Proposition 3.2.2 that in

M_=

M_,1=k(a)~1+7+7*+urtand 1 = k(c;) ~ 1+ 7%+ n* + vn® for some u,

v € O}. These elements generate U}/U} and U2 /U$. Observe that
(I+r+n?+urt)P =142+ 7' (mod P§)

and

Q+r+x*tur'P=147"42® (mod P
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generate the filtration levels U2 /U3 and U}/U;. The above calculation also gives
k() k(ca) = 1+ 7 + wn®
for some w € Of. Now under the squaring map and the action of 1 + z,
Q+7°+wr®?=1+7% (mod P})

and

A+2)1+7+wr®)=1+7" 47 (mod PP)

|

generate the filtration levels US /U7 and U] /U, respectively. Repeating this process
using the squaring map and the actions of 1 4+z, 14y and z + y o-nl k(er), k(ca),
.+, We can generate every filtration level U /UBH! for n € N, = 5 5. It now follows
that M_ is generated by 7 and :1 + 75, Since |M_]| 2 4, n® = wgfur ~ 1 and

(14 7% =1+x%+-.. € {k(c1), k(cz)), we have, as an abelian group,
M_=(ml+n® | ®=(14+2°)2=1)2Z/202/2,
as desired. a

The following proposition will give a bound on the order of M.

Proposition 3.2.4 |M| > 28,
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Proof Let g € Qg have order 4. Define
M = {z € Mg(z) = z}.

It follows from Snaith [32], Proposition 6.2.7 that either
(1) M*=Z/20Z/2, MY 2 Z/26%/2, and M™ 2 Z/2 0 /2
or |
(2) two of the M¥'s are cyclic of order greater than or equal 8, while the third is
the sum of the other two.
Case (1) cannot occur, since this would imply |Tor(Z/2; M, )| > 8, while we in

fact have from the definition of M: and Proposition 3.2.3 that
Tor(Z/2,M,)=Tor(Z/2,M_)=Z/2® Z/2.

Hence, without loss of generality, we may assume that M= 22 Z/2m+1 M= = 7 fon+l
orm, n 2 2. It follows from the proof of Snaith [32], Lemma 6.2.4, that |M,| =

2. |M* + M¥|. Since M* N M= = M9 = 7/2,

z/2mH @ Z /o

M* 4 M™
: > {(2m,2M)) o
NI
m " - \-‘:? SRz,
Thus, |My|=2- 2_\25& = 2min+2 > 28, Therefore, =3

|M]| = |M,|- M| > 2°, LA
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as desired.

The core of this section lies in the following proposition.
Proposition 3.2.5 As an abelian group, M = Z/16 @ Z/16.
Proof Recall that

__ £ _ L
M= @) = e @)

From Proposition 3.2.2, we have
k() =1+#°+7* (mod P§)
as a generator of the filtration level U} /UL, Using the identities
z(m) -—51r(1+1r3+7r“+1r5+7r6-i.- ),
ym=rl+r+r’+l4+nt 2’40
of Section 2.2 and the squaring map, we have
1+ y)(k(cg)) E 14 4 2 (mod P}),

(1+y)(k(c2)®) = 14+2® (mod P,

k(cg)? 1478+ 7847 (mod P}?

1]

and

T Q4 z) k() 1+ y)k(e))) =1+ 7P 417 4 78+ 2° (mod P}°

71
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It follows from the above that the filtration levels UA/U}, U§/UZ, UL [US, UEJU3,
and an element of the form 1 + 7 4+ #® 4+ vx for some v € O, can be generated.

We observe that
Q4+ 2) 1 +7"+7°+ o) =1 470 47l 4 .oe

generates U3°/U'. Applying the squaring map to the generators of the filtration
obtained above we can generate Uz?/Uj3, U}*/UJS, and U33/U}®. To find a generator

for U3 /U4, we use Corollary 2.3.6, i.e.,
Hl-z)a~ea)=1+"+a°+a 4 ...
and the fact that
QA+ +7+wr’)=147° (mod P}
for some w € O. Now, for.some t € Oy,

s Q4+ 7P 4T =140%4 47 (mod PIB)

gives a generator for the filtration level U}8/U}". We recall from Corollary 2.3.3 that

if K = Q3(v3) and 7 =1 + /3, then

A=(1+z+2’+2%)(t) =1+ g+ + 1k + 7% (mod PE)
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is the first few terms of an element belonging to k(Ker(d)). Since 7y = n¥(1 + =% +-

78 +...), we have,

A=1+7? (mod P}%).
The fact that for some s € Of, there is an element of the form 1 + #® + 77 + s7° &
(k(c1), k(c2)) implies that

A+ +n" +sn°) =147+ 2% (mod P}®

can be generated. Hence the filtration level U}°/U}® can be generated using the

element of the form
Q+mH)A + 724+ 7% =147 (mod PIO).

A generator for U7 /U® can be obtained using the following observations, modulo
Pis:

1+ +72+0.7%+...)=1 476
and

Q+=1+ 7% +7") =147

In fact, using (1 +z)(1 + 7'+ 0-7% 4 ...) and

(1+7l'10+ﬂ'11+"')2=1.+'ﬂ'18+ﬂ'19+"'



CHAPTER 3. THE SECOND CHINBURG CONJECTURE 74

we can obtain 1+ 7!7 (mod P0).

Now using the squaring map, all filtration levels U} /U7! can be generated except
for the case when n = 1,2,5,9 or n = 8k + 3 for some k € N. Using the notation
p = (1 —z)(1 + zy + z* + (2y)?) of Chapter 2 and Corollary 2.3.7, we have for

W = Qz(+/30) , modulo P8,
B=p{t2f/(xt])P =14+ 728 + 70 4 732 4 7% 4 735

Since we can generate 1 + 7%+ w11 +.-. and 1+ 7% 4+ 711 4 ... there is an element

of (k(c1), k(c2)) of the form
Q+m®+a+ )1+ 4 ) =14+ 7040w ..
It follows that, modulo P35, the following elemfant can be generated
(47704071 4B =1 4 728 4 730 4 %2,
Hence there is a trivial element of M whose first few terms are
B(1 +rr“+-;r3°+1r3?):= 1+a8 4435 4., |
Since we can generate (1 + 77} =14+ 7% (mod P§¢), we have-

Q+7¥)A+72 4+ 7)) =14+ 2% +...
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as a generator for Uf*/US°.

At this moment, all of the filtration levels UF /Ut can be generated except for
the case when n =1, 2, 5, 9, 11, 19 or 27. This means |M| < 28. Together with the
result of the previous proposition, we have |M| = 28. The existence of an element
of the form 1+ 74+ 0-7° 4 --- in k(Ker(d)) can be used to improve the result of
Proposition 3.2.2, part (1), i.e.

1+7+m2 407340 28 4...
72

1=k(01)= € M.

This means that there is an u-lE O, such that, in M,
w2=147m+ 7w+ uns.
Observe that using the squaring map successively, we have, in M,
L NP T LR LT
and
=1+at+ 2%+ nl%4 ..o,

It follows that in M, 1+, 14 7% and 1 + 7° can be generated by = and the units

in lower filtration levels.

Consider the following elements of M:

(1+ﬂ'5)2 —_ 1+1r10+7r13+..'
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(1 +ﬂ.5)4 — 1+1T18+1l'20+"'

(1+‘ﬁ'5)8 - 1+7f26+1r28+"'

and

Q+7)8=14a%4...~ 1.

The above facts imply that for » > 11, all the elements of the form 1 +#" in M can
be generated by = and 1+#°, As 7 and 1+ 7° generate M, and (1+7%)6 ~ 1 € M,
we must have 71 ~ 1 € M.

Therefore, as an abelian group,
M=(r1+a° 2=+ =1)=Z/16 ® Z/16.
We should also note that in this case
My =(n*(1+7°))) = Z/30 Z/8
and
M= (xS (1+ 5 2220 %/2,

asin Lemma 3.2.3. The action of Qs on M is given by z(1,0) = {9,5), z(0,1) = (8,7),

y(l,O) = (3: 0) and y(o’l) = (0,3)- . O

Corollary 3.2.6 [M] is trivial in CL(Z[Qs]) = Z/2.
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Proof Consider the induction map
Indij : CL(Z[Qs]) — CL(Z[Qq)),

which sends a module P io Z[Qs] ®zyyy P. Since {y) = 2/4, CL(Z[{y))) = o,

Z/16 = {(1,0)) is a Z[{y)}-module, and
2({(1,00)) @ ((1,0)) = ((9,5)) & {(1,0)) = M,
we have Indg%([2/16}) = [Z/16 & %/16], and hena;
[M] = [2/16 ® Z/16} = 0 € CL(Z[Q3)),

as desired. 0

3.3 Computation of [X]

In this section, we compute the class [X] € CL(Z[Qs)) in term of the root number
class Wi/q using Frohlich’s Hom-description together with results of A. Fréhlich and
M. J. Taylor.

For the Hom-description we take any Galois extension of number fields, E/Q,

such that N(v/=1) C E. Then
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~ - Homq (R(Qs),J*(E))
CL(Z[Qs]) = Homga, (R(Qs), B*) Det(U(Z[Qs]))

Since {q acts trivially on R(Qjg), all characters are integer-valued. We have
Homqqg (R(Qs), E7) = Hom(R(Qs), Q")

and

Homaq(R(Qs), J*(E)) = Hom(R(Qs), J*(E)7).

Also, the p-part of the adéles is E @q Q, = [Ip), £ and Qq acts trivially on the
factors with stabilizer Qq,, acting on each Ep component-wise ( {E ®q Q,)f% =

E‘RQ’ = Q; for any choice of P | p). Hence

Homnq(R(Qs ), J*(E %'H R(Qs),Q;).

The above weak product includes one p = oo factor.
Now X®@Q =N = Q[Qs] < a > fora € On\ {0} and X ®zZ; = Z;[Qs) < az >
with az = 2/(1 + v3 + V10 + V30 + «) € 801 The fact that Z;[Qs] < a; > is a free

Z3[Qs]-module is proved in the following lemma.

Lemma 8.8.1 The module Z3[Qs](1 + v3 + V10 + v/30 + a), a Z; [@s]-submodule

of O generated by 1 4 /3 + /10 + /30 + a, is free over Z;[Qs).
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Proof Let x1, x2 : Qs — 1 be homomorphisms defined by

xi(z) =-1, xa(y) =1

x2(¥) = -1, xa(z)=1.

The irreducible complex representations of Qs are given by 1, x1, x2, x1x2 and a
unique irreducible two-dimensional representation v. For each irreducible represen-
tation x of Qs, welet e, = 5‘38(1‘)- Lseqs X(971)g be its associated idempotent. Then,
as in Kim [22], Lemma 2.4, ¥ = ¥, 7, generates a free module over Z,[Qs] where
X runs through all irreducible representations of Qs and v, is a generator for exOy
over e,Z3[Qq].
We consider

1 o
610L = ETrLIQQ(OL) = Zg -1

and

e, O = -;—.(2 x1{g71)g)Or,

9EQs

1
= E(I_I)TrL/Q:(ﬁO)(OL)
= Z;- V0.

Similarly, we find 7y, = V3, T4x, = V30 and Y = a. Thus, vy =14+ 3+ 10 +
V30 + @, as desired. O
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At odd primes p,

Xp =X Bz Zp = Z,[Qs) < ap >= [[ Oy,
Plp

where a, € O, for some P over p and On, = Z,[G(Np/Q,)] < a, >. Hence we

have homomorphisms B(Qs) — [1p, N3

(ap | X)
Xl
and R(Qs) — N;
X — (az | X).

(a])

Here (- | -) denotes the resolvent homomorphism which is defined in the following

manner. If A is any ring with a G(N/Q)-action and u € A, then for y € R(Qs),

(u|x)=delf(J > y(u)x(g“))

EG(N/Q)
Ifw € Qq, then - |

wu|x) = det(‘ b wg(u)w(x(y“)))

€G(N/Q)

il

det (z wy(u)x((wg)‘l)x(wg)w(x(g"))) .

If x is irreducible and 1-dimensional, then w(x(g™1)) = x{g™*) and x(wg) = x(w)x(g),
so w(u | x) = (u | x)det(w(x(u))) in this case. This formula is true in general (see

)
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Fréhlich [9], page 30). This means that when x = v, each resolvent is an Qlq-map
w(a|v)=(a|v)

as det(v) = 1. But for the one-dimensional characters y one must be careful to main-

tain quotients like -((?l%), so that the det(x(w))’s cancel. Hence the Hom-description
of [X]is

faslx)

x if p is finite
X —+ (slx)
1 if p= oo.
If p is finite, then 7yq(x) = II, 7%(xp), and according to Frshlich [9], page 119,

Theorem 20B(ii), for w € Qq,

w(Tnyalx)) = myq(x)det(x)(w)

In addition, the results of Frohlich {11], show that éﬂ% is unit-valued in [Tp|, Oy,
for p odd (in this case, Np/Q, is tame). But |r,(x,)| is a power of q, so this is b

unit-valued, and so for p # 2,

(::(lx);) € Homnq(R(Qs)a"l:i!;O:?p)

= Del(Z,[Qs]")

Therefore, at each finite p # 2 we may divide by y :x" to obtain a Hom-
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representation of the form

r
(azlx!

k) 2tP=2

X — (la(%c)i at p# 2, co

1 at p = oo.

\

We observe that the function

T(x)
X el

lies in Homaq (R(Qs), E7) so we can divide by it, to change the Hom-representation

of [X] to
( a2]x

T(x)

X—11 at p#2, 00

~% at p= oo,

Now according to Frohlich [12], at co the sign of (a | x) is equal to the sign of Weo (V)

at p=2

and the absolute norm of the conductor of a symplectic representation is a square.

el \

[
So the sign of T(v)W(v) is the same as that of Wﬁmte Woo(v) = Wq(v), the

\ \

Artin conductor. Therefore, since Wq(x) = 1 if dim(x) = 1,"
1 at p # oo
EXWa(x) at p=oo

is in Homq,(R(Qs), E*) and its sign at coon x = v is

Xr—
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(see Snaith [33], page 336, Chinburg [3], page 19, and Taylor [38], page 9).

Therefore, as Wq(:) =1 if dim(x) =1,

-‘:—z%l at p=2
X
1 otherwise,

is a Hom-representative for [X] — Wy/q.

Now if we define

h: R(Qs) — Z; by h(x)-2W = (‘:_2(;;\’)

and

X+ (Z/8)" — {£1} by x4(~1) =1 and x4(3) = -1,

then the class of [A] is

A=[X] - Wnyq = h(¥) - x+(h(1+x1 + x2 + X1x2)) € {£1}.

Note that in our computation, we discard the pt:iwerl of 2. We now have
1
_(aalx)  ((a2|1+x+x1+x2 Exaxz)
A= X+ X
7(x) T(1+ x1 + X2 + X1X2)

) (mod 4).

Before going further in this direction, we use the same method of Snaith {32,

Lemma 6.3.3, to prove the following useful lemma.



A
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Lemma 3.3.2 Let a; = 2(1 + V3 + V10 + V30 + a) be as in Lemma 3.5.1. Then

the resolvent of ap is given by the following formulae:

(az [ 1) =243,
(a2 | x1) = 243V/10,
(az | x2) = 2433,
(az | x1x2) = 2'+3+/30,
- (a3 | v) = 22+%a2(1 + uf)(1 + )

K

where z(a) = u ¢ and y(a) = uza.

Proof For convenience, let us suppose that ¢ = 0. From Lemma 2.1.2, we know
that 4, = (1 -- v/10)/3 and uz = (v/3 — 1)/(v/30v) where v? = ~1/15. We now have

the following formulae:

a2=1+vV3+ V10 + V30 + e,

z(az) = 1+v/8 ~ V10 — V30 + w1,
ylaz) =1 = VB + 10 ~ 30 + uzax,
zylaz) =1 — 3 — V10 + V30 + u12(us)e,
z*(az) = 1+ v3+ V10 + V30 -0,
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z3(az) =1 +v3 - V10 — V30 — uye,
zly(az2) =1 — v3+ V10— v/30 — e,
22y(az) = 1 = V3 = VI0 + v30 — uz(us)o.

Therefore
(a2]1) = Y g{as)
FEQs
= 8,
(azlx1) = 3 g(as) - > gle)
xi(g)=1 xi1{g)=-1
= 810,
(a2|x2) = 3 gla)~ T glan)
xa(g)=1 x1{g)=-1
= 83,
and

(@2lxixa) = 3 gla)— I g(a)

x1{g)xa(g)=1 x1(g)xa(9)=-1

8v/30.

The matrices representing {v(g) | g € Qs} are given by (i* = --1)

10 i 0
Y1) = a)=| |,
0 1 0 —i

85
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0 1 0 i
V(y)= ’ V(Iy)= '
-1 0 - 1 0

and »(2%g) = —v(g). Hence we find that

2a(1 +iu;)  2uza(1 +1y,)
(az | v) = det l
2uza(iu; — 1)  2a(1 —iyy)

= 4o’(1 +ui)(1 + u}),
as desired. O

Now,

Winite )= II Wa,(x) = V700 - 7(x)

p finite

where f(x) is the Artin conductor associated to the character x of Qs. Recall that :

in Lemma 2.1.1, H = Q(v/d;,/d;) is defined to be the bi-quadratic subfield of the
quaternion extension N/Q with d; = 3 (moAd 8) and d, E\\IO (mod ‘16). We have
fU+x+x+ xix2) = f(I ?dgfﬁfg;(l)) = Dysq
and )
f@v +14x1 + x2 + xax2) = f(IndZT/ V(1)) = Dyya.

- .
It follows that f(v)? =‘-g—::‘;—§. According to Martinet [25), Proposition 6 (proof),

Dyjq= ]I »' Du.
p ramified

in N/Q
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Hence (the odd part)

flv) = 1I =1 (mod 4).
2 # p ramified
in N/Q

Using all of the above relations together with the fact that Gal(N/H) =< z? >, we

have

A= (azlv)\/f(v) ((G2II+XI+X2+XIX2)-‘/ITN).

* X+
' np finite Wa, (1) Wenitell nd3§=>(1)
We are now in a position to state and prove the main result of this section.
Theorem 3.3.3 In CL(Z[Q4]),
~Wyiq if e =1+ 34 v10/10 4- /30/10

1VN/Q ifa’:—l—\/i—x/E/IO—\/?ﬁ/IO.

1X] =

Proof Since
[X] — Wijq = A € {£1} = CL(Z[Qs]), |
to prove the theorem it suffices to show that
;1 if o =1+ v3 + V10/10 + v/30/10
1 ife? =-1-+v3-+10/10-30/10. '

To compute A, we analyse the formula given prior to the statement of the theorem.

A=

Since Weo(IndZls, (1)) = £1 and T nd3;3>(1) is orthogonal, we have

’ Wq(IndZa, (1))

Whnite(/ndea5 (1)) = Weo(Ind3, (1))
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= zl.

Thus x+(1vﬁnite(‘{“d3;3>(1))) =1 and

4o | TE)

- l-Ip finite Wa,(v7) .

x+{{a2 |1+ x1 + x2+ x1x2) - / Dyq)-

In the next lemma we will show that Wq, (1) = —1. Hence

Whiite(¥) = - I1 Waq,(v)-

2 # p ramified
in N/Q

It follows from Lemma 3.3.2 that

(a2 | 14+ x1 + xz + x1x2) = 24112 15,

23+ .1 if @ = 1 + /3 4+ V10/10 + +/30/10

2+ . (~1) ifa? = -1 -3 - V10/10 — +/30/10.

The former implies that

(az]v) =

x+(82 | 1+ x1 + X2+ x1x2) = x+(15) = 1.

Now if we let Dy be the odd part of /Dy/q, then it follows from Martinet [25] (sce

also Kim [22], Lemma 3.1) that

2 "
I Wa=(x) I » @y,
-2 # pramified 079 p ramified
in N/Q - n N/Q
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Hence, in CL(Z[Qs]) = {£1},

- (52;) x+(Do) ifa® =143+ 10/10 ++/30/10
(Z) x+(Do) i @2 = —1 ~ V3~ VI0/10 — v/30/10

A=

It can be easily seen from the definitions of the Jacobi symbol and x that (Dio) =

X+(Da). Therefore, in CL(Z[Q4)),

-1 ifa® =1+ 3+ v10/10 + /30/10
1 ife® = -1 -3 -10/10 - /30/10,

[A] =
as desired. )

Lemma 3.3.4 Let v be the two-dimensional irreducible complez representation of

Qs = Gal(N/Q). Then the local Artin root number of v satisfies
IVQ:(UQ) =-1.

Proof Asin Chinburg, Kolster, Pappas and Snaith [6], for V = Q3(/10) we let
¢ be a character of Gal(L/V') of order 4. Identical arguments show that Wy-(e) = 1
(in their paper, ¢ is denoted by x.,). Since Gal(L/V) = Z/4 and vy = Ind?h(tp),

we have Indg;4(5" -1) = vy — Ind"z?;‘(l). Hence

Wai() = Wa,(Indg} (1)) - Wa,(Inds, (e — 1))

2
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= Wq,(Ind3s,(1)) - Wi (o)
= Wq,(Indd (1))

Since Ind%‘:{(l) =1+ Infgl‘z(l)) where 6 is the nontrivial character of Gal(V/Q,) =

Z[2, we have
Wa,(va) = Wau(0).

It now follows from Snaith {34], page 266, that if we define [ : Qq, — {1} by

g+ g(v10)/(V10), then
Wa,(v2) = Waq,(1(10)) = ~1,

as desired. | ]

3.4 Computation of [Ker(k')]

In this section we shall eveluate the class of Ker(k') in ~

CL(Z[Qs)) = D(Z[Qs]) = (Z/4)".

Using the results of Snaith [32], Sections 6.3.2-3, we have that a Hom-description

representative for [Ker(%')] is given by a function g such that g(T') € Z3 and

€ - ('32 I T)
29T) = g (R 1T - 6D



N
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where T € R(Qs), c € N, a2 = 1 + v/3 + V10 + V30 + « as defined in the previous
section, and zo = 2*(o(t2) + 7(c1) + A(er) + p(c2) + (1 — 22)(e1 — ¢2)} for some integer
5 <0 and ¢, ¢, 13, U2, &, T, A, p are defined as in Section 2.1.1-2. It follows from

Taylor [38], page 88, that the class
o] € D(Z[Qs)) = (Z/4)
is given by the formula

[9] = g(v)(=1)M/eallitnrataxa))  (mod 4).

In addition, (—1)(*/4)esals(+xi+xa+x12)) depends only on g(1), g(x1), g(x2) and

g9(x1x2) modulo eight, since

(—1)0/Vors(1440) - (_q)w-2 . (_q)e,
Lemma 3.4.1 If g : R(Qs) —* Z3 is the function of 3.1 then
g(1) € 1+ 8Z,.
Proof As in Snaith [32], Lgmma. 6.3.4 (p{r:)rof), we have
(logy (k(z0)) | 1) = 2'** logy(Rk(ocz))-

It follows from Lemma 2.3.2 that k(oc;) = ¢(t3) = (13 + 256) for some § € Z,.

Hence

logz(k(oc2)) = 2log,(13 + 259)
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= 2loz.(1+4(3 +2%))

= 24(34+20) - 423+ 238 + .. )

which lies in 8§(3 — 2 + 8Z,). Therefore, by Lemma 3.3.2, we find that

(a2]1) SO
(log,((k ® 1)(z0)) | 1) ~ 2:+(1 + 8Z,)

and g{1) € (1 +82Z2)"! = (1 + 8Z;), as desired. i

Lemma 3.4.2 If g : R(Qs) — Z3 is the function of 3.1 then
9(x1) € 3 +8Z,.
Proof Asin Snaith [[32], Lemma 6.3.5 (proof}, we have
(loga(k(z0)) | x1) = =2+ log, (K(AW)).
1t follows from Corollary 2.3.7 that
k(M) = A(wty) = 3 + 2VI0 +24,
for some & € Z2[v10]. Hence if we let w =1 + /10 + 234, then |

logs(k(W)) = loga(1+20)

ht

= 2(w—w+4uw’/3 - 2u'+-..)
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which lies in 2(v/10)(3 + 8Z;). Hence, by Lemma 3.3.2, we find that

(az | x1) c 243(v10)
(loga{k(z0)) | x1)} ~ (—2+5)(V/10)(3 + 8Z.)

and g{x1) € (3 +8Z;)~! = (3 + 82Z,), as desired. =

Lemma 3.4.3 If g: R(Qs) — Z3 is the function of S.1 then
g(x2) €3+ §Z2.
Proof As in Snaith [32], Lemma 6.3.6,“\ve have
(loga(k(=0)) | x2) = 2""*log,(res ).
1t follows from Corollary 2.3.7 that
7(c1) = 7(t2) = (25 + 12V3 + 2%6)?
for some d € Zg[\/ﬁ] Hence, if we let w = 6 + 3v/3 + 235, then

loga(r(cr)) = 2logy(ts)

= 2log,(1 + 4w)

8(w — 2w? +---)

which lies in (v/3)(3 + 8Z3). Therefore, by Lemma 3.3.2,

(az | x2) c 2+3(/3)
(logz(k(z0)) | x2) 2'+_"’(x/§)(3 +8Z,)
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and therefore g(x2) € (3 + 8Z;)™! = (3 + 8Z,), as desired.

Lemma 3.4.4 If g: R(Qs) — Z3 is the function of 8.1 then
g(x1x2) € 7+ 8Z2
Proof As in the proof of Snaith [32], Lemma 6.3.7,
(log(k(z0)) | Xax2) = 2"**log,(k(p(b - t'))).
It follows from Corollary 2.3.8 that
k(p(b — b)) = p(ta/(x11)) = 15 + 4V/30 + 255
for some § € Zg[\/3_[l]. Hence if we let w = 7 + 24/30 + 244, then
loga(k(p(b—8))) = logy(1 +2w)
= 2w —w?+4w?/3 - 2wt +-..)

which lies in 2(v/30)(7 + 823). Therefore, by Lemma 3.3.2,

(a2 | x1x2) e 2'“:3_(\:/5(_]) |
(loga(k(z0)) | x1x2) ~ 2++5(+/30)(7 + 8Z,)

and therefore g(x1x2) € (7 + 82;)! = (7 + 8Z,), as desired.

94
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Lemma 3.4.5 If g: R(Qs) — Z3 is the function of 3.1 then
3+4Z; ifa*=1+v3+10/10+ +/30/30

g{v) €
1+4Z; ife? = -1-/3—+/10/10 — v30/30.

Proof As in the proof of Snaith [32], Lemma 6.3.8,

(loga(k(zo)) | v) = 2*(log, (k((1 — 2%} (1 = 2))) | v).

If we let D = log,(k{1 — 2?)(c; — ¢2)), then by the formulae used in the proof of

Lemma 3.3.2,
(1-2?—iz+iz®)(D) (2’y—y—izy—iz®y)(D)
(D | v) = det
(y -y —izy —iz%y)(D) (1 -z®+iz - iz®)(D)
where i? = —1. Since z2(D) = —D, we have
. 2 —2iz)(D =2y — 2izy)(D
D1y mde| CEID) (2= 2mD)

(2y — 2izy)(D) (2 +2iz)(D)
= 4{(D —iz(D))(D + iz(D)) + (y(D) — izy(D))(y(D) + izy(D))}

= (1 +2)(D%) + (v +zy)(D)
= 4((1 +z+y+=zy)(DY).
The fact that (1+z+y+zy)(D?) € 25(3+4Z;), which will be proved in Proposition

3.4.6, together with the results of Lemma 3.3.2 imply that

(ar|v) 2020
(oga(k(z) 1) © Z703(8 + 425)
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and
o) 3+4Z, ifa® =1+ v3+ V10/10 + v30/10
g} e .
1442, ifa?=-1-v3-10/10 — V30/10
as desired. 0

Proposition 3.4.6 In the notation of Section 2.2.0,

(14 2 4 y+ zy)(logy (K((1 — %) (1 — ¢2)))) € 2°(3 + 4Z,).

Proof As in the beginning of the proof of Corollary 2.3.6, we have

k(1 —2*)er ~ &) = (1= 2%)(z ~ 2y)(ta) - (=* = 1)(z + y)(wta/(t2/11)),

where by Lemmas 1.3.2 and 1.3.4,

i

ta=(14&)(1 + &n)(1 + £n°)(1 + agn®)(1 + &xT)(1 + GSWB)(I'{'-GQTTE) -e-

and

t2ft1 = (1 + én) (lg_[(l + b,-w‘))

1=2

The reason for choosing the terms up to U, is that we want to compute k({1 —
z?)(c1—ez)) (mod P7?). In fact we can ignore the units of U} in the above products.

To find k({1 — z%)(c1 — ¢z)) (mod P#?), we use Maple to compute the actions of
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(1 — z?)(z — zy) and (2* — 1){z + y) on 7 and on every term of the expressions of ¢,

and #3/1,. As a result, we have, module P,
(-2 (=) =1+ + a8 4 7' 4 wr'® + wr'® 4 22,

where w = 0Qorl.

-

If we let D = log,(k((1 - z*)(c1 —c2))) and 7 = 78 + 7% 4 73 + wal® 4 wrl® 4 72,

then modulo P},

D = y=¥/247¥8 -4 )4+

= g2 + 713 + wrl® + wrl? + 720,
Hence, modulo P{?,
DP=a"4+ 7%+ 79+ wr® + 7% 4+ (1 + w)x™.
Now in the case a = a+,‘ we have, modulo P{®,

1+z+y+zy)(=™) = 2

(1 +z4+y+ xy)-(ﬂ.%) = a8 gl g6 Ty 98

Q+z+y+2y)(x®) = 23 +20 4704 a2 7%
‘ﬂ'“ + 71'46 + 1["7 + 11_48

(1+z+y+zy)(ws®) = 0
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o

(1 +r+y+ :ry)(:.-“) DAL L s L R b + rid
(1+z+y+ay)((1 +w)n®) = 0.

In the case a = a_, we also have, modulo P}*,

(N+z+y+zy)(E") =

(I+z4+y+zy)(=®®) = 723754 4 a4 0?5 4 118

(1+I+y+zy)(7r33) ‘_r38+7r39+1r40+1r41+n,42+“_48+

,'T-IS

(l+z+y+zy)(wr™) = 0

A+z+y+ay)(r®) = =74+ 7% 4 a' 42"

(1 +z+y+zy)((1 +w)r) = 0. | (3:2)

It now follows from the relation #4% = 25(1 4+ 714-0-7%+--.) and the above identitics

that

= (1+z+y+zy)(D?)

704+ 2 (mod P}°

7°(1 +7*) (mod P

]

P14+ Y1+ 7Y (med P9

T

HI

2*(1+7%) (mod P}®

€ 25(3+4Z,),
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as desired. o

We are now in a position to state and prove the main result of this section.
Theorem 3.4.7 In the notation of Section 3.1,

~1 ifa® =143+ 10/10 + /30/10
[Ker(k)] =
|1 #e?=~1-+v3-v10/10 - v/30/10.
Proof Identifying the class-group with (Z/4) for the moment, the arguments in
the beginning of this section and the calculations of Lernma 3.4.1 to Lemma 3.4.5

show that
—(-1)/eeld)  if ¢ = o
[Ker(k)] = [g] =
s (—1)(114)1352(8) if a=qa_,
where § € 7 + 8Z; and, as usual o} = %(1 + v3 + +10/10 + v/30/10. Since

(1/4)log,(7) € 2Z,, we have that

-1 fa=a,

[Ker(K")] ;

1 fa=a,

as desired. ’ | 0

NS
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