Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6744
Title: Moving Finite Element Solution of Discontinuous Open Channel Flow
Authors: Moin, Afaq Syed M.
Advisor: Smith, A.A.
Lam, D.C.L.
Department: Civil Engineering
Keywords: Civil Engineering;Civil Engineering
Publication Date: May-1988
Abstract: <p>Over the years, rapidly varying channel flow and discontinuities in the solution of fluid mechanics problems have provided stimulation and challenge to numerical modelers. Traditional finite difference and finite element methods produce accurate but oscillatory solutions. Attempts to selectively eliminate these parasitic waves have been only partially successful in that the cost of a smoother profile was a lower accuracy solution. It is common to employ either internal and external dissipation parameters or a provision of dispersive interface.</p> <p>In this thesis, the problem of rapidly varying open channel flow is represented by a pair of nonlinear partial differential equations which are solved by a powerful moving finite element technique. The method developed in this research is based on the linking of a novel Lagrangian mode solution with the convenience of the Eularian grid at each time step. This second order scheme was employed in solving a variety of devised and reported open channel flow problems with near discontinuities.</p> <p>Comparisons with solutions obtained using the finite difference and finite element methods with Crank-Nicholson centred weightings demonstrates the quality improvements which have been achieved by this moving element scheme. The basic scheme was further generalized in both spatial and temporal dimensions. Sensitivity analysis of these generalized parameters established the grid size relaxations for a variety of problems. The moving element technique solved near discontinuous and gradually varied flow problems both in supercritical and subcritical regimes.</p> <p>An alternate form of Petrov-Galerkin weighting function was tested and found to give promising results. Further experimentation and testing are required before implementation.</p> <p>The robustness of the solution procedure is indicated by the adaptation of the model from the numerical and laboratory experiment stage to field problems. The model was successfully applied to the Teton Dam break flood and flood routing problem in the (Ontario) Grand River basin. Sensitivity analysis with very mild sloped channels with topographical features such as sudden expansions and offchannel storage suggest that the Eulerian-Lagrangian mode algorithm provides the missing link between the fluid mechanics of discontinuities and a practical tool for the modelling of rapidly varying open channel flow.</p>
URI: http://hdl.handle.net/11375/6744
Identifier: opendissertations/2053
2847
1340070
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
12.9 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue