Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6872
Title: On the Generation of Pipeline Acoustic Resonance
Authors: Harris, Ralph E.
Advisor: Dokainish, M.A.
Weaver, D.S.
Department: Mechanical Engineering
Keywords: Mechanical Engineering;Mechanical Engineering
Publication Date: Aug-1987
Abstract: <p>A flow configuration capable of exciting and interacting with the acoustic plane waves modes of a piping system is examined both experimentally and theoretically. The acoustic source is generated by placing two standard geometry orifice plates in the flow. Strong acoustic pressures exceeding 125 dB inside the pipe are generated with the orifice plate separation distance small (<2%) in comparison to the wavelength of the lowest frequency excited. The acoustic source is shown to excite those modes possessing an acoustic pressure node (acoustic velocity anti-node) at or near the source location. The Strouhal number based on mean orifice velocity and orifice plate separation ranges from 0.5 to 1.0. and is sensitive to cavity diameter. Flow visualization photographs examining the fluid mechanics of the phenomenon are provided. The photographs reveal the presence of an oscillating shear layer near the upstream orifice plate, and subsequent roll up into a large scale vortex and propagation to the downstream orifice plate. The effect of mean turbulence levels at the upstream separation plane on the fluid dynamics and coupled acoustic production is studied.</p> <p>An acoustic model of the piping system is developed using the 4 pole method. The acoustic model, as well as the modelling procedures, are examined and tested in detail. A theoretical model of the coupled fluid/acoustic oscillator is developed by combining published characteristics of separated inviscid sheared flows with the developed acoustic model. The theoretical model predictions compare favorably, both qualitatively, and quantitatively with the experimental results.</p>
URI: http://hdl.handle.net/11375/6872
Identifier: opendissertations/2177
2722
1323632
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
8.5 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue