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_ lower accuracy solﬁtipxi. It is common to ex?éﬂ)y either internal and external

" dissipation parameters or a provision of dispersive interface.

waz .
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S C ABSTRACT
Over t.he _years rapldly ‘varying channel flowwand discontinuities in tha i}’\ y
£
solution of ﬂmd mechamcs problems have provided stimulation an&challenge to A

numerical nodelers. Traditional finite difference and ﬁgxte-element methods produce °

accurate but oscillatory solutions. Attempts to selectively eliminate these parasitic

" waves-have been only partially successful in that the cost of a smoother profile was a

. In thi's. the.sis, the problem of rapidly Yarying open channel flow is

S

represented by.a pair of nonlinear pﬁrtial differential equntiorxs which are solved by a

powerful moving finite element technique. The methed devgiGped in this research is

based on the linking of a novel Lagrangian mode solution with the convenience of the

Eularian grid dt each time step. This second order scheme was employed in solving 2.2 . -

variety 8 devised and reported open channej flow problems with near discontinuities.

e

Comparisons with solutions obtained using the finite difference and finite
. . 4

element methods with Crank-Nicholson centred \weightings demonstrates the quglity
improvements which have been achieved by this moving element scheme. The basic

scheme*was further generalized in'both spatial and temporal dimensions. Sensitivity

- d

analysis of thesé generalized parameters established the grid size relaxations for a )z
+* « )
variety of prohlems. The moving element techpique solved near discontinuous and
a
gradually varied flow problem#both in supercritical and suberitical regimes.

An alternate form of Petrov-Galerkin weighting function was telited and
found to give promising' results{. Further experimentation and testing are frequired

- «

before implementation.

iii



The robustngss of the solution procedure is indicated by the a&éptation of

14

" the model from the numerical and laboratory experiment stage to ﬁeld-pmblems. The

. model was successfully applied to'tbe_Teton Dam break flood and flood routing
}:roblem in the (Oritario) Gll'and River basin. Sgnsitivity analysis with very mild
sloped channels with topographical features such as sudden expanQions and off-
channel‘stornge suggest t}jat the Eulerian-Lagrangian mode algorithm px_-o:.rides the

. » -~
* missing link between the fluid mechagics of discontinuities and a‘practical tool for the

] .

modelling of rapidly varying open channel flow.
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CHAPTER 1
INTRODUCTION

’ Sudden release of Wt;ter in a channel folloﬁng thﬁ breach of a dam is
consiflered asa discont:itil.;.ous flow problem in a limiting sense. Such problems have
invited interests from many discipli;':e's. Two related fields are in fluid mechnqics and
open channel’hydraulics., Problems encounte;ed‘ in solving discontinuities in aﬁy
field are well documented.

While research concentrated in developing new and innovative techniques
in. fluid mechanics, hydraulic engineers primarily concentrated in devising practical
tools to solve the problems. ';‘he difficulty in solving rapidly varying {low resides in

the oscillatory behaviour of many discretized difference forms of the governing dif-

ferential equations. The current research was concentrated on an attempt to bridge’

the two disciplines by doing justice to the mechanics of fluid behaviour, while
responﬁing to the practical aspects of unsteady flow modelling.

The unsteady flow hydraulies for near discontinuous or rapidly varying
flows is described by the divergent or conservative form of equations due to Barre De
St. Venant. The pair of equations account for the conservation of volume and
momentum within the solution domain. Mathematically, the two equations are non-
linear partial differential equations of hyperbolic type. A complete solution requires
specification of initiai and boundary conditions. In the form in which these equations
are written they cannot be solved analytically. Since the advent of computers, a

variety of numerical solutions of the St. Venant equations have been proposed. This




study addresees this aspect bf numerical solutior’ by a new Eularian-Lagrangian

based finite element method. . v |

| The study was carried out in five stag\es-desct{ibed in the following chapters.
In .Chaptef 2, the scope of the_study is defined, objectives are set and the governing
equations alo:ig with necessary initial and boundary conditions are established.
Chapter 3 dqct.l;nents tl:e literature review carried out in support of the research. The
Eulerian-Lagrangia:; linked algorithn_l, named the moving elemen‘t method, is
developed in Chapter 4. This chaptér also provides details on the generalization from
.idealized conditions to practical field problems. :

Chapter-5 documents the setting up of a number of numeric;l experiments,
model testing and sensitivity studies. Alternative forms of solution in pure
Lagrangian mode and Petrov-Galerkin based schemes are also tested. Improvements
in results over the (inite difference and finite element methods are demonstrated. The
computer model developed to carry out the numerical analysis is described in Chapter
8.

Testing on mainframe machines and the successful transfer to a variety of

personal computers is documented in this chapter and meodel input and output are

expiained.

-

In Chapter 7, the model application to simulate the Teton Dam break floed
and fldod routing in the Grand River are described along with some laboratory experi-
ment veriﬁcation.. Chapter 8 provides a summary of the model development, testing
and implementation, conclusions are drawn {rom the stu.dy and recommendations for
future work are suggested. As a certain arﬂount of the comparisons in Chapter 7
invoive the Imperial System of units, these were also employed in this work for the

sake of consistency.



Al figures and tables appear i‘oiloiﬁng their reference. Wher;-;s-t‘app;opriate.
reference is made to Appendices. The variables used in this work are sumu;ariied in
- Appendix ‘A’ and deﬁned following their first declmﬁon. The sghrce code for the:
eqmi)uter program, an executable module, an'éiample input file and a s;nmplé t;ixtpuf.- -
are provided on a floppy diske;tte ap;;enﬂed to'the printed thesis. The list c;f references -

provided in this thesis is also enclosed on a diskett,e'as an ASCIIfile.




. ' CHAPTER 2

— — DEFINITION OF PROBLEM

To obtain a reasonable solution, the problem has to be posed properly. For
the study of open channel nﬂow hydraulics, this requires the specification of the
governing equations and the aésociatgd initial conditions and boundary conditions. In
this chapter, a brief description of problems encountered in solving discontinuous or
rapidly varying flow phenomenon is presented. This problem definition is studied
separately for the numerical aspects of convection d\minated flow equations and
application aspects’of open channel equations. As a variety of open channel flow
equat'ions have been proposed in the llaast.. these are classified accoxding to their use.

Lastly, the study objectives are developed for addressing the problem so defined.

2.1 Oscillations in Convection Dominated Flows

Although there are a variety of ways of posing open channel flow equations,
,al! these lead to a pair of non-linear partial differential equations of hyperbolic type.
'i‘j}ese equations when‘\formulated represent the conservation of mass (strictly
spg;%c’_ing volume), and some form of momentum. In a generic form, these equations

are written as:

Muss Canservation

.4 3
a fl(y) + g gl(u} - h1 =0 2.1

- le



Momentum Conservation

where;

3 s =
;gl(u)+ ;[szu)-i-fz(y)'] ~h,=0 : (2:2)

ye

Mass Conservation terms:

e

(@

{3

The first term of Equation (2.1) describes the rate of rise reflecting changes
in the storage dut¥o chenge of water surface elevation with time.

The second term accoﬁnt_s for.the prism and wedge storage variations in
space.

Lateral inflow and outflow term acé;)l;nting for the net mass change both

spatially and temporally besides the storage terms in {1) and (2).

Momentum Conservation terms:

(4

(9

(6

n

The first term of Equation (2.2) provides for the acceleration due to time
variation in the flow field.

The second term of momentum equation explains the convective
acceleratiortgdue to a spatial gradient of both velocity and depth.

The third term accounts for the pressure force terms.

The term ho in Equation (2.2) shows a balance of acceleration effects contri-
butions of lateral inflow (zero for cutflow), gravity body force provided by a
sloping channel bed and corresponding frictional force effects on the wetted
surface.

In the above eqﬁations f1( ), £2(), gl( ) and g2( ) are functions of the

dependent variables. Specific forms of these equations ar!ﬁgscribed in later sections.

These equations have no closed form solution, unless they are simplified to

an extent that they cease to be of practical interest, The pair of equations further




require mltml and bo'ur;dary mnﬁéom when their solutioﬁ is sought by any of the
nu:_nerilal ieéhniﬁués. ' \
Numerical"sc;lutions of any parha! équations such as Equat:.ions (2.1) and _
. (2.2) require discretization of the contihuc,)us ter;ns into finite difference form. Such
approximations are uhi;ved by a variety o_f techniques. Finite diﬂerence and ﬁnite‘
element methods are t\-v.o most commonly used. |
For probleyna ;vith gradual variation in both spatial and &mmml senses,
experience in solving such equations haﬁ been.a success. When faced with problems
involving- steep spatial and t_emporal gradients, historically, all numerical methods |
+ have failed to produce satisfactory results. Coﬁmon problems reported for stégp
fronted solution include node to node oscillations, clipping and overshooting, negative
values of variables, etc. ' '

When the resulting numerical solutions exhibit node to node oscillations, it
is commonly referred as a saw-tooth solution or one marred by the presence of
parasitic waves, In the literatyge, these oscillations are commonly called 'wiggles'
and this terr;l is used widely here.

Considerable effort has gone into explaining the mechanisms that
precipitate the growth of an oscillatory behaviour. The most common approach is the
use of Fourier analysis of the linearized governing equatiéms. These Fourier analyses
study the properties of waves' of different lengtis in a discretized domain.

By Fourier analysis of the linearized wave equations, Gray and Lynch
(1980) have shown that the 2Ax waves are not dissipated and that they travel at
.\ﬁﬁbrent speeds when compared with other wave components. These oscillations are

common for many of the discretization procedures in finite difference and finite

element techniques. From this perspective, the discretization schemes are sometimes
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called non-dissipative if the node to node oscillations are preserved in the difference -
forms.

Many governing equationﬁ which explain the physical processes of fluid

mechanics are nonlinear. The node to node problems are.then furtherl e;:acerba‘ted
from oscillations generated by the nonlinearities. These problems are common even
when idealized l;xeld conditions are gssumed. For e:iample, in solving open channel
. ﬂo_w equatibns,’ a prismatic channel mayi:e as.sumed. Problems in the field setting
- a:md their solutions are therefore compounded when the finite difference and finite
element discretization is over & nonlinear domain, i.e. one in which the variables
violate the holistic assumptions. T

The foregoing then leads to the development of the first objective for this
research. The objective is to develop alternate techniques for solving a pair of

nonlinear partial differential equations of hyperbolic type in the presence of steep

spatial and temporal gradients. In this research the pair of equations describe open

channel hydraulics. This is further elaborated in the next section.

2.2 Compromises in Rapidly Varying Open Channel Flows

The probljms defined in the previous section are also present when solving
unsteady flow equations for open channel flows. The physics of open channel fiow is
explained by a pair of equations accounting for mass or volume continuity and con-
servation of some form of momentum. The solution further requires initial and boun-
dary conditions. By its nature this system of equations constitutes a problem of
nonlinear hyperbolic partial differential equations.

One of the properties of hyperbolic equations is to propagate any discon-

tinuity introduced at its boundary without change. No mechanisms exist to dissipate




or d:.spem the perturbation, unlikerlélliptic or parabelic equations for --e'xa.mple.,
| ‘ Therefore, any oscillatory solution that is developed will propagate w-itlu;:u_;t change in
its form, i the solution is free from stability, convergency and consistency problems.
As the research is concentrated in the field of o_pen channel hydraulics, the
problem is defined in this frame of referehce.. Before &scribing the existing solution
techniques, it is prudent to define a variety of" terms com;nonly émployed throughout
this thesis. ‘
Dam-brgal; flood: :A .hypothe;i&l dem-break flood results from instantaneous
removal of a structure holding back Anitially quiescent water at a finite depth and of
infinite capacity to sustain the flow rate for the duration of simulation.
) Other terms comr;only used in the same context are dam-burst or dam-
breach floods, The only scenario where the concept of near instantaneous failure can
be realized is for concrete arch dams The second postulation of infinite cap#city of the
reservoir is rarely true. Dam-break floods generate {wo fronts, a strong front
advancing down the valley and a weak front receding into the reservoir. The U.S.
Arm_:,; Corps of Engineers, Hydrologic Engineering Center (HEC, 1977) p‘rovided

information on breach characteristics and different modes of failure depending upon

the material of construction.

Rapidly Yarying Flow: Near discontinuous flow or rapidly varying flow are synon-
ymous with dam-break flood. In the presence of such flow conditions, the domain
experiences large tamporai and spatial gradic;nts of velocity, discharge and depth of
flow. The flow is marked with discontinuities by the formation of standing and

rnoviné hydraulic jumps.



_ &
Gradually ‘farying Flow: | In contrast to the rapidly varying flows, gradually
varying flow exhibit a continuous surface. ,Thel spatial and temporal gradients are
very small and at any point the water level and flow change slowly. Thig is the most
common t.y%e of unsteady flow in natural channe?s. This flow type is also referred as
continuous ﬁow’.
Traditionally, t—:he upsteady flow hydraulic models for studying dam-break

floods evolved from their continuous simulation counterparts. Most of the numerical

techniques provide adequate solutions for gradually varying flows and by ddvuncing
-,

the temporal weighting parameter. These techniques, however, lead to oscillatory ™

waves when the solution is sought at numerically more accurate centered Crank-
Nicholson weighting especially for rapidly varied flow.

In order to obtain a smooth solution, i.e. free from parasitic waves three
different techniques are commonly employed. These provide a smooth, non-
oscillatory albeit dispersive surface. These meathods, reviewed in Chapter 3 are:.

- external digsipative mechanisms

- internal dissipative parameters

- dissipative interfaces.

The first method requires the addition of external higher order derivatives
and a dissipation constant. This is a popular methed in many finite element based
models. The second technique p[ovides for selective di;ssipation of the oscillatory
waves by advancing the temporal weighting of an otherwise centered Crank-
Nicholson scheme. This is the most frequently used method among‘numerical
solutions. Dissipative interfaces are in-t.roduced in the solution by replacing those

variables at the current time level associated with the time derivatives with a



weighted average. This averaging process, which requires a dissipation parameter,
provides an interface.
The. f;regoing provides the basis for the second requirement of this

research, The objective then is to develop an accurate numerical scheme for ogn
channel flow equations ¢apable of handling hydraulic transients preferably without

any dissipative aids.

2.3 Open Channel Flow Equations

Saint-Venant (1871) first proposed and developed the basic theory to
explain the process of propagation of waves in open channels. The fluid mechanics is’
explained by a pair of partiél differential equations representing the congervation of
mass {strictly speaking volume)} and momentum of flow in the channel. In the
literature these equations are commonly referred to as the St. Venant equations.

There are excellent refarence.f: where the development of thge equations
and associated assumptions are expounded. Abbott (1979) provides the theoret‘ical
framework, assumptions and common simplifications. Since there are a variety of
ways in Jhich the open channel flow can be represented, it is important to provide
consistqnt definitions ‘of all the variables and parameters. The flow equations as

employed in this research are:

dA
— +
&

%18

~q=0 (2.1a)

A

Q8 ¢ -
S T Qg (Ay)-gAS -SP~ugq=0 (2.2a)

Being stated for the first time, the following definitions are used through-

out this thesis:’



Qlx,t)
ylx,t)

h(x,t)

So
SdQ,h)

b1, £)

A(b,t)

V=@a

Uy

P/p

where
y

Z

i1

-

independent variable, t.ifne (bas:c unit is second,T)

independent variable',. ‘distance measured fro;n th; upstréam
boundary; pos.itive in the downstream direction {metre or fget. L)
discharge or flow rate (m3/s and cfs, L3T-1)

depth of flow (_metre or feet, L)

stage or water surface elevation above an arbitrary datum (metre or
feet, L)

channel bed slope (dimensionless)

frictional sl;:pe (d.imenéi:onless).. It is also a measure of forces exerted
on water by the wetted surface

channel width at depth '€and location, x (L)

cross-sectional area of tile channel (L)

velocity averaged over the cross sectional area (LT ~1)

lateral flow rate pet unit length of channel (L2T - 1) positive for inflow
and negative for outflow

velocity of lateral flow component in positive 'x' direction, contri-
buting to channel' momentum, zero for lateral o;tﬂow, positive or
negative v?.lue for lateral inflow

pressure exerted by the water body

This is also the same as gAy

depth of centroid of the cross-section (metre orfeet, L}

thalweg or channel bed elevation above an arbitrary datum

The following relationships further define the variables noted above




T a2.2 ) =
g = Q"n - _ . {2.3)
where - -
! n = Manning's roughness coefficient
R=A/P= hydraulic radius (L)
R= Wettec% perimeter or surface (L)
K2 = g constant to reflect units used
" (K2 = 1.0 for metric system and K2 = 2,208 for Imperial units)
Cz, c2 = E& =gDh ‘ (2.4}
T
where
C, ¢ = celerity of wave (LT-1)
T = top width of channel at a given flow (L)
D = hydraulic depth (L)
g = acceleration due to gravity (LT-2)
Fo= —e (2.5)
* VgD
where

F. = Froude Number, a relative measure of the inertial forces to

gravitational forces

Yy »
] bix, Dh-9dE

y = y
[ bix, dE

Q

¥y
b{x,d(h-Hd§ -~
_ [ o (2.6)

A

where
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y = depth-of centroid below the water surface

Other variables aﬁd definitions follow their first occurrence. |

The two 'open channel flow equations attributed to the 1871 paper of de /

- Saint-Venant in their original form are given as follows:

at ax
and :
® 1ldu. -ua x F
— ==t == = -
as g ot g & w pg
where
®w = the cross-sectional area
u = the mean velocity
. e = the position of water surface above a reference level
xF/wpg = the friction slope .
p = the density of water
g = the specific weight
gF = the boundary friction per unit area
and s = the length along the rectangular prismatic channel

2

(2.8

In essence, the above two governing equations have remained unchanged

over the last hundred years. A variety of modifications, enhanéements, simplifica-

| .
tions and alternativ¢ form of equations have been developed. Such equations can,

however, be shown to reduce or alter to the equations as described by Saint-Venant.

There are three alternate forms from two basic formulations of the

unsteady flow equations depending on their emphasis on the momentum conservation

principle. These alternate forms also provide physically consistent numerical

’ .
solutions of the unsteady flow problem under various conditions. these are:

[
1. Non-Divergent form
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. . 2. Characteristic form | ' | ' ‘ .

-3 (fonserigation or Divergent form ,
There are again a number of W:;.yﬂ in which the dependent variables are di_efined. For
exﬁmple the flow conditions can Be specifieci as the discharge .rate of velocity.
S.imz;larly, the depth of ‘flow can be described alternately as the f)ori_ition ofl"t.he water

surface above a reference datum. For the sake of consistency, the dependent variables

used in this research consist of discharge and depth of flow.

23.1 Non-Divergent Form ,

This is the most common form of the St. Venant flow equations, and is
employed numerical models. As this formula.ation is rooted in the resolution of an
energy balance, the equations are also referred to as tl_'xe energy based form.

Conservation of Volume

¥ R _, (2.9)
at ax
Conservation of Momentum
Q3 ' 3y
* + oy (Qu) + gA pole gAS +gAS, —u q=10 (2.10)

Since the Rankine-Hugoniot conditions are not satisfied across a shock or discon-
tinuity, this non-divergent form of the unsteady flow equations should not be used for

problems with steep temporal and spatial gradients.

23.2 Characteristic Form

T

By multiplying the terms of the cogtinuity equation (Equation 2.9) by the

wave célerity, ¢, and alternately adding and subtracting the resulting equation to the



momentum conservation equation, the result can be reduced to the characteristic
form. These equations are written in terms of the forward and hrt’kward

cha:acteﬁ;stics as foliows:

Forward Gharacteristic:
aQ

— + (u+e) i — (u=0) 3 - (uz—_cz) A
at ax at ax (2.11)

- gA'So + gA Sr + @ ~cq =10

Backward Characteristic:

T A
ﬁ + (u—c) Q - (u+e) — - (uz—-cz) -
at ax at ax (2.12)

~gAS +gAS . +(u +aq=10

For two reasons the characteristic form of equations provide more accurate
numerical solution. First, by its very nature the solution for hyperbolic equations
follow the characteristics and hence this form provides the best vehicle. Sef:ondly,
unlike the r;on-diver.gent form, the characteristic equations and their difference forms
lead to well conditioned matrices. The coefficients of the resulting sets of equations
are of the same order of magnitude hence roundoff errors have less impact on the
overall solution.

As will be documented in Chapter 3, this form of the equations is not
suitable in fhe presence of shocks {the characteristics will intersect) and for

simulating wave movement in natural channels (existence of reflected waves).
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)
233 - Comervatlo’h or D:vergent Form

*It was noted that; the non—dlvergent form of equat.tons, because of theu'
energy balancmg propertxes could balance or aecount for energy ]oss across a discon--

tinuity while t.he momentum is violated. Thxs can be rectlﬁed by adoptmg a divergent

v

form of the equations whxch expl:c:t‘ly balances the momenturn.

Lo

. For the conservation of volume and _momentum {and, by extension, energy),

-

the divergent form embodies the Rankine-Hugoniot‘shqck con'ditioﬁ's. The unsteady -

flow equations in. this and other forms have been commonly _employed in studying

P
near discontinuous flows.:
Conservation of Volume -
N .
_— ﬁ =g (2.13)
at ox
‘Censervation of Momentum ‘
Q3 3 /P
}Tt- +'a—x (Qu) + a: ;)_gASD-i-gASr.—uxq:O . (2.14)
Alternate form of Equation 2.14
Q9 a - ' ‘
-5:+;(Qu)+ga—x(Ay)—gAS°+gASf_u!q=0 (2.15)

?

As the objectives stated before stress the solution of open channel flow equations for

rapidiy warying flows associated with dam-breach phenomencon or discontinuous
: T . ®

flows, the above equations are used. Equations (2.13) and (2.14) and associated

boundary and initial conditions define the problem definition.



—
Initial Conditions . L |
o QD =F,® L . ‘_ 219
y 0 = F,(x) T
Boundary Conditions
Upstzeam' o )
| QON=G® : (2.18)
or i -
yO,0=G, ¢ . (2.19)
Downstream )
QLY =H® | (2.20)
Orl |
5 y(L,t)= Hz(t) . (2.21)
or
QLY = H, {y(L,0} (2.22)

To avoid non-trivial solution, Equations (2.18) and (2.20) should not be specified

s
concurrently. F,f and H are known functions,

2.4 Statement of Objectives
From the definition of problems two major objectives were listed in previous
sections. These are restated and other secondary objectives developed. Thesé are

stated as follows:

1. The primary objective of this research is to develop, test and implement an *

{ .
improved numerical solution of a pair of nonlinear partial differential
equations of hyperbolic type which represent the divergent form of the

equations of open channel flow.

4



The numencal solutxon should be capable of handlmg d:scontmmtxes both

‘ mtemally as uutml conditions and oxtemally by mtroductmn at ﬂie boun- _

_ danos Further, the techmque should achieve results mthout pre]uchcmg :

t.ho integrity ofoquatmns as employed.

The proposed methodology would extend existing Lagrangzan based

.solutmns of smgle equauon problems in fluid mechamcs to open channel

ﬂow_v problems with coupled doper_ldent variables. ' _

- . - Fl
The technique should be capable of eliminating oscillations commonly
found in discontinuous flow solutions without adding internal or external

dissipation parameters,

The solution procedure would be generalized in both spatial and temporal

weighting senses and the impact of such 'generalization would be studied.
Controlled numer{cal experiments would be devised to evaluate model
capabilities and est.abliil} limitations.

The numerical scheme would be extended frou? the controllod experiment
stage to simulate dim-break floods in natural channels. The governing

equations would he improved by adding or altering the appropriate terms.

_ The portability of the computer a]éorithm would be tested by first down-

loading the program from the mainframe computers' to personal computers
and then by adapting to a variety c& microcomputers,

‘ \l.



CHAPTERS
' LITERATURE REVIEW . v&

3.1 ‘In'trodl_xc-ﬁdn 7

; The Iiteraturel"is abundant in both tht'c;retical development ot; procedures

for dam-breat‘:hlﬂoodwave roﬁﬁng and théir practical applications. There are two

.ﬁoteworthy documents which chronicled these devé]oi:ments. Miller and Yevjevich

(1975) prepared a bibliography contain.jng 1885 references on uns_teadsr flows in open
'char:nels. Wurbs (1985) presented a chronological annotated bibliography of 189
references on dam-breach and associated flood routing pher:omenon. Furthermore, &
workshop was organized by the United States Wate:f 'Resources Counctl, Hydrology
Committee in 1977. The procéedings from this workshop on Dar:-Break Flood
Routmg summarizes the experience in practical applications of several models by
sixteen agencies. |

Instead of reiterating the theoretical develo{r\nents, modelling and
practical experiences, the presentation in this chapter is organized to highlight
pérticular techniques employed classified as follows: -

(i Dam-break and associated flood routing beirig a convection dominated flow
problem in fluid mechanics, theoretical aspects of these associatéd felds
are discussed; »

(i) The flood wave generated by dam-breach in a theoreticai or limiting Qénse
introduces a discontinuity in the flow domain. The techniques related to
handling such discontinuity by the finite diﬁ'erence. and finite element‘

h-4
methods are addressed;

19
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(iii)

(iv)

3.2

- 200

Field problems have to be concerned with smearing and damping of this
diseontinuity by external varisbles in the form of bed roughness, eddies,

ete. Also, the flood-wave after travelling a cérta.in di{stance, due to peak

flow attenuation adopt a more or-less continuous flow profile and flow

. varies gradually from point to point. Finite difference and finite element

techniques employed in solving the continuous flow problem are pfesented

next; and

'Numerbus references are available on problems related to oscillatory

_ solutions in convection dominated fluid flows. In the last section a

summary of different damping techniques with reference to open channel

flows is discussed.

7

Com-ractiorr} Dominated Flows in Fluid Mechanics

. . _
Meny problems in the field of fluid mechanics are concerned with<edvection

or convection dominated flows. Examples are the Navier-Stokes equations, and

diffusion-dispersion equations describing the distribution of momentum, temperature

or concentration. Such problems are similar to those handled by the open channel

flows equations. It is not, then, uncommon to observe oscillatory solutions or wiggles

when studying these problems. As a simple case the equation of advection-dispersion

problem is statedas

&€ &£
— +

= (3.1)
g -

=K

e
%ol &

(]

The second term on the left hand side accounts for the advective transport

of a substance, C, in a non-uniform flow or velocity field, u. The term on the right

hand side describes the molecular or eddy dispersion at a rate, K. Typically, this

2



‘problem is related by the Peclet Number, P,, defined as

, ' P =2 (3.2)

v

where L is a characteristic length. In a finite difference scheme, the characteristic .

length is the reach length, or Ax. When P, is small (< 1), there is enough dispersion
. o \‘\\ . N =~ -
- or diffusion preSent that. it overcomes the oscillatory solutjon associated with the -

-

advectlon component However, prohlems arise when P, is large (> 10) when
advection dormnates The limiting case is when K is e@al to zero and Peclet No. is

infinite. This is similar to open channel flow equations in the nbsence of bed rough-

ness. Writing the conservation of mass and momentum equations

A L AW _ o (3.3)
at ax.
” 4
Q) HQu) . 3 - :
x o 2w (Ay)

Comparing Equations (3.3) and (3.4) with équation (3.1) indicate the com-
plexities in solving open channel flow equations. This is imposed by the raqt;irement
of simultaneous satisfaction of dependent variables in two equations. Another reason
of complexity is due to the coupling of various terms.

Having established the necessary common features of the open channel
flows and convection-dominated transport, attention is now focussed on the treatment
of the problems/ ¥iz. the presence ;)f oscillations as shown in Figures 3.1(a) and (h).

The advent of the computer has resulted in the employment of various
methods for the numerical solution of the partial differential equations for many
physical processes. As a variety of techniques emerged for solving convection
dominated flows, there appeared a corresponding volume of literature an the

o
oscillatory nature of solutions and techniques to suppress these parasitic oscillations.
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These humericql techniques were further enh;m_:ed \ﬁth the employment of the finite |
element method and variations there of.
In 1981, the Am_encan Socxety of Mechamcal Engineers organized a work—
shop to specifically address the subject of convection-dominated flows in ﬂuxd
féech’amcs Among a number of papers which described several alternative proce-
dures, there were two excellent papers whlch summanzed the nature of the problem,'-
possible reasons and:suggested remedies.
Leonard (iQSI) provided a brief history of computational fluid dyné.mics
modelling. The paper centred on the appearance of oscillations in the solution and
their interpretation and gave a detailed description of problems associated with the

¥

discretization of the spatial derivative, ie. the advection term. *

Leonard theorized that when the cell Peclet number, described in
Equat}on (3.1), P, is greater than 2.0, the second-order central difference scheme
results in an oscillatory solution where as the first-order upstream differencing
scheme becomes artificially diffusive. Leonard proposed two other higher-order
schemes which were claimed to be both stable and accurate under high convection
conditions, A literature search for this work/h{)wéver, failed to reve.al use or success
of similar higher order terms in open channel flows, The use of upwind-weighted dif-
ferencing in suppresaing the oscillations was questione;i. Roach (1976) analyzed the
same problem with a suggestion that the use of upwind-weighted differencing of the
convection terms is actually fictitious in view of the stability being achieved at the
expense $f false numdrical diffusion. This is equivalent to using the central

’

differencing and adding an artificial diffusion term. Roach further suggested possible

1

solutions if the wiggles are a result of the boundary conditions.



‘ A second paper by Gresho and Lee (1981) in the ﬁame pwdmp px"ovitiéa_
" a summary of different techniqﬁesused in suppressing the 6scillatidns: The topics
covgred for the‘ée parasitic 6§£illation.range from the .simpl_e heat cofxduetio,n'to the
more complicated Naﬁér-Stoke;a equations. The paper argued véfy strongly against -
indisériminate ti-eatment of the \v:iggigs; by means of suppressants su‘ch as artificial ..
damping mechanisms. The authorﬁ argue in support of refming fhe grid rather than
" retaining a coarse mesh and adding external and redundant terms. The reason for the
~ oscillations, it is theorizt;d, is related to the di‘scretization of the solution dqmain and
not necessarily the finite qlemenl; or finite difference techniquea. Further, if the
discretization of the partial differential e;iation is consistent.then in the limit'of a
fine mesh the finite difference solution should approa‘c.h the analytical soluﬁon if one
exists, -
"

The paper equates the oscillatory nature of solution to a signal that there
are problems either with the discretization scher;e, the boundary conditions or
parameter selectiorn. The paper conclﬁdes that the 'sedatives’ introduced by schemes
which set out to suppress the oscillations apriori induces a false sense of security that
the solution is representative and tha; moreover such schemes can damp out more
than just oscillations and may suppress information.

The paper is strongly critical of any upwind weighting scheme, be it a finite
diﬂ'érence or ﬁnif.e element technique. Huyakorn {19"7'7) and Huyakorn and Nilkuha
(19'79) have réported progress in employing upwind wei;ghting schemes in the finite
element discretization for the advective-dispersion problem. Gresho‘-and Lee (1981)

have, however, argued against the 'theoretically unsound basis’ of the scheme and

questioned its ad hoc nature for obtaining an optimum weighting factor. it also




appears that there is no easy way to optimize this fagtor especially for time- variant

‘ problem.” - ‘
‘There are certainly other papers.which tend to support the argumen‘f.s put
forward by Leonard (1981) and Gresho and Lee (1981). Lee et al (1976) and Grésho

and Lee (1978) tosted and compared several .numerical methods for the convection
‘-ddminabad f_lows.‘ These papers summarized the following points which are relevant

b T [
to the dambreak problems. . o

voo-

-—

8) . In the absence of diffusive or disﬁei-sive aga‘nts or when their influenge is

insignificant (cofrespp‘nding to a high cell Peélef Number),‘ conventional -

. finite element methods even with linear elements are more accurate than
central finite difference schemes.”
b) The first signs of oscillations are directly linked to the grid coarseness.

Other reasons to cause these oscillations are to&-steep waveform, too-high

cell Peclet number and fixed outflow boundary condition. Oscillations

which resulted from grid coarseness or steep-wave form are dispersion

wiggles (i.e. shorter wave components advecting at the wrong speed) and
can be reduced to an acceptable level' by. refining the mesh configuration.
"On the contrary if the same oscillations are suppressed by employing, for
example, the upwind weighting technique, then it no doubts provides a smooth
solution. It will also be shown later in this chapter that in many cases such external
vﬁl;iables causes the solution to be that of an entirely different problem.
Still within the domain of convection dominated flows, ﬁost of the solution
procedures have concentrated on finite differe in Space and time. Examples can
- be found in Boak et al (1976} and Martin (lmmem have employed a combination

of Galerkin based finite elements in space and finite difference in time. Reference is



' mads to Adey and Brebbia (1973), Dailey and Harleman (1979), and smiih ot al
" (1973). Lam (1977). Ehlig (1977} Mercer and Faust (1977) and Smith (1977)
_-compared various ﬁmte dxfi'erence }nd ﬁmte element techmques for selected t.ests

The results from the review and companson mdlcate that when the diffusive terms

dommate ‘(associated mth low cell Pe::,let Number) all metheds give satmfectory

. results. When convectmn terms dommdte (i.e. high cell Peclet Number) all techni-
ques exlnbxbéd problems like osclllataons overshootmg, chppmg, numerical diffusion
and negatwe \;elues of dependent vanables (concentratmn cannot be negatwe)

: Flg'ure 3.2,feproduced from Lam (1977), mdmates the nature and degree of
nroblem for highly convection dominated flows. In this example, ﬁhe central
differéncing scheme and box scheme are oscillatory; upstream weighted differences
‘ introduces artificial differencing and when flux correction is employed to suppress the
wiggles m upstream weighted schemes results in snzearing and ¢lipping errors.

Bonnerot and Jamet (1974, 1977) and Jamet, and Bonnerot (1975) presented
three papers on the concept of space-time elements for the solution of Stefan Problem.
The central theme in these papers revolved around the use of time, an independent
variable, similar to the space dimension. The Galerkin method of weighted residuals
ist en applied with two-dimensional space-time elements for a one-dimensional pro-
blem in space and three-dimensional elements for two-dimensional space problems.
The solution’is obtained for a slice of time step and advanced-in a likewise fashion. A’
typical solution strip is shown in Figure 3.3.

The spece-time finite element technique was furthered by Varogiu and
Finn (1978, 1980) and Finn and Varoélu (1979). These applicatione related to
advec'tion-diﬁ'usion problems in one and two dimensions and the solution of Burger's

Equation. The method introduced a combination of linear triangular and four node

-
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iso'parametric space-time finite elements. The stability was achieved by, incor- -

porating the "method of characteristies” into the finite eleﬁ:ent methed, Varoglu and

Finn demonstrated that this technique reduces to the finite element method proposed

by Gray énd_?ix;.c-ier {1976) for the pure c_lifi'usion case, VWhen the diffusion parameter E

'K’ in equation 3.1 is zero, the problem is that of pure advection and of hyperbolic type.

Under these circumstances the technique reverts’to the method of characteristics

which is superior for hyperbolic equations. A cautionary hote; that this technique and
the method of characteristics as employed in open channel flows have different
connotations. Figure 3.4.reprodﬁced from Varoglu and Finh\(1978) demoqstrates the
improvement in the ;'volutim; for the same problem des;:ribed in Figure 3.2,

4

4
Miller and Miller (1981) and Miller (1981) presented an elegant moving

finite element scheme for dealing with problems whose solution develop near-shocks.

In this techniyue the governing equations are transformed to aliow displacements of
the nodes; the transformed equations are then subject tp ﬁsua! error minimization
requirements by a least square method. This step resulted in the normal basis

function for the governing equations, while the equation explaining the nodal

displacements yields a @:inuoué basis function. -

This technique wa%applied by Gelinas et ial (1981) to a variety of problems
in fluid m‘echanics. Although tht; method showed considerable improvements over
any existing technique, it introduced four ;extra_parameters with no explanations to
relate them to a given problem. Further, all solutions presented were either with a
ciissipation variable present or the discontinuity already positioned within the

domain. No results were shown for a dissipation free problem or where a discontinuity

is introduced through the boundaries. Lastly, the technique required very small time
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st.eps whzch would hava senous xmphcatwns 1f the model is adopted for a 11fe-s:ze

‘ prob!em

Gray (1976) demonstrates that node to node osc:llatmns of length 2 Ax, are

—_ .

. commou in shalIow water equatmns, and Gray and Lynch (1977) compared the

beha\nour of a number of tlme-steppmg schemes for mmphﬁed txdal equatmns In‘ '

that study, Gray and Lynch used Founer analysis to examine the fate of 2 Ax length

7 waves. The analytically obtained modulus and phase of the propogatmn factor for the -

following time-stepping methods were corﬁpared with the numérically discretized
schemes:
{i). Crank-Nicholson scheme

(ii) . , Finite Elements in time

(iii) Leap Frog scheme

(iv) " Split-Step scheme J

{v) Partially corrected and Sel:onthéder Adams-Bashforth scheme *

(vi) Lax Wendroff scheme :]
{vii) Two and Three Level Semi-implicit scheme, and ’/
{viii) Wave equations

Some very interksting and important condlusions were drawn from this work,

Quoting from Gray and Lynch (1977},

z . "Ten different schemes for marching through time have
been analysed. Of these schemes only the Crank-Nicholson, leap
frog, split step and wave equations exactly conserve mass and
momentum in the absence of fricffon ... The Lax-Wendroff and
finite element in time schemes are both heavily damped. The
Lax-Wendroff Scheme does damp the waves length 2 Ax while
the finite element algorithm does not. The wave equation
scheme also damps the waves of length 2 Ax".



The ravxew further remforces the dlctum that. whenever d#mpmg is ndded
toa computahonal procedure, 1t should be physwally l:eahsm and not a convenience
to obt.am a smoot.h ‘though posmbly error prone, solution.

3.3 - Solution of Opgn Channel f‘low Equaﬁoﬁs -

. It is almost uﬁveﬁal to eml;loy some form of ‘tha S't._ Vena.nt equatio‘n's
when Qtudy:ing gnstehdy open ;:hannel flow problems.. The- freatise formutﬂted by
Barre De Saint;Véﬁaﬁt (18"::1) also traces to the -earlier application of the theory-of

‘ S
unsteady flow hydraulics to dam-break prdblem. !

In literature, the St. Venant Equations are found in a variety of equivalent
forms. Most of thls eq..uivalency is, however, obtained by mere mathematical trans-

formations or by expressing the boundary forces in different forms. Barre De St

Venant (1871) ;;resenbed the equations as follows

A L AAV) @5
at . ax
Z_L1L&V Y&V _ (3.6)
Xx g & g ox f

Subsequently, with discharge being a more easily accessable quantity, the
momentum equation has beex; written in terms of discharge 'Q’ instead of velocity 'V
as the dependent variable. Others have also employed a dimensionless form of the
equations. -

Thus, est.ablish.iné the common source of the various forms of the governing
equation, this‘literature search is further subdivided into two major categories

respecting the nature of _El'xe problem. .\famely, these are the discontinuous or rapidly

varied and continuous or gradually varied flow solutions,




831 Di.seontlnuous or Rapxdly Varied Flow Solutlon

When compared to ot.her fields in ﬂmd mechamcs, the concept of a dis-

) i:ontfnmty in open chennel flows is rare except for the case of a hydrauhc Jjump. Even

then, the sui'face is disturbed to such an extent that the assumption of a truly feftical
wall is seldom found. However, it is quite common to refer to flood waves resultmg
from a dam breach phenomenon or sudden closure of turbine gates (and the-
subsequent upstream positive wave) as discontinuities. )

There ar® a number of methods available for studying this problem of
unf;t&ﬂdy, varied flow. These may be broadly divided into (a) hydraulic or dynamic
flood-routing method and (bj other simpler ﬁbod-ro;xting techniques. The latter group
includes purely empirical methods, e}nalogies, hydrologic (or storage) routing,
kinematic flood routing r;md linearization of the St. Venant Equations. It is
gckﬁowledged that when steep channel bed sl.lopes are encountered, results from these
simpler methods are reasonablé. This approach is, lhowever, inadequate for channel of
mild slope or when interaction with other land features is significant.

The literature review in this section is limited to dynamic flood routing
methods. Reference is made toa numbe;' of excellent papers which have provided con-
cigse reviews of simpler flood mum’n} techniques. These include Fread (1982), Linsley,
Kohler and Paulhus (1982), Miller (1971) and Wurbs (1985). A number of other
investigators, Wurbs (1986), Land (1980), Strelkoff et al (1977), to name a few have
carried out studies to compare and evaluate various dynamic and simplified routing
modals. |

| The solution of dam-break flood routing problems is most commonly

achieved using finite-difference methods. With the emergence of the finite element



" method as an équivalent and numerically sound'aiterhative, tl'.te'literature- SN

 next subdivided into finite difference and finite element techniques.

3.3.1.1 Finite ﬁiﬁ'ere_lice Meth;)d; :

" A review of litel:ature has revealed -that in most cases the investigators
have extended the finite difference techniques usg_ql'erstwhﬂe in continuous flow
situations.- Hence, there is little information on thorough numerical t;.reatment fo
discontinuous flow analysis relying instead on expériences in compumtiohal ﬂuid
dynamics, |

Abbott (1974) provides an excellent dissertation on the numerical tech-
niqt;és for analyzing continuous and discontinuous flows. Abbott raised some funda-
mental questions about the validity of certain formulations of the energy-momentum
equations. The paper resolves this question by resorting to N ewtoﬁ's second law of
motion. From this consideration, Abbott maintains that only mass-momentum com-
bination should be used for studﬁrg{i/s}tinuous flows. This was demonstrated by
computing the celerity of the wave“@nd jump conditions for both conservative
momentum and energy-based momentum equations. In summary, the following

combination of mass-momentum are recommended.

¥, %80 _, (3.7)
at ox
h uh
f= [ I' = (3.8)
tuhi'® uh + gh¥2

where the vector I describes "levels” and g(f) represents the corresponding "flux
densities”. The following combination based on work-energy principle are specifically

not recommended




36

Pl

I ] g(n [ u¥/2 + gh
. In the foregomg, u is the.fluid veloclty along x direction, h, Qe depth of

(3.9)

-
fluid. Equations (3.7) and (3.8) simultaneously satisfy conservation laws for

continuous and discontinuous flows and hence are called genuine weak solutions.
Abbott further discusses the non-equivalence of the difference schemes and
“the diffelfential.e'c‘;;ations a‘nd introduces the 'a-algorithm' for providing a dissiparfive
interface to an otherwise non-dissipative difference equation. Thus ‘

. (3.1
I'i = afi—l + l{l-—2o.)fi + o.fi‘_'_1

0=asx0.5. _
where f'; is any dependent variable and 0 < a < 0.5

Abbott concludes with a paradox that the use of a higher Courant number
give excellent results which are often marginally better than from a much smaller
Courant number. This is argued from the viewpoint that with the higher Courant
number information from the boundaries is injected into the interior of the solution
domain thus refreshing computation and reducing information loss.

Franz (1977) discusses the problems, pitfalls and partial solutions
associated with dam-break flood wave analysis. The paper is divided in two parts; the
first part addresses the practical aspects and field problems whereas the other part is
devoted to problems related to numerical adequacies and inadequacies. The dis-
cussion focusses on variations in the representat.ion.of various terms in the shallow
water equations. The problems associated with the generalization of techniques

developed for prismatic rectangular channels to non-prismatic sections are

highlighted and remedies put forward.



. Franz acknowledged that for the method of charactenst.xc, conservatmn
errors for dmconhnuous flows were expected becuuse most techniques are e not valid
near the dxsconunmtxes where characteristics of the same fatmly cross. Such ¢ crossing

- of charecteristics indicates the formation of a bore. Terzidis and St.relkoﬂ' (1970) also
show that errors in conservahon result and that the Speed of the i'ront of the waveisin -
error. Franz (1977) traces the problems with conservatmn in volume to an
inconsistency in the approximatign of the non-prismatfc term.

The paper also explores problen:;s due of nonlinear instabilities associated
with nonlinear momentum flux terms together with difference operators which cause
the transfer of energy‘ to shorter wave lengths. Such transfer then mnnifasts. as
oscillations with a wavelength of as 2 Ax. The paper Brieﬂy describes the use of the
digsipative interface preposed by Abbott, its success for prismatic channels and a
general lack of success when applied to non-prismatic channels.

With the foregoing material describing the generalities, attention is now
focussed on specific examples in the finite difference methods, their successes or a lack
thereof. This discussion addresses the three popular approaches in discretizing the
solution domarin, i.e. implicit, explicit and characteristic methods.

w
A. Implicit Method

A number of workers address the problerﬁ of near discontinuities as shock
waves but most of the experience has been restricted to the fields of hydrodynamics
and gas dynamics. Vasiliev et al (1965) address the question of shock wave propaga-
tion in the context of open channel flows. Utilizing the work in gas dynamics, the
conservation of mass and momeéntum are derived employing the nox- 'verge_nt. form

as a variation of Equations (2.9) and (2.10) ;




a8
T o .
[ . a_, (2.92)
x & .
£+2vaq+(02—v)-—-'-gA[S --I Q[Q‘J (2.10a)
at ax A:-const.. K2

All the variables are as defined in Chapter 2, except for C2 which is defined in terms of

the pressure term (P/p) as follows:

' “h
¢*= i 2 and §=.SJ (h—5bix, HdE (3.11)
[+]

b(x,E) = width at any location x and dependent of its position above the datum
The solution is obtained with a two-stage predictor-corrector scheme
employed successfully for solving gas dynamics equation. The time and space

derivatives of the first stage at an intermediate time level are given as

+ 12 K k+ 172 k+1f2
a K- o S = (3.12)
t P ™ kL2 keI
|.+l i-1

”
Before the second-level is implemented an averaging operation is

~performed to reassign the value of the dependent variable, say {, as

g2 (f:‘“"’ f“’m)+ f““"-’ f‘i‘:IW) fori=2,..n-2

e ’ (3.13)
k + 1/2 k + 12 + 12 s
£rr2 = (fi +E5 5P fori=1,n-1
At the corrector stage, the equivalent of equation 3-12 was
+1 +1/2 + 12
af ff - ‘T d af _ f::-1:2 = ff_ (3.14)
&t T ant = LeFU2 k1
ez T Nio2

Vasiliev et al. provide results from prismatic channel and laboratory experiments.
With the support of a number of agencies, research on dam-break flood
modelling was carried out at the University of California at Davis. A total of six

models wers developed; three of these models were based on the complete St. Venant



Eﬁﬁatiohs while others.were simpl-iﬁcati‘ons of t{m _sgine. The Fx;din;gs' .\'vet"e bresbnted-.-
byStrelkoffetal 1970, > | | o

J Limiting theﬂ_discussion to the implicit model, Strelkoff et al. employed a
theme \liaroposed earlier hy Vasieliev (1970). This model also used a two-stage
p?edictor-correcbor method \_vith‘one difference. At the predici_or step the schemsg
employs the characteristic form of equations whereas at the corrector stage a
momentum-form of the conservation eﬁuation is used. The luge of the conservation
based equation allows the technique to be used in tracking the front. Vasiliev (1970)
limits the use t:) zones above and below the discontinuity while tracing the location
and size ot\' the discontinuity by separate equations. ‘The corrector step is executed in
an explici: matter, v;hile the predictor step is linearized and fully implicit, The
novelty of the Vasieliev scheme is in the discretization of the differential equations

using an oblique grid {Figure 3.5) rather than the usual rectangular grid. The

derivatives with respect to x and t are then written as:

+48 +8 ’
o o -6 (3.15)
ax ZAn+G
+9 n+@ n +0 +6
£_¢ e T Sk T P T (3.18)
&  BAt At 2p"+o

where 'l is any dependent variable
At the predictor step the characteristic equations are

F dz dz
[d—gi-(V:tC)ﬁl+B(—V:tC)l-+(V:tC)'—
at ax ot dax

aA gA (3.17)
= |BS +—| Ivz_—
[ ot ol ik
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. with all the variables as defied before. The f:rediétob step c'oﬁéms the dependent
| variables Qand z at. an mtermedlata level n+8 mth 0= 8= 1. The equahons for

the corrector step in exphmt mode are wnttenas

L, +1 n - n+8 n+6
Ain = An-|-1 [AnA A';(Q1+l.f‘.2 Q 1!2)
’ 3.18)"
+9 n+1 .' +6 +1 .
A:‘+lf2(x1+ll2 +1.)') An n—_ 1—”2)]
1 .
Qin+l - — [AnQ - At [Pn+9 _ Pn+6 + (Qv)n+6 (Qv)ll‘i'g
A
+8 + 8 -Fl
+Q:'+w(x:'+u2—x‘+u2) Qn+ (xu _U'z)
- e n+8
. zo(x“_ - zo(:lci |12) IQlQ n+o At .. (3.19)
=Y; PR + 2 (A + A }
An"" K ;
where
(3.20)

Y.

1
Strelkoffet al (1977} tested the scheme against other schemes developed for

n+8 = gA:'I+9

comparison purposes while Vasiliev (1970) replorte.d on applications te natural
channels. |
-

Fread (1982) proposed a practicai all encompassing dam break model
following success with a similar unsteady state model for continuous flow simulation,
The model commonly referred to as DAMBRK employs the welghted four-point”
scheme first proposed by Preissmann (1961). The same scheme was successfully
implemented by Chaudhry and Contractor (1973), Fread (1974), and others
specifically for dam break flood routing. The model and techniques were compared

and evaluated by Wurbs (1986) and Land (1980). Fread (1982) used the énergy-based

shallow water equations which Abbott (1974) and Franz (1977) have criticized. The




S - model was unproved and modxfied to take river meandenng and oﬁ'-channel ﬂow mto :

‘conmderahon and used the follomng govermng equatmns

T e KR 6(K¢Q) AKQ g O\ (3.21)
o + F—=-a=0 . '
ax, x, -~ ox & . '

. (3.29)

where K¢, K¢, K, are tiue flow proportions in the channel, left overbank and right

overbank respectively. The variables are defined as follows

8 oo

- —_ (3.23)
¢ 1+ ke +k
. r
__ & (3.24)
£ 1+k +k
- _kr___ . (3.25)
Tol+k,+k
inwhich -
2
R e
Ax ,
C
Similarly k, -
The friction slope is defined for each component by
2
/ g K QKQ (3.27)
f

¢ C A’RW
[ €t C
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and ﬁkewise for Sp and ng - The chtﬁr C.is 1.0 for métric and 2.208 for Imperial
Units. Variable'A’ in"Equazi‘on 3.21consistof | - :

L TASA+A A A . YT @B

In the weighted four-po:nt 1mphc1t scheme of Figure 3.6, any dependent

vanable is defined as

) fn+l f“+1 £y 3.99 -
. ) f:B[ : i+1 +(1—9)[1 i+1 (3.29)
+1 +1 .
of _ T+ - -1, (3.30)
at 2 At ‘
) f?+1—ffl+l fn +fn 3.31
E:B[H.l i I"‘(l—e) i+1 ] (3.31)
ax Ax Ax

Fread (1977) demonstrates the use of the model bg'f.applications to field

] T
problems such as the simulation of Teton Dam and Buffalo Creek Dam failures. The

model in its present form does not have the capability of operating below a weighting -

factor of 0.6. Other finite difference implicit models are based on similar algorithms,
or further improvements by Fread (1984). All these models offer significant field
problem oriented features but shed little light on the mathematical and numerical

aspects.

Characteristic Method:

Terzidis and Strelkoff (1970} apply the Characteristic Method to the study

of surges and shocks in open channel flow. The momentum-based shallow water
equations are used. The paper provides a basic treatment in the algebraic formula-
tion of the shock equations. No modelling was done at that time. Strelkoff et al (1977)

presented a characteristic method based computational scheme. This scheme was

“
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used as the standard for comparing ot'h_er'.four models developed at the Uni'versit); of
Célifornia,'i)avis. The papér demops'trate_s-l;hai solutio'ns"‘of the Saint-Venant
equations mo;.re along the chart;cteristié 'c_tlkves' and hence the solution is t.rgate;i as

" the one for basis of comparison. The equations employed were of a characteristic formi

for ¢hannels ‘ E L . : -
Ly .
dv g dy , AL . (3.32)
D=t g8 - = . oL
I C at g(S‘L Sr)_$_VC A
and ’
. . _
3—’: -V:tC ro : (3.33)

with all the terms as defined before. The resulting four ;aqunt.ions 'soiv'e f'or' tﬁe
unk;xown?; V and y by an iterative Newton-Raphson method. -

Strelkoﬁ' et al developed this scheme for studying‘ unsteady flow prcble;ns
between the advancing discontinuity and the receeding negative surge in reservoirs.
No applicatic;ns were p;'esented for field problems and the reported tests are restricted
to laboratory flume resuits. X

Chen and Druffel (1977) applied a linked. characteristic method and
implicit scheme model 'I:o simulated dam break problems. The overall model applica-
tion takes place in two stages. In the stage immediately foﬂowing dam-break; the
Method of Characteristics (MOC) is used for the first few minutes. After the shock has
chﬂ'used to a certain extent, the linearized implicit model is linked and the computa-
tions advanced. ‘The MOC model is based on Equations 3.32 and 3.33 but instead of
using a variable grid a fixed space-time grid is employed. The second stage implicit
model incorporates a dissipative interface similar to the one proposed by Abbott
: (1974). The spatial derivatives are fully forward in time and centred in space as

follows for any given dependent variable, f.




APt 1 atl . g+l SENEEE .]_(3:3.40.
- vz Ax ”'1 & Q
LR U DUV B .
a1 oot s S ""I e
i+ . | (3.35) -
ga+l _ s
« f*'tt?i- (1 “)fn +2(f?+2_.-fn)]

The au_thor_:; tested the two models mdependently in pnsmatﬁic chgnnelr
: ‘éx'peri_ment.s and a rationale was_d;av—eloped on the stage where the two iné:dels canbe
linked. ;I‘hp auﬁhors note several advantages a:;d disadvantages in the capabilities
and short comings. ‘V One of the prdblems~faced by the investigators was the model
behaviour when passing through rapidly chaﬁging channel géo:ﬁetry.

| Chen and Armhruste.r (1980) improved on the previous work of Chen and
Druffel (1977} and furthered the Method of -Characteristicsr The computational
pr;:blems associated with raljidly changing geometry was overcome by designating
conveyance and off-channel siorage zones. The characferistic equ;ations are slightly

. > .
different from those used earlier by the inclusion of storage width, T,, as

dh T sh A av 4 v .
at T ax T ox T T = :
L] s ] 3
av aVv
-£+ 3;-+g—=g(So—Sf) (3.37)

A linear explicit scheme based on a specified-time interval grid, also known
as Hartree's Scheme, was used. The downstream boundary until the time the
discontinuity has reached the domain of interest is maintained by the shock equations

across the moving front.



_ As a'n'éx'plicrit-qcﬁgme wa§ employed, a-;x_:odiﬁt_ad Cod-rant ’co’n_ditioh's :
developed by Perkins (1968) and adopted by Garrison, et al (1969) was used as follows . ‘
Y ..., 7 — - 5 (3.38)°
U - o gniViax S,
‘ ]Vl-ﬁ-c-i-'-———g ljm 3
: _ C'R :

e -

ivhé@ At is the'kinié 'st'.ep, Ax is ﬂxé distance step aﬁd other quanfities are as déﬁnéd o
_- before. Thg cbmput;ef progrs;m is based on réwﬁting the equations in a dimensionless "
form. The channel geomefry was approximated by an asyimetric tfap_éz_oid. The
model was é‘;)plied to an actual dam-break case of Laurel Run Reservoir (Chen and
Arr'nbruster',.IQSO). ;I‘hé resﬁlts were mixed in the sense that the model was ‘capabE of
handling non prismatic channels whil_e problems related to the attenuated peaks in

the discharge hydrographs were noted.

Explicit Methods:

Stoker (1953i and,Isaacson et al (1954) used the explicit form of re-derived
St. Venant equations to study rapidly varying flows in Ohio-Mississippi River. How-
' ever, being one of the first applicétions using digital computers, many simplifying-
assumptions were made.

Land (1980) carried out an evaluation of four selected dam-break flood-
wave models by using field data. Among the four models was an explicit based model
developed by Garrison, et al (1969) and maint‘ained by the Hydrological Engineering
Centre, U.S. Corps of Engineers. Thomas (1977) has used the same model as pa'rt of
an inv'éstigation by the Corps of Engineers.

The model is called UST‘I-':LO or HEC-GVF and employes a leap frog explicit
scheme developed by Garrison et al (196?). The space-time grid had the time line

going through alternating odd and even éomputational nod’&a. The computed values

— 7




v -

at the odd nodes were'foufhd to be suitable and used for advancmg uge solutions. The
co:%xfmtational- grid v:va'smny unifqrm.. The model is based on the g_tﬁerning_
equations giv'e:n by _Equatibns (3.5) _and (3.6) and the time step{afs controlled by
 Equation (3.38). The computation nodes and grid is depicted in Figure 3.6. "
" Basedon the evaluation carried out and the model documentation provided, -
itis clear that osc_iilﬁtio_ns area con‘u:no;x problem. Of the ti;ree test cases Land (1980)
was using,pthe model failed to p;'ovide results for two test cases. It is not known if the
r.eliabi_lity-of the ﬁwdé] was improved when applied to still milder-bed slopes. Thomas"
7 ._ (1977) applied the model to a slightly larger dé.ta set for the Teton Dém failure
simulation and réport.ed somewhat erratic behaviour for computed disclirges; for
example the discharge increased by about 16% some I2 miles downstream of the dam.
Terzidis and Strelkoff (¥70) proposed two explicit finite-difference

schemes. The momentum based conservation equations are used with the time step

controlled by the Courant Condition. The equations representing the discontinuous

flow are
N A A (3.39)
x ot
2 2
iq 3 ( q gy ) (3.40)
[ &= y v gy (S, - S _

where q is the discharge per unit width, y the depth of flow and other variables are as
defined before. The grids used are presented in Figure 3.8. The discretization

procedures for the two metheds are as follows

i) Simple Explicit Scheme
L S . ) S (3.41)
Yi T Via T T g% iy '
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1 1 I | X
K-1 4 K+1 K+2 '
Simple Explicit Diffusing Scheme g
t
&A
J+2 . —
J+1 ‘ ® y -
c
J 1) k -9~ @
k-2 k-1 k k+1 k2
Lax - Wendroff - Richtmyer Two - Step Explicit Scheme
Fig. 3.8 Diffusive One and T'wo-Steps Explicit Schemes employed by

Terzedis and Strelkoff (1970).
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- 2 2 7 _ 2"
; 1 . A{fa gy q B2y
o+l _ = . n n - — —_— — —
% ‘2mﬁl+%+9+2[(y+ ) '( * )

2 5 Ny 2 fin .
At J (3.42)
ab o.n n
NP AL PR ,
. where ’ T
b =gy (SD - Sf) ‘ . ' (3.43)
and the time step At is governed by the inequalities
: 2
& At < Py {3.44)
H |
and : /
A= % < —-l— 3.45)
‘S¢v5|
y d
(if) The Two-Step Lax-Wendroff-Richtmyer Explicit Scheme

In the first stage, Equations 3.41 and 3.42 are used in developing
intermediate values at time level 'n + 1'. The following equations were used at the

second step computation to level 'n + 2'.

(3.46)
Ty -

el (3.47)

2 2‘n+l 2 2 o+l
qf‘+2=q?+‘\l(q_+g') _(q_..'.g?'_) +26t‘pi

L Yy 2 i1 ¥ i+l

The stability criteria of this scheme is still given by Equations 3.45 and
3.46; however, the accuracy achievéd is of a higher order as demonstrated by
Richtmyer (1962).

Terzidis and Strelkoff (1970) applied these schemes to several test cases

and reported comparable results with other schemes.
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3.3.1.2  Finite Element Method “ 7 .

The applicationsrof finite"elémént techniques in open channel flow were
introduced by Gunaratnam and- Perkins (1970). Cooley and Moin (IQ‘? 6) demon-
strated the viability of applying the ‘ﬁnite element method for sol:iﬁg the St, Venani:
equations. King (1976) and Keuning (1976)‘also.used this technique in open channel
flow situations. B

In the field of open channel hydraulics, the new‘technidue had only a_
lukewarm reception, with the users of numerical based m‘odels clearly favouring
finite-difference methods. The problem can be traced to the mathematical basis of the
finite element method. Zienkowicz (1971), Brebbia and Conner (1976) and Pinder and
Gray (1972) provide excellent treatment of the finite element method and Galerkin
method weigh;ed residuais. Duéont (1973) showed that any Galerkin based tech-
nique does not achieve optimal accuracy for hyperbolic problems such as open channel
flow in contrast to elliptic ar;d parabolic problems. Katopodes (1984) further argues
that "... this was perhaps the serious disadvantage of this otherwise outstanding
computational method",

Application of the Galerkin type finite element method usually results in
dispersive, non-dissipative behaviour which in turn is responsible for the spurious
oscillations. Katopodes (1984) applied a highly selective dissipative interface to the
characteristic form of the open channel flow equatibns. The application demonstrated
the capability of the technique to capture a discontinuity wit;xout generating
oscillations.

Katopodes (1984), following earlier success, developed a dissipative

Galerkin scheme for discontinuous flows in open channels. The use is made of a



- R .
Petrov-GaIefkin type of approiimati‘on which the author te'rmed "dissipative
Galerkin”. The weighting functions for the standard Galerkin and dissipative
Galerkin are shown in Figures 3.9 and 3.1.0._ - Katopodes used Equations (3.39) and
(3.40) with the additional constraint on the momentum equation that the channel is

horizontal and frictionless. This makes the right hand side of Equation (3.40) zero.

With reference to Figure 3.9, the basis function N, and Ny of the standard Galerkin

-

methods are given as

N = ar”T (3.48)

1 %, -
i+lg i

’ Y (3.49)

N,= ——— '
X, = X. :
i i-1

In contrast, the test function proposed for the dissipative Galerkin approach can be

defined as
aN
N =N + ¢ o1 (3.50)
1 1 ax
aN
N; _ N2 +e o2 : (3.51)
ax

where € is the dissipation parameter which was related to the phase and
amplification errors through a Fourier analysis. When the dissipative Galerkin
scheme is applied to the continuity and momentum equations, the basis function is
not only made orthogonal to the residual error but also to its spatial gradient. After
matrix multiplications and other manipulations, Katopodes showed that application
of the dissipative method to the eontinuity and momentum Equations (3.39) and (3.40)

is equivalent to applying the standard Galerkin to the following two equations

- 7 # Py -
gz'f'tﬂ—é —(':l-"-i-Zu——‘:14-((:2—1,12)—y =0 (3.52)
ot ox ax at oaxz o D&xz
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M. | 2 2t a2 o Py P
;"'2“0;"';(%_“0);—6[\-("o‘_—“o)(—""5_)' 7 ‘ 5
. 2 2 S az o (3.63)
+ 2u (-g—+2u —-{-l-+(cz-u2 —y')lzo
o\ ax at _oaxa_ (] o axz

where ¢p and ug r@esent the reference celerity and wave velocity reﬂspectivelyr.

While evniuaf_ing, if the mass matrii is diagonalized and € set to At,. the'equations are

same as Lax-Wendroff finite-difference method. However, if € is left asa paraméter,‘

the resulting equations can be considered ps a generalization by providing_seledive '

disgipation.

In this regard thi's was considered as a furthér generalization of the
dissil;at;ive interface first proposed by Abbott (1974). By selecting an optimum value
of €, the technique was applied to-three test runs in frictionless'ch;nnels of prismatic
form. Dramatic improvement over the standard Galerkin method was noted. The
author demonstrated that with linear finite elem‘ants, the method is no, more
complicated that a comparable finite- difference method with a much higher accuracy’.
The selection of € is, however, rather arbitrary and requires much improvement.

In many of the applications two items';&d out, a genera! detericration of
solution with an increase in Courant Number and the presence of a spike at the nose
of the surge wave and the development of a shadow wave with increasding dissipation
levels. Thus the price of reducing the spike behind the jump is paid by a poorer wave

speed and the birth of a shadow wave on the low side of the juxhp.

3.3.2 Continuous or Gradually Varied Flow Solution:
There has been a considerabie thrust in the development of numerical

schemes to simulate continuous open channel flows, The conservation of mass and
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dmcontmuous ﬂow starts to.break down

: momentum eque.txons generally used to represent dlscontmuous ﬂows will prov1de the

' basls for the contmuous ﬂow solution. It can be proven thet the equations where the A

-

pressure term is exphc:tly descnbed represents the true. balance of momentum -

Further, iti 1s epparent that when the reslstance term dommabes the sharp front ina-

WIth the advancement of the front the resmtance continues to dampen the

.sh.arpness to the point that the flow field transforms mto a contmuous_proﬁle; .The

‘ conservat:on ferm of equatxons that were valid up to this point then are still equally

valid. Whereas itis true that momerltum equatmns based on the work-energy concept

can no doubt provide correct solution for continuous flows, these fail to-balance the

“momentum on either side of the discontinuity.

The solution of continuous flows can be viewed as té;tural progression of

- a dam-break wave. - Various investigators interested in the post failure evaluation of

the Teton Dam collepse have agreed on the tremendous aitenuation of the wave from
npproxlmatg]j 2 mllhon cfs (56,640 m3/s) to 65,000 cfs (1,840 m3/s) some 60 miles
(96 km) downstream.

Granted that most of the attenuation took place due to the-transition froma
canyon to a 50 km wide valley, still the role friction played cannot be overlooked.
Thus, any model p'roposed' for computing almost discontinuous flows should also be |
capable of addressing the continuous Tlow domain once the friction forces have
reduced the wave form considerably. This can be accounted for only by using the '
divergent form of equations.

The comparisons carried out by Lands (1980) and Wurbs (1986) described
several models like DAMBI%K, Fread (t982), FLOWSIM1 and FLOWSIMZ2, USTFLO.

Garrison et al (1969) used the non-divergent form of equations. In a Priesmann type
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‘discretization of the partial differential equations into 't.'mita.-diﬁ_"eréhce forms, thereis -

no error for rectangular-prismatic sections. However, deviations from these combina-
tions could yie}d. unpredicltable results due to the errors in preferring a non-divirgent

sgheﬁle for-discontinuous flows. .

With this prea.mble "gnd recognizing: that a numper of. ;axce‘l'lent
comparative studie§ exist in evaluating different solution schel;nes for' the' St. Venant
equations, only a s¥nall sample is considered and discussed in the following ‘sections.
The criteria subjectively selectedare:

(i unique solution tecl{nique;

| (i.i)_ good documentation;

and (i)  applications in Canada if possible.

As in the previous section, discussions will be extended to both finite

difference and finite elemeﬁf. methods.

3.3.2.1 Finite Difference Methods:

There hav%n several successful applicat:ions of the finite-difference
solution of the open channel flow equations. Although there have been a signiﬁénnt.
number of examples in the direct explicit and characteristic methods, direct implicit
schemes are most popular despite being most complex and less accurate than
characteristic methods. There are a number of reza.sr.oné'»r for this.anomaly. &

First consider the characteristic method. This technique, theoretically,
provides the most accurate solution. This emanates froin the very nature of the
hyperbolic equations that any disturbance introduced at the upstream boundary

movés along the characteristics. The solution for the prismatic channel is accurate.

When this scheme is applied to'non-prismatic channels, the results are not predict-

=~
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able. One nnuor reason is the change in ee!enty due to dxfi‘erent top mdths at

adjacent nodes and assocmted charactenstxcs Also the ex‘ph(:lt charactenstlc method

-is restncted by the ume step lmntatmns v

T

Several met.hods based on the characteristic solution have been proposed

- equations and their solution by the characteristic method. The proposed model was,

hoqever,l implicit in nature.  Others proposing implicit based characteristic models
i.ncludle Amien (1996) and Wylie (1970); wherea.s explicit characteristic models have
been developed I;y‘Liggi.tt and Woolhiser (1967), Streeter and Wylie (f%?) a:;d Ellis
(1970). Characteristic solution grid can be either curvilinear or reétang&lar in the x-t
domain. Abbott (1966) discussed the feclmiq’ue in his book on the characteristic
models. Due to the complexities in application of the method to natural channels or to
time restrictions, mvesug&tors have been discouraged for its use'\'ﬂood routmg
There are no widely used, commercially available computer packages employmg this
technique. |

On the other hand, due to its simplicity, the explicit models gained consi-

derable attention, dating back to the piéneering work of Stoker (1953). There have

I
been a number of reports detailing the method with slight modifications. Liggett and,

Woolhiser (19.67), Martin and DéFazio (1969) and Strelkoff (19;7 0) described the
{1 alloffett {1969) and Kamphuis (1970). I!‘.l all these %c{ets, there were
variations on the type of equations employed, the te_chhiques useti 'for discretizing the
%untzons from the,partlakdﬂ'ferentm! equatlons to the finite-difference form. Liggett
and Cunge (1975) summanzed the different explicit models. One common link which
relates all explicit inodel is the tirqe-step restriction given by Equation (3.38).

-

t

)
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~ since 1960. Lai (196’5) provided the step by step details’in deriving the governing -

explicij based models. The technique was extended to include estuaries By ‘Dronkers

-,
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‘Garrison et al (1969) developed an operational model based on the explicit

method for flood rduting in the Tennessee Valley river and reservoir system. Success -

was achieved in simulating the movement 6f disturbances through the syateﬁx. The

mode! was later adopted by the U.S. Corps of Engineers, Hydrologic Engineering

Centre P.n'd is maintained and supported by this group. Documented as USTFLO, the -

model has been used for several studies including dambreak ﬂood 'mhtin'g stuci‘x?es, l

HEC (1979). L . '

The limiations of the size of time steps imposed for explicit;based methods

[

method. Isaacson et al (1956) presented 'a concept for the implicit models.
Preissmann (1961) and Vasiliev et al (1965) were am;ng the earlier contributors to
the implicit meti'lod. With the at_ﬁrent and popularit;\eLIm;;uters, the implicit based
model became very popular in mid 1960s and_.1970s. ALai (1965), Baltzer and —.Lai

(1968).rAbbott and Ionescu (1967), Droni:ers (1969), Kamphuis (1970), Amien and

Fang (1970), Contractor and Wiggert (1972), Quinn and Wylie (1972), Fread (1973),

Chaudhry and Contractor (1973), Moin (1974), Greco and Panattoni (1975), Amien
and Chu (1975), Chén and Simons (1975), Bennett (1975), and Fread (1974) were
, among the contributors towséd the research of implicit based models.

Many of the models described by the workers .noted above have been
evaluated for stability, ;accuracy and convergence of the finite-difference forms,
Cunge (1966), Abbott and Ionescu (}96‘7), Dronkers {1969), Gunaratnamn and
Perkins (1970), Fread (1974), Liggett and Curge (1975) and Ponce and Simons (1977
among others carried out the analysis b.ased on linearized equations. Chaudhry fmd

t

Contractor (1973), Fread (1974) and Cunge (1975) carried out further analysis of the

iérgely overcome by diseretizing and solving the flow equations by the implicit -

\.‘f



'eﬁects of large ﬁinie s;‘.eps and non linear behaviour and recommended the hig'her
weighting of the terms on .the advance time stopi L | ) |

Basically, the implic.it' meth'od can be classified in many ways, among
others, iinea.r and nonliriéar, characteris_tic forny, divergent and non-divergent based
momentum eqﬁations, six-point and four-p_oinl: disceptization, velocity and flow, depth -
and sfage as dependent variables.

Although several six-point schemes wege proposed Vasiliev (1965), Abbott _
and Ionescu {1967), Moin (1974), the four- point schemes are by far more popular as
will be described separately. The six-point scheme requires the nodal s;,pacing to be
uniform. Slight increase in comp;xtar.ion tir:;e.occum when interpolation is required
for variablés at nodes from irregularly spaced known sections. _

Preissmann (1961) proposed a four-point scheme to solv :}a opf;n channel
flow equations. This schemeghas since ~g'rowru to be among the most popular and has
been used in numerous studies. The spatial and temporal derivatives of any

dependent or derived variable ‘" are given by Equations (3.29) to (3.31). Due to their

importance, the equations are repeated here.

- 1, e+l 3.29
f=050( " + £ )+ 0500 + (7 (3.29)
§
+1 +1
a_ ot -F (3.30)
T At
+1 +1
. of e 0 =6 (3.31)
— =9 | 1+ (1 -8 ——
& Ax ax

[n these equations, when 0 is 0.5 it is the classical "box scheme”,
‘Investigat.ors soon found-that with 8 equal to 0.5, large time-steps or rapidly varying

hydrogrlnphs caused weak or pseudo instability. Fread (1974) and Cunge (1975)

o r
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éhow@ that for6 grénter than 0.5 and less than l.Olrésultefi in s;nooth solution, nl’eit :
at the ;:ost ofa disi;ersivé sdlutiqn. The studies that followed univérsélly adopted 8

between 0.55 and 1.0. Recalling that the St. Venant equations when Mréﬁzed result
in non-ﬁ;ear e;mations, the\lzgoéels that adopted a nonlinear basis generally used 8 -

_ lessthan 0.67. The linearized models set(B\ to be equal to 1.0.

’

Significant variations exist in the discretization‘process. For example,
Fread (1976) considered averages between nodes exclusively for all variables, others
such as Quinn and Wylie (1972) used nodal values; Krishnappen (1981) employed the
departures of the dependent variables in thél f‘our-point implicit scheme. Walden
(1974) and Muir (1976) also adopted variations of this scheme. Price (1974) compared
a number of schemes and concluded the weighted fc:_ur-poi;'tt implicit scheme to be
more versatile and robust when compared to other techniques.

A majority of the models discussed in &is section were developed for a

specific purpose or were customized for a particular stream. When such modgls-are

~ adopted for other problenis. unpredictable results are encountered. Fread (1978,

1982) developed a weighted four-point implicit scheme for natural rivers called

Dynamic Wave Operational Model (DWOPER), the model originally developed for
|

- ﬂooﬁ forecasting in large river systems like the Ohio River and the Mississippi River.

Recently the model was adopted successfully on the Saint John River for flood
forecasting purposes, MacLaren (1979). ‘k “'

DWOPER has since become one of the most popular implicit based m@els
and a variety of studies testify to its robustness. The model is structured to allow a
variety of channel configurations, boundary conditions and several operational
features like locks and dams, weir flow gver levees, etc. The model was adopted in

flood plain management studies to aid in routing flows for mildly sloped streams.

.

L



Perks et al (1983) and Moin and Shaw (1984) demonstrated that DWOPER pbuld be
‘used for relatively minor stream systems. DWOPER was developed for the
-mainframe systems. ‘Patry (1987) reported success in operating the model in a micro

computer environment.

d .
3.2.2 Finite Element Method:

" When compared to the finite-difference methods, the f'uﬁte elenitent applica-
tions in open channel hydraulics,is relatively in its infancy. This coupled with the
inherent problems witl} hypérbolic equations resulted in the finite element method
being not & big Swllenge to the finite difference techniques as was evidenced in fluid
mechanics, structural engineering, etc. ) _ '

One of thg earliestlapplications of the ﬁnitq element method in open
channel hydraulics was by Gunaratnam and Perkins (1970). Calling their technique
as an "accurate finite-difference” scheme, Gunaratnam and Perkixs applied the
methog! of weighted residuals to the characteristic form of equations. Cooley and
Moin (1976} demonstrated that the finite element method can be as effectively applied
+to the St. Venant equations. King (1976) anc;;Keun'mg (1976) also furthered the finite

" element method. K‘;topodes ( 1984). developed the Petrov-Galerkin based finite
element method specifically for disconitinuots flows. |

Smith (1979) developed a generalized computer model for river flow
:;}Jn'ulat.ions. The mode! developed by Smith named SHP for Stream Hydraulies
Package allows for a variety of problems ineluding dambreak problem. Moin (1979)
improved on the work 7 Cooley and Moin (1976) and developed a computerized

*

algorithm for river networks and a dendritic type river system. In all these

techniques, the spatial derivatives werée discretized by the finite element method

U



while the txme derivative was still approxxmated by an appropriate ﬁmta-dl!ference :
techmquvf |

All the models described are implicit i::ased and fac; roblen-ts aimilm' to the
ﬁmte difference methods viz. numerical oscxllatxons for large timé steps or rapxdly-'_-_
changmg boundary condmons This prohlem is addressed by sumlar remedies

adOpted in the finite difference methods. For example Gunaratnam and Perkins

~ (1870) solved linearized equations with the time weighting factor, 9, at 1.0. Cooley

and Moin (1976) recommended a value of 0.55 for a predictor-corrector solution.

3.4 On Dissipative and Dispersive Interfaces:
| Upon reviewing the maéex.'ial presented in Sections 3:2 and 3.3, wea
encounter an interesting%icl{otomy in solving the open channel flow equations. On
one hand a purist would like to develop a scheme free from the oscillations, while a
practicing engineer is satisfieﬂ by an efficient, cost-effective "smooth” solution even if
this means sacrificing the accuracy.
T-he problems associated with high convection in open channel flows, means

that forces described by the spatial derivative 3f/dx are much greater than the resis-

tive forces defined by the bed roughness. Such problems are similar to those studied

~

by fluid dynamicists for high Peclet Numbers (advection much greater than

dispersion)} While fluid dy:xamics problems received singificant attention and
development of alternative techniques, unfortunately, the same cannot be said about
qun channel hyd;aulics. *

Ahbottj., (1974) provided the first comprehensive numerical treatment in this
field. Strelkoff et al (1977) and Katopodes (1984) als; approached the oscillation

problem by studying alternate methods and developing new ones. In most other cases



,- the mvontigators were aatmﬁed by adoptmg models from contmuous flow sﬂ:uatmns
and modxfymg them by smtable damping devu:es This approach was adOpted by

Fread (1982) using the same numencal scheme m, DWOPER, a continuous flow .
| model, and in DAMBRK a dam-hreak almulatmn program. Smnlar e.xamples cam be
found in Cunge (1975) Land (1980) and Wurbs (1987).

/ The problem in ‘solw_nng discontinuous open flows lie in the fact that any
ﬁnii.e-di.ﬁ’erence or finite-élement discretization of the differential equation results in
a non--dissipative solution. For a frictionless case, then, it means that if a dlsturbance
is introduced, it will continue to propagate without dissipation or d.is'persion. This is
then consistent with the nop-diésipative nature of solution. As the- resulting finite-
difference equations are either non-linear or quasi-linear in behaviour, they would
generate nonlinear jnstabilities or commonly known parasitic waves. The source of
this abnormality can be traced to the nonlinear momentum flux (both advection and .
pressure) terms along with the discrete representation of the solution domain. This
combination causes the transfer of "energy” to the shorter wave lengths. This
phenomenon is analogous to the. one in fluid mechanics where energy transfer cccurs
from larger eddies to smaller eddies and so ontuntil the Reynolds number is reduced
that this mechanical energy is dissipated as heat energy. In & non-dissipative
solution scheme, however, this energy cannot be dissipated and gets trapped at the
shortest, 2 Ax length, waves of the numerical solution. This leads to the familiar node
to node oscillations.

In natural systems such energy is very easily accounted for by different
processes none of which can be easily formulated into the shallow water equations.
The node to node oscillations grow to form standing waves which ultimately destroys

the true meaning of the solution.



All solution techniques then boil down to devising novel interfaces that are

. biased towards the short wa#elengths. Investigators have used three distinct

approaches in overcoming this problem. A précis of these techniques follows.

PR

34.1 Isolation of Diséontinuity:

- In this .technique the oscillations are iminimized by avoiding the

¥
problematic domain, ie. the discontinuity and solving two distinct regimes. These are
_the shock front satisfied by the Rankine-Hugoniot condition and the gradually

varying zones on either side of the discontinuity.

In this method the characteristics of the disclmtinuities are accounted for

by tracing the leading and receding edges by separate equations. Vasiliev (1970) ug'e‘d

this approach in tracing the strong discontinuity (leading edge S) and weak = .

discontinuity (receding edge W) by the characteristic equations. The two ends of
discontinuities are presented in Figure 3.8. Matherﬁatically, the location of the weak

discontinuity, at a distance W, is given by

- - (3.54)
W=(WV~"-C)at
and » f-""- '

Where V,’C, A and T with negative superscript indicate velocity, celerity, area and
effective width on the receding edge side. f)
The leading edge, on the other hand, requires two pieces of information.
The first balances the Rankine-Hugoniot condition across the discontinuity and the
second determines the location, S, of the strong disc_ontin'uity.
‘The Rankine-Hugoniot conditions require

— P+

1

1 2
(— = —)— = — ) #TVW -V =0 . (3.56)
P P A~ AT ‘
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where the superscnpfs "—"and "+" refer to quantmes onthe leftand right side of the

'dlscontmmty. P is the first moment of area about the surface.

-— WI.th tlus information, the position and height of t.he discontinuity and the
gradually va.ned flow domain can be computed. - “There are both advantages and
drawbacks in this approach. .This approach will be more accurate than a thorough
method for a.prismatic channel. In a prismatic channel, the tracing of the strong and
weak discontinuities is rather straight forward. Also, as only gradually varied flows |
are analyzed on either side of the discontinuity, most of'-lhe shallow water

assumptions are valid.-

When the analysis is extended to nonprismatic channels, the tracing of the

B
discontinuity becomes difficult depending upon the degree of departure from a
prismatic shape. Another complexity arises when there is a possibility of partial

raflection of the leading wave at channel geometry changes. In such situations the

mathematical computations and wave accounting become extremely tedious.

¥

3.4.2 Dissipative Interfaces and Tnconsistent Equatioml

By nature all discretization schemes of the St. Venant, Equations, be they of
finite difference or finite element nature, result in non-dissipative solutions. When
these schemes a.re. implemented, especially for rapidly changing boundary conditions
or large time steps, node to n;de, 2 Ax wave length oscillations develop in the solution.

At other times, the nonlinearity of the equations could also lead to similar wiggles.




u,

Thus,'ihe basic objoctive of incorporating dissipative interfaces is to

mclude, in the solution, a bms towards short wave length osmllatmns When a scheme

‘witha dmabatwe interface is compared without the mt.erface (F:gure 3. 12) 1!; can be

seen that the node to node oscillations ha.vo vanished. Whon the dissipative mterfaco .
is examineg:l in isolation, it can be reduced usually to higher order terms, which when
writton in ﬁnibe-diﬂ'erence and finite-element form ieaii to oscillations in such a way
that the wiggles from the non-dmmpauve components are neutrahzed

Lax-Wendroff (1960) mtroduced the first of a number of ﬁmte-d:.ﬁ‘erence
anii finite eIement schemes incorporating dissipative interfaces for solving hyperbohc
partial differential equations. In most of these cases the :rovision of interfaces
resulted in non-consistent equations. Consistency, here, is defined as when discretiza-
tion ste'ps are taken to limits, i.e. Ax— 0, At— 0, the finite difference formulation
should revert back to the partial dﬂ]‘erential equation. When the resultin.g equation
in limits is different, the Fnﬁte-differenca scheme is said to be non-consistent.

A number of other investigators also used this approach to obtain smooth
solutions especially for studying surges. The two schemes of Terzidis and Strelkoff

{1970) had their numerical strengths and were discussed in the previous sections. For

example, the continuity equation was discretized in an explicit scheme as:
1 At
y:‘“ =3 CAIPR R ) Ly (q Y (3.58)
By rearranging the terms, this is eqmvalent to the partial differential

equation

y a0 dy (3.59)

ot ax 2At ax

Similar finite-differencing of the momentum equation yield an additional

diffusion-like term
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-' ' The very property of thxs dxﬂ'usxon term is to introduce dlspersmn hence the
‘mterfaces are someumes called d.wperswe ‘
, Abbott (1974) mtroduced the a algonthm wherem he suggested a -

dissipative mtegface in w}uch the value at node i is replaced as

f=af_ +(-2a)f +af,, ‘ (3.60)

When employed in the continuity equation, the generahzed dxsmpatwe .

term works out to

a(Ax)? 32y
At 6‘!{2 ‘
The value of 'a’ can be varied to get the best solution. When a is 0.5, the
« . .
interface is the same as in Equation 3.55. ‘ ~

Katopodés {1984} employed the Petrov-Galerkin based finite element tech-
nique for incorporating a more general dissipatiye interface which is claimed to be
heavily biased towards the 2 Ax wavelength oscillations. By interpreting the
integrated residual equation, Katopodes showed that the use of the Petr_ov—Galerkin
basis function is the same as the Galerkin approximations of the foi]owing continuity

and momentum partial differential equations:

& & &
AN S —q+2u—q+(c2-u2)(—y)l=0' (3.52)
ot ax axdt °2x2 ° 0 3!.2

iy &
aq"+2u X +(& uz)a_?_ € [(cz— uz)(_____y -ﬂ)
at 29x [ o ax o o axat ax?
& 7 &
- +2u(—{'+2u —q+(cz-u2)—l)’=0 (3.53)
o\ axat 0o, 2 Q [} 2 .



Where ug and co aré the Teference velocity and wave celérit.y fgspeciively and € isthe
paiémeteé determining the dissi‘pe:tion level. Although, not fully tested, Katopodes
recommended € to be e{raluated as ’ |
- &
ln+dV15
The results obtained for three test cases indicate the technique does exhibit

(3.61)

o > )
a bias by removing the node to node oscillations. "I_‘har'e' are two pbihts that de-se_rve :
mention. First, the equations that are solved are not the shallow water eqﬁations and

second the intx‘-oduction of '€’ for achieving the dissipation level reduces the degrees of

T,

s

freedom for solving the problem.

3.4.3  Numerical Damping Devices: , -~

‘Among the finite difference and {inite element méthods, one of the most |
popular techniques used in obtaining a smooth, .non-oécillator}'r solution is the
aedvancing of the temporal weighting parameter. In this appromy hﬁe spatial
derivatives, instead of being evgluated at rtid-point of the time step, are computed.at
a level closer to the advance time step. Graphically, this is shown in Figure 3.6. Itis
almost universal to use ‘8" as the weighfing parameter;

In this section, a numerical interpretation of advancing this '0' paramater
is provided. The discussion will focus on the popular weighted four-point box scheme,
first introduced by Preissmann (1961) and polpularized by Cunge (1975) and Fread
{1974). Again, for the sake of discussion, reiterating the discretization of a dépendent

or derived variable, f, and later considering it'in the shallow water equatjon

_ +1 +1 (3.29)
f= o.se(f;‘ + ffﬂ) + 0.5(1-.91(1"; + f?f:’

[
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(3.30)

fn-i-l _ F‘H’»l

i+l i
Ax,
i

- 3y °
+(1-9)[ i+l i (3- )

Thxs «scheme is accurate and results in Crank-Nxcolson box scheme for 8
equal to 0.5. At this value both spatial and temporal deﬁ;ranves are second order

accurate. Considerihg only 8 values greater than 0.5 the following transformations

result: “
+1 +1 +1 +1
of £ -f° | ST o e -f° -+ 3.62
L 05 i+1 i +0.5 i+1 i +© — 0.5) i+l i i+l i ( )
ax Ax Ax, Ax,

i i - i
Further evaluation of the third term on the right hand side of Equation
i
(3.62) can be written as

\
“

(9_.05)__[,_“_] (3.63)
or
&t
(8 — 0.5) At —— (3.64)
ox ot
Substitution of Equation (3.64) in Equation (3.62) gives
Y ., &t (3.65)
;—Kg(ff_'_l f:l fn+l—f?)+(9—0.5)ﬁt;£
Similar manipulation of 'f’ in Equation (3.30) leads to
f= 025+ @ e gy D084 T (3.66)
i+l i i+1 i 0.5 at

The value of 3f/dt is not affected. Substitution of Equations (3.30), (3.65)
and (3.66) in the equations of continuity and momentum, lead to the following.

Continuity equation {neglecting lateral flow terms)

e e—



n+l a+l n . n‘ n+l n+l n
05A1+1 N D +05Qi+l -9 +Ql+l 9
o At ) ) Ax. -

i

#Q (3.67
+ (0=05)At —— =0
ax gt

Assuming the accurate box scheme to be the starting point, Equation (3.67) is

\\\
interpreted as : ‘ ' A
P.
? -
;i& + ﬁ = (0.5 — 8) At _...Q.. (3.68).
at ax ax gt
Similarly, the momentum equation is ‘ R
QI a -
=+ -@Q¥M+ —@A -s)=
% +ax(Q ) ax( y)+gAS - 8)
(OS4-0)A & A 7 Ay) L S, B _ s ” (069
. t] — — + 2|5 ==
) <t Q )+ ( y 0.5 at( ¢

It is qmte obvious {rom Equatmns_(3.68) and (3.69), that the additicnal
terms on right hand side are implied for O greater than 0.5. These terms no doubt are
dissipative in nature. The finite differences of these terms are less accurate than
those on the left hand side making the overall accuracy to be the order of Ax2 in space
and only At in time,

Again, at the heart of this numerical interpretation is the fact that the
partial differentirl equations representing the open channel flow are.not being solved
in their purest form. If Equations (3.68) and (53.69) are compared with, say, Equations
(3.59) or (3.61), the parallel properties can be discovered. Thus, there is essentially no
difference between dissipative interfaces placed externally or impliéd by advancing
the temporal weighting parameter.

When the six-point discretization is interpgted along the above lines, the

results are no different.



'35 { Summary

-

A literature survey in the fields of convection dominated flows in fluid
mechanics ami.open channef hydraulics of continuous and discontinuous flows hﬁve
indit,:ated the problem of oacillatid:is m numerical s;:lutions.' o

.»':; Fluid dynamicists have developed several techniques to address problems |

of oscillétory solutions. These include npwind weighting, reducing distance and time

i

" steps, inclusion of dissipative interfaces, flux corrected transport and space-time

;

schemes along the characteristics, Many pf the techniques introduced smearing,
clipping and distortion of the correct solutmn Only the space-time scheme appeared N
to be provide a reasonable alternative.

[nvestigators in open channel hydraulics have been generally content to
extend the techniques developed for continuous flow situations. A number of short-
comings in handling discontinuous flow analysis was observed. Noteworthy are the
use of energy-based mementum equation, including en.ergy like terms to account for
losses, incorporating explicit and implied dis;!ipative and dispersive interfaces.

Another area of weakness in the solution of open channel flow equations is
the use and misuse of implicit method of solution. A number of researchers did point
out tha‘t t-:he implicit scheme even though stable for time steps far greater than the
Courant :iondi:ionﬁ; ‘nevertheless. should be restrit;ted to maybe just Fwo times the
Courant criteria. This becomes more critical for rapidly varied flow. A number of
papers reviewed reported using far greater-time steps disregarding the requirements
of resolving the resuits within the solution domain.

In conclusion, the literature survey identified methodology gaps in the
solution of St. Venant equations with respect to alternate techniques for near

discontinuous flows. The technique deficiency seemed obvious for schemes that would



not distort or modify the flow equations and at the same time eliminate or signi-

ficantly reduce the parasitic node to node oscillations. Taﬁl_e 3.1 summarizes the :

methods reviewed with their strengths and limitations. T

TR
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- Table3.1
': Summary of Reviewed Models and Techniques-
Numerical " Strengthof Limitation of
Technique Technique ** Methodology
N |"
Finite difference Easy to discretize. Oscillatory solution for sha.rp
method i : fronts.
Finite elenent Sound and straight Qscillatory solution, Diﬁ’usLd .
method. forward mathemaucal " non-oscillatory solution for :
- basis, Finite Element time mteg-ranon.
Upwinding finite Removes node to node Complex basis function. _
element method. oscillations. . Suppressing more information 4
than oscillations alone.. i {
Advancing temporal  Selectively removes = Dissipated front Non-consxstent
weighting. oscillations. Most ~ *. equations are resuitéed.
popular method- e R

Dissipative RLmoves oscillations,  © Non-consistent equations.* Ad-
interfaces. Easy to program. hoc basis for selecting dissipation |

. Commonly applied. . paramater
Mgving finite Removes oscillatiors ,Cnmplex basis funection.
element method. even for sharpest fronts. Redundant parameters. Tested

. % for'microscale problems.~
Petrov-Galerkin Removés parasitic * N on-conSiﬂent eduatic;ns Extra
based method. oscillations. Similarto * parameter. Shadow waye
: upwinding. ., - .x  develops. Complex basis
: > . function.  * |
Lagrangianbased  Oscillations removed. Tested for one equation case
method. Integrity of equation and/or linear problems.
< . preserved. - '

- i

\ r



CHAPTER 4 - ’
» DEVELOPMENT OF METHODOLOGY

- 4.1 hnoduc&on N
| The problem defined in Chapter 2 outlined the requirements for simulating
discontinuous flows in open channels. Not \#ithstanding the simplifications and
@pﬁous made in representing the shallow water physics, it was proposed that the
technique should be capable of solving St. Venant equafions. Further, the scheme
should be robust enough to extend the solution to.continuous flow situa,tio;-.

With these constra*i;ts, the literature survey identified the problems
associated with rapidly vary{ng open channel flows. Almost all schemes required
either sacrificing the quality of the solution by artificially introducingg dissipative and
dispersive interfaces or accepting'a mort; accurate but oscillatory solution

Of the techniques surveyed, a sf:ace:time finite element scheme-incor-

porating characteristics for convection dominated flows showed considerabie promise.
. . 1

\ It was decided to develop a solution methodology along similar lines. For reasons that

-

\]] become evident, the proposed 5cheme was termed the 'Movin_g Element Method'.
In this chapher, a detailed description of th.e tec'hnique based on
isoparametrie spa..ce-t-ime elements is presented. The research proposed three
numerical integration schemeg; these are higédighted and an intgrpretation providéd.
\ The scheme was developed for a variety of element ty;aes to address
situations for suberitical angd supercritical, direction of flow and boundary conditions,
Initial testing revealed that the idealized moving element method resulted

in a non-dissipative solution. Therefore, modifications were provided and these are
e

«
17



- temporal and spatial t.’umens:ons

discussed in detail. This eitenéion‘p\’}ed ‘a natural mterface w:th a number of

'-interpolatioﬁ schemes The proposed techmque is further generahzed in both

{
3 .
‘ N : ]

" An alternate basis functmn in the Eetrov-Galerkm sense is apphed to test
the sensitivity of a dissipative parameter. Finally, the methodology is extended to
non-prismatic channeis.including sections with off-channel storage.

“ The following features of the propdséd technique ar;‘ considered as the

contribution of new ideas in open channel hydrauligs:

(1) °  The space-time finite elements in the Lagrangian frame of reference is the

-

first application of this technique.
(2) The Eularian-Laﬁrang&an regridding provides for a natural interface.
3 The technique examines alternate forms of upstream boundary elements
1

consisting of a trian:gﬁlar elément, a quadrilateral element and-a collapsed

quadrilateral element, -

(4) Alternate and improved interpolation schemes at the Eularian step are
proposed.
{5) The technique is generalized in both temporal and spatial sense. These

generalizations completely eliminate any spike at the tip of the front.
(6) The model is flexible to the extent that it could be employed as a finite

J difference or finite element model.

4.2 Moving Element Solution of St. Venant Open Channel Equations
[n view of a number of alternative deﬁn’fﬂ'a'ﬁused throughout this
research, it is imperative that a clear meaning of the terms be tstablished. These

definitions are further docurhented in the glossary of terms.



vV
As the characteristic based methods are deeply rooted in open channe ﬂow equntxons

and do not resemble the proposed*a!sinuque, an altemate name was requxred Spnce-

2 v -.-;-
-ty '\

'txme ﬁmte element techmque no'_ 1 le coruures up the rectangular grid in the x-t

- 2 - X N
- domain.

Consider the solutign'ﬁ?':the space-time finite elements it a typical time
step as shown in Figure 4.1. For a Eularian based rectangular grid, the locations X,
> AS

and Xp and Xp and X¢ are the samZﬁ the proposed technique, the positions X¢ and

Xp are allowed to move depending upon particle velocity at points A and C. Thus the

-

solution at any given time step is based on a Lagrangian c%ncept. If this process is
’ * N '

repeated for a number of time s;teps, the rays emitting from A and B would eventually

move out of the solution domain. From this background, the name 'Moving Element’

Method' was devised. .
a y)
As will become evident, alternate forms of this definition are Lagrangian

mode or Eularian-Lagrangjag mode solutions. To differentiate the manifestation of
' solut.ion"schemes, consider Figure 4.2 through 4.4.

‘ In Figure 4.2 the‘Eularinn solution grid is presented. This conﬁgufation

predestines the locations where the solution will be obtained; in this case, the solution

is forced at points A, B, C and D. The discontinuit?- c;r a changing boundary is allowed

e N
"to move across the points of interest. , This scenario is similar to that in which the
ltlal derwatwes are discretized by the fimte élement method and temporal
derivative via the finite-difference technique, Cooley and M?ﬂn’( 1976). Moin (1982) in
° -

an unpublished report employed space-time finite 8lements in an Bularian sense with

bilinear elements. This approach breaks down to the same d[‘ﬂ'erence equation as
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‘as

described by Cooley and Moin for the temporal weighting parémeter e equ_allling 0.67.
v .

. Further, as wijll be shown later on, this approacllx produces oscillations fqr 0 egual to

. L 4
0.5 and smearing for a value of 0.67.

A . s o g
By contrast the Lagrangian solution grid (Figure 4.3) allows points A and B
to migrateto D, Eand C, F respéctiveiy The relative positions of C and D depend

upon the particje velocities at time level tn. This techmque is focussed on in later

sections. At the core of this research is the adoption of the Eulanan-Lagranglan-

ccmcepts and its successful 1mplemen.tatmn. *Fzgure 4.4 presents the Bulaman-

Lagrangian grid as defined within this study context. In this aﬁproach, the locations

i

“ank,

whete information is desired are fixed in space at A, and B,. At any given solution

slice b.etween time levels to-1 and tn, the computation takes place in a I:_s‘;‘\g‘rangian
sense along ABCD, where points C and D are points A and B displaced by their
respective velocities. The moving element scheme computes’the d;ependent variables
at points C, D, etc. The values are then interpolated for location A,, B,, ete. projected
at Al Bl ate. For ex;m;.’le, the values at Bl are interpolated fromithe computed flows
anti depths at C and D. For the next time level, the .computatibns proceed a‘long
AlBICID! and the process is repeated. -
- . ~
4.2.1 Governing Equations
' There are a multitude of ways of writing the open channel flow equation;;.

The literature g,urveyed in the last chapter attests to this statement. As noted in

Cthtar 2, the dxverg‘ent form of the open channel flow equations will be used in this

- work.

The divergent form of equations is the only type capable of capturing a

surface discontinuity and simultaneously satisfying the Rankine-Hugoniot shock

”~
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condition. Most of the assumptions used in, éradually varied unsteady flows are also

" in fo;-cé for studying rapidly varied flow situations, Some of the assumptions may not

‘necessarily be true for rapidly flow condiﬁons, for example the vertical acceleration at

the discontinuity may not be small and negligiblé. Reitérgting these assumptions:

L.

The vertical acceleration is small or that the pressure distribution

‘along a vertical is hydrostatic. Strictly speaking this condition is

violated at the discontinuity.

Friction loss approximation are not significantly different from the
steady flow conditioris.

Velocity distribution across the cross-sectional area does not affect
the wave motion. .

The transiation of wave is esséntia!ly in one direction, ie. the water-
surface profile across is nearly horizontal. =

The channel bed siopes are smull enough to replace sine of the slope

with the value of slope and cosine with unity.

Others like Kuelgen (1946) and Liggett (1975) attempted accommodating

the vertical acceleration'terms for the completeness of the St. Venant equations by

+

using higher order wave theory.

The divergent form of equationsﬁrith the flow Q and depth y as the

dependent variable are written as:

Censervation of Mass:

dA
— +
a

%18
n
=}

(4.1)




f.‘
Conservation of Momentﬁm:‘ :

% + i(Qung;);- gA(sq- S;) -_-'o o - (4.2
The definition of the terms is ebng.iszent with that in Chapter 2. Equations
(4.1) and (4..2)‘represent unsteady open channel flow in prismatic c_har_mels of small
slopes 'and r;easurabie roughnesﬁ. Other terms usually found ih' open ch;mnel flow
analysis liks ndn-'prismatic chapnel forms, lateral flow, etc. are purposely; omittedat -

this point but will be addressed at a later stage. |
" . The solution of Equations (4.1)-.ﬁnd (4.2) is not possible without t!:é pre-
seription of the initial and boundary conditions. For subecritical flow condition, the

requirements are

Initial Condition:

yix,0) = fl(x, Q) (4.3)_
Qlx,0) = folx,y) forx, Sx=<x (4.4)
Boundary Conditions:
Upstream
O, 1) = [(t) (4.5)
or
T ¥, 0= £, (4.6)
Downstream |
QLY = £(t) 4.7
or L
y(L,t) = £ (t) (4.8)
or -
Q(L,t) = fly(L,t) (4.9)

The requirements for supercritical flow are that both depth, y, and flow, Q,

are specified at the upstream boundary and no conditions are required at the down-



stream boundary. The boundary conditions for subcritical flow fﬁrthel:_réquiije that
- Equations (4.5) and (4.7) are not simull;aneously. imposed to avoid trivial solutions.
' Following Liggett {1975) in developing second order shallow water

equations for depth and flowrate as dependent variables, the résdlting momentum

equation becomes:
' AAY)
B, 0\, YY) ks
at ax o °f
3 :
1 du du du Bzu,
-—Ahz(u—+—'+—-—‘“)=0 (4.10)
3 ax3 szat ax sz .

. N
It can be seen that the much needed higher order terms are present which
would help in dissipating the 2 Ax node to node oscillations discussed in the previous
chapter. For this research, however, the open channel flow conditions as defined by
' ]

Saint-Venant in Equations (4.1} and (4.2) along with necesséry initial and boundary

"conditions will be used.

4.2.2 Basis Functions and Isoparametric Elements
A variation of the finite element method is employed,‘ and hence; the
method of weighted residuals is used to solve Equations (4.1) to (4.9). Bonnerot and
Jamet (1974) employéd finite elements in space and time with a variable mesh.
Similar notation is used in this work, modified for the two-equation problem, coupled
dependent variables and non-linearity of derived variables.
Defining y(x,t) and Q(x,t) as the approximations to the respective solutions
of y(x,t) and Q(x,t) of Equations (4.1) to (4.9). Furthermore, let ¢(x,t) be a continuous
“function in the solution domain in x S x<xgand t; S t Sty. The solution at a given

time step is depicted in Figure 4.5.




Applying the method of weighted residuals and requiring that the residual

with respect to ¢(x,8) vanish
Continuity equation:' - _ : . \' .
. ) - . ) . )
. ' rz-rﬂ(a—&+£)¢dxdt=o (4.11) ;
- y Iy E o '
Momentum equation:

ré I’R(;ag_+a(Qu) 6‘

a, = wopg (412
. . - +ax'(gAy)—gASD+gASt.)c_l>d_xdt)<pdxdt—0

Y
for0=st; <ts.

i}

In_tegratir}g Equations (4.11) and (4.12). by-r parts and adding lateral flow

terms, the conservation of mass and momentum respectively become:

[NEERT I N\

t.l xL ; -
. _
+ rR {A¢}:2dx + J 2{Q¢}‘Rdt_—_0 (4.13)
S R
by [ _
I‘ rR ["QQ -Q“@ -qAy ad - 8AS, -5 —u_qodxdt
t gt ax : ox 0 x
1 .
- s ty t _ .
* J {Q‘N:?dx + f QuokRdt+g ] LAy e Rdt =0 (4.14)
5 1 Y € ty X

In order to facilitate the proper interpretation of Equations (4.13) and

(4.14), consider the space-time solution strip between time levels t; and to and space

defined by x; and xg. The domain presented in FiFure 4.5 also assumes that the flow

is moving left to r{ght in such a way that velocities u(x,t) and u(xg,t) are both
positive and greater than zero. A more generalized case follows in later sections.

\ Assuming a generic variable W, the second term in Equations (4.13) and

(4.14) implies
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.
I o 4'}:2&* = f ® wes, t** phdx — [ ® Wex, 1 phdx (4.15)
- L . Y ‘

Similarly, the third term in Equation (4.13) and the third and fourth terms

in Equation (4.14) can be intepreted as:

' ¢ ) t )
rz w ¢}xR dt = [ 2 {Wixg, t)bldt — [ 2 Wix, hphdt {4.16)
tl xL tl ! "1 .

-

Thus both lequations c&mpu_te the line integrals indicating flows across
Py Pyn and Pga+1 Pyn+1 by Equation (4.15) and flow volume entering across Pyn
Pon+1 and leaving through Pyn Pyn+1 at xg. Also, Figure 4.5 indicate but one slice
where solution is sought between time levels to and to+1: the procedure will be the
same when extending to advanced time levels. Furthermore, the solution domain
deﬁned'by Pyn Pyo Pyn+!l Pyn+l with x <x< ’;R and toststhtl is discretized by
the spatial temporal elements Kgn, K» ... Ky_n.

When ta =0, the values of dependent variables y and Q are known as initial
condition and values at point Poﬂ“r'I and Pyn+1 are either known or related explicitly.
As a first step, the solution advances to t1. These computed values then become the
initial conditions for the next time slice and the procedure is repeated.

At a typical time step, again referring to Figure 4.5, the procedure requices
deﬁning‘t:vo different types of elements. A triangular element defined as K,n is
required adjoining the left hand bOLRdary to accornmodate the "ray” originating at
Pyn. All other elements are trapezoidal in shape.
1.2.2.1 © Mathematical Formulation -

In the previous section the solution for the depth of flow, yix,t) and flow

rate, Q(x,t) were approximated by functon y and Q. Let these approximating



|

- functions be further denoted by yi» and Q» Freprese-nting the values at the nodé :
Pp=(xm ta).
By imposlngrﬁhe conditions that y and Q satisfy the intial conditions given
_by Equations (4.3) afxd (4.4), the following equaﬁ;;ns result: '
¥ =1, 0c, Q) - @17
and
Q? = fz(xi'y?) . N (4.18)
fori=1,2,..,N.
In applyin‘é’ the finite element approximations io Equations (4.13) and
(4.14), the trapezoidal and triangular elements -require the transformation of the
global x-t coordinate systemtoann — §andn - lo-c’al system. This step allows the
approximations and integration on a unit square boundedby0 s n < 1,0 s £ 1,as
an example for t[he trapezoidal element. The trapezoidal element defined by P;n Pn+1
P+ 12+ Py, 10 constitute the four vertices and is presented in Figure 4.6 (Page 105).
The procedure developed by Bonnerot and Jamet (1974) is adopted for the
two equation system for open channel flow condition. The mapping of a unit square to ¢
the typical trapezoidal element is accomplished by co-ordinate transformation. For

the element K;n as shown in Figure 4.6 can be expressed as

AR { AL (4.19)

x=(1 -}l - E)x:1 + (1 - r])u‘ix;“H +n(l - Qx?ﬂ + q.‘,x?:ll {4.20)

Finally, the Jacobian of this transformation derived at a later stage is

N . (4.21)
n_ ,n+l n n n+l n n+l 4
Ji = (t -t (1—.‘3,):&:“‘.1+£xi+l—(l—-!?,]:ci-f,xi
By denoting
k=t"*l_¢n (4.22)

and



\

X2 = (1-px” +§x“+“ T (4.23)
Equation (4. 21) becomes .

n+f o+k _ - (4.24) .
i~ k(xt+l X )
Where x;o defines the global location of node P;® in the x-t plane Assunung the
approximating functions and their derived variables to vary linearly along the side of
wd :
trapezoid K;», the solution over the element is taken as a polynomiafl of the form

yn,0=01-n1-9y + 1~ q)ﬁy"+l+q(1__ay+l+q£yn+l - @)

QO =01-n1-9Q + 1-nEQ™ +n1-9Q", +nEQ?}! (428
A comparison of Equation (4.20) with Equations (4.25) and (4.26) that the

same shape functions are used for coordinate transformation, the resulting finite
elements have isoparametric properties,
Using similar logic for the triangular element at the left hand boundary,

the approximating polynomials for the shape function in local coordinates n — £ are

given as
x= Q=g+ 1 -0x + (' + £ - 1! _ (4.27)
;(nl.E}:“_nl) n+l+(1 533’1 +(r1 +E— l)yn+l {4.28)
Q9 =a-n"Q"* +(1-9Q% + +E-1) Q! (4.29)
As the nodal values yio and Qi (i = 1, 2, ..., N) are given as initial

coriditions for n=0 and are evaluated and reinitialized for each time steps forn > 0 °
there are 2N +2 unknowns at the‘ advanced time step. Of these 2N +2 upknowns,
N+1 each of 'y’ and 'Q, either 'y’ or 'Q’ is specified at the upstream boundary and
either y or Q is specified or y-Q relationship implied at the downstream boundary.

This provides two unknowns. There are N-1 internal nodes and application of



continuity and momentum equations supply 2N—§ relationships, .As the mon;enium T
equatmns include the eontmuxty equation, this is applled at the boundary nodes along .
mth the boun . condmons This completes the system of equations. |

R callmg Figure 4.5, the solutmn domain w{:ere all the contmuoua
functions are defined on the triangular elements Koﬂ by Equations (4. 28) and (4.29)

-

and trapezoidal elements

n. o -
KL K5, oy Keo1
by Equations (4.25) and (4.26). The weighting function ¢ in the solution domain is
. J

LI 4

uniquely established by the nodal values Pin (i= 1, 2, ..., N) and Pjn+1 (i= ‘0, 1
2, ... N ). Tl:le function is further defined a priori to vary lin;arly along the sides of the
elements. Following the notation of Varoglu and Finn (1980), defining the functim::
¢(x,t) for all elements i = 1, 2, ..., N—1 as the function of solutions domain in such a |
way that
¢”’(ij‘“) =1 fori=jandi=1,2,.,N=1, j=0,1,..N
i=landj=0
i=N-landj=N
=0 otherwise (4.30)

¢‘”(Pj“)=1 fori=jandj=1,2,.. N
i=N-landj=N

=0 otherwise (4.31)

Jamet and Bonnerot (1975) used the same weighting functions over the
trapezoidal elements successfully for a system of conservation laws. When the
discretized weighting function are applied on the individual elements and collected
together, 2N +2 equations in the unknown nodal values of yja+t and Qi=+! are

realized withi = 0,1, 2, ..., N.




. + rR{K.qa“'}::“dx_- r

. '{Eq,i"}'x’:dt:o fori=1,2,.,N—1 (432)
%L v :

The momentum equation takes the form

N-1 i T = ap'i)
ARERE St
; _

frd & ax ax
L 4
-gAl, - S 0" - qu)cp“’} dx dt
7
LT g (iR
+[ {Qe") ~dx+ [,, {Que™} “de
!L t t . xL
o (4.33)
— — !R 3
+gl {A y o) Rdt=0
e I
By definition the weighting function is governed by the equality
N-1
iy _ ] n+l
> =1 fort*stst | (434

i=1

and x; SX S xp -
Examination of Equations (4.32) and (4.33) reveals that when y and Q are

satisfied on all elements will also satisfy the following relationships

Mass conservation
tn+l.
R[3A 9Q (4.35)
= 4+ — —~qldxdt=0
" L at ax
Momentum conservation
n+l —_
IR [eQ & — - = _ (1.36)
0 ;-i-g(Qu-i-gAy)—gA(So—Sf)—u!q dxdt—O'

L

L4

>
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' So far the method of wéighted residuals has yielded the residuals on the
isoparametric eiements. In this section th; numeridal iniegrations for.thé bas-ic
equation are proposed and implemented. - S -
lRecall that the transib_rmat.ions from global coordinates to lt;éal coordinﬁtes

take place according to the relationship.
I n[ d(x, t)dx dt = I I ¢(n, d ;‘(n.E)dqu = TL () ' 437
- JK, A :
1

where J;2 is the Jacobian of the transformation given by '

ok

P % & an
For any dependent or derived variable defined by S. Following the technique of

(4.38)

Bonnerot and Jamet (1974), the integral is evaluated by the Newton-Cotes

quadrature formula as

A
- 1 - -
[ ] S(,9dndE=~ > S(P) (4.39)
A 4 =1 :
where Pg. 4 denotes the four vertices of the unit sciuare mapped by the
transformation. ‘ S

Similarly, the line integral for the element is approxim.eted by the

[

trapezoidal rule as

n _xl.'l
i+l N B 4 e "
P (¢(xi,t ¢ (x;

e

% x
J v Pix, tMdx =
X

1 -

t™)

+1!

=L @ (4.40)

th
When Equations (4.37) and (4.40) are substituted in Equations (4.33) and (4.34), the

results are expressed by Equations (4.35) and (4.36). Thus




g (o et - (4'41)"
I '[n"tb(x,tjdxdt-—- Z'A_i(q,) _ <%
t o er S T _
"and 2
' N-1 . o
rﬂ dxdx =D L @ (4.42)
\ i=( .tnri o

Implementing the aboyé relationships in the continuity equation would result in a

system of non-linear equations,

4.2.3.1 Computation of Derivatives

For the sake (_)f brevity, oz;ly three typical terms are evaluated,- namely a
time derivative, a space derivative and a constaht. This is accomplished by using an
arbitrary function say S given by nodal valuesas §p = Sy, (Pn).

(1) Computation of '

(i
[ ]52 sa -
K, at
1 .
Noting from Equation (4.30) that ¢’ is equal to zero on all elements except
whenj=iandj=i-1, therefore

{1) {i) ) {i) .
J JSh——dxdtz A'.(S a_¢;)+z (S 61);) (4.43)‘
K. at L h 4t Ll—l h at
i =~

From Equation (4.39) the terms on the right hand side are evaluated by the

' relationship . ~/
‘i—ﬂ
. — wil) ) l 4 _ (kb =
The summation is accomplished by evaluating the term at the four vertices of the unit

square. First evaluating the value of the Jacobian, from Equations (4.19) and (4.20).

-



a n

an =0-9x7, i+1
e GNFE n+f
Xl X

ax X
3&_ _ (1_n)x?+1 ‘*‘,'lx?:: - (1—!1)::;'_ -nx

_Jua+l . _.n
- xi+q i+y

at

—-_-_0

an
§=tﬂ+l_tn=k

From the above four equations, the value of the Jacobian is

n_ n+E n+k
Ji =kt %)

Similar derivatives are now required for
{i)
.
dt
First

. )
o ‘ 3
at

&1y

_ " m at
dan 3

%%

+ Exn+1 - _Qx:l - £X?+l

n
i+l

R

(4.45)

(4.46)

(4.47)

(4.48)

(4.24)

"(4.49}
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Evaluating from Eciuations (4.19) and (4.20) ’

Z"—x - TITa g 450
n n . .
s =% ) :
n+1
a_l'l _ l (xi+r] - ?—i-q) (4.51)
&t k (n+E n+é ‘
ey =% )
& =0 (4.52)
ax €
£_1 (4.53)
da k .
Further, from definition of the basis function ¢(n,§) = §(x,t) is a polynomial of the
form . "
= (4.54)
¢, 0 =c)+cn+ecf+aenf
The values of the constants when determined on the vertices as ¢;n etc. yield,
$M,0=1-n -7 + A -EG™*  + n(1 - P, | + nEp ! (4.55)
Then from Equations (4.30) and (4.31) \
' ISR , (4.56)
am  iel &

= ~(1-9¢'(PP - £¢"PN
+ (10 P, )+ E'P"T D

@ lefei= o1 (4.57)

Similarly



A L,
) .fg-ﬁx e

= —(1-n) ¢‘(P’;) +(1-n¢'Erth
-n¢mwp+n¢wﬁﬁ

=—(l-n+1-P=0
Employing Equations (4.51), (4.53), (4.57) and (4.59), the term

; a+l n
G W S T Rl O
at - k r.n+é n+£
at Gy = ; ) .
Substxtutmg Equation (4. 60) in Equation (4.44), the area integration bécomes ) 4
= o B e a¢ (4.61)
A6, —) = Z Y 5P . L
Ll at £=0 n= =0 l+q at l \
_ n+§ +1 n
= Z > SRR (4.62)
. £=0 n=0
Expanding Equation (4.62) results in g
K (S ﬂl) - _l__ (Sn + Su+l}(xﬂ+l n)+ (Sl'l Sn-f-l)( n+l xl'l ) (4.63)
dohg g T N T P+1 e T X

An examination of ‘the nodal contributions reveals that any one node is
connected to no more than two elements. Equation (4.63) describes the contribution to

Kin element. Following the same logic the contribution to the Ki.1" e¢lelnent

’ i
— 1
A, ai)=--T(SHS!‘“)(xf‘”-xf‘)Hsf‘ T A [, )l (4.64)
L:—l h at 4 i i i i i=1 i=-1 i-1 i-1

Adding the contributions from K;n and K; _ ;7 elements the resulting equations is ~
b
&&b —- n n+l n+l n ‘ :.\ a
"K[S dx dt = (Sl+[+sl+1)‘+l-xi+i) (4.65) -

n n+l n+1 n
- (Si-l + Si—x)(xi-l - xi_l)l'
{2) Computation of
i)

J}{,I SL—gx'—dxdt |
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The eohtribhtions for thxs rm be similar to Eqiiaﬁon (4.43) asbefore
‘ . i B R : : ) L
&”=£_m @& e
_ . ax- n o aE, ax v . .
From Equation (4.57),
E_ =1 (4.57)
: - an |
Equation (4.59) yields ‘
® . o (‘l (4.59)
. . a8 -
and Equation (4.50) gives the value
o ﬁ (4.50)
ax n+k _.n
- . (x_i AR S .
From where
ﬂ\ o _ 1 (4.67)
ax n+f n+§
‘ &y — x )
The ares integral based on the nodal value is
(i} _!l)
6
A(SE—)——ZS—-—J(P) (.68
L'
Substituting Equations (4.24) and (4.67) in Equation (4.68) resuits in
B\ 1 T S ' (4.69)
LA n+f ¥ n .
(Sax)_4~’-zsi+nax"i -
£=0 n=0
11
- 1< S gt {4.70)
4 {:.O !]‘:0 i+n
Expansion of the above leads to
N a¢i n n+t +1 {4,71)
AL}(Sh -a:)z £ —k(S +8  + ST +80T)

Using the same logic employed in the previous computation the contribution for K;_,

element ig

k(S" +S° 4§+l 4 grTl (+.72)
i i-1 H i—-1
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Addmon of the contnbutxons from K,_1 and K;element results in ' -

I I s, ﬁdx dt = — ZK(SE,, + ST - S-St (4.73)
K, .
1

(3)  Computation of

v . . -

I’Ishq)dxdt e T
K, ‘

This is rather straight forward by estabhshmg the relat:onshnp

3 -1 + + ' (4.74)
i F.zo ?o S?+:¢(P?+:)Jn

Substituting for J;n from Equation {4.24), noting ¢! is equal tol when n= 0and zero

otherwise and expanding the above equation is

A i Sn(x.+1 ?)+S?+l(xn+l—-xn+l)
L

Lyt (4.75)

By adding the contributions from the K;_ element, the resulting equation is

n n n+l, _n+! n+1l
[K [ Spdxdt = S (x vl i-.-l)+si lxi_+l 7(:14 {4.76)
i

4.2.3.2 Computation of Flux Terms

Next the line integrals are evaluated in a similar manner. From Equation

(4.40) the line integral was defined as

_ xi , —x 1 (4.77)
Ln(q,,:x_l___gv(q,(P?+ ) .
t ,i 2 |'1=0 n

Using this definition the following flux term is evaluated

xt —xt 1
i _ i+1 i ( n n (4.78]
[L S""p dx= = 2 S— sl+n¢ (Pt+n)
. n=0

Noting again ¢i is equal to 1 for n=0 and zero otherwise leads to
=

—_— n n 4
)= (x|+[ xi]si f4.'§9)

t.l

Adding contributions of K; _| element results in




. ..
1 .
. s o
L‘ Sh(_p dx = 2 (:t;"'_1 - x?-l) S: ‘ (4.80) .
t '
Similarly,
1 - .
i — o ¢ D+l n+l oo+l
IL S, dx = 2.(xi+1,—xi—l)si . | . (4.81).
n+l . ’ ‘ ‘

t ‘
Lastly, the flux in the time domain at the upstream and downstrgajh boundaries is "

evaluated in the like Mer and defined as follows:
At the upstream Boundary
; I A
1
1, 1 +E .1 n+E (4.82)
L Soldt= kazo CHIAL M

[n this case ¢! is equal to I for both values of §. Therefore,

k
J Seldt= 3 S5 + sg”) (4.83)
L

In a like manner the relationship for the downstream boundary is

k
J  s¢Nde = 5 (S + Sy h (4.84)
L

It should be noted that the discretized relationship derived in the foregoing
section and described by Equations (4.65}, (4.73), (4.76), (4.80) and (4.81) is repre-
sentative of the interior nodes. There are five different type of contributions from the
nodes in view of the boundary element influence. Recalling Figure 4.5 thfa elements

3 .

are divided as follows:

Type 1 for Kgo contributions and boundary conditions

Type 2 for Kon and K contributions and/or boundary conditions
Type 3 for Kin, Kon, ..., Ky_? contributions

Type 4 for Ky~ 20 and Ky _ 1@ contributions and/or boundary

Type 5 for Ky _ 17 contributions and boundary conditions
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The relationships derived so far are valid only for Type 3 _élémant.s.' Con-

tributions are sigﬁiﬁeantly different for the other types. For‘ brévity, the contri-

butions for Type 2, 4 and 5 will not be derived but will be presented ‘in‘the final form

Type 1 elements deserve special consideration and are discussed in the following

section. The overall contribﬁtion framework is established after the boundary

conditions are i:’lcorpot;ated.

4.3 Boundary .Elements *

The contributions of the elements at the two extreme boundaries (Type 1
elements) pl‘slay an impo\r@ role in the overall harmony of the model. For any six-
point implicit scheme, such as the one resulting in this work, handling of the
boundary conditions poses a difficult and tricky problem. In this section, new methods
are proposed to overcome such difficulties.

As "N +1'nodes afe in consideration, there are 2N + 2 equations and 2N +2
unknowns. At the two boundary nodes the continuity equation is replaced by the
specified flow or depth or flow-depth relationship, the momentum equation is
retained. The various terms in the momentum Eequat.ion do weakly mimic the mass
continuity relationship.

In the following sections the derivations of boundary contributions are
based on positive velocity at the upstream boundary. When the flow movement is

reversed it requires slight modifications in the terms.

4.3.1 Upstream Boundary
When the flood movement is such that it causes positive velocities to occur

at the upstream boundary node, then a ray is required at this point. This ray will be
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. slanted into the solution domain necessitating & triangular element at the upstream
. boundary: Two appronche_s‘were attempted in representing the triangular element.

- The first and most obvious choice is to treat the elemerit as a triangular element as

shown in Figure 4.7(a).

A second alternative was devised in which the triangular élement was

achieved by collapsing the side at the known time level, This process is shown in

. Figure 4.7(b).

T!-zelse two types of elements are next described for each of the suberitical
and supercritical flow conc-iitions.
43.1.1  Triangular Element

The natﬁral form of element at the upstream boundary is a triangular
element. Varoglu and Finn (1980) introduced the concept of mixed triangular and
trapezoidal elements. This was modified for a two-equation system and implemented.

As before contributions for any given dependent or derived variables, say, S
¢

" is obtained. Figure 4.8 depicts a triangular element represented by Pn Pyn+1 Pgn+1

and the element designated as Kgn,

The time approximation is the same as before in Equation 4.19.

t=t"+ £t -t (4.19)

However, the shape function ¢ and space approximation now become
\ x=(1-ax'l‘+s,x'l‘“+(n‘-1)(g‘l‘“_x:”) (4.85)
and i
¢ = 1-9¢°P" + £0%P Y + (' - 1) @%PT*h — ¢ty (4.86)

The Jacobian Jgn is obtained by definition in Equation (4.38). The individual

differentials are
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Flg. 4.7(a) Voruglu and Finn's Upstream Boundary Triangular Elemant
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Fig. 4.8 Upstream Triangular Elements
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@an

(4.48)

(4.87)

(4.88)

(4.89)

(4.90)

To obtain the values of other differentials for numerical integration, the

at
—T=0 .
) an
——’\
ot
. ;é=k
£=xn-¢;1 «?
1 1 1
an
& _ 1 n+l
. € ! 0
From above, Jgo is quated as .
' o &R x
O_—..—_-—l-.—
#& ! ot X
or
n _ n+1 n+1
.Jo—k(:vc1 - X )
results are
n+l n
AR W Ul Ul
& k (n*l _n+l
(xl =X )
1)
NS S
& a4+l _n+l
5 T %

(1) Computation of

0
J n[ Sh%dxdt
KO

{4.91)

(4.92)

For the upstream boundary node the only element connected with node Pyn+1 is Kgn

where $0 =1 and zero elsewhere. Therefore

0

I .JJ S, % xdt=A 0(sh
Kq at L at

(4.93)
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For the trianguler element, the numerical in'tegration for girea is approximated as -

. . | o .
[ " f wdxdt= Sk - x0Th (@D + WP + P (4.94)
0 : . ‘ -
Consideration of Equation (4:86) - _
T o 0 20 a1 ‘
- ¥ _® & H m (4.95)
‘ at & . gt & o '
. AIS’D .> -;.
& _y , \ (4.52)
ox : i
and ' ,
‘ % = i (4.53)
The other terms in Equation (4.95) are derived from Equation (4.86).
0
b .
&’ ' (4.97
an
From which <
a® 1 )T -xD (4.98)
at k (x'l"H - "3) : ' ‘
and
_ 3? ;4 1
A O(S ___)= - T N Sn+£(xn+l ~x" {4.99)
L n s § “— - 1 1 1
fll=0 E.=° n

Expanding and substituting Equation (4.99) in Equation (4.93), the integral becomes

a¢° 1 . .
S —dxdt= = (x""! - x"(8" + §°" g0t (4.100)
K2 o ax g L Rl 1 . %




(2) Cbmp_utation of .-

) 5° N
. [nlsh"a’—:dxdt
Ko

Similar to Equation (4.93) the integral is
' 0 L ¢
op - ad
I}(“J S, o dxxit = ALD(S" Sx_)
.0 ) .

Again considering Equation (4.86) and expanding it to yield

& a m,

x & x '

Noting contributions of the various terms, the value is

-1
ax - n+l _ _n+l
(x, X3 )

Taking the Jacobian in Equation (4.90)

» 1 1
KI.'J(Sni):'% E E Sn:s‘( n+1—1 o+l )J;
L dax alap &0 n (x, Xy )

The expansion of Equation (4.104) leads to

&pﬂ 1 o n+1 n+l
IK“[ Sh-gx—--— Ei'k(Sl-i-Sl +S0 )

A visual examination of Equation (4.94) results in

__1 n+l +1 +1 +1
IK“J S, ¢dxdt = gk(xl - xg )8} + 5] +5570)
0

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

(4.1086)

A comparison with Equations (4.80) and (4.81) would result in the

calculation of flux as

) 0
L‘ [Shq; dx=0

n
4

l
04, —~ 2 ( N+l _n+l, ca+l
]L J Sh¢ dx = 5 )" —x, )SD

n+
tl

(4.107)

(4.108)
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The above terms are used in the mass and momentum conservation egpation.s for
- suberitical flow conditions. When supercritlit:al‘ﬂow persists the‘rec-;uireme_nts of
boundary condition$ change. such that both dependént variables de.p.th. y, and
discharge, Q, are specified at node Pon*r'l. These specifications- replace both the
equations and the flow and depth continuity is then captured at the nodal point
P.1n+1._ The confributions for the supercﬁﬁcal flow regime are presented in Appendix

B.

4.3.1.2 Trapezoidal Element

The earlier work of Bannerot and Jamet (1975) presented a trapezoidal
element at the upstream boundary. This element had a finite base length. There was
no provision in that technique to introduce a ray emitting from nodal point Pn.

This deficiency was overcome by allowing for a quadilateral element at the
upstream boundary and collapsing the base‘length between P\ and Pyn to zero. This
is presented in Figure 4.9.. The contributions of various terms are very similar to
those derived for the K element with allowance for the no-displacement of side at the
upstream boundary, i.e.

BT U JN

0 xl

The various contributions are sumnmarized below based on the derivations

in Equations (4.63), (4.71} and {4.75).

a° 1 ntl . env, n+l  n (4.109)
| Sh —a-t—dxdt = n (Sl +Sz)(x1 - x,) )
K

a0° ! 1
[ e b o
K
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The estimation of flux across the boundaries is given by Equations (4.83); {4.107) and
(4.108); . - , -

The nodal contributions for supercritical flow conditions are presented in
Appent_iix B. The tests carried out by employing the triangular and the Eolla’ﬁsed
- quadilateral elements ‘yialded almost identical results. de this reason, from a

progfamming cc‘mvenience, the results in the following chapters are based on

collapsed quadilaterali.

4.3;2 Downstream Boundary:

The downstream boundﬁry does not play as important a role as the
upstream boundary. Nevertheless, an ill-conditioned downstream bbundaf&r becomes
equally 'im]iorta'nt when corrupted: signalg move up and destroy the validity -of the
interior, otherwise good, solution. When the mass of water leaves the domain, the
velocity at the boundary is positive and this in tul‘rn necessitates a trapezoidal
element.

It is to be noted that negative flows and hence negative velocities .ut the
downstream boundary' implies the need of a ray and triangular element at this point.
A typical trapezoidal element for positive velocities is depicted in Figure4.10.

Giving due consideration to the fact that xyn+1 = xyn = xpg, the foli0wing
typical integrations of the dependent or derived variable S are similar to Equations

 (4.64), (4.72) and (4.76) as:

’

N

' ad _ | P n n+l n
"L{ J Sh ? dxdt = — I(SN-l + SN‘_I) (x X

) (4.112)
N-1~ *N-1
N-1
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s

- i PYRRS ppe fl “ +1 (4.113)
|8 e et gy w02

: ’ N _- E bl n+'l n+l (\n n h | ‘

L{ _ J 8¢ dxdt = 3 {&" (xN - xN-l)J"_SN(xN"f N_OL (4.114)
N-1 ' i .

' The boundary ﬂa are again derived along the same lifies as for the

upstream boundary with the resulting equalities as:

‘ 1 :
. N N - | ] o
L Ishq, de = >y —xy_ )8y ¢.115)
-l
and -
1 : o : .
N - = ron+l n+lyqn+l & .
IL J Shq; dx T3 (xN - xN—l)sN . (4.118)
n+1

t

The volume of mass leaving the domain is computed as:

[ [ SeN dt = g(sg, + 80N : (4.84)
L
R -

a8

4.4 Discretized Form of Difference Equation
In Sdktions 4.2 and 4.3 differentials with respect to time and space were
numerically integrated for any given dependent or derived variable, 8, These terms

were next implemented in Equations (4.32) and (4.33). The substitution then resulted

_in five different types of equations depending upon the location of the element.

The contributions from the elements are groupéd and presented as five
types of elements.

Type 1 elements for i =0 in ¢ti) shape functions ’




116 ; -

Conservation of Mass:

k 0, An+1, qo+ty 1 onst | +1 s+t
E(Q1+Qo '*'.Q'; )—B-(X'l‘ —X';)(A?+A: +A';)

k .
—_ E (Qn+1 + QI‘I) + l( n+1 u+l) Au+1 — 0 .‘ - ) .
5 Qo 1 2 X, —X, e = T 4.117)

Conservation of Momentum:

1 b K nw ailasl :
‘-E (xl;'FI_ xl;)(Qll'\+Q3+1 + Qll'l+1) +. E(Q?uh'+"Qn+lun+l + Qn+luu+l)

1 0 0 - o1 1
kB' -n —n-;-l —n+1 kg
+ -é— (A? 3'1 A3+l yo An+1 y[ = (x n+l . n+l)

]
nean n+lgn+l n+lan+l f n_n n+l n+l
‘(A,l,,sﬁ1 +Aj SKO + A} SBl )~ 2 (QFul +Qp™ g
+g(Al'1! yl An+l l)l+ n+1_x31‘l)Q3+1=0
{4.118)

Type 2 elements for i=1 in ‘i) shepe functions:

Conservations of Mass:

(Qﬂ + Qn+l +Q2 + Qn+1)_ (Q + Qn+l + Qll‘l'l'l)
, :
= AT+ ATTHOGT - XD - AT + ATt - X))

1
+ ="

k
g DAl + AgTt AT - 7 [t ==

-k :
a+l, n+1 +ly - K oarl_ as1 1 1
+q7 "] -'T-)]—G(XT “ )(q1+q3*’+q;'+)

1 n+l- n+ly sn+l n s a0 {(4.119)
+§[(x2 - x5 DA - lx, —xDA]=
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Conservation of Momentum: -

. o
- JlQr+ Qi hat - + (Q2 + Q"*‘)cx;“ -xpl .

1 n+il n n n+l n+l k
+E(x1 —xl)(Ql-i-Q0 +Ql T+ - (lul+ 2

ntl o+l an+l o+l X non . 04l ntl . ~ntl nel
QT T Qe ) - Qg + QT T+ QET T

kg n_n Y B n+i Tn+l n+l oo+ i
+T(Alyl-[v-.‘\kzyz+ﬁxl Yy + A, y2l)

_-‘k_g (An_n An+1""ﬂ+l An+1_n‘”-’
1

6 y° [Ansn (x- - X )
1
) kg n+1l n+1 nen n+lon+1l n+laon+! '
- — — Xg )(ﬁ~.lsg-+-A0 S + A] Sg )
1 & 1
(4.120)
+—[(x““ o hQI T - x) —xDQ =0
Type 3 elements for = 2, 3, ..., N-2 in ¢ti) shape functions.
Conservation of Mass:
k n n n n+1 n+l n
Z(Qin"'QiH_Qi-l"Qi-l) [(A|+l ALY
n+l n n+1 n n+1l n
ey = X)) — AT A DT~ )
[q el =%+ ?H(x?:ll X'
(4.121)

+ - [(xn+l _ n+l}Af‘+l _ (xn

n oy _
i+l i-1 .-I)Ai]‘o

i+1
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Consefvation of Momentum: -
2 rnon+l n+1 n
[(Qu-x + Q6L -

n+l u+1
- 4 (Qi+l l+l+Qi+l i+1

An-{-l -n+i

kg n
—T(Al+!yl+l i+l “i+l

{Aﬂsn-( n

ivl " 1

i+l

1 n+l, n+l n+l .n n
o e T - gy -

118

(Qn-i-l + Qn

‘AD n-: n+1l n+l
-Q_ v - & )

.
= A1 Yo

)+An+lsﬂ+l( n+l

4 i+l

x;_ =0

i-1

-X

)(xn“’l i

1--[

- ~n+1
- A YD)

n+l
i—l)]

Type 4 elements fori = N — 1 in ¢t shape functions:-

Conservation of Mass:

k . o+l

+1
;2 N2J

n+l{ n+1 n+l

Ivo1 N Y

n n n _
Anoiley — 2y JI=0

Qn+l) +

4

n n
[qN_l(xN —xy Q)+

[Aﬂ+1 ( n+1

An+1 +Al‘l 2)

+1
~%N_p

i-1

(4.122)

{4.123)



. Conservation of Momentum:

1 o k '
Z(Q;::;‘*:Qn 2)(xn-lv-l x:‘_?)'*_ z (Q§u§+Q;+lu;+l

_lQ:t-z‘;;‘t \ Q“Hu;“z)-{- iﬂ’ (AN o A“H;:‘H

A, T AT ;‘; PR NI R L
A;ftllsz:::l( n+l _ n+12)] QYL (cBH - xntly

_QN 1 \: 2)} (4.124)

Type 5 elements fori =N in ¢titshape function

Conservation of Mass:

k n n+1l n+1 1 n+l n n+1l n
-2 Qy_,+Qy_ +Q +Qy Z(AN_lf’AN-x)("Nq"‘N-l)

i - PR o n n+l, n+l1 n+l
7Oy =Xy P ray Gy —xT )l

1 a+l, n+l n+1 n,.n
+§[AN (xN —xN_l)—AN(xN—

k
+ E(QII:J+1 + Q;) =0 (4.125)




Conservation of Momentum:— - - . i -

1 (Qn Qn+l a+1 _ .a Qe+l a+l

k :
l_xN—l)-_;(Q;—lu;'-l N-1UN-1

+1
""QN“N"'QHI‘.‘;H)"_(AN Lo 1"’ ntlt;; 1"'An I
AD""I -n+") [An S:N( n ;—l)‘_’_ A;"’lsggl(x:;‘l n+l)]

1
[Qﬂ""l( ;‘1’1_ n+ )_QN(xN ;-1)]

op -l (4.126)

+ AL YII=0

In the féregoing _the following substitutions and assumptions were made:

(i) The term Sy defines the difference of bedslope and friction slope i.e.
Sg =8¢ -5t

(ii) For the sake of brevity the term defining momentum contributions
of the lateral flow were not included in the momentum equation.
These contributions are, howe‘}et:, listed in Appendix C.

(iili)  The derivations of c?ntinuity and momentum equations were made
with a triangular element at the upstream boundary. As signi-
ficant model testing was carried out employing the collapsed
quadilateral, these equations which impact only the first two types
of elements are presented in Appendix D.

Equations (4.117) to (4.126) were presented without consideration to the

boundary conditions at the two extremities. In a previous section it was noted that

the momentum equation wéakly mimics the coni:inuity of mass as well. This was

later confirmed by numerical experimentation, and for this reason the mass con-

tinuity equations at the two boundaries were replaced by the imposed conditions.
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These replacementé‘ required the;, handling of flux terms or line integrélé through
Type 2 and 4 elements The mcorporatmn of boundary condmons necessltates the

changes in Equations (4 117, (4. 119) (4 123) and (4. 125) respectwely as:

ygﬂ =y () : : a2
u . .
or ‘ -
Qﬂ"'l - Q (t) - : (4.128)

Equation (4.119) is replaced by:

k n+l , ANh n+1l 1 n, an+l n+1 n l.
:":(Q‘;+Q1 +Q, +Q, )—Z[(AI+AI )(xl, - x;)

+A+ AT — )] - [q, (xg — xD) +q} gt = 12

k
6 (xn-t-l ﬂ+l)(q1 +ql.'ol+1+q;!+l)+ {Aﬂ+l( n+l 3+1)
1 k

n,.n n Zoan+l, n+i n+1 FTAGE S ] ny _, {4.129)

_Al(xZ_xl)]+2A0 (:t:l - Xg )—2{Q0 +Ql)—0
A similar flux handling transforms Equation (4.123) into

k n n+1 n+l n n+l n+1 n

R TR PR AV i B '[(sz 2t AN )Xy =Xy
k

n n+l n+l n 2eon n n

AN AT Oy Ty Pl 4 EqN—l(xN_xN—?J .
k

n+l _n+l n+1l 2ranon n n+l._n+l n+1
+aqy &y —xN_z)l—4![t!1.“,(:m:!\[—:‘:N DAy &y —xy )

- n+l , n+l n+1l n n -.n
¥ [AV 1y xyL) — Ay iy g L))

1 N
+_[AD+I( ﬂ+1“t;tll)_ V(xv x:‘_l)l
- k n+l n
+§(QN +QN)=D

(4.130)

Imposing the boundary condition Equation (4.125) is replaced by



R 1]
[N

K S y;*'f.-.a(t3 - o
or C | _ o
' Qerts Qa("’r | ; C 4B
or _ ] -
Qnﬂ,,_p(ynﬂ R (4133)

Equahon (4.133) implies a unique stage-chscharge relatmnslup, If leﬁ'l is
the’ crif.lcgl depth for a ﬂow} Quo+1 thgn'the boundary condition 1s of non-re_ﬂe;:twe
, tjrpé or else the;é .is a posﬁibility of wave reflections. ' This aspect is addreséed in the
followuié chapters. To avoid trivial solutxons Equatmns (4.128) and (4.132) are not
prescrxbed s:multaneously |

In the previous sections while developing the finite element form_qlatiﬁns. -
no i-estrictigns were placed on the orientation of the rays and. hence the sides P;jn Pin+1
fori=1,2,.. N-1, |

In this work the orientation of the rays is restricted to follow the condition
' ifnposed by

LS =x?'+ u?k (4.134)

i
The interpretation of Eqn. 4.134 implies that the new position of a particle previously
‘at x;" is determined by the mean velocity at the point and the ti:ﬁe interval, k. It will
be shown in the next section that in the limiting case of k—0 the system of equations
of the moving element schemes reduces to the central-difference technique. This is

consistent with the findings of Bonnerot and Jamet (1974), Varoglu and Finn (1980)

and Lam and Simpson (1976).

A



45 Soluhon Procedure.

In t.he prevmus sectlon the dxscret:zed equatmns for the five types of '

element. cotnbutxons were denved A closer examination of t.he equatmns revenl two.

i . .

unportant character:shcs
. D The equations mvolve only two d1fferent levels of dapendent

‘:anables 'y’ and 'Y, namely at levels ‘arfd'n +1', Forn = O‘the ‘
| g
. - state is that of initial condmon when both y and Q are prescnbed :
- Whenn >0, the values obtamed for y and Q at the current solutmn |
step become the xmtlal cond1t1ons and known values. Thus at all
levels of solution, depeﬁdent and derived variables at level 'n’ are
known, These valﬁes crxn then be trnnéferred to'the right"hém_i.side
of the equation, leaving unknowns at level n+1 to be solved t;n the
left hand side.
(iD) For any eqﬁation there are no more than three unknowns in depth
and discharge, y and Q respectively. A further comparison of the
subscripts indicate that the same nodes repeat for both mass
conservation and momentum conservation equations. This results
in the bi-tridiagoal set of equations which cari be solved efficiently

by any stable double-sweep technique.

The transformed equations can be written as:

Conservation of Mass:
n+t n+l. n+1 n+l n+l n+l _ {4.135)
8 ¥y Y AR by T b, QT ey Q) =4 <
Conservation of Momentum:
n+1 n+l n+l n+1 n+l n+l _ . (4.136)
&3¥i1 +a4Qi;1 thyy b e, QL =dy

i 4\/ CGY¥iet
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where a1, az etctan be obtamed by comparmg Equatxons . 135) and (4. 136) thh

’ Equatmns “. 117) to (4. 126)

further mspectmn also reveals that. the resultmg :

- equatmns from Equatmns (4 135} and 4 136) are nonlmear in nature and would

, raqu:re solutlon by an mteratxve techmque

b | Followmg the double sweep techmque adapted by Cooley and Mom (1976)

~the non-lmear equatmns are solved by the Newbon-Raphson Method. The f‘oIlowmg

gteps summeyize the procedure adopted. - Appenchx E provides the coefficients 4y, ap,

etc.

For i=0 Equations (4.135) And (4.136) become

: B 1, apl
- b y" +b, Q0" =d_
b yl’l+l+b Ql‘l+1+c yl]‘.l.'i-l C4QT+1=d2
Fori=1,2,..,N~1 : ‘
a+1 n+l n+l n+1 n+l-_
8y, +a2Qi—1 :f-bl '¥b Q +cly czQ. =d

i+l 1

n+l n+l n+l n+1l n+l n+l _
Ta Qs thyy T Fb QT eyl Q1 =4,

n+1 n+l _
byyy +b, Q" =d,

(4.137)
(4.138)
(4.135)
(4.136)
(4.139)

(4.140)

Where in Equation (4.137) either by =1 and by =0 or by =0 and box l and d; given as

d,=by 6 +b,Q®

(4.141)

A similar relationship exists for Equation (4.140). The coefficients for the dependent

variables are established by:
aF
Y

al=

(4.142)
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. {4143)

(4.144)
{4.145)
(4.146).

(4.147)

{4.148)

{4.149)
(4.150)
(4.1?1)
{4.152)

(4.153)
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G

(4.159)

‘d' =_G ' , ' : , (4.155) .
where F and G are associated with mass and momentum equations resl.:ectix_l‘g and |
éiven by Equatiﬁns (4.117) to (4.126). At the Fx;st 7iteration' step in the Newton- '
Raph;on technique, the values of y;n+1 and Qn+lfori = (i, 1, ... N are assumed and .
then correct_.éd for residual errors. '

The coefficients for successive elimination are first computed as:

(4.156)
. B=by—aa,; —aya,.
’ +
N (4.157)
By=by—ajay; =804, .
_ (4.158)
By =by—a30,; | ~3,9_, a
— (4.159)
B4_b4"a3°2.j—l-84°4,j—1
. _ (4.160)
al“dl_al\’l,j-l_az‘fz,j-l \ :
_ (4.161)
8,=d,~ B3¥) -1~ B4 ¥
| forj=1,23,., N
t .
. (4.162)
Bi = bi fori=1,2,3,4
(4.163)

§. =di fori=1,2

3

forj = 0.
At the next step B and § provide the forward substitution as follows:

u= BIB4 - B‘_’B:) (4.164)



a; =B, = Byep/w

-

S uzli’-_-([s‘;qz._ng;)/uu

g =(B,c;— Bye)/u

e =B —Bye)lu

¥,

;= (8,8, = B,8)/u

Yoy = (6,8, = By5)/u

‘-(4.16@:’. |
.(-—1..186_)' ,'
“en

(.4.1.6:8)
(4,169;

(4.170)

The values of a and y are stored and used in the backsweep steps. The residuals for

depth and discharge are computed as:
Ay =Yy
AQN = Yz‘N

For interior points, the recursive equations yield

Ay; =¥ — 98y, —a,,8Q

8Q; =y, ~ag; 8y, —ay

Wl
n+l _ n+l
Yiee1=Yie tA¥,
and
n+l _ ~An+l
Qi.H—!_Qi.t +AQI.,(

where £ is the iteration level,

(4.171}

{4.172)

(4.173)

(4.174)

(4.175)

(4.176)
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48 ExtensiontoEularian-Lagrangmn Concept : L

So far the computatmns have been a.uned at a Lagrangmn solution gnd ‘

presented aarl:er in Flg 4. 3 In thls Sect:on a variation to the pure Lagranglan

(

-scheme is presented. It should be recog‘mzed that at any given time’ step the solutmn

‘ procedure is valid for both Lagranglan and Eulanan-Lagranpan scheme

'I‘he Eulanan—Lagrangan concept. was qualxtatwely desc "ed in Section

|
- 42. In the followmg paragraphs, the computatlonal aspects are e
‘the proposed technique bet.ween time steps 'n’ and n+ 1'as shown in Fig. 4 11, the
' solutmn is carried ouit by the equations defined in Sectlox{s 4.3,4.4and 4.5,

When the solutzon progresses from t1me level tn for pomts A,B.C, ete. along
rays AD BE,CF, ete. the solution is obtained at points D, E F etc. In the Lagrangian
scheme_, points D,E,F, etc. then become the initial conditions to advance the solution

* further. For the Eula.rian-Lagrang'ian‘scheme the solution at D, E, F, ete. is adjusted
back to the Eularian grid points A',B",C*, etc. Here various interpolation schemes are

4

presented.

4.6.1 Two Point Linear [nterpolation:
The method is also known as the La.gmnge Two Point Interpolation
ormula. Thid scheme was thg first to be implemented. When initial testing was
carried out for discontinuous flows, the interpolation was responsible for clipping the

wave front and retarding the advancement.

Referring to Fig. 4.11, the computed values at D and E for example were

- . o . . .
used to estimate the initial values of depth and flow at B'. This estimate was in turn

used for advancing the solution. Mathematically, the relationships are:

(4177
Ygr ={l - p)yD+pyE +Rl

ained. Recalling

.......
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where: ' : <o

T p.= (xB, - J-‘D)I(X-E - XD) T ' (4.178)

and R; is the remainder of second order estimated as
’ (4.179)

. | Ry =~o0.1254?
A similar relationshiy exists for computing discharge at point B'.

The results of the sens_it._ivity“analysis using this scheme are discussed at
Ignéth in the next chapter. The interpolation scheme gives good estimates in regions
where the depth and flow are relatively smooth. Even with extr&ne non-lir-learity,
large time-step, which result in weak oscillations, the linear interpolation.provides an

-
excellg‘nt natural dissipation interface.

The scheme provides poor discontinuous front capturing prnperties and
resulted in mass continuity errors. To avoid these problems, a nosé tracking
algorithm was developed. Initially, the scheme appe;xred promising with the location
of front predicted accurately. Other problems with pseudo waves and oscillations
were discovered for some sharply rising hydrographs: Thfs.alternative was then

discarded for & better three point formula.

.

4.6.2 Three Point Lagrangian Interpolation

The Lagrangian Three Point Interpolatien formula is suitable for
estimating intermediate values close to the tip of discontinuity. This becomes evident
when this in'terpolatio.n is compared with the two point formula explained in the
previous section as shown in Fig. 4.12.

On a mt;.ch exagerated scale the improvements of a three point formula
over a two point scheme are quite evident. [t is also clear that outside of the front
capturing properties, both methods provide almost ider;tical interpolation. The three-

»
int formula, as will be shown in the next chapter, is quite faithful in not only
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caﬁtt;ring the discontinuity but also reproducing any. oscillatory tendencies due to an
ill-defined grid. | - L

- - Again referring to F.‘igu:_'g 4.11; the values of deptﬁ andﬂ &iscﬁarge at
computed points .D,E,F argemployed to Iihterpolate the values at either B® or E'

depending upon their locations with respect to the front and nodal points D or E.

"I'he relationships employed are, for depth .
Yo = 29-2_—1-) yp+ (1= pAyg + p—(%l—) e+ R, (4.180)
where
p= (xc; - xE).l(xF - xg) (4.181)
and the third order remainder term is
(4.182)

R,=0.065A% and |p| =1
Strictly apeaking the three point formula giveé good results when points D,E/F, etc.
are evenly spaced. For a discontinuous front, the velocities at the orig.inating nodes
A,B,C, ete. capturing the front are quite different necessitating an uneven com-
putational grid. In order to overcome this disparity, different weighting schemes were
tried but these proved to be unhelpful in further improving the results. Furthermore,
as the second order values of 'p' are used in weighting, the results are highly biased to

the location of E' to C and contributions of other nodes are then minimal. In view of

these factors the interpolation with Equations (4.180) and (4.181) was retained.

1.6.3 Mixed Linear-Lagrangian [nterpolation
In the foregoing sections the strengths and weaknesses of both the two
point and three point interpolation formulas were discussed. A third alternative was

tested and retained in the model combining the §wo techniques.

et e T
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In tl:us sche.me‘the‘twq poii_tt i:{terpolation formula is ix;ed in regions where

- the. flow is relatively smooth, whereas the three point formula is employed in the
~ vicinity of discontinuity. o S - R R
| _ To Aix_nplemeqt this,mixed-‘int'erpolatioh scheme ;:he location of discontinuity
. 13 first established. This is achi_e,ved‘by computing either the node with maximum
velocity or the element ',wil_:h the highest water surface"gradient;"" Ohée the
,_diséontinuity is‘ estﬁb'l—i;ﬁé-d, la-‘t_l".m'ae to five node set back is provided. Within the .
discontinuity the interpolation for the Eulari.qn regridding is carried- out using
Equations (4.'180) and‘(4.131). In other regions the linear interpolation formuta
 described by Equations (4.177) and (4.178) is employed.

It may be argued that the three point formula being of a higher order
accuracy should be used. In response, it may be recalled that the basic assumption of
the moving element scheme was the linear interpolation of the dependent variables
between nodes. For regions away from the front this assumption is valid. On the
other hand, in rapidly varyiné flows and depths, the water surface slogle could be
better interpolated by a non-linear surface represented by the second-order

interpolation formula.

4.6.4 Choice of Eularian-Lagrangian Scheme Over Lagrnngiaﬁ Scheme:
The solution of open channel flow equations presented in Equations (4.117)
to (4.126)l is still non-dissipative in character. This means that if any error or
oscillation is introduced in the solution domain, there are no mechanisms present to
etther suppress or dissipate them. [l; this aspect the method is no different than any

other non-dissipative finite-difference and finite elerhent techniques.




P F

When' thé convection dominated flows in fluid mechanics are solved by

similar Legrangian based tech_niques,_.the resulting solution is 'sig'nificantly

improved. Why, then, are similar improvements not realized in open channel flows?

The answer is not a straight forward one.

41}

(@)

(3)

(4)

(5)

The mechanisms governing open channel flows are quite different than,

say, & concentration front. Open channel flows are governed by the -

‘simultaneous balance of mass and momentum.

In open chanriel flow equations . there is eross-coupling of terms between
mass and momentum relationships. Burger's equation, for example, on the
other hand, has only one variable.

Consider the conservation of mass equation written in slightly different

form as
A Wy _, (4.183)
at ax

This equation implies that the variable cross-section area is transported

with a velocity 'u'. However, both variables u and A appear again in
momentum term. .

The opén shannel flow equations assume a number of conditions that are
being met like streamlines not crossing, occurence of gradually varied flow,
absence of vertical acceleration terms, etc. These assumptions for most
part are valid except at the discontinuity, where all of the abeve conditions
are violated. .

In the Lagrangian mode solution the aspect ratios of the elements after a
number of time steps, become large causing the solution to degenerate.
When the discontinuity is moving ifo'therwise still water condition, there

are a large number of rays that cross-over affecting the solution algorithm.
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6) In the hterature of fluid mechanics most of results presented in the

. Lagrangmn mode used a very fine gnd size and the presence of at least a

token dissipative term Varoglu and an (1981). - Such fine d:scntezat:or;

' .was not attempted here because the practlce.l and ﬁeld apphcat:ons of the

" model were partof the study Obj ectives. |

{7 As only momentum is conserved across the ‘iscontmulty, there are no'

mechanisms present in the solution that would account for the dissipation

of energy. Being a non-dissipative solution, thie energy nioves toward the

tip of the discoetinuity, forms a spike and causes undulations behind the

slurtge. In this way, the solution mimics what is happening in the prototype.
Hewever, the flow equations are not repreeenting this phenomenon,

(8) [t was found that the Eularian-Lagrangian concept provides an excellent

and natural dissipative inter{ece. This interface is free from external

" variables and does not violate the basic assumption except.in a small region

near the tip of the discontinuity. ¥

4.7 Generalization of the Solution Procedure:

' The basic technique developed in Section 4.2 provides the framework for
generalizing the procedure. Before attempting this generalization, an examination of
the properties of the discretized equations is made. For this purpose only elements of
Type 3 are evaluated.

Rewriting Equations (4.121) and (4.122)
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- : " "- !
: : g:_csmmtian of Mass:
. k u+l"l 541 n+l n
< " I+I+Qi+l - - Q) - (Au+1 AH_I)S-
T - (An-i-l An )6 l'_(( n.An + +1Aﬂ+l)
1 o . -17 3 'Y 9

1‘ §+lln+1 ﬁla .‘
Conservation of Mo mentum:

R WLV Vi SRS P U

- k n+l ‘ n+1 n .
- +3 [(Quy,, + Qu,, —@Qui" - Quy_|]
' + k—ﬂ(#ﬂ“”%m'f‘ —(A y Ity
4 Y Y y ¥k
) ,
- R (ATSR AP 4 APFIGRHIATHY d
4 g i 8 .
1
.\ . + _(QFI‘."IAH"'I_QHAn):O

2 i i

where
—.n+l n
i+l ikl T Ti+l
n+l n
81—1 i-1 i-1
n__n
» A ‘-‘l-rl ‘l-l
n+! n+1l n+l
a a1 TN
By definition,
§ =u’k
1 t

Also, defining other terms as follows:

-1

(4.184)

(4.185)

(4.186)

(4.187)

(4.188)

(4.189)

(4.190)
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An+112 l( n+1+An) . L o : (4.191_)_ .
9 i . . -

n+l2 _
A ) i+l Ci-

.mv-“'

(A"t A") —A“ 2 Sl —u? k|

. 9

= n+l o f? n . )
A 2 e =y Pk : :

o For now concentratmgonly on Equatzon (4 184) dw1dmg by 1!2 k An+172 wi]l result

n+12 n+1f2 n+1f2 u® n+12 n .
(QH-I _Q ) A:-i-l i+1 Ai—l ui-l -
. \ An+ll2 - ’ An+1f2 A

nAn, .o+l n+l
l qlA +qi A
T 9 AR+12
n+l n n ' . .
A4 a+ 2 Wi = U —n - (4.193)
+ A ~ =0
* k N An+U2 ]

This is basically the ceﬁtred, Crank—Nicholson schefrje where the spatial and temporal

derivatives are taken along a moving grid. The partial differential eguation of which

Equation (4.193) is the difference equation, is:

Q[ A - ddh wt - (4.194)
x o VT Ta 0k
where . .
Y
- (aAT gt A (4.195)
Q= E An+lj2_

The terms on the-right hand side of Equation (4.194) account for orienting the grid
along the rays. Thus the moving element method becomes a general case of finite-

differencing in a Lagrangian sense. This can be also verified by considering the
4

special case of Eularian grid. In other words,

A'H'[ = AP = An+U2= A . (4.196)
and )

5.=8 =5 =0 (4.197)

- T (4192)




Suhstxtutmns of Equatwns (4 196) end Equations (4 197) in (4 184) and (4 185) lead to

the classu:al central dxfi'erence scheme, setond order accurabe gwen as
. 3

n+12 n+1 n - i .
an . ,Qi-_l‘ & A A JRFTYR" JE o . {4.198)
A - k - L

=q;

CYT-9 @t Qu J“"w N AyRL - Ay
) - A T T E T ‘ A

| #(4.199)
-gA Su)‘”'”2 =0

4.7.1 Temporal Generalization: R - -

The scheme presented earlier is centered in time such that an equ;I weight
of 0.25 is placed on the four values at each of the nodes of the trapezoidal elements.
This is also consistent with the second-order accuracy of th;: scheme,

A first step in making the scheme gené_ric is to relax thg constraint of the
four-pﬁint Newton-Cotes quadrature formula. Such relaxation always carries a price
in sacrificing the overall accuracy of the scheme. In this method the second order
accuracy is reduced to the first order.’

» Three different types of terms are evaluated by a modified integration

formula. Recalling Equation (4.43) the equality is:
’ i ty i) _ .
[ Jshid"(dt:AL (Shi)_ﬁ_A (Shdc);) {4.43)
K, at N at L gt

[t is proposed that the terms on the right hand side be evaluated as;

&b{“ 1 1 ! .
AL(S,,——)=— > X (es"“+u Sy, MeiFl—xr, ) (4200
it at 4 {:0 ‘:0 i+ng Ti+q i+n

-

BN
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where 0.5 58 < 1.0, T o - v

: The followmg eqmvalency is 1mphed

' ) n+E = n+l n o L (420D

: Sien = SH_rl +(1- e)s ( )
When the contributions from K‘ 1 element are added and Equatmn (4,200)

expanded, the value of the area integral is:

1+l i+1 i+l

f [s —dxdt [[GS"“+(1 9)S™ J(x"Tl_xM
K.
I3

-® S R T [P Y S (4.202)
im i=
~Using similar substitutions of Equation (4.201), the spatial derivative in Equation e
{4.73) becomes:
&pi k a+l n+t n n (4.203)
L{_ J Sh o dxdt = 2 e (Si+l - Si-l) +(1 —e)(SHl - Si—l)]

Completing the numerical integration by drawing parallel with Equation (4.73).

[' [S ¢dxdt-—[93““(x"“ xm )+ (1=0)SMx"  —~x" )] (4.204)
K i=-1 1 i+l {=-

i+t 1
i .
At the next step the numerical integtations for Equations (4.202) to (4.204) are
substituted for various terms in Equations (4.32) and (4.33). Here the terms for type 3
element are presented. For other types similar arguments may be forwarded and

equations developed.

Conservation of Mass:

n+1 n+1 n n
[B(Qw: Q)+ -8@QL, —-Q7 i

18

5 [BAL +a-eal 15 [eA“+‘+(1-9)A 8

i+1

n+l n+l n+1 n+1l noany _ 4.205)
[e +(1-0)ql A" + 2[. A"t o AAM =0



: Consérvstion of Momentum:

{[G(Q;’:ll-}-(l B)Q“ J6, -10Q* !+ -8 Qfdllsi_l}'

4 & [e [(Qu):':: ' (Qu)"'”]-i-(l 8) [(Qu)lﬂ (Qu)?_l]l

k - - - - S
+ ?g [OI(Ay)?::—(Ay);'_T:.H-(1—6)[(Ay)?+1—(A)T)?_ll] - 3
kg l n+ln+l g n an;
- ? [(Asg)i A .§(1—9)(A Sg)i A7l

Rl

1 ' (4.206)
+ 5 (Q?+1An+l - Q? Aﬂ) =‘0

[t is evident from the above two equations that for 8 = 0.5 the difference forms revert

-

back te Equatioas (4.184) and (4.185). When the moving elementuscheme was
implemented with a variable input in 8, the oscilla:ions present in Lagrangiﬁn mode
sclution are suppressed‘-;o’r 0 > 0.5. The price is paid in a slight dispersion of the
front.

A number of tests were cafried out ;.o study the variation of B and disclissed

-
in the next chapter under sensitivity analysis.

4.7.2 S|;atial Generalization

The spatial generalization can be maf:ie in two ways. In the first approach-
t.ht? steps taken in the temporal generalization are followed at the numerical
integra/tion of the area integral defined in Equation (4.43). This approach, however,
was n!ot implemented, but merits further investigation.

The second method, which was employed in model fofmulation consists of \
assigning different weights for line integrals. This in turr; effects the computation of

flux terms across the time plane. Recalling the line integral for the flux terms.

N
&
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In this équation the variableSmappronmated as: o PR
Co Sy =BS{ +a - B)S{+l o '_ (4|.2q7)lu
whereOSSBSlQ ' : A - : ‘ ‘
Subshtutmnof Equatmn(4 207)mEquatlon (4. 78) the result i s -
. o1 Lo AR | 7
‘ JL S, fb dx (xu+1 i)(B Si + (I—B)Siﬂ) o (4.208)
L : i L )

Addmg contributions from element K...1 the flux entermg the snlut:on domain is

adjusted to:
4
i _ o n n n n n n
IL S, dx = o |0 =% JU=BS]_ | + (g, = x_)BS;
" ) ' :
. (4.209)
. n
EECRETLIEE
In a like manner the flux leaving the solution domain is computed as
; 1
i _ = a+1 n+] n+! n+l n+l n+1
!L S ¢ dx = 2 [(xi =X _O=PS T+ =% TIPS
n+i :
t
{4.210)
n+l n+l n+l
5 o, - HI"B)SH-I

When Aux terms at time level tn, i.e. Equation (4.209) are implemented and no
adjustments for flux leaving the domain at the time level tn+! are made, i.e. } in
Equation (4.210) is set tt;l.O. This scenario is equivalent to the a-algorithm proposed
by Abbot (1974) with one difference that all nodal values are for a Lagrangian grid.
Although not tested, this approach may provide yet another dissipative interface.

Retainiﬁg the temporal generalization terms in Equations (4.205) and

(4.206), the discretized flow equations become, following the definitions of

n n_ .o (42115
Ai—l.fZ i Ti-t1 .
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. Conservation of Mass: ) N , ; L
T N ) : a

K- o Cia
-[e(q;':; Q“*‘)+(1 e)(QM‘ Q‘ I

+1 . ' T +’l ) n
{[eAn Q- (a)laq‘*,l]zsu.l.‘.'[em;‘_l-+(1-_e)A_i__ll_ai_‘1

[eq"*‘A"“ (1- a)q[ A"

’ n+l n+1 n+l n+1 n+1 n+1
+-[(1 BaMTL AP +[5A AN e - B)AHWAIH

o
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Conservation of Momentum:

|+l

- [[9Q““+(1 eQ, 15, -BQ " +a- e)q 8 -1]

-

+

k _ o
[9 (Quy) - (Qu)?flll + (-8 Quf, | —(Qu)_ 1]}

+

i+l

kg +1 S+l - =0
2 [BI(Ay)" (Ayli_ll+(1—B)[(Ay);‘+'1~(Ay)i_l]

k .
2B 19.(AS )"FIAP Y 4 (1 -0)(AS )P AP
2 gi : gi

1 n+l n+1 n+l n+l n+l n+l
+;,_-[u-gmi_mQ +paA +1-partl Qr

-a-pal_ ,Q | -Ba"Q’-a-pal, Q" 1=0

TN

(4.212)

(4.213)

(4.214)

A comparison with Equat:ons (4.184) and (4.185) shows that the discretized

Equations (4.213) and (4.214) are generalized forms of the basic equations. When 8 is

equal to 0.5 and P is equal to 1.0 the basic form is retained.



Cooley and Moin (1976). Thus the generahzatmn developed in eqiations (4 213) nnd_

‘A further exammatmn of the lnst term nssocxated with spatlnl or
»

: generahzat:on mdlcates that t}ys process cauaes the dlﬂ'erence equntxon to take a

‘

consxsl;ent mass matnx against lumped mass for r.he basxc equatmns F:nnlly, when

the value of B issetto 2/3 and computatlon made along an Eulanan grid t.he equntmns

- are same with respectwe to welghung in the basm‘ﬁmte element scheme develuped by

t

4. 214) is the finite element version along the Lagranglan gnd when B —‘G

The sensxtunty of this parameter is discussed i inthe next chapter,

4.8 I-Empio&ment of Petro‘v-Gal-erkih Basis Fur;ction:_ | .

During the initial testing of the Lagrangian mode solutio), the non-
dissipative behaviour resulted in oscillatory solution. To overcome the problem by
means of external dis;sipation mechanisms alternate forms of basis functi’cns were
investigated. One of the techniques employed resembled an alternate basis functien
with reported success by Katopodes (1984).

"In the Petrov-Galerkin approach of the method of weighted residuals the
residuals are not only minimized against the basis function but aleo the slope of the
basis function. Similar techniques have had success in the ﬁeldl of fluid mechanics.

Using the definitions used in developing the moving element methgd in
Section 4.2.2 and applying the method of weigh?:ed residuals with the requirement

that the residual with respect to ¢tx, t) + €(3/3x)d(x, t) vanish.

Conservation of Mass:

’12 [!R(iﬁ+£_lq)(¢+e§:i)dxdt=o O a.215)
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' Conservation of Momentuniﬁ
I J [— + —(Qu) re -{ (Ay)—gA(S -sf)] (¢+ € ;x“?-)axdmo (4.216)

where € def@gs the dig /slpatmn level.

It is clear from the above equations that the solution consist of two parts;_
" the first part with weighti;g parameter ¢ obviously leaﬁg to the mpving-;lement
scheme and is not repeated here. In thi;'sect.ion, thé second part 6FJtHe integral is
de;ived for t_he three terms‘of cdhtinuity equﬁtion‘g.iven by Equations (4.65), (4.73)
and (4.76). Only terms for Type 3 elements are presented. -

Considering the continuity equation:
6A .
[ I ["Q _q’ Daxar (4.217)

Only the first two terms require derivatior as the others have been derived earlier.

(1) Evaluation of

€ [I ﬂi‘;Rq:l:u:dt:
]{i&x ax

From Equation 4.67 the value of 3f/3x is

i
® _ 1 (4.67)
ax n+§ n+g
(le - x )
In the same fashion
n+f a+k
Q _(Q.H -Q (4.218)
ax - n+§ n+f
el T

From Newton-Cotes integration fog K; contribution

i 11 i
Ai(ﬂﬁ%i‘; ST R X L. (4.219)
Llax ax /4 S e e
Expanding by substituting Equatmns (4.24), (4.67) and (4.218) in {4.219)
n+ n+l
. (B g)_ ke (0 -4 Q- (4.220)
i\ax ax / 4 n+l n+l n
el 7K T



‘- Adding contributions from element Ki;_ythe integ'r‘il leads to:

i
|

!

]
: n+tl n+1 n n
| e[ [(aqa‘b)dxdc ke[ -9 i+17 9
/ K. ax ax T e An-l-l AR
i _ i+ lﬂ i+ 12
n+l n+l n n . ’
& C8 % Q**‘l 2D,
' iy A |
where the values of were def‘med in Equahons (4.211) and (4.212).
(ii) Evaluation of
- . dA
b § € J J — ﬁ dx dt
K, ot dx
l..
As a first step evaluating
A _9A & oA (4.222)
& & &t {
From the definition of 'A’ ’
A _ (AN _ AR (4.223)
'3 i+n i+n
and
2 = (ATSS - AP (4.224)
m
Substituting Equations (4.51), {(4.53), (4.223) and (4.224) in (4.22) yield
. n+§ n+i
%_E(An+l_ n )_l (Al""l Ai ) n+l _  n ) (4.225)
gt ko i+n i+n i x"*E ) i+n i+n
i+1 Ty :
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From the known value of the Jacobian, the contribution from element K, is

&Adii

Gl
538
at  ox 4 = =

=0 £=0

A

-
o

- n+§ n+é
- (Ai+l =AY

Expansion of Equation (4.226) and addition of the contribution from element K

evaluate the integral as

[(Aifgn‘ -l/;

n
i+n)

Rl _noy (4.226)
i+nQ 1+n
n+k n+§
(:rci+l —x. )

1~1
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N . - - o,
. & . - n n n+l n+l
A .343‘ i € (Al+1 Ai) (A|+l A' }) .
€ ;--&—dxdt=; (8, +6) 0 .
K Ai-:-_m PP
, - o P wn Lfan+l n+1
-e & s" A =AY + B -AC))

- i+ i-l) AD An+l

i-12 - i-172

" Thus the extra terms in the contmuity equation for Type 3 elements alonel

are the sum total of the contributions of the three terms as:

/
el +l n n+l n+l -
_1{_6_ QH—I Qn + QH-I Q ) Q _Qa—l
T
f" N
(Q -Q Al -AD  @r)-arth
i+l i i+1
+ - (6.+1 +6.) + 1
A?-uz - l A?+u2 A?+uz
_f"
, (A7 - Al ) AT o ATY (4.228)
- (5. + 8. )[ +
i i-1 Al . a+l
-2 =12

e(A““‘ AP A““+A“)

2 iel T M i-1
k€ a+l ~ _n - n+l
+ = (qn+1 R TR PR HAPY

For the momentum equation various terms for the equations are similarly developed.
The two equations were then modelled into a separate computer program. The results

form part of discussion in the next chapter.

4.9 Extension of Methodology to Nonprismatic Channels
The equations describing the open channel flow in Equations (4.1) and (4.2)

are restricted. The equations are valid for prismatic channels with no contribution of



' described in Section 4.9.1..
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lateral flow to momentum. The first restriction is a serious one in that near-
discontinuous flow simulatipn in natural channelswill_be inerror: -

To overcome this drawback the momentum equatmn was expanded to
address the pressure forces due to form changes in nonprismatic channels. This is
The second modification was made to gllow off-channel stdrage to be

analyzed separately. In natural channels there are zones where the flood waters are

stored during the rising limb, the flow in several zones in the direction of main flow

(i.e. 'x' direction) is negligible and stored waters are released during the recession part

of the .hydrogt.'aph. The adjustments were required and made to the mass conserva-

tion equation. The extra terms and/heir contributions are discussed in Section 4.9.2.

4.9.1 Convectle Acceleration and Pressure Terms: .
There are a number of studies reporting the adjustments in the convective
acceleration or pressure terms. Studies where the energy form of momentum

equation is used, usually resort to adding a term to the convective acceleration com-

_ponent. On the other hand, when the conservative or divergent form of momentum

equation is used, the pressure ternris expréssed explicitly as the first moment of area.
In situations like these', adjustments are made to the pressure term to account for the
non-prismatic form. In the literature search conducted, no instances were found in
which adjustments were made to both convective acceleration and pressure terms.
Further, the reports indicate unsatisfactory handling of nonprismatic channels when
only one of the two adjustments are made.

A closer examination of the divergent form of momentum equation indicate

that both convective acceleration and pressure terms require to be addressed for the




s

v ) | "

.changes in channel shapes. Recalling the momentum equation, © - ,

._.m a )
p +ax(Qu)+g

Considering the second term in this equation, which accounts for the convective

AAy)

]

acceleration, replacing the velocity U* By Q/A and expanding
. ? N .

o XQu QL ,A (4.229)
ax ax éx

To account for the nonprismatic form, the second term on the right hand side is

expanded as

WQu _, R A & A (4.230)

X u
ax ax dy ‘ax X | y=constant
.The last term in the above expansion is interpreted as the rate of change of area with

respect to channel length for a given depth of flow. N umericélly it is the equivalent of
the measure of departure fro;n.a prismatic shape. Obviously the third term vanishes
for prismatic channels.

Next, consider the third term in Equation (4.2) describing the pressure
term. This term is incoﬁ:plete for nonprismatic channel and requires an additional
term to account for the force exerted, by the difference in area between two sections,
on the body of water. Mathematically the complete term is given as:

a - ¥ ab(€) (4.231)
axfg yl+g I (y—¢€)} P €

o
where b(€) is the width of cross-section at any depth €. Again, the integral in the
above equation can be interpreted as the rate of change of the first moment of area for
a given depth of flow.

By taking into account the momentum contribution of lateral flows and the

terms derived above, the momentum equation as used in this work becomes:

)= 42) °
-gAS ~S)=0 4.2)



o o aqu & aay o N
: ¥+ o +g po —gA(Sd—Sf)—u:q o o .
y 3k 3 B (4292)
+ J g(}r—é)'ﬂdé'—_u2 ﬁ =0. ,
‘0 ax y=constant -

The sensitivity of the above additi;ms whén analysing rapidly varyidg flows is
- presented in Chapter 5. - - |
4.9.2 Off-Channel Stolrage:

Ir'1 natural channels it is a quite common occurrence that the bulk of flow is
carried by the main channel and its immediate confines. In-adjacent areas the wa-ter
may be moving extremely Qlowly or not atall. It has heer-l reported that for natural

. .
conditions, the main channel with about 15% of the cross-section area carried an
estimated 85% of the total flow.

Thus the presence of off-channel storage requires that the mass continuity
be properly preserved. Also, as the storage is assumed to have no flow properties, the
conveyance requirements explained by the momentum equation are waived. The off-
che;nnel storage term, therefore, appears only in the mass-continuity equation.

Technically, the off channel stora;ge problem involves a two-dimensional
problem. As shown in Fig. 4-13, the flow occurs in a transverse direction from the
main channel to storage during the rising limb of hydrograph and a gradient is,
therefore, present to explain this. The process reverses during the recession limb of
hydrograph. For modelling purposes, however, it is assumed that the water level in
the main channel and storage rises simultaneously and are at the same élevelution as
shown in Fig. 4-14.

A number of workers have addressed the off-channel storage question

adequately by modifying the mass continuity equation as:
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Ry,

STORAGE

Flow from Conveyance to Storage During Rising Limb of Hyd‘rograph'

.

STORAGE |
- CONVEYANCE

Flow from Storaga to Conveyance During Recession Limb of Hydrograph

Fig. 4.13 Maln Channel and Storage Flow Dynamics,

/
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;:here'Ao r_ﬁ?reéeﬁts the cross-sectional area.in the of:i'-chamie‘l'stérage zone. The
t.hi‘rd term pf the ejma@ionié han&led sel;;arately ar‘ld in l‘:_l:le same way as the area term - -
is ha'n_died.; Tl;é. t‘:ff'-‘.cl;hnnelrstoraAgé option \éas.imple:r.ient_ed for test;ing in natural‘
o .stl;ean}g.'_ . N | _ | . |
| - It éimt':ld fbe .}:oted that the division betw‘;en' the maiq anci off-channel is
: arl;it;ary at ‘best. 'Ir‘hprppe‘r‘ di-_vision‘ﬁoﬁl‘d -:'e_s-ta;lt in d'ifferences in computed

elevations. ) . . -

4.10 Sum'marjlf -
In thig'chapter the description of a genera.lized moving element model was

proﬁded. The methodology was h'ighli'ghted' with assumptions, model formulation

and limitations, The basic model incorporates a Lagrangian mode solution of the

divergent form of op.en channel flow equations. .

The model consisﬁ of mixed triangular and isoparametric trapezoidal

bl

elements. The triangular element is required at the upstream boundary. The
trapezoidal element sic_les are oriented such that their slopes are proportional to nodal
velocities. The medel is capable of handling both subcritical and supereritical flows.
The discretized form of equations are solv;zcl by an efficient double sweep technique.
The I:ugrangian mode solution is non-dissipative in character. In this
regard, the technique suffers, to a lesser extent, with the px_‘oblems of other non-
dissipative schemes. This problem was largely overcome by developing an alternate
form of solution domain, t;enned Eularian-Lagrangian linked grid,. The scheme

provides for a natural dissipative interface. The basic moving element method was

generalized in both temporal and spatial sense. This was achieved by redefining the
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numencal mtegmtxon methods. The dxssxpahve interface was improved by employmg

4
a hxgher order mterpolat.mn Jormula to reduce cl:ppmg errors and for a better

representauon of the front I ' )

1
'

An area not fully ].Jursued- was arn:'aliemate form of Lagrangian mode
solution by the Pet‘rov-Gaingkin sc_hemg. The method rgqui;-eg that the residual
van_i-sh with respe;:t -to a m'odified“ basis ﬁinctioh. The imsis function coﬁsist of a
'normal_ function and f'u-st:.-order spatial derivative of the norl-mal function. Other areas
of impt:ovemént of the model were in a compléte’- des;:ription of the rapidly- varying
open channel flow équations to accountr for nﬁnprismatig form of conveying and off-

channel! storage zones.

.

Mo



CHAPTERS .
NUMERICAL EXPERIMENTS | !
- _ \,—/

’
5.1 Iniroductibn o
. In brder to prove Mt t'lf'le model developed is not a futile exercise in
calculus and ‘num_e'rical analysis, it is essential that the godel be subject to some
-". benchmark tests. There are no uniform or universal standards against which
unsté'ady flow {nodglésan be tested.
The bestl:.\;alternativg would be compare the model results against
-observations in ;'eal;life from either data collected during and after a dambreak or

flashflood. At such times, sensibly, the authorities are more concerned about saving

lives and redudq@:f potential of flood damages than the trivialities of data

&

collection. Hence, any data from a real life scenario would be the survey of the highest

h

flood level profile following the flgod event, and stage hydrographs of a few stream
gauges if they survived. Even when a stage hydrograph is preserved, the associated

discharges are uncertain at best because the observed stages are likely to be well

beyond any recorded or measured flows and the gauge rating table. Also, there are

other factors that influence both*flow and elevation, most important of them being

-~

infiltration losses in a dry valley, mud flow, erosion of stream bed, etc.- In such

situations mat&hi‘ng the profiles or hydrograph is an exercise in curve fitting, and the

more pnrumet'f&-s one has, the better the fit is. .

The information obtained in an experimental set up of physical models thus

.

becomes even more important.’ Experimental data provided by Faure (1935), Terzidis

(1968) und those reported by Vasiliev et al (1965) provide goed benchmarks for model

-
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_ scheme or the strengths or weaknesses and hrmtatmns of the model Limited

'y

testing. These benchmarks, however, do not indioete the'numerical behe!iiour of the

venﬁcatmns of tlns type are des«mbed Chapter 7

-

In order to study the performance of_' the moving element scheme, a battery

-~ e

of numerica] experiments were desigﬁei. Tﬁese experiments are descrihed in t.his-

’

chapter The next step in model test.mg is sensutnnt.y analysis. Such analyms usually

highlights the variables whlch most influence the model output
N

As the model is being purported to be bet.ter t.han or equal to other available

»
methods, Imuted comparative test results with finite dr.fference end finite element
method are presented. Most of the testirig and comparisons are with the Eular:an.—
Lagrangian based moving element models. Therefcre, resulte are also shown for
Laérangian and -Petrov-Galerkin based schemes. Finally, extensive testing for

1 - *
fopprismatic channels is reported as this forms the basis for application to natural

stregms.

5.2 Design of Experiments:

With mathematical models, such as the one developed in this work, it is
quite commeon to evaluate ttle behaviour by designing suitable experiments. Such
experiments are devised with the end use%’ model| as the basic objective. For
example; when Vasiliev et al {1965) described the two-stage predictor-corrector

method, the numerical experiment consisted of routing a supercritical wave in a

frictionless, horizontal channel 200 m wide. Subsequent applications were in natural

streams. On the other hand, Katopodes (1984} concentrated on the numerical,

efficiency and the model tests reflected this focus of the Petrov-Galerkin scheme.

!
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There are numerouy qo'mbinaﬁfons, that one can think of, to carry out these ”

.. tests. A large number of tests wete designed and eamed out; space limitations;
hci\.\ria\;rer_= preciude inclusion of and discussion of all the tests. Only the basic tests
which Highl.ig-.hﬁe_d the a&engths and pointe& out the shortcomings are noted. In order
Lo pred; !fve; the identification o-fruns-the following classiﬁcatioh was used:

Test A: Supercritical surge moving downstream

—

. - 1
Test B: Subcritical surge moving downstream _

réec. Suberitical surge moving upstream
Test D: Continuous flow simulation
Test E1: Surge through choke - horizontal constriction

Test E2: Surge over hump - vertical constriction ¢

These experi:}nts are discussed in the following sections.
-

5.2.1. Test A - Su.percritlcal Surge Moving Downstream

This test was first designed and reported by Vasiliev et al (1965) and a two-
stage implicit predictor-corrector method was used. The test was modified by Terzides
and Strelkoff .(1970) and a basic explicit and an improved Lax-Wendrofl type explicit

methods were employed. The experiment adopted here is the same as that reported by

Terzides and Strelkoff. The experiment is defined by the following particulars.

Physical Description:

The channel is 200 m wide and 1500 m long and rectangular in cross-
section, The bed is horizontal. that is to say the normal depth for any flow is of infinite
value. The channel roughness is described by the Manning's equation and is assumed

to be zero. Inother words, the channel is frictionless.



w . ¢

Initiai and Boundary Cond:ﬂon?

The initial condmons in the channel consisted of a level pool 2 m deep with.
1;10 ﬂo.w. The bqundary conditions imposed were a flow increase from zero md/s to
28,000 m3/s in 0.5 sec while the upstream depth is fixed at iO.l m, ’fhese conditiomi
are mamtamed at the upstream boundary for the duration of the ewcpenrnent ’I‘he
mschuge and’depth combination produces a velocity of 13.86 m/s which is greater
than the critical velocity for this depth hence the flow reg’lme upstream of the

discontinuity is supercritical. On the other hand, suberitical ﬂow conditions exist

downstream of the front.

With these requirements, both flowrate and depth of flow are required at'
the upstream boundary, while the downstream node is maintained as no. flux or zero
flow boundary.

r

Discretization and Solution Pgocedure:

*

y
Following the results reported by Vasiliev et al (1965) and Terzides and

Strelkoff (1970), the solution domain was divided into 150 elements each 10 m long.

For this element size, the Courant condition is

at = X (5.1)
lu+d
whereu = 13.86 m/s ¢ = celerity = Vgy
) = 0.95m/s

“
r

from where the time step is given as 0.41 second. Also the Courant Number is defined
as

. — {5.1a)

Cr=(c+\/gy)AUAx . - 4

The Courant condition requires C; < 1.0.

.
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Howev'g:f, the computationg were carried out at a tim;a step of 0.5 5. The
Céurant Number was 1.2, o
The supercritical surge was allowed to progress for 60 secom-i_s and the stage -
profile capture& at that time is present.éd'in:l‘_‘i} 5.1 The proﬁle is based on the
Eularmn Legrangian scheme with the mterpolahon by the Three Pomt Lagrangian
Formula Smce it was mtended that this serve as a solution comparison for other runs

the numencal scheme, was set as pure centered that is, the temporal weighting was

set at 0.5 and spatial weighting at 1.0.
¢ IThe theoritical wave speed and thus thé location of the wave froqt after a
specified elapsed time is known. Wi.th the problem astosed above, f.he wave Era;rels at
a speed of 17.3 m/s. Incother words, the wave front aﬂex; 60,3 should travel 1037 m-
res;pectiveljz. . _J, o
It'is evident from the results in Fig. 5.1 that both the wave proﬁlg and the
speed are computed in an ?:ceptab!e manner. The only noticeable di.fferencé is at the
tip of the front where a sp‘ikle or piling of water is observed im\r‘nediately behind the
nose of the front. Excluding the spike region, the maximum difference is less than 1%
of the height of the wave. Furthermore, the entire frontal wave is captured within 20
metres. A comparison with the results of the investigation_s by Vasiliev et al (1965)
and by Terzides and Strelkoff (1970) reveals improved wave capturing properties.

The existance of the spike is discussed separately as a common problem in other

schemes.
3.2.2 Test B - Subcritical Surge Moving Downstream

" This test was specifically designed for this study. The experiment was later employed

in other tests. Just as a matter of comparison, the temporal rate of rise adopted in this

’\L‘
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experiment ranged from 500 to 2000 times the reported temporal acceleratmn of the

Teton Dam-Break ﬂo-od The followmg particulars were adopbed.

Physical Description:

* The rectanguiar channel of 106 m width is 1000 m long with a horizontal

-

b? The channel roughness is described by the Manning's equation’ and asin Test A .

is assumed to be zero for the basic run. Other runs included a real world sxtuatmn

L

with a channg_l roughness 'lf0.0IS.

Initial and Boundary Conditions:

\
The initial enditions consisted of a level pool 2 m deep and no flow. The
. .

boundaty c‘ondition at the upstream end required the flow to increase from zero to

£ s
2000-m3/s in 1.0 sec. ‘This combination results in a suberitical flow condition. Henc

only the flow was specified at the upstream boundary. It is assumed that unlimited
“

+ -
supply is available as this {low is maintained for the duration of experiment.

Vi
For subgritical flow conditions throughout the solution domain, the
dowfstream boundary is required. Single-stage rating curve was, therefore,
4

prescribed. This was equivalent to imposing a zero \ﬂow condition.

Discretization and Solution Procedure:
As a basis of pomparison, it was decided to obtain a solution at a Courant

Number sliéhtly greater than 1.0. For this purpose, the analytical solution was first

obtained by computing the wave characteristics by using the following basic

-

equations.

-

)
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and - -
' v'__(Ql 1= Qoup +8A, ¥, ~ Ay yg (5.3)

whezfe Vwisthe (relocity of wave. The variables with zero subscript refer to tiunnt.ities
at initial flow conditions, while w‘ifh thoﬁé a sub.script of one are associated with surge
flow. | In Ec?uations {5.2) and (5.3) the two unknowns are V,, nr;d jn_ . By eliminating
Vw between the eqr:mtions, a \‘ralue was obtained of y¥4.41 m with a wave velocity of
8.3 m/s,

For thesé flow co_nditions &;ld an element 10 m long, a Courant Number of
1.0 is associated with a time step of 0.9'532(:. Fdt the basic run, therefore, a time step of
1.0secor 1.1 times the Courant conditi}ﬁwas used.

The suberitical surge was allt:;{';'ed to progress for 90 sec with profiles
captured at intermediate times. The solution based on the Eulariun-Lagrangian
moving element sct.leme 1s presented in Fig. 5.2, The stage hydrographs at the
quarter, mici and three quarter points of the channel for the same run is shown in
Fig. 5.3. The other parameters-for this.run included the interpolation by the Three
Point Lagrangian formulal. using a tempoi.'al weighting of 0.5 und sfatial centering.

As with the supercritical flow simulation, the locations and shapes of surge

at different times are well produced. Again, as in the previous test, a spike appears at

» .

the tip of the front. Eaccept for the spike, the height of the wave is pratically the same
as the theoretical wave height. The wave is captured within two elements or 20 m
which indicates excellent profile capturing properties.

The impact of channel roughness was studied by intreducing a Manning's

value of 0.015. The moving element scheme was operated with conditions identical to

{2
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-

- thdse presented abdve. The results are shown in Fig. 5. 4 The retardation-in both _
wave propertles, height and speed is clearly visible when comparmg with the

: fnctmnless case. .' —

5.2.3 Tést C-Su bcﬁﬁcgl Surge Moviﬁg Upstream: ( .

A numerical tes.t' with a description similar to 'the one adopted here was ‘
reported by Cunge (1975). [t was inter;ded to repeat this experiment with the moving
élement scheme. Upona c!ose.r exaniination, of the above noted I;st. of Cunge severa_l
discrapencit.es wgre noted bei:waen the description of the experiment and channel
geometry. Instead of designing an entirely different experiment, this adopted test is
la“rgely what was reported by Cllmge. The following particulars forme‘d 'the
experiment.
Physical Description:

The channel for this test is trapezoidal in shape with 1V:1H side slopes.
The channe[ base is 100 m wide. The length of channel simulated was 2 km. The
channel bed alopes at a rate of 0.00002 m/m or 2 ¢mvkm which is ettremelv mild even
for the proposed discharges. The channel roughness is equivalent to a Manning
coeflicient of 0.0125. These valﬁes are representative of the tail race channels of the

Rhone Valley in France.

Initial and Boundary Conditions:
The channel carries an initial flow of 2694.5 m3/s at a depth 14 m. At the

downstream boundary, the flow is reduced from 2694.5 to 250 m%/s in 15 sec. This is
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eqmvnlent to turbu:ne re;octlon which results in a positive surge moving upstream At

tho upstream boundary the depth of ﬂow throughout the experiment is held at 14 m.

, Dhcreﬁiaﬁou and S'olution Procedure: _

. The same basic grid size was em—ployed‘as the one reported by Cunge (1975).
The channel was dxvxded into 80 elements each 25 m long. A time step of 3 sec. was
employed whmh corresponds to a Courant Number of 1 o ‘

The resultmg surge is subcntmal in nature and moves upstream with a
speed of 9 16 m/s. 'I‘he correspondmg water depth is 16.05 m which represents a wave
height of 2.06 m'above the initial depth. The test was simulated for 180 sec. with the
prof';les captured at intermediate steps. | . ‘

The solunon is based on the Eulnnan-Lagrangmn moving element scheme
with mterpolatlon prov:ded by the Three Point Lagrangian formula. The temporal
and spatial weightings were centred, that is, 8 = 0.5 aod B= 1.0. The simulated
profiles at 90 sec. and 180 sec. are presented in Fig. 5.5. Immediately noticeable in
this experiment ie the presence of the oscillatory waves in the computed profiles. The
nature and the reasoné for their occurrence are discussed in detail in Section 5.2.7. In
general the height of tue computed and analytical surge behind the front, locations
after 90 and 180secs. of calculations @nd uence the wave speed compared well.

Similarly, mass-balance computations show that the volumetric mass was conserved

within one percent.

5.2.4 Test D - Continuous Flow Simulation:
One of the objectives of this research was to develop a robust mod@,ot only

capeble of handling near discontinuities but also graduaily varied flows. F“or this -
. i,

: g
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- - B N .
. Cooley and Moin (1976) was used. The details of the experiment afe as follows:

Physical Deséription: _
The channel for this.test-'is rectangular in section and 20 ft wide. The

length of channel studied is 2 miles and slopes at a .rate of 0.0015 f/ft. Channel

roughness is approximated by the Manning Coefficient of 0.02.
.
Initial shd Boundary Conditions: : *

The channel carri;s an initial flow of 833.94 cfs at a depth of 6 ﬂ. The
downstream boundary is defined by a single value rating curve based on the. Manning
equation and assuming channel control (i.e. normal depth). At the upstream
boundary the flow is increased from §33.94 ofs to 2000 cfs iri 20 min. The flow is then
reduced back to 833.94 cfs in the next 40 min. |

i

Discretization and Solution Procedure:

" purpose, a comparison was made with a test reported by Vies__npnn et al (1970) and.

The grid size adopted for this test is the same as that reported in the eartier”

studies, namely, the 2 mile reach was divided into 20 elements of 528 ft each.
Viesmann et al (1970) employed an explicit scheme with a time step of 2 sec.; using a

predictor-carrector implicit scheme Cooley and Nioin {1976) solved the problem with a

" 60 sec. time step. In this study, the basic run was also made with a time step of 60 sec.

LY
The flow conditions remhain subcritical throughout the one-hour simula-

tion. The solution is based on the Eularian-Lagrangian moving element scheme. The
interpolation between steps is by the Three Point Lagrangian interpolation formula.

The temporal and spatial weighting factors were set at 0.5 and 1.0 respectively. For



© this test, instead.of record.i_ng profiles ;t different.f.ir-lms, hydrographs fotr a number of
“odesare captured. The hydrographs for the mid-point and the downstream Boundary

are depicted in Fig 5.6. The solution by ‘)igsmarén et al is not plotted as the resulits

> k - were same as th;)se of the moving element model. Again for this te§t the mass was
conserved \;-ithin 0.03 percent. Other simulations by the Lagrangian scheme

conserved the mass completely.

525  TextEl-Surge Through Chhoke - Horizontal Constriction:
In order to test the moving element scheme’s capabilities for handling
nonprismatic channel sections, two experiments were devised. The first test studied
_ﬁ_the passage ofl a surge througI;; a constriction; a sécong test is described in Section
5.2.6. Asis expected, when a constriction is placed in fhe passage of a surge, partial
owvave reflection*takes p_lace. In this test, as a second objective, the study of wave
reflection was included. This was accomplished by studying wave reflections at the
cons;triction and also by pliacinga re.ﬂective boundary at the downstream limit.
Physical ﬁescﬁpﬁuu:

In tl'_lis test the rectangular channel is 100 m wide, 1000 m long and slopes
at a rate of 0.0001 m/m or 0.1 mvkm, The constriction is symmetrical and is repre-
sented by a converging iniet 100 m loné starting at 350 m from the upstream
boundary wherein the channel narrows from 100 m to(50 m width. This 50 m throat
width is maintained for the next 100 m. The channel expands again to the ‘100 m

width in the subsequent 100 m. _Graphically, the channel layout in plan is shown in

Fig5.7.
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Thée channel roughness is represented by tle Manning eéuatio_n and equal

woos. - .77 S

- o

Initially, the depth of flow is 2 m with & flow of 206.1 m3/s. These conditions, however,

exist beyond the influence of the. Choﬁe; steady gradually varied flow exists within
- l 7 | - - . -

the domain of Choke. The boundargcondition at the upstream node required the flow

to mcreqse from the initial steady value of 206.1 md/s flow to 2000 m?3/s in a time span

of 30 sec. This mcreased dnscharge is maintained during the 1200 sec. samulatlon run.

The downstream boundary is represented by the depth-discharge rela’iiﬁhship given

by the uniform flow eckuntion:
. K oo - )
Q= — AR®S . : (5.4)
n o .
where Kisaconstant = 1.0 for SI units N

1.486 for Imperial units S

T

S, is the bedslope at the downstream boundary nede.

This provides for a reflective boundary due to the low bed slope.

Discretization and Solution Procedure:’

As the initial and boundary conditions were similar to Test 'B’, the same

- ?

‘grid sizes pf loj»iong elements and 1 sec. time steps were emp}oyed. The transitions *

and choke eachjoccupied 10 elements. For such a discretization, the Courant Number
was greater than one. r -
- The suberitical surge was allowed to progfess threugh the choke for a

period of 1200 sec. During this duration, the follo;ving pﬁegomenu were noted.\
(i Upon reaching the Choke, part ?f the incide;lt surge was -

transmitted through and part was reflected.
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(ii) The flow in the throat sectio"n went through the critical depth into
r A} . *
. \ e
‘the supercritical regime and in the expansion’transition formed a '

) hydraulic jump and regained the‘su_bcritical flow properties,

. . . (iii]V W_heﬁ this ‘suberitical 'surg.e ‘;reached t{he. d;a\«:nstream boundary,
N - . ¥ .

- pai'ti;l refiecti.on took place and a positive wave starte"d.to travel
_upstrean: o - . o ‘ i

Reflected waves from the downstréam boundary eventually

drowned out the control in the Choke and by 1200 sec. a quasi-

' steady state condition was obtained. .
For reasdns explained in Section .5.2.7, it was decided to carry out the test at
" atemporal weighting of 6 = 0.6. _Tht.e‘ spatial weiéi_\ting was set to 1.0, The profiles
- -'were captured ét_ a r;u;;lber ol“ time steps which are shown in Figs. 5.8 and 5.9.
Similarly, the flow hydrographg fqr a nur-nber‘of points through the choke and
downstream bou:lida;'y; were captured. These arg'presented in Fig. 5.10.

-

The above solution s based on the Eularian-Lagrangian linked n'xdving :

element scheme. The'intermediate interpolations arp by the Three Point Lagrangian
i s ~ .
formula. ' : ’
. 4
5.2.8 Test E2 - Surge over Hump - Verticyl Constriction .

This test'in many ways is similar to the previous experiment, Test E1.
Instead of 4 horizontal constriction, the surge is forced first pver an adverse slope then
travels on a hump, an overiy broad-crested weir, and shoots down a chute. Like the J

»

. s )
previous experiment which attempted simulayng the surge through constrictions

N such as bridges, this experiment was aimed to duplicate the flow over obstructions.

-
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- sloping at 1% ending at 650 m.

Physicﬂ Desc-ription: \

-

"~ As in Test E1, the rectangular channel is 100 m wide, 1000 m long an _

slopes at 0.1 m/km. The Hump is represented, first by an adverse slope of —1% -~

starting at 350 m followed by a broad crested section which is represented by an

almost level section 100 m long. The chute is represented by o 100 m long section

G

The frictional losses are governed by the Manning equation and set equal 'tp .

0.015. Alongitudinal profile of the channel invert is shown in Fig. 5.11.

Initial and Bo;.mdary Conditions:

The initial conditions consist of a depth of .ﬂow of 2 m and a flowrate of
206.1 m3/s. These conditions wer.e influenced by the gradually varied flow conditions
near the transitions. The upstream boundary consisted of a flowshydrograph rising
from 206.1 md/s to 2000 md/s in 30 sec, and maintained at this rate for the duration of
this experiment. The downstream boundary was implemented using Equation (5.4}40
describe the stage-flow relation.

L

Discretization and Solution Procedure:

L]

For this experiment the grid s.ize.of Tests ‘B’ and 'E1’ are adopted. These
x
amount to 100 elements each 10 m long ahd time steps of 1 sec. The adverse slope, the
crest reach and the chute each occupy 10 elements. The Courant Number for such
discretization is greai;er than 1.0. .
The resulting subcritical surge was allowed to progress for 240 sec. The

profiles of the surge were saved for different time steps and these are presented in Fig.

5.12. Similarly, hydrographs around the hump are shown in Fig. 5.13.
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The ‘solution. for tlus expemnent is based on the Eulanan-Lagrnngmn

Almked movmg element scheme and employmg Three Point Lagrangian mterpolntxon
- formula.

5.2.7 Discussion of Results:

In the previous-'sectiens the results fer t:he six experiments were
presehted. As there are a nuﬁber of common features, the present discussion is
du'ected at all the tests. The translation of a surge along the chnnnel and its”

-

numerical solution can be gnuged by considering the degree of success in simulating
the following features:
(1) Shape of the front
(ii) Speed of the wave
(iti)  Conservation t;f mass
{iv) Steepness of the front
{v) Handling of nonprismatic sections
(vi) Direction of front
These points are discussed below:
5.2.7.1 = Shape of the Front: - %
One of the most visible and important simulation capabilities. of any
scheme is how well the general shape o'f the moving surge is predicted. As is evident
from various figures, especially so, for the surge moving downstream, the general

shape is preserved through the entire profile. Leaving the discussion on surges

moving upstream to a later section, the comments here applyto tests A, B and E2.
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The profiles in all three cases &aveloped a"ép'}ke at the tip of the front. The

timing of the first appearance of the spike was related to the maturing of the front.

That is, the front initially would be sloping, however, the point_.s with greater depth

would move faster causing a general steepening of the front; when ﬁg_'front stegpens
. enough and occupies only one or two elem_ents, the spike l;ggins to form. .

The reasons why the spike forms and per;iggs are Elo_sely reiated to the non-
di’ssipatﬁve natire ;)f the solution at each time step. Al.;so, there are violations of basic
assumptions by neglecting vertical acceleration terms in the vicinity of tl;e front.

In generail it was found that the ovérall shape of ‘the front was produced

very well. Usually the maximum deviations from analytical solutions except for the

spike were approximately 0.1% of the wave height.

5.2.7.2 Speedof the Wave:

In terms of importance, the criteria next calls for the scherr;e to faithfully
reproduce the speed of the wave. This key factor is directly linked* with the mass
con‘servation requirements. If the speer:l of the surge is in error then so is the mass
conservation. For test cases A, B and C the height of the wave and hence its speed can
be calculated analytically. This is specially valid for Test;s A and B in view of the
frictionless channel scenario; that is, the presence of friction tends to slow down the
wave by an undeter.mined amﬁunt.

Again, as noticed in the profiles for these tests, the speed of the wave is
truly portrayed. This matching was a result of a judicious selection of the grid size. If
the time step selected for a given element size is not near the optimum value there is a

possibility of elipping errors introduced during interpolation at the Eularian step. It

is inferred from the above that in order to simulate the speed, hence, its location and,

‘



*

-

by extension, the mass conservation, there exist & tand of element length-time step,

tHat is grid size, combination or grid size as feet ratio which provides optimum results. -

Based.on numerocus experiments with time step-element size combinations,
it was found, for near discontinuities, that if the node at the advanced time step is

displaced by app_'roximately half the elemnt length the clipping errors at tha tip of the

-

front are mininﬁze;i. In other words if the sides of the elements are inclined at about

+

60° angle for the isdparametr_ic elements, the time-step / element size combination is
néa;‘ optimal.
5.2.7.3 Conser‘vation of Mass:

Mass conservation, as noted earlier, is clos;ely linked with the time step
used for a given element size. Problems with mass conservation usually éfis; for
three reasons. Fi;'ét, the handling of the mass'continuity relationship at the boundary
nodes may influence the overall solution. ‘S.ecam.i‘, the'nﬁmericnl approximations may
lead to mass continuity errors. The third and most impertant factor is the
interpolation that takes place between time steps. .

From all the numerical experiments carried out the mass cont‘.inuity was
evaluated for eagh of the experiments. In ger.lernl, for the tests reported the maximum
error in mass conservation was less then 1.8%. Although the literature does not
provide the capabilities of other similar .models. it is generally believed Ithnt for near
discontinuous flows, errors in excess of 5% are quite common.

It is notewlorthy that.for Test D, the continuous flow experiment, the mafs
continuity errors were less than 0.03%. |

NI

[
In order to isolate the source of this minor discrepancy, a number of

variations were tested out. A comparison was made with the fully Lagrangian
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solution to evaluat.a the unpact of Eulerian mterpolatmn The Lagrangmn solution
conserved the mass. .T!ns mdxcates that the source of error is indeed at the
interpdlation stage, wluch is pronounced only at the tip of the frolnt. At the nose ot‘
this discontinuity even the three point interpolation formula would be inadequate,
resultmg in a slight clipping of the front. Subsequent expenmeﬁts of slantmg the

element proportional to the celerity only worsened the solutmn

’
¢

From the above evaluation, if a weakness in an otherwise novel and robust
scheme is to be found, it is the mass conservation at the inte;p&lation stage. In all the
experiments, whenever a mass conservation error is noted, the net flow through the

. - -
domain exceeded the net change in storage. This again peints to clipping errors.

5.2.7.4 . St;aepr;ess o.l" Front

For any numerical technique integrating the solution of the open channel
ﬂow equatmns that is, treating the discontinuity asa surface gradxent it is important
that the proper shape of the front be preserved. ‘Other factors being {me the schemes
which employ artificiai damping mechanisms tend to diffuse the front over a number
of eleme'nt reaches. ) . .

The slteepness of the wave obviously depends largely on the spatialh
discretization of the solution domain. In all the test cases reported in the previous
sections the front was captured within two elements of three nodes. Thus, if the
elements are 10 m long, the wave front is captured within 20 m and if the reach length
was 25 m, then the wave occupied 50 m. -

For Test A, a comparison of the steepness results that Terzidis and Strelkoff

{1970) provide, the explicit scheme captured the front in 60 m while Vasiliev et al

{1965) reported a highly diffused front ayer a 200 m strip. For the same spatial



-

5.27.5 Handling of Non-prismatic Cross-Sections:

discretization, moving element scheme captu?%d the wave within 20 m; a ten fold

_ improvement over Vasiliev and three fold over Terzidis and Strelkoff. ' (

'
. : S .

- . . > .

The numerical schemes are normally developed for idealized conditions. It

is not uncommon to report basic results for either channels of infinite width

eliminating the channel width in the equations or rectangular cross-sect‘ions and
. . _ .

prismatic cixannels. The real test of any numerical scheme, however, lies in its ability

to handlé non-prismatic éross‘-sections. This is essential for the application for the

simulation of real world problems.

In erder to test results for the moving element scheme with established

models like Dynamic Wave Operational Model (DWOPER), Fread (1978) a&ﬁ—/\-f

~

Dambreak model (DAMBRK)]), Fread (1982), wér: employed which .are capable of
handling non-prismatic cross-sections. Even when the data employed for Tests E1
and E2 were modified for the two models, the execution of the models resulted in
either a non-convergent solution or a program termination. In the absence of this
comparison, a general discussion on the capability is left until the applications with
recorded field problems are reported.

From Tests l':]lQ and E2, it is evident that the moving element.scheme
handles non-prismatic cross-sections in an acceptable manner. The constriction
imposed in Test E1 is a severe one and the model responds with realistic partial
reflection. Another feature of Test E1 was the formation of supercritical flow in the
t.hro;it of the choke, hydraulic jump in the expansion an& a sub;;equent change to a

suberitical surge. From the profiles in Figs. 5.8 and 5.9 it is evident that this feature

is reproduced to an acceptable degree. The scheme faithfully handles the series of
/




-reﬂections\by variations in flows and by the drowning & the control point formed in

the throat of the Choke.

~

A point worth noting for this experiment was the testing of térms_required
’ - ‘\ * » .

to simulate h\‘c!mprismatic&ross-sections. Based on this evaluation, both convective

' ' \ ' .
‘acceleration and pressure terms in the momentum equations required corrective
. \ .

terms‘for the ndlrlzprismatic shapes.

5.2.7.6 Direction of Fropt:

From Figs. 5.2 and 5.5 which respectively represent the downstream and
upstream moving fronts, the quality of simult;tion is obvious. The results for the
downstream moving ak:e clearly Superior to those of upstream moving. The reason for

' _f't.his disparity lies in t.he very con;:ept of the movin;g element method. The moving
element method relies on the particle velocity behind the front. For the downstream
moving surge, there is no difficulty as the elements slant adequately to employ all the
features of the scheme. This is, however, not the case for the upstream ﬁ:oving
problem; velocity behind the surge in most cases is very small when compared to the
upstream side of the front. In these énses, the moving element schemes reduce to a
conventional finite element scheme and its inherent oscillatory, non-dissipative
resuits. This is evident in the saw-tooth solution for Test C. Still, as will be shown
later, the moving element scheme solution is better than the conventional finite
difference and finite element schemes.

This was also evident for the Choke and Hump problems, Tests El and E2,
where there is a sudden reduction of velocity due to'either upstream moving reflected

wave or a standing hydraulic jump. These problems in a practical sense are

W

adequately addressed by slightly increasing the temporal weighting factor, 8. For



example, the fesults for Test E1 are presented for @ = 0.6. This schisvement in a
more Pf“leés smooth solution is, however, not without a price. Thgfe ;13 a*slight
increase in the di_spersion of the solution w'hTich-spreads out the surge over & number of
elements. |

A summary of the model performance in the six ca;egories is pres;nted in
Table 5.0. |

i
5.3 Sensitivity Analysis

The purpose of any sensitivity analysis is to isolate and ideﬁtify paramnte;'s
which influence the solution. This process assists greatly in any application exercise
where adjustfner;.t: of parameters can help during the calibration phase and
subsequent simulation. Sensitivity analysis is ﬁ requifement in situations such as
these, where a numerical model cannot be easily tested in a real]ife ¥ituation.

With the foregoing as the basis, six different parameters were varied to
carry out the sensitivity analysis while holding the other parameters to the basic test
values. These parameters are time-step, element size, temporal weigi‘xting factor 9,
spatial weighting factor,'B, channel roughness, and rate of change. of inflow
hydrograph (3Q/at) at the boundaries.

[t is emphasized here that, although, the sensitivity analysis c&rried out i?
quite extensive,'it ig, however, far from exhaustive. Due to the nature and scope of
numerica@(periment.s, no attempt was made to address, for example, simultaneoqs
variation’;f channel roughness and time step. Therefore, no guidelines could be

developed in relating the timﬁ step size with the channel roughness and element size.

Other observations, similarly, can be made with respect to other model parameters.

w
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Table 5.0

Summary of lun.:icll liahril-nts

Criteria

Shape of Front

A

Spl-a of Wave

Conservation of Mass

Steepness of rrbnt

-

Handling of Non-
prismatic Cross-
sections

Direction of Front

- [

_Portotaanco o! uaving Elamant Methad

Ovarall shapes producod ve voll.
Maximum deivations less 1% of

" wave height. Only drawback:

presence of spike.

Speed of wave truly portrayed. .
Computed location within 1% of
analytical results,

Ganerally mass conserved within 1.53%.
Mass conservation dependent on
optimum time step. Wave clipping
occurs for too small a time step.

Steepness of vave dependent on
element length. Wave front captured
within two elements. Three f£old
improvement over explicit scheme of
Terzidis and Strelkoff (1970) and 20
fold over Vasiliev's (1965).

Proper simulation of wave reflections
chocking at constriction, drowning of
control, etc.

Surge moving downstream handled
better than moving upstreanm,
Acceptable results for upstream
moving surge by advancing temparal
weighting parameter.
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53.1  Variation of Time-step

For a given element size, a variation of time step results in different

Courant Numbers. Theoretically, the resulting numerical scheme for the moving

element scheme is implicit in nature, however, to obtain reliable resul\ts the Courant

. Number should not vary greatly from 1.0, This is'partic-ularly important for rapidly

8

varying flow situations. In order to study the behaviour of the time step variation,

three numerical ekperiinents were employed; these were Tests B, C, and D, These are
\ .

Test B - The variations for this experimént from the bﬁsis of comparison
(BOC) case are noted in Table 5.1. For this analysis, an element size of 25 m was used.
The base érse for the Cour;ﬁnt Number close to 1.0 was set at a time step of 3.0 sec.
Thus two time steps were chosen to examine thé effects, one at 1.0 sec (Courant
Number = 1/3) and the other at 10 sec (Courant Number = 3). The results from the
three computer runs are presented in Figure 5.14, .

The impact of time step is evident in the general shape of the stage profiles.
The overall front is captured with varying degrees of advancement. The heights of the
surge away from the front for all time steps are computed to he the same indicating

»
good momentum balance. For a time step of 10 seconds, however, long waves start to

¥

appear which merge with a much 'larger spike at the tip of the surge. ,

The height of spikes for the 1.0 and 3.0 second time steps are about the
same; whereas, for a time step of 10 seconds, the spike is over 0.6 m i:l height. The
location of the front is best predicted wifh a 3.0 second time step. The locations of the
tip, represented by the spike, for other time steps lag by one element size: such lags

1
are indicative of clipping errors and evident in the overall mass balance. Further, for

the 10 second time step run, the front exhibits a faintly dispersive nature.
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Testd - Table 5.1 shows the n_xodel parametéré used for BOC case and the |
variation l';f time steps. It may be recalled fhat,‘_Te'st 'C ir_wdlved the propggatibh ofa
positive surge in tﬁa ups&ea’m dire;:é;:n. ' ‘

| As in the previous experiinent, the BOC sc_enario allowed argrid size 25 m
long and 3 second‘time step. A two-second time stei:', hewever, corresponds closely toa
urant Numbér of 1.0. Therefore, time steps of 1.0, 2.0 and 5.0 seconds were tes;t;ed. :
'Ehe stage profiles at 180 seconds were compared. These prbﬁles atf 180 seconﬁs are
shown in Figure 5.15.

.Except for the stage profile fo‘!.' a time ste-p of 5'.0 seconds, all other profiles
exhibit almost identical results. There is a gradual sharpeningzwith smaller time
steps. Another notable feature i-s ‘the location .of the front which is the same for all
time steps. The size of the undulations at the front were larger for the smaller time

.steps ‘and vice versa.

A phase ;hifting of undulations was evident for the 5.0 second time step
computer run when compared to the other three experim;nts. The total lengths to ‘
which these yndulations persisted were limited to between 400 and 500 metres.

Test D - As in the previous two tests, the parameters used in this
continuous flow test are listed in Table 5.1..The results for this test were reported by
Viesmann, et al (1973') using an explicit finite difference scheme with a time step of
2.0 seconds. For the same grid length, the BOC case employéf& a time step of 60
seconds. |

In order to best the robustness of the model for the case of continuous flow
simulation, four different time steps were used. Ti?me steps of 15 and 30 secon&s were

1

employed as one-half and one-quarter of BOC scenario. On the other hand time-steps

-

of 120 seconds and 300 seconds or twice and five times the BOC time-step. “The

<
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- »

'-r_esults. inl £he form of the upstreaﬁa Input hydrograi)h and the downstéeam route_;i; '
* hydrographs are preseht.éd inFigs. 5.16 and 5.17.

It is evident from the computer runs, that the mo&el results were
exceptionally close .to the BOC simulation. For time steps up te 120 séconds, the-
hydrographs are virtually the same, with the differences only in the first or second
decimal places. The exception was the run with a 300 second time step. The reason
can be attributed to the ill-c;)nditioned downstream boundary element with the
clement lengths at the old and new time levels seb.arated by a factor of six or more. .

From this sensitivity_ analysis, it can be deduced that for the simulation of
continuous flow problems, the restriction dees not come from the Courant criteria but
rather is related to the conditioning of the elements. As a corollary, it can be further
noted that the Courant criteria limitation noted for the passage of surges on initially
still water as base flow can be relaxed to a certain extent if the base flow is moving at

a reasonable velocity.

5.3.2 Variation of Element Length

The impact of varying the elément length is similar to the time step
variation. That is to say that a different element length implies a change in the
Courant Number. This particular sensitivity test also allowed studying the effects of
discretization. Table 5.2 lists the parameters employed and their variation. Si;nilar
arguments with respect to Courant Number and time steps were made as described-in
Section 5.3.1.

For studying this behaviour Test 'B' was employed. Instead of establishing

a BOC case, three element sizes were chosen for the same time step of 1.0 second. The
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element sizes ﬁgre l@, 20 and 50 métg‘es. The stage profiles captu_red time equal to
2d secare pgesent'gdlin Figure 5.18. -

' The results, qualitatively speaking, are not different from Figure 5.14.

Similar observations,include the oversall shapes of the front are maintained. The front

is cé'pfured within two elements regardless of the gyement size, thereby flattening or

spread}ng the front f;om 20 m for the 10 m element size to 100 m for the 50 m

elemedts.

)
The height of surge is computed fbe the same for all three grid sizes
& _ :
indicating that the momentum balance is dchieved across the discontinuity: ‘The

spike is of the same height for all three element Iengths:. The spiké for the smallest
grid size, (i.e. the highest Courant No.) is meever, the most proncunced. For the 50 m
element length, the spike is flattened over three nodes, indicating a gradual increase
in height which is about eight percent of the surge size.

As the e{iément size; of 20 and 50 m resulted in the Courant Numbers of less
than one, no long waves were encountered. If on the other hand‘, elt;ment sizes of one
or two metres,the possibility of long waves exist baged on Section 5.3.1 results.

- @

5.3.3 Variation of Temporal Weighting Factor

¢ In Chapter 4 it was shown that the addition of the temporal weighting
parameter, 8 , introduces a dispersive agent in the solution of open channdl flow
equations. Work done in the finite difference and finite element solutions in fluid

mechanics in general and open channel flow in particular point to the success of

incorporating the temporai weighting parameter. To assess the impact of varying this

»
parameter, sensitivity analysis was carried out for Tests A, B and C. For Tests A and -~

C. Eularian-Lagrangian solution was'sought. The Lagrangian solution was obtained”

1
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for Test B and is reported in Section 5.4.5. The parameters used in this analysis are -

* reported in Table 5.3. These tests aig discussed separately.
Test A-In ‘evl.raluatin;g' the impact of varjringlihe temporal weighting fact;)r,
_ .three different values were used. These were 0.5, 0.6.ax:1d 0.67. ’A va]ué of 0.5 reflects
the basic centered C}ank-Nicthson scheme and serve; as_the basis for-the moving
element schemt-z. -Seve_rai finite-difference- models shﬁulating rapidly varying flows
use a parameter value of 0.6 as minimum. For this reason a value of 0.6 was tested.
Also, as finite element integratiori of the time deri\.rative leads to a weighting of 0.67,
this value was inciuded in the sensitivity analysis. The other model parameter values
are listed in Table 5.3. - -

The stage profiles at 60 seconds\for the three weighting factors are
pr;;entéd in Figure 5.19. All three profiles exl.libit. excellent wave capturing
characteristics. As in other tests, the only difference in the three model results is in
the vicinity of the 'sharp discontinuity. The spike exhibited for & = 0.5 is beFter
controlled than for the other two runs. The location of the front for values of 0.6 and
0.67 is slightly advanced when compared to the basic run. This is an indication that
some dispersion is present when the weighting advances bevond 0.5. The height of
the supercritical surge is preserved in all three model runs and the front is captured

&
wﬁhin 20 m or two element lengths. ’

Test C - In t.hi;;ensit.ivity analysis the temporal weighting factor was
allowed to change from 0.5, the basic element to 1.0 a fully implicit scheme, with
intermediate values of 0.6 and 0.75. The values of other model parameters are

N -
presented in Table 5.3.

™)

The stage profiles for the positive surge moving upstream were captured at

120 seconds and are presented in Figure 5.20. In contrast to Test A where little

-
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impr:ovema;lt over-thq'ceﬁtered scheme was at.:hie\-r_e'd, better oscillation damping
propertias ;re observed. The basic Test C resulted in an oscillatory solution for
raasons. ngted in the i:revious_section. A temporal weighting of 0.6 \‘vas able to'
selectively remove the oscillations. The price paid for the smooth solution was a
_ dispersive wave front. With increasing values of 8, the front is increaﬁingiy dispérsed.

.From thc;se runs it can be concluded that for cases where oscillatory
sol;.:tions result, an acceptable practical alternative for m;intaining a discontinuous
front and a e;mooth profile would be to use a temporal weighting factor between 0.55
and 0.6. It is emphasized that oscillations in the moving element solution occur when

the time step chosen is too large or when a positive surge moves upstream. In the

latter case, the moving element schem? is closer to a centered differance scheme.

5.3.4 Variation of Spatial Weighting Factor

] The .prop.erty of the spatial weighting parameter, B, is to convert the
lumped mass matrix of the moving element scheme to a consistent mass matrix. This
difference is similar to the mass matrices of a centred finite difference and finite
alement methods. While developing_ the concept of the spatial weighting parameter,”
testing carried out to study the impact of f variation showed promising results. ’I';hasé
results for Test B are reported in this seetion. /

Table 5.4 lists the parameters used in these tests. Four values of B were

used besides the BO(:J case of 1.0 for_the basic moving element scheme. These values
are 0.8, 0.67, 0.6 and 0.5. (These correspond to values of 0, 0.1, 0.167, 0.2 and 0.25
respectively in the legend of the figures.) A value of 0.67 was used to mimic the mass

matrix of the finite element technique while 0.5 refers to the mass matrix of a box

finite diﬂ'ereng:e scheme.
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The’ stage proﬁles at 120 seconds were captured and presented in FlgB 5. 21
- and §. 22 A time si:a‘g.of 5 seconds was purposely chosen to mtroduce oscxllatmns at
the nose of the surg /ﬁnd extendmg backwal:ds over several nodes Figures 5 21. and
5.22 mdxcate a start of phase 5luftmg of oscx!lanons for B less than'l. D ‘The hexght of '
| the undulntory waves is reduced and. the peaks shifted forwards with lower values of
B.. The location 6f the wave front is not effected for lower values of the we1gh‘tmg .
. factor, while, clipping and wave retardaﬁ-op are evide;it for lov&gr valuel.-s of B. With B
set to 0.5, secondary parasitic node to nbdé os&gﬁlations devel'op away from the wave

v
front. ’

All Fagt.ors considered, the best improven;xer;t is acl'.xieved’whén B was equal
to 0.6. The height of surge is the same as for BOC case with the oscillations reduced -
by over 80%. Bhsed on the sensitivity aﬁalysis carried out, it can be concluded that
the spatial weighting parameter can be of use in solving oscillation problems under
restricted conditions for practical and field problems. Although tested, the impact oi\
simultaneous variations of the 'temporal and spatial parameters are not shown here; !

these are presented in Appendix F. As a guideline, the value of B could best be set

during a calibration process, which may be influenced by a variety of field variables.

5.3.5 ; Variation of Channel Roughness

It is well known that an inerease in channel roughness causes a steeper
gradient to discharge the same flow. All conditions being same at’ -a downstream
section, the stage for a given flow rate at the upstream section is higher fo.r a rougher

channe! bed. Channel roughness play a more important role in near discontinuous

flow study than, say, in confinuous flow situations. The bed roughness has a



. 209 - B . . ' L

pronounced effect on the—’resultmg shapes of stage and flow proﬁles. & wrong

W
. - .

‘ mterpretatmn of which could lead to significant errors..

) Iix order to study the impact of channel roughness, a éensiiivity nnnlyeis

' was carried out for Test B. The bed forces actiﬁg on the body of water are 're];resen'teld

’

by the Ma;;ning's flow equation. Five ;.ralues of channel roughness were seiected
ranging,fro;'n no friction eaee' to extremely rpugh bed surface with thrlee intermediate
values. | |

Nemerlcally, _Mannmgs n ranged irom zero to 0.10, w1th’ mtermedmte

values of 0.01, 0.03 and 0.05. A secondary objective of this analysxs was to simulate

the surge behaviour under field conditions. Table 5.5 lists the pa;ameter values for

i’

the medel simulations.

The stage and ﬂow proﬁles were captured at 120 seconds and-are
respectively presented in Figures 5.23 and 5.24. Immediately noticeable is the
difference in Iprofiles. from any of the previous sensitivity runs. The stage profiles
provide the variation from near horizontal front to an almost conl;inuous- variation
from the upstream boundary to the tip of the surge front. The depth of flow at the
upstream boundary is sensitive to the roughness coefficient and so is the. location of
the front. Between Manning's n of 0.05 and 0.10, the surge loses the definite form

’

which is noticeable for lower roughﬁess values,

From Figure\5.24, the retardation of flows for increasing Manning's n is
evident. The flow, for exampl%, is almost half at a point about 600 m from the
upstream end when the roughness changes from 0.01 to 0.03. Thus, consideration of
mass balance at a point midway in the solution domain for two different roughness

conditions could lead to interesting observations. For roughness values of 0.01 and

0.03, the change in storage is lower and the difference in inflow and outflow lower for
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. lower mughneéi and vice_versé. for higher Manning's n. Figure 5-,23 _beur; testimbny
to this assertir;h as the water piles up higher for largé 'n' values. |
Another ﬁ;teworthy point from this analysis is the fate of the surge when
only a token roughness ‘is added. Referring £o the stage and {low profiles for
Manning's n value of 0.01, it is observed that un&er these conditions the model mimics

- frictionless scenario.

- 5.3.6 Variation of Temporal Acceleration

For the. purpose of this stud;r, the term temporal acceleration is defined as
the temporal rate of chﬁnge of flow rate at the boundaries. Mathemntically. if the flow
at the boundary changes from Q; to Qg in a time inter\;al ty to to, then the temporal
acceleration is (Qa—Q1)/(t2 —t;). The dimengion of this term is L3T-2, |

The iocation of the front and sl;ape of the wave is strongly dependent on the
temporal acceleration. To study the behaviour of varying the rate of change of flow
rate, numerical experiments were designed for Tests ‘B' and 'C". These are now
discussed. | )

Test 'B' - The variations for this experiment from the basis of comparison
case are noted in Table 5.6. For this analysis, a frictionless scenario is considered
with an element size of 10 m. The time step was fixed at 1.0 second. With a time step
of 1.0 second, all ‘.temporal accelerations had to be slower than the hase case of 2000
md/sZ, In other words, the flow at the upstream boundary chz;.nges from no flow to
2000 m3/s in 1,%30 and 60 seconds respectively. These values may be-compared to
the estimated temporal accelerations rates of 4.0 to 10.0 m3/s for the Teton Dam-

A Q
Break flood with a comparable channel size.
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‘ " The resilﬂts for the four cases are‘i;resehf.ecl"i:i Figure 5-:25.._ "'I;‘hese profiles .
"were captured at 120 seconds,.welr‘aﬁer @ steady flow” rate is established at the
” upstreﬁm houndary Except for the-'slight,ly different‘ spike sizes, the obvious ‘
difference is the location of the front.. As expected, the highest temporal acceleration
rate coﬁequnds to th;; most advp.nced front and vice versa. There were marginal-
differences in the heiéht of discontinuities. A matured ﬁsconﬁnuity for a frictionless
. case, such as the one being investigated, assumes a hlorizontal surface. This is evident |
for acceleration of 2000 m3/s2 and 200 m3/s2, For lov}er rateé, there is é minimal
surface gradient to offset the spatial and temporal ﬁow acceleratio}ns. For this

purpose, the four proﬁleé were windowed and plotted at a more suitable scale as

shown in Figure 5.26. The above discussion is clearly demons ’ B in the figure.

. .\_'.!.'
Test 'C' - Table 5.6 presents the model parameters t ;3"".'--;; ere used for the
‘\‘3: an'd time steps -

were fixed at 25 m and 3.0 seconds respectively and roughness definediy

basis of comparison and those varied for this analysis. The grigy
y @ Manning's
roughness coefficient of 0.0125. The temporal accelerations cﬁrresponded to reducing
flows from 2694.5 m3/s to 250 md/s in 30, 60 and 120 seconds. The profiles wire
captured at 180 seconds and presented in Figure 5.27.

This experiment exhibited the development of undulations with maturing
of the wave front. For a temporal acceleration corresponding to 120 seconds, no
oscillations are present, a gradual formation is next seen for 60 seconds while the
undulations take a permanent form for a distance of 300 to 400 m, consistent with .
other experiments for Test C'. Also, similar to Test 'B' the locations of the front were

directly linked with the rate of temporal accelerations,

5.3.7 Summary of Sensitivity
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: ’ _ Based on the senmtw:ty analyses carned out, a,number of parumetors
showed s:gm.ﬁcant changes in results These parametars are hsted in I:he order of - )
_ their sensxhveness to the numencal schemes performance in Table 5. B(n} Another_ -
- factor wh.mh_‘greatly, mi'lpences the shape of the hydrograph is the lateral l'Iow term.,

L0

This is of even more importahpe for natural streams where non-point flows influence

the shape of the hydrograph. This was n@t tested. -
5.4 Comparison With Other Techniques

» The best juﬂge of a*diff'erent algoriti\m an improved technique, or a newer
".model is the performance of the met.hodology agamst real world data. In the absence
of such data whxch are not eustant save for a few controlled lnboratory.experlments |
a secondary level of testing can be carried out using other available techniques. In
this section comparisons with finite difference and finite relement methods were
carried out and the sugeriority of the proposed technique demonstrated. .

Limited testing was also carried out for the Petrov-Galerkin based space-

time finite element scheme and the pure Lagrangian model described in the prt;vious
chapter. These tes't.s were compared with the Eularian-Lagrangian mode solution and
conclusions are drawn. These are also described. |

LY
5.4.1 Selection of Finite Difference and Finite Element Models

The first task in carrying out meaningful comparisons is the selection of an
!

established model or a technique capable of handling near discontinuous flows. Other
factors that were imposed in the model selection included addressing frictionless

channels, a variable temporal weighl:.ing parameter whicl%:an be set at 0.5 for the

true Crank-Nicholson case, zero flow, horizontal water and channel bed conditions.
i '

4 NP
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'Element Length

"Tlmpofal veighting
-factor

L s mu F‘%(a)

Su-ary of 8¢nlitlvity Analylis

Sensitivity Pa:nnotar

Timo.snlp

Pc:!oﬂunce Indicatdrs .
Contzo l thu CQurant numbct,,henan
the succcsl "of . the schemc. Resolves’

. ./ correct- lncntion ‘of ‘surge,’ ‘minimizes

- .

mass conlervntion ‘errors. . ‘Most

~ important sansitivity pnramntnr.‘i

' ﬁoughnegs Factor

~

.o

Spl£111 wuightihg
factor

Temporal acceleration

.fControla the Ihlpl nnd staapness of '

front. Indirectly. responsiblu for

. Courant number. s : o

Controla tho v all ‘shape, location,
height and steegness of front.

" Parameter best fixed through

calibration.‘ - . - ;

' Controls the spike at the Eiﬁ.of

front. Provides a smooth profile.
Relaxes the time step to certain
extent. Solution is dissipative.

Controls the spike for a given value .
of theta. Provides for a consistent
mass matrix.

Determines the location of the surge.
Shape of the. surge is influenced.
Least sensitive parameter.
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The 1mposxt10n of the above cntena eliminated almost al! the available

ﬁmte dlﬂ'erence and finite element models The only model that met some of the

| condltmns was DAMBRK developed by Fread, 1978. Test B' was used for studying

the model behaviour. The model, however failed to operate even for an advanced

: temporal weighting parameter and a retarded temporal acceleration rate. At this

sﬁgé, DAMBRK‘was dropped from any further testing. ‘

. Next effort was d1rected at developmg altemate madels that would allow _,

the testing. Ddring this expenmentatmn stage another strength of the moving

'element scheme was noted. By simply constraining the elements to prevent distortion

between time steps and manipulating the temporal and spaiia! weighting.pnrameters

the model can be made to yield to various fblrms of finite difference and finite element

schemes. In a sense, therefore, the moving element scheme is a very genalrlnlized form
of other, less versatile models.

In the scenario, when the nodes are not allowed to migrate, a temporal

weighting gf 0.5 and a spatial weighting of 1.0 resuit in a central difference finite

difference scheme. This is demonstrated by simply considering the conservation of
t

magss equation given by Equation (4.213).

a

n+1l n+l
[B(Q —QT )+ -8Q], - Q)

i+1 i

AN ta e)A“ J8, —0AM v a-eAY_ 15

Nl'—-‘

k
-5 Attt —a-81q] 8"

n+1l n+l n+{ ,,n+l n+l n+1
+ -[(I—B)A !‘-\l_1 + A Ai +(1—B)A1+WA1+I

—(1-=-pa”

1+1r2 ;+1




" are discussed next.

By setting ’
7 AD = An-i-l - A
=80 -
6=40.5
B=1.0

and dividing the equation by 1/2 kA results in
n+1 n+1 ~O n
. -Qi—l -Qi+l—Qi—l

A A

0.5

A?+l-"A? +”1’-
— n o —
+ —— 05" +qf =0

(5-5)

This equati¢n is the same as the central difference scheme and similar to

one employed by Vasiliev et al (1967).

Similarly, by employing Equation (4.213), and imposing 6 equal to zero, 6 to

0.5 and B to 2/3, the classical equatteq, with finite element in space and finite

difference in time, results. Using the same procedure as before leads to

n+l n+1l n n
[Qi+l —Qi—l.+ Qi+1“Qi_l}

0.5
A A
n+l- n a+l n n+l n
+1Ai—l_Ai—l+E_Ai _Ai +_1_Ai+1_Ai+l
6 k 3k 6 k

-0.5 (qf”’%?) =0

1 L%
The resulting equation is the one used by Cooley and Moin (1976).

{5-8)

Based on the foregoing two different models were set up by fixing the

parameters that results in the finite element and finite difference models. The results

rd
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542  Finite Difference Methods -
| A truer comparison .Be'twee'ri the moving element and-ﬁr;ite diﬂ‘g_ré:_:ce
method would have entailed employm;:xit of a variety of .ﬁnit’g difi‘e;ence (‘o:'-_r'r;s'like
the six point oi: four point schemes. .The cir;:.ur;lstnnces, hpw@gr,preweritu_ﬁﬁ such
analysis and limited to only the‘r;entral difference scher-ne. For this comparison, Tests
Al dm‘i ‘B’ were selected. 'Thq parameters used in these expeﬁments are noted iﬁ
Table 5.7. In all the tests car,ried out, the Eularian-Laﬁrang&nn l.inkéd moving
element model was used.

Test ‘A’ - This supereritical test pres.t-mted a gruell.in.g problem to the tech-
nique. The frictionless scenario provided for the added dimension of the true dissipa-
tic;n reqt;irements. The finite difference model used is based on the divergent form of
equations and allow like for like comparison. As noted in Table 5.6, both methods
were evaluated at a temporal weighting 0f 0.5.

- The results for the moving element and finite diff’erence methods are
presented in Figure 5.28. The finite difference methed produces 4 highly oséillntory

S

solution. These oscillations exist through out the zone of front travel with the

amplitude gradually diminishing towards the upstream boundary.

When compared to the theoretical travel time, the wave front has advanced -
an extra 50 to 60 metres. The advancement could be attributed to higher particle
velocities associated with nodes with higher depths and flows. The maximum
deviations for depth from the theoretically correct value of 10.1 metre were +3.3

1

metre and —7.3 metres. Although the experiment was not ¢ontinue
=i

heyond

¢
obtaining the profile at 60 s,ecélrgs, it appears tha
y

e.oscillations would cgntinue to
grow, eventually terminéting the calculatiyns when the depth of flow approaches zero

or a negative value.
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‘. nose of the front, the deviations at any point do not exceed + 0.1 m.

- P - - -
.

-+ In contrast, the moving element solution exhibits none of the oscillations
that doininat.a the finlite difference solution. Exéept for the presence 'of a spike at the
The only posmve note for the finite difference method was the property of

rpgs-s conservat:on. the mass being perfectly ‘conserved. For the moving element

method, due to interpolation and clipping errors, there was a mass conservation error

-
-

of about 0.7%.
" Test 'B' - To test the generality of the moving element method against the
A .
finite difference technique, the comparison was next carried out for Test ‘B'. As in

Tésf "A’ both models ;vere evaluated at a temporal weighting of 0.5. The reSL;Its in this

comparison are-same as for Test 'A’. The results are presented in Fig. 5.29. The

" superiority of the moving element scheme is clearly evident. .

3

54.3 ° Finite Element Method

As for the finite difference method, two comparisons were carried out with
. i -

the finite element technique. These were also for Tests "A’ and 'B'. The model

parameters used in the two tests are noted in Table 5.8. Both, finite element and

i

moving element models were evaluated at a temporal weighting of 0.5. For the
moving element model, the Eularian- Lagrangian mode solution was employed.

Test 'A" - The results for the finite element and moving element methods
are presented in Figure 5.30. Like the finite difference method, the finite element
solution is dominated by the parasitic oscillations. Unlike the finite difference
meth_bd. however, the finite element exhibits a somewha;t tighter band in the
amplitude of osciliations. The finite element solution also indicates a higher rate of

node to node oscillations. Fpr the finite difference method, there are four nodes
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oocuﬁying one cycle of oscillations, while five to six nodes describe an oscillation cycle

in the finite element techriique.

L,

'fhe oscillations show similar i:roperties as exhibited by the finite '

;ii_ﬂ‘erence methcd. "The amplitude yariations about the analytical solution were +2.8

f/m’jand —4.2 m. Thus the size of the oscillations is smaller. The difference in the shape’ -

and size of the oscillations can be attributed to the consistent mass mé';.r._ix of the finite
element method tllgainst the lumped mass matrix of the finite difference solution.

Test 'B' - Again this comparis.on of the moving element with the' finite
element method demonstrated the superiority of the ’former. The results are
presented in Figure 5.31. The observation made with respect to the co;nparison with
the finite difference method apply here as well.

The two foregoing sections have described the behaviour of the moving
element in its basic form, that is with a temporal weighting of 0.5 and a spatial
weighting of 1.0. There are,.hcwever. a number of possible combinaticns that would
allow comparisons. A number of experiments for Tests 'A' 'B' and 'C' were carried out
and compared with various forms of finite element and finite difference solutions. The

results are presented in Appendix F.

5.4.4 Petrov-Galerkin Based Method

In Chapter 4, an alternate form of the basis function way used,
orthoganlized and solution obtained. This alternate form, termed Petrov-Gaierkin
based method, required orthugonality not only with the basis function, but also with
its spatial derivative. Such a requirement led to the development of a separate model,

twice as big in terms of computer code as the basic moving element method.
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EEAY A lum ed amount. of.- tesung wns camed out employmg Test 'B' as the tqq

case. Th !non was next compared mth the movmg eIement scheme, For both the -

I /

t.echruquea compansons were made for, t.he solutxons obtamed via the EuIanan- .

\

k Lagranglan linked algonthm 'I‘he model parameters are listed in Table 5 9 The S

Petrov-Galarkm based method reqmred a selectwe dissipation pararneter whmh was
, ,
-vnned.

C The test results are shown in Figures 5.32 to 5.38. Figures 5.32 t0 5.35 -

--show the behaviour of the Petrov-Galerkin scheme By vﬁrying th§ dissipation
B prlaraime!.;er, depicted "E_' in the ﬁg{u"és. A value of -€ equal to zero éorre:sponds-to the
_ basie ﬁoving elemen.t. scheme. [t is evident l'ro?n these figures Vthat. avalueof € = 0.1
and 0,15 provided .the required resolution in reducing the size of the sptke. The spike,
hb\\iever, re‘ppears for a higher value of 0.25, (Figure 5.34) whereas a negative value
of 0.1 neith elps nor destroys the quality of results (Figure 5.35). A more
dramatic feature of Petrm;—_Galerkin scheme is shown in Figure §-36 where discharge-
profiles are plotted. 'i‘he success ;)f the scheme for a dissipation parameter of 0.1 is

. v
evident.

.
-

Figure 5.37 presents the stage profiles for a steeper wave front. Here thes

improvement over the basic method is marginal at best. An exploded window show

the reiative improvement pfovided by the Petrov-Galerkin sche;ne. The-maintenance
of discontinuity with a sharp front is evident (Fig. 5.38).

It is seen-that the Petrov-Galerkin scheme provides for marginal improve-

ments near the face of discontinuity as most of the oscillationg are removed by thﬂe

_basic moving element method. The price for reducing this irritant is the loss of a

degree of freedom for evaluation. Katopodes (1984), showed the improvements for

friction.less cases. The interrelation of the dissipation parameter with channel rough-

~

v

\



.J"

Y

S L §/g.W 1L9°291 JO

a._aﬁ::om S/nie :uzu._m_auu< [edodwag, pus g = 3 '[aAa] .
. 'uonyedissiq 10] Sa[JOI omﬂm .H, 152, 10} Juswa] g Bulaop paseqg
_uppa[en- AOTI3d LM POIay{ Jusmajy Butaopy diseg jo uosiredwo) LEG By

wlfe 1SAL 995 OZ| = ‘ow 30 ed|joid

ZO_._.Dl_Om ._.Zm__\/_mjm_ ONIAONW Z_v_w_m_u_,q@ AOd13d

oLo=3 + o0=3 O s
SONON U] SOUDIEK]
o . , - (spunencyl) '
BTV & SRR - T L 8'0. 9'0 ¥0 A
N L1 1 1 t P ) 1 1 1 1 1 0o
“\\\ :
— O°1l

eoney u| eboig



"ge’'q o1 26 ur saxidg

m:-:o&.:oo 10§ 318G 18011137 pajeraddexy yiim mopuipy _umvo_axm

G1'0 X%

008 -

gz'0 v 1'o—- o 1'0
BRUIRH U} SOUDYIS|]

008 -0QL oog

1 1 : L 1 1

8e'¢ 31y

00

005 .

-

¥

3

oy 1S3L 905 OZL = vwy] 10 mejjjoiy

ZO_._.Du_Om I_.Zm_s_m_.m_ OZ_>O$_ NIAHTTVO-AQH L3

. 8

~

sanep v eBoyg



ness is not well known or fﬁlly understood: Until the limited iesting carried out ht;.r;

is supplemented with exhaustive evaluation along with a procedure to establish the

dissipation paramefer’, no verdict can be passed concerning the Petrov-Galerkin

scheme.

_ It should be noted that the Petrov-Galerkin scheme is driven by thq&riné
.element method. Similar techniques in the Eularian frame of reference yiel a

smooth but dissipative surface.

.

¥
54.5 Lagrangian Based Method

When the research for this study was initiated, it was conceived that a
Lagrangian based space-time finite element scheme might overcome the problems of
oscillatory solutions. The final configuration of the Dagrangian scheme, however,
remained non-dissipative in nature. The situation was exacerbated by extremely
high aspect ratios of the elements, especiaily near the discontinuity. The problem was
rectiﬁed by resorting to an Eularian-Lagrangian scheme with a natural non-
dissipative interface. P

The Lagrangian based method still provides excellent results for situations
where the initial conditions permit finite velocities that would allow maintenance of
adequate element aspect ratios. It was also found, as will be described in this section,
that by advancing the temporal weighting parametef for situations with a horizontal
bed, no friction and zero fiow initial condition, it is possible to empioy the Lagraggian

model with no restriction.
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To evaluate the behaviour of the !.a.grangian moving element scheme two
experiments were setup for Tests 'B’' and 'D". The paranieters used in these

experiments are noted in Table 5,10..

o, .

Test ‘B’ - This test was carried out on a finer grid size™of 10 m element

* length and 1.0 second time step. The basic comparison at a-temporal yveighting of 0.5

is presented in Figure 5.39-.£'or the Lagrangian and Eulariaq—i.agrangian moving

elgment schemes. It is cleaf from this comparison, that the Lagrangian sclution is

) destroyed and no meaningful information cém be deduced. Further, if the

computations are continued, the computa'tions are terminated when non-sensical

negative depths are calculated. In comparison, the Eularian-Lagraﬁ‘g'ian model
exhibits an acceptable solution albeit with the spike.

As a next step, the temporal weighting parameter was varied. The
advancement of this parameter paid immediate dividends and accei:t:able wave
capturing properties resulted. Four different weighting parameters 0.5, 0.6, 0.75 and
1.0 were employed and plotted in Figure 5.40. The non-dissipative oscillations are
still present for 0.6 while these are completely eliminated for 1.0. The profiles show
sharpness for a value up to 0.75, whereas, dispersion of the wave front was in evidence
for a value of 1.0. The mass was completely conserved for 0.5 while very small errors
of less than 0.2% were noted, which increased with the advancement of the weighting
parameter.

Finally, a comparison was made between the Lagrangian model at a
temporal weighting of 0.75 and the Eularian-Lagrangian model for the centred
weighting. The results are provided in Figure 5.41 at 60 seconds and 120 seconds.

This comparison clearly demonstrates the validity of employing the Lagrangian

model with an advanced temporal weighting. Another improvement over the
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' Eularian-Lagrangiﬁn _mﬁdel was the size of spike at the nose-became alt;\osﬁ non- -
existant. The front for t.lie' Lagrangian moq'ﬁl was as sharp as the other while
maintaining a smaller mass conservation error. .

) " Further c_ontyolled testing may 'esf.ablish this as an“alt'e'rnpt.e to lth.e |

Eulﬁril'ah-Lagrangian model. ) |
" Test'D'-Whena fini‘te initiél velocity is present, as will most likely be the
case in natural sitgqions tHe Lag’t:angian model can be employed for much higher
CourantAnumbers even with a centred weighting parameter. The problem presented
by Viesmann et al. and portrayed as Test 'D' was solved using time shteps of 30, Bb,
120, 300 and 600 seconds. ThesAe are much higher than the time step of 2.0 see.’ used
by Viesmann et al (1973) as 'restricted by the Courant-[-.‘ewy- Feidrichs' condition.

Initially, the element size was kept at 528 ft. By its very nature, the model
generates its own grid size at future time steps. The contrast is dramatic, for “exnmpie
with a time step of 30 seconds, the grid size varies between_ZI(j and 310 feet at initial
flow and peak flow rates respectively, while with a time step of 600 seconds the
element size varied from 4100 ft to 6000 [t for initial and peak flow rates.

The results shown in Figures 5.42 to 5.45 bears testimony to the rcbustnez;s
of the technique. The hydrographs at the downstream boundary demonstrates a
slightly erratic behaviour. The reasen for this is obvious. The downstream condition
imposed was a single value rating curve. Such a requirement forces the model to
simultaneously satisfy the full momentum equation and uniform flow condition for

the boundary node. The comparative solutions with the 2.0 second time step are not

plotted as these are the same as the one with the moving element solution.
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' 546  Sumnferyof Comparisons: = o o

In the previous sections, the superiority of the moving element quei Qas
evident when te numerical sc!.:eme was co . ared with establiéhed techniques like.
the finite difference 2nd finite element meth l.Fuz.'the;'r_nore, limited evaluation of
other :‘noving element based schemes like the pure Lagrﬁngian mode model and the
Petrov-Galerkin based model exhibiteﬂ much promise. More testing is, however,
required before drawing definite cog;clusi’ons. A summary of the comparisong is

presentéd ir.:'Table‘S. 11.

5.5 lTests on Non-prisn';atic Channels

. One of the primary objectives in developing any fully dynamic model, such
as the one proposed here, is its capabiiity of handling a variety of scenarios. These
may include but not be limited to addressing continuous :md near discontinuou.s
flows, prismatic and non-prismat.ic or natural channel boundaries, ete. Before
studying non-prismatic c‘hannels in nat.t_;rﬁl settings, controlled numerical experi-
ments were carried out. These experiments were aimed at studying the impact of
roughness, degree of non-linearity, etc.

In this section, two different types of non-prisrriatic channels were studies
namely a diverging channel and a converging c\hannel section. For the converging
channeli, the rectangular section 'reduced from 200 m wide to 100 m in ?‘ismnce of
1000 m, while it was the opposite for the divergi-ng channel. The channel bed is
horizonml{imd a Manning's roughness of 0.02 is assumed. The downstream boundary
consist of a single V{alt,ze rating curve, The initial flow conditions were a depth of flow
of 2.0 m and zero flow rate. At the upstream boundary the flow was forced to increase
from zero to 2000 mflls in 30 seconds. The flow was then held at that rate for the

/

.



"Performance

Indicator

Shape of
Surge

Location
and
spaed

Mass
congservation

Direction of
front

N

Table 5.11°

Conpariion of Moving Element Method

with Other Numerical Techniques ) "?
Other Nbvidg
Techniques Element
' ’ Method

FD: Oscillatory solution
varies +37% to -73% of
Analytical solution.FE:
Qdcillatory solution

‘varies +28% to -40%.

Lag: Oscillations for
0 = 0.5, smooth
solution for 8 > 0.6.
PG: Same as. for ME for
€ = 0.0, spike removed

for € = 0.15.

FD and ¥E: Advanced

when compared with
analytical.

Advanced for

8 = 0.5 and exact

for 8 > 0.6. r
PG: Same as for ME.

FD, PE and Lag: Mass
exactly conserved.

PG: Jame aiiﬂx.

PD and PE: No differ-
ence in solution.
Lag: Handled down-
stream moving surge
better than upstream
moving.

PG: Not tested.

No oscillations except
for spike. Surge height
within 1% for o7
supegeritical flow and
0.2% for subcritical.

Location exact with
optimal time step.

Trails the-analytical

solution for ather time
steps. Corract speed
predicted. ’

Mass conserved to within
0.1% for optimal time
step. )

Downstream moving surge
handled better than
upstream moving for

0 = 0.5 and same for

0 > 0.6.

b\

~

PD = Finite Differnce Mathod, FE = Pinite Elsment Method

ME = Moving Element Methcd, Lag = Lagrangian based ME Method
PG = ME based Petrov-Galerkin Method

§ = Temporal weighting factor




~duration §f experiment. The profiles were céptméd at 120 séconds. The two non

i)rism'ati channel cases are discussed sepqretely belaw.

5.5.1 Diverging Channel

As a first step, the model was set for a frictionless case and the two profiles

are plotted in Figure 5.46. The behﬁviourpf the two profiles are normal even for an |

Next, the/sensitivity of the surge to the degrew of non-priématic form was

investigated. The initial and boundary conditions remained the same. The width at

the downstream boundary was varied from 100 m (that is,‘m{: prismatic form) to

-

200 m in steps of 25 m. Th_é stage and floor profiles for'the five relative degrees of non

4

prismatic form are plotted in Figures 5.47 and 5.48 respectively.

The stage profiles exhibit the phenomenon as expected viz, the front in the

prismatic channel (corggsponding to 0% difference in upstream and downstream

width) is most advanced while it is retarded for a 100% change in width. The flow
\ . _ N
profiles, however, indicate an interesting feature. The flow reduces slightly for the

prismatic form to accommodate channel roughness of 0.02 from node to node. When

——

compared to the flow profile for the highly non-prismatic channel (corresponding to
x\J'l()o% width change), the flow remains at 2000 m3/s as if there is no channel
resistance. I[n other words, the flow conditions behind the front for a prismatic

channel with no [‘ric(un are apprdximated by a non-prismatic channel with a

-

+

-~
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' roughﬁass_of 0.02, It appears the channel expansion has an opposite é¢ffect to that of

channel roughness. . - ; .

5.52 - Converging Channel

The same computer runs were made with the converging channel :a'sli"or the

' “
diverging channel.. Figure 5.49 presents the results when a comparison is made

between no channel resistance and a friction of 0.02. In this figure, the stage profile

_ for frictionless case gradually builds up head to forge ahead in a converging channel

!

while for the case with frictioﬁ, the surface is almost horizontal. eAgain; like the

previous analysis, this experiment provides some interesting insights in the

" mechanics of this solution algorithm.

Il the total] energies (both potenﬁal and kinetic) at two points, 'say the
upétream boundary and a peint behind the surge’front, are compared, then the energy
at the downstream point will b3 greater than the upstream point. This appears to be
an abnormal behaviour. There is, however, a very logical explanation. The basic
equation that is being solved guarantees conservation of'mass,and momentum, while

S

energy is not conserved. The energy travels( moving towards the tip of the near
discontinuity and is expended across the surge. In retrospect, the presence of the
spike behind the front could be explained through this logic.

. As in the case of the diverging channel the sensitivity of the surge to
channel width variation was carried out. In this case, the channel width at the
downstream boundary was fixed at 100 m, while the upstream was varied between
200 m (100% wider) to 100 m (0% wider, prismatic cﬁannel) with steps of 25 m. The
stage and flow profiles are shown in Figures 5.50 und 5.51. The degrees of choking

provided by the converging channels are reflected in the relative advancement of the
x
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o

wave fronts. For exemi:le,‘.the surge in prismatic i:hannels advarices most whereas

- i

'thatvnt.h 100% Mereme in width is retarded to the maximum lumt Unllke the_

dlvergmg chann&l the ﬂuw rate is also reduced to mthcate mcreased resxstance from
the eonvergmg section. Also, unlike the dwergmg channel. case, it ig the stage profile

f'or the 100% vanntxon that mimics a fnctmnless case ina pnsmatlc channel with aln

= : ‘ ’ o -

elmest horizontal surface.
5:‘8 3-‘ ﬂ!iscellaneous Eiﬁeriments ' _ | 7 .

In pr_‘evioue sections a series of $tructured experieaente Qere reported.
'I‘hese experiments explored and highlighted various aspects of f.h_e solution
algorithm. A number of other experimente were desig_ned_ and executed. ' The
objective each time was to better understahd the _modei behaviour. strengths,
weaknesses, applicability to field problems, emulating real life siteations, etc. The

following experiments were implemented:

i} mass conservation error and time step;
ii) mass conservation error and interpolation
iii) wave steepening |
;
,_/ iv) emulation of a bridge by channel constrietion; and
v) emulation of a lake by channel expansien.

These aspects are briefl’y discussed.

5.68.1 Mass Conser\aation and Time Step
~+ Any numerical model should be capable of conserving volume or, strictly
speaking mass.. Although the Lagrangian model was excellent in conserving mass, it

hng problems operating at Crank-Nicholson's centred weighting. The Eularian-

- .

&)



Lagrangian model, because of the int.erpolation- between time steps, exhibited some
mass 'consgrvation er,ro;‘. A comparison was carried out between the L‘agrangiaz_{
model at temporal weighﬁpg factors of 0.8, 0.75 and 1.0 and the Bulariun—Lagrangi'nn

model at a centred weightings.
g Test 'B* was chosen for the ba.s.is of comparis.on with a grid size of 10 m and

' 1.0 second. The upstream boundary flow rate,changed from zero ats leve] pool of 2.0
.m to 2000 m3/s in.1.0 secéhd. The results of the four computer runs are shéwn in |
Figura. 5.52. "I‘he.figure was purpos-ely blqwn-ub_ to exaggerate the mass cor;s;er.vu‘tion
error. Based on a criteria of shape and mass -error, the Lagrangian modél results for o

. _\.ve_ightin.g ;af 0.6 appear the best. o

| Next, the Eularian-Lagrangian r.nodel was executed with a variety of time
steps using the same conﬁgm:ation as dblove time steps of 1.0, 1.25, 1.33 and 1.5
seconds.” The results are presénted in Figure 5.53. These proﬁ.les at 120 seconds are

A

again-exaggerated in a window and indicate that a time step of 1.33 seconds produces

the best results from minimizing mass conservation error considerations. In
.comparing results from Figures 5.52 and 5.53, it becomes apparent 9}2}!; the results for
Lagrangian model at 1.0 sgcond‘ time step and 0.75 temporal weighting are almost
identical to Eulariah'-Lagrangian model at 1.33 second time step and‘ centred

weighting. From this observation, i:onclusiq&to the effect, that liberal time steps are
F ‘
permitted for Eularjan-Lagrangian model, should not be reached.

5.6.2 Mass Conéervaﬁon and [nter;iolaﬁon Scheme

. . . .
In th?’ previous sections, it was recounted that the evolution of Eularian-

Lagrangian moving element scheme\‘required the development, testing and

implementation of 4 variety of interpolation schemes. This procedure is necessary in
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: order to tie the solution obtained in the Lagrangian mode to the Eularian grid. Thisis/ . :

also the {bep whe're,_if care is not éxercised, mass conservation errors can creep in due

primearily to clipping of the wave front. As-was noted earlier a number of

interpolation schemes were considered; four of these were evaluated and three finally. .

implemented in the model. The objective at this stage was to minimizg errors in mass

conservation, especially at the wave front. In this regard three experiments were

designed, two with Test 'A' and one with Test ‘B'. These interpolations schemes have .

been discussed at length in Chapter 4. Briefly the schemes are:
"1. 2-point linear;

2. 3-point Lagrangian or non-linear;

3. 2-point linear_ with front tracking; and

4. mixed 2-point and 3-point. .

In the first experiment, the first three schemes were employed and
compared against the analytical solution. The results are plotted in Fig. 5.54. The
relative poaitiongf. the computed front with respect to the analytical result'%t_iefme the
degree of mass conservation error. Scheme 3 overshoots the theoretical locations
while Scheme 2 indicates minor clipping errors of less than 1%. Scheme 1, on the
other hand, shdwed significant clipping errors' (about 5-7%) as is indicated by a
retarded wave front. The results were exaggerated twelve fold verticaliy and plotted
" in Figure 5.56. This graph brings the problems with Scheme 3 to the fore. Also, it
proves that the é—;oint non-linear scheme had the least error. |

Scheme'3 v;ras dropped in favour of a mixed linear/non-linear scheme. This
scheme along with linear and non-linear interpolation are shown in Figure 5.56. |

Test 'B' was used to demonstrate the growth of clipping error with time.

This becomes quite clear when the results for the linear and non-linear interpolation
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schemes are pl,gtted in Fxgure 557 In thxs case. the mnss-consewat.mn error grew.'

from about 1% -at time 60 seconds to 5&1 at nme 120 seconds. It should not be

concluded from these two items of information that the growth of error is exponentml-.'

In thi'él'iéase the time to reach the maximum flow rate was 30 seconds and hence it

required some more ﬁm@%eps for'the front to mature: .Prior to the formationof a near

discontinuiiy. linear and-.non-linear intgrpolations\providé similar results.

[y ° . -" \

5.6.3  Wave Steepening

~ In all the test runs reported so far, the discontinuity was in-troduced at the
upstream or downstream boundar;r to study the wave steépening i:ehafviour, that is,
the phenomenon of waves at‘ greater depths travelliné at higher speeds and over-
taking flows at shallower depths. Employing Test B for this purpose, a digcontinuity
. was placed in the solution domain and model behaviour studied for a number of time

L
steps.

Fig. 5.58 depicts and demonstrates the handling} of this dynamic flow
problem. lnitial‘ly, the wave is.spread over a great number of elements. Subsequently,
the wave occupies fewer and féwer nodes by strengthening wave fronts. The

emergence of a spike is closely.tied with the maturing of wave.
- \

-

5.6.4  Emulation of Bridges and Reservoirs

In carrying out the numerical expe\riment.s, the impact of placing a choke in

the path of a surge was studied as Test "E}".
: &

. Sy .
" A bridge can be considered as a constriction within the channel. The

constriction imposed in Test 'El’ resulted in 50% and 75% blockage of area; these
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encroachments provide severe choking ei_'i_‘eéts‘although'the trangitions were each 100 .

-

m long. . o ' -

A number of scenarios were tested for this purpose, a significant amount of

resglfs were preéente:d earlier and the rest are shown i.n Appendix F. All this
inform;ation points to the robustness of the moving element ;.nethod.

Similar to the bridge problem, presence of a lake or resellvoir within the
solution domain can be easily expl;ained by z;n exﬁansion. 'i'oilowed by a wide channel

sectien describing t}\m reservoir top;ogi-apliy and finally & constri;:'tion to describe the
outlet?onditions. Other areas‘ where tlﬁ%ém_ulation can be: invoked include the‘ stuﬂy
of turbine rejection and its absorption within the surge acceptance chambers. These
su'r'ge chambgrs are usi:ally an expansion in the channel. n

To sfudy this behavior, a numerical experimént was designed with the

. following particulars: -

Physical Description:

In this test the rectangular channel is 100 m wide, 1000 m long s;nd slopes
at a rate of 0.0001 m/m or 0.1 m/km. The reservoir is représented by a diverging zone
100 m long starting at 350 m fro;n the upstream bou-ndary wherein the channel
widens from 100 m to 200 m width, This 200 m expansion is maintained for the next
100 m.. The channel .narrows again to the 100 m width ir; the subseq'uent 100 m. The
channel roughness is represented by the Manning equation with a coefTicient of 0.015.

Initially, the depth of flow ':s 2 m with a flow of 2d6.1 md/s. . These
conditions, however, exist beyond the influence of the expansion; steady gradually
varied flow exists within the domain of transitions, The boundary condition at the

upstream node required the flow to increase from the steady initial flow to 2000 m¥/s

7

e




umform ﬂow equntmn is given.

situations.

inat tiqme span of 30 sec. This condition is maintained during the 240 s simulatioﬁ run;

At the downstream boundary, the depth-dlscharge relationghip exhxbxted by the_'

Discretization-and Solution Procedure: =~ - |

As the inifial ﬁpd boundary conditioné wére sifnilar to Test 'B’, the same

grid sizes of 10m long element‘\s and 1 sec. time s'teps: were e;nployed. The transitions .

and reservoir each occupiéd 10 elements. For such a’ discretization, the Courant
Number was greatér than-one. .

o The suberitical surge was allowed to pr'-ogfes's through the expansion for a

periog of 240 s. The results in the t‘o&n of stage and ﬂquproﬁles at different times

and hydrographs at predetermined points are presented in Appendix F.

8.7 Sumﬁmry N

For a new technique to be universal and fit for field application, it should be

robust, versatile and modular. These aspects were subjected to extensive numerical -

tests. These tests emulated most of the circumstances that might arise in field
) .

The Eularian-Lagrangian linked moving element method prove:i to be a
competent tqol for analyzing r\zear discontinuous and continuous flow situations. ’fhis
claim is based on the wave capturing properties, suppression of 2 Ax length node to
node pécillntions, minirr}al mass conservation error, handling of partial and total
wave reflection, horizontal and adverse'slbpe, non-prismatic channel sections, etc.
Separate numericial experiments were set up to study 'each of the properties noted

earlier. B
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Compdrisons were carned out mth other establmhed numerical models

based onl t.he finite difference and ﬁmte eiement techniques. This #uin demonstrated '

"A

supenonty of the Eula:mn Lag'rangmn and Lagrangmn based models over the
¢ nt Eulanan bqsed techmques Lumted teétmg f'or prismatic channels employing

Lagrangmn based models and an altemate l‘orm based on the Petrov-ba]erkm

a -3

formulation in an Eu!anan—Lagrangmn gn_d' proved thefe schemes to be worthy of

further consideration. . .- .. .

i " - S .
Finally, sensitivity analysis involving a number of model parameters such

" . [ . e .. .
as grid size, roughness coefficient, temporal acceleration rate at boundaries, temporal
and spatial weidhtmg proved normal model behaviaur. Vlodel versnt.lllty was also

"

demonstrated in solving continuous and dlscbntljluous flow s1tuatlons




. CHAPTER 6 ;

T

DESCRIPTION OF COMPUTER PROGRAM

6.1 - Introducﬁoﬁ | ‘ .v

| Succéss in irﬁplementing' any mathematical algoriﬁhm and associated
numerignl s;:hemés is closely relate&_ to the phyéical equations whichlare ad_apted. and
the method emplo;ed for casting them into efficjent computer programs. The
crystniization_of.-thg moving finite element methmfpe
computer program logie.

This chapter describes the development, testing and implementation of a
series of computer programs to address different situations in rapidly and gradually
vur.ied flows. Further, the subsequent amalgamation of several mode!s into a single
computer program’ig highlighted.

A poorly designed computer program will exhibit problems when trans-
ported to other operating systems. [n order to evaluate the portabilit.y of the moving
element model, the computer program was tested on two mairfframes and several
microcomputers. The model was further tested by devising experiment$ and
subjecting the microcomputer's central processor and numeric cjo-processors to
numerically intensive caleulations. These experiments are described.

Finally, for a model to be practical and operationally effective, it is
desirable to have a minimum of input, internal efficiency, and briéf and meaningful

output. The model input requirements and a sample of program output are presented

and discussed.

276

aralleled the deveiopment of the .
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6.2 Development on Ml'linframé Cdmputers.
' The initial devélopm'eni: of the computer program wasron the CDC Cyber
- 171 mainframe compufer at the C;mada-('l}entré 'fpr Inland th;ers (CCIW). At this
stage a series of computers programs were developed. Tl'iéée included differerit models
for ('1)’ supe:rcritical flow, (2) suberitical flows, (3) surge m'oving in upstream direction,
(4) surge moving in downstream direction, (5) Lagrangian mode soiution. (8)
Eularian—LagEangiap mode solution, (7) upstreﬁm boundary represe_ﬁtec! bg}
triangular. elements, and (8) upstream boundary represented by collapsed quadri-
lateral elements. Seperate models were developed to solve finite difference, finite
element and Petrov-Galerkin schemes.

As a next step, the first six versions were gradually amalgamated into one
single program. This activity was most easily carried out by modulurizﬁtion of-the
program requiring a number of subroutines and a program. To allow the user to
choose the proper mode of operatio;l, a series of switching or logical variables were
added to allow for branching. In the final form the model consisted of the following

modules.

Main Program: The main pro%gm reads the first half of the data set which consist
essentially of contrel variables to set the mode of simulation. These variables are

echoed with explanation. The control is then transferred to subroutine MOVEL.

Subroutine MOVEL: This is the main or ‘shell’ subroutine which controls the
program operation. The remaining data are read consisting of channel geometry,
layout, boundary and initial conditions. All other subroutines are called from this

routine.




278

All eomputationh in tarms of Lagrangwn grid set up, calculations of matrix

cdefﬁc_ients, mtﬁx solution By the doublq—_sweep technique and printing of profiles at

' predetermiﬁed times are performed by this subroutine. Other output comes from '

-

spéc;ﬁc subroutines.

Even in a skeletal florm,l this subroutine comprises close to 1,000 lines of
code ex;:ll.;ding mm;nent statements. At this stage, there was no nee& for further
modularization by the-crea..tioh of addit-ional subroutines. Several sections could,
however, be easily encapsulated to compute :he Lagrangian the gﬁd, matrix
coefficient set up and the solution.,

-

Sul;rou_tine PROPS: This subroutim; computes the channel geometric and
hydraulic prope?rties for a given depth of flow. The channel properties are exchanged
between subroutines through labelled common blocks.

For a given depth the computed channel properties include cross-secticn
area, wetted perimeter, topwidth of conveyance and off-channel zones, off-channel
area, and first moment of area about the free surface. The channel roughness is

computed as varying with depth. Channel representation and the stage-channel

roughness relationship is described and discussed in a later section.

Subroutine INTERP: When the Lagrangian step is implemented, points at the
advanced time level are offset with respect to the spatial Eularian grid. The channei
properties for the spatially fixed points do not change; however, for the Lagrangian
points th;a channel promrﬁes need to be interpolated. This interpolation takes place
in this subroutine. The sui)routine _interpolates channel invert, hence the bed slopes,

channel roughness and off-channel characteristics, ete.



Subroutine INITIAL: This subroutine \vn's added to the program to. éalé'ﬁlite initial

steady flow conditions based on backwater computat.l s glven the flows at all points

and the startmg downstream elevation. The omputatmn require balancing of

momentum terms between adjoining sectio the time of writing, the momentum
balance procedures are sirnpﬁstic. For example, the non-prisinatic channel form
‘terms fo:" pressure forces are not included. - This approach has, however, proved to be
quite successful dnd the results showed no errat;ic bel';nviour. This success-is contrary
to the problems reported by Kowen (1984) and Wurbs (1986) in estdblishing initial

-

ﬂow.conditions.

" o .
Subroutine LAGPRNT: This subroutine is invoked when computation in the main
N program are carried out in the Lagrangian mode. The depth of flow, discharge, stage

and velocity are interpolated at regular predetermined points from the irregularly

spaced Lagrangian grid.

Subroutine HYDPRNT: The hydrographs at predetermined locations are printed
by the subroutine. The time frequency of printing the flow rate, depth and stage is

controlled by a variable defined in the main program.

Subroutine ENVELOP: This subroutine is called from the MOVEL subroutine at
the end of computations and prints out r.hc_a most important information on the
maximum value of stage, depth and flow rates. The envelope of stage defines the limit
of the flood plain. Also, two other informative items are printed in terms of the times

at which maximum flow rate and maximum depth of flow occur. Also computed and

W




PR

PR

printed are the._' top widths ansociated with the maximum ﬂow" depths. The avefagq
width between any two stations Taultiplied by the distance yields an api:ro:dmaté ‘

valusofthearen of flooding. =~ ' o ( '

Subroutine PRTOTA: A tabular output of various input and output _variables is

printed by this subroutine. ot R

r

Subrouﬁné CNVRT: The spatial éndﬁempgral\ variables are converted to the unit
in which the output is made.' '

-A simplified flow chart of the computer program is prt;sented in Figure 6.1.
Many of the subroutines described above evolved out of necessity for proper

repreéentation of channel geometry, roughness coefficients and their variations, ete.

These adaptations are described next.

Representation of Area: The most important parametef te describe
mathematically is the variation of cross-sectional area with the depth of flow. If a
reasonable approximation can be determined for this variable all other properties
follow suit, Initially, the medel was capabie of handling only trapezoidal channeis
(note that rectangular or triangular cross-section are special cases of the ‘g.eneralized
trapezoidal cross-section), with inclusions for the non-prismatic cross-sections and off-
channel storage, the following relationships define the cha.nnel properties with
reference to Figure 6.2. -

Using the following definitions:

Ya = Thalweg (i.e. the locus of lowest cross-sectioﬁal points) elevation of

channel
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" yp = Bank ft;ll elevatilond_. 2

Yo = Elevationat which t_iﬁ'—channel'storage oceurs
Yw =  Water surfacg elevaﬁion
Ze _=7 Channel side slopes for 16w ﬂo.w‘ch.aunne-l

| =  Assumed slope for conveyance section
z, = Off-channel s'ﬁorage lateral slope
Ty = (:.‘hannel width at bank full flow conditions

-¥ = Yw—y4 = Depthof flow

Dependent variables: -

F o8 p >

Cross-sectional area
Top width of conveyance section
Top width of off-channel section

Wetted perimeter

First moment of area about the water surface

Off channel storage area

Case 1l wheny, < yp

_ 2
A=zy
T =2zy

T =0

WP=2yV1 +z§

(S
a

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)
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-“JCasezwher‘lyb <¥w<Yo
. : ) 9
A=z -y + T, —y) +30, -y

T-o = 0.0’

Tc='l‘b+22.bfyw-yb)

WP=2(yb—yd)\/l+z§+2(yw—ys)\/1'+zg '

1

2 1 1
= 2 et ud - 2, - —y )3
G_zc(yb_yd) (y - yb_3yd)+ 2Tb(yw—yb) + zb(‘yw yb)

w 3 6

Case 3whenyy, > y,

A =zc(yb_yd)2+Tb(yw -y t3,0, ‘Yh)z

— 2
Aa—zu(yw—yo)
Tc=Th+22h(yw_'v

B

To=2zo(yw_yu)

WP=20, —y) V1+2 +2(y, -y) V1+2

_ 2, 21 1 2 1 3
G=zly-y V=39 3% * 3T 0u-v) + 230, ~vy

(6.6

(6.3) .-

(6.7)

(6.8

(6.9)

(6.6)

{6.10)

(6.7

{6:11)

{6.8)

(6.9)

With the above equations most of the field channel cross-sections were

-adequately described. The channel roughness was allowed to vary with depth



P
. . E " .
285
’ L
-
according to the following relationship.,
. _ . - (6.12)
n,=n{l +kiy ‘v v
. ‘ for Yo >V,
else n_=n | ' ‘ .
where . . "
Ny = Manning's roughness coefficient at water level
yt = elevation above which the i-oughness changes base value ‘of the
roughness coefficient
-
k = rate at which the roughness changes

The parameter "k" can take either positive or negative values to allow an
increase or decrease in roughness respectively. Adequate checks are built into the

’

computer program to ensure that roughness coefficients are not assigned

[ ]
unreasonable values.

For natur} channeis wit.(h off-channel storage it is usual to reduce the
roughness for increasing stages to account for the efficient boundaries between the
conveying and non conveying sections. On the other hand if no off-channel storage is
considered the roughness may increase or decrease aependMg upon the bed material
of the conveying and flood-plain sections.

. Once the program was operational on the Cyber computer,it was trans-
ferred to the VAX-8600 research computer at McMaster University. Due to different
word sizes for Cyber (64 bit words) and VAX (32 bit words) a number jof variables
require declaration at double precision level. Most of these variabies were associated
with energy slopes, matrix inversion coefficients, etc. -

Of the two mainframe computers, the VAX 8600 proved to tge faster in light

of the dedicated virtual memory mode operations. There were significant differences




m the execution times using .id_entie'al data inputs. This apparent anpmaly was
* attributed to the different word accuracies at the matrix inversion and convergence
check stages. As the results were printed to three decimal places no differences were

“noted in the computed valuef.

6.3 Teqti on Personal Computers .

The availability of increasingly pow;erfu(ﬁersonal computers (PCs) has
accelerated the trend of modifying programs originally developed for large mainframe
“machines for implementat;ioh on these PCs. In particula_r, many finite difference and- .
finite element models in water resources requiring pﬁctensive memory and sophisti-
cated integ-ratio;l proced'ures have been converted to run on personal computers.

Programs' like HEC-?, United states Army Corps of Engineers (1973),
Mobile Bed Hydraulics (MOBED), Krishnappen (1977), DWOPER, Fread (1984) are a
few examples of programs in the fields of water rééources engineering which have
been posted to PCs. |

In view of the foreéoing, two objectives were set for downloading the com-
putationally intensive méving element scheme. The first objective involved com-
piling and oﬁerating the program developed on the Cyber and VAX mainframe
machines on the personal computers. Seconidly, it was required to carry out a series of
tests to identify any limitations imposed by the comput‘.ationally intensive schemes
required to solve such problems.

For the microcompuu‘:ers environment, all the PCs were equipped with the
Intel's 8086/8088/80286 family of the central processing units (CPU). All these

computers, further, operated under MS/PC-DOS commands. The FORTRAN

L]



| ~ compilers for the comp;;-isons cofisist of Mi@&ﬁ (Version 3.30). WATFOR?7 and
WATFORST (Version 1.0). S
- The first objective was fulfiiled w‘ithout much difficulty. No changes in
program logic were required when t_ransferring programs from mainframe to PC
environment. As in the transfer from Cyber to VAX machines, it was found that a
further number of variables had to be computed at- doubrle precision to avoid ﬁfoblems
with underflow and ov;arﬂows. Upon reconéiiiation, the com.pute:-" programs for, PC
| and VAX machines bécame 'identical.
' As the second objective involved the testing of certain computational
aspects on the Pés, input/output requirements were minimized. This constraint
evolved from the 8-bit input/output channels for writing to files if output is required
versus 16-bit for computations and 80-bi:numeric co-processors. For input, the
channel geometry, time and distance steps, initial flow and stages, stage or discharge
hydrogra}pl;lf reach length, durat.ion of simulation, etc. were required. The water _
surface or depth profiles at desiz"ed times, the stage/discharge hydrographs at
prescribed points and overall‘ mass balance measurements were written to a file.
For testing purposes three different numerical experiments were designed
and implemented. Basically, these experiments were only slight variations of Tests

A, B, and C described in Chapter 5. The various combinations of hardware/software

along with the results are presented in the following sections.

6.3.1 Hardware/Software Description
The experiments, as two separate computer programs for supercritical and
subcritical regimes, were first implemented on a'CDC Cyber 171 mainframe facility

at the Canada Centre for Inland Waters, Burlington. To test the programs in a PC




_ Table 6,1

"Hardvare Cont{gurations.bf,Hicro—Computérs_

Central Numeric

Processing " Data
Unit Copfocls
soss None
8086 - None
8088 "~ 8087
8086 8087-2
80826 None
80826 80827

4

Clock

" Spaed
{MHZ)

<.



Table 6.2

]

Comparison of Execution Time for Di!fartnt PC CQntiguratlonl

CPU(s)

8086

goses
+8087

8Q8s
+8087

80286
+80287

* n/a
§ n/t

Clock

Spead
{MHz )
5.0

8.0

4.77

8.0

ralative to CDC Cyber Performance

MATH
220
100

10.5
6.1

not applicable
not tested

Microsoft Portran (V 3.30)

8087

n/a*

n/a

10.5

6.1

r

ALTNATH

56.3
25.7

n/a

nfa

n/a

Watcom
WATFOR?77 -
WATFORS8?7

116

50.3

24.6
15.2

n/td




environment, &8 number of different machmes weré :gmployed, running at different
" clock quéeds .and with and without nulﬁe;ric cc.’-prdct.assors. T‘h'e range of hardweire
configuirations tested is summarized in Table 6.1. |
Another factor of some im;)orts"mce in implementing a-PC version of the
computer program, is the bhoice ofa éo_mpiler and options einployed when using it. In
addition to the CDC Fortran 77 used for the ma'inframe, the PC versions were
exécuied using MicroSoft Fortren (version 3.30) and Wat;:om's WATFORTT. The
MicroSoft compiler offers a number of alternative options with respect to run-time
libraries (e.g. MATH.LIB, 8087.LIB or ALTMATH.LIB.) and (although not tested)
metacommands such as the $N OFLOAlTCALLS option. Each of these features signi»
ficantly ‘affected execution speed and made comprehensive bench-marking a very
complex issue, highly sensiftve to the characteristics of the executing program in
terms of Input/Qutput, data accessing a‘nd arithmetic operations. Not all of the

possible permutations were able to be tested but the matrix of Table 6.2 gives Some

insight into the results.

6.3.2 Compﬁrison of Operating Environments
In comparing mainframe and PC results it should be noted that for all three
" experiments, the resuiting pz:oﬁles and flow values obtained using MicroSoft Fortran
on the PCs were identical. These are collectively termed the 'PC results’ Minor
differences were noted between these and results obtained using the WATFOR77
compiler on the micros and the Cyber 171. Newer versions of various PC compilers
have, however reconciled the differences. The results from the different machines are
compared first with respect to accuracy and consistency and secondly in terms of

execution time.



-

Accuracy’ g S
. !

Becaﬁsg of the significantly larger word size in the Cyber, the results of the

mainframe computation were arbiu"arily '{;‘aken to be the-basis against which all other - -

results were compared. When compered to the mainframe results, the computations -
on PCs do indicate some round off error. This is more pronounced in Test 'A’ due to the

intensity of computational requirements. The results are identical at 20 seconds but |

about 1% difference in the profiles become evident at 60 seconds.

As noted previously that & number ot variables required double precision
dcﬁuracy when converting from mainframe to PC. These changes were implemented
on a trial and error basis. Therefore, the differences in the results between thle
mai‘nfrgme and PC could be minimized by selectively choosiﬁg the parameters that
really influence. An attempt was .made to make all variables at double precision. The
computer memory requirements, however, exceeded the available storage and
precluded further workpin this area. : \

Another point of interest is that the results generated by WATFOR77 and
MS-FORTRAN are slightly different for Test 'A’. This.c uld be attributed to the
differences in th compilers and rounding off techniques, thm:iall‘y when accessing

only 8088 processor.

Execution Time

By their very nature, Tests 'B' and 'C' were computationally less
demanding than Test 'A’. It was found that the relative execution time for the three
tests was very similar for all of the®PC/MicroSoft Fortran configurations with slight

differences for the Cyber and PC/WATFOR7T7 cases. Table 6.3 gives an impression of




Table 6.3

' Relative Execution riun’tor Test Cases
using Different Hardvware/Software Configurations
- B \ . '

[ -

Test Case A B c

Statements executed (Willions)  5.80 1.98  _1.51
(Wormalized). T (3.84) (1.31) (1)
cbC Cyber 171 . . 2.28 1.0 -
.-PC/HicrasoEt rd:tranf ' - 2,27 1.57 . ¢
PC/WATFOR77 - - 2.86 1.35 1

* Averaged over various Intel/MS configurationﬁ
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- the 'relatiﬁ;: ;u;lgtime for the different cohﬁgurati;ns;; It was not clear to the reason
why the PC/WATFORT results exhibited abnormal behaviour. The Cyber execution
| 'time i;, hﬁweirer, in.ﬁuencéq_:l By the pmvi_s.ion of a roll-out qﬁeue .When a hufﬁbei‘ 6!' .
programs are ;ai;ecufing concurre_:;xtly. ' _

Tﬁblé’ 6.2 is a matrix which describe.;; the diffe:ent: combinations.of hard- v
ware and software optio_ps which may be employed-with the available micro- -
gomputer's. The values given represent the factor by which executibn time ax:eeds |
that for the CDC Cyber. The rciws are arranged in order of incre‘asing execution time
using MicroSoft Fortran with the FORTRAN and MATH default run-time librariés.
These produce slightly I;n-ger {6 to 10K Bytes) executable code which will address the
8087 or 80287 if present or emulate it if not. Clearly, the emulation of the 5087
accuracy carried an overhead in execution time.

By using the alternate ALTMATH library, both the size and executiqn time
of the code were reduced. Of course, in the presence of an 8087, the use of the
8087.LIB library further reduced&the size of executable code. The $NOFLOATCALLS
metacommand available in MSFORTRAN allows the programmer further control on
the t.radeol.'f between accuracy and apeed of execution, This causes the floating point
operations t[(‘)/tge processed by calls to library routines. In view of the stringent
accﬁracy requirements of the moving element scheme, this option was not tested.

The most dramatic statistic is the excellent performance of the 8086 and
8088 CPU with the 8087 co-processor. The performance of the 8086 sttem benefits
not only from the higher clock speed but also from the full 16-bit data path which
halves the data access time. The beneﬁt wou normally be realizable since the
compiler always sets the address of numeric data arrays at even byte (i.e, fl:,l!“ waord)

addresses.



" 'The perforrnance of the 80286 conﬁgurahons alone (which were not tested)

would bei 1mpresswe but as is now well recogmzed the addxuon of the 80287 does not

=

yield anytlung hke the 1mprovement tha the 8087 brought to the older CPU. The '

reasons for this behaviour are very well described by Fned (1985);

The WATFOR77 compiler, 'although produced chieﬂy- as an educational
tool, performed very well, especially the version which can address the 8087, Tiu's
‘c‘:ompiler.'which'was on ifs first release, would see better test results wheln later
versio'hs would allow‘ inking and generatiox; of object code modules.

;

6.3.3 Other Testing on Microcomputers
Development of the computer program in a mi;:rocomputer environment
_I'acilitated testing of several ideas. Fo.ll.owing the experience gained in
implementation of the computer program, the model was compiled and executed using
Ryan-\f[ach;rland Professional Fortran and Lahey Fortran. The programs performed
without any problem. . . ?

The graphics capabilities offered by the .PCs were also utilized. To provide
transportaiaility among various graphics boards, HALOF by Media Cybernatics was
selected to translate the numeric data into visual information. Several sub-routines
were developed to display z.uat'er surface profiles in a quasi animlated mode. This
allowed the results to be inspected at each time step or as desired. This provided
considerable insight to the development of the spike and steepening of the wave

prolile.



‘634  Summary

| Based on the e:;tensiire testing and development of the -moving elemént
mode! on the microcomputers provided the comparison of results retrieval times with
the ﬁaﬁﬁama compuf:ers. It was found that the retrfeval time l'rom 8086, 8088 rea!
time:\ processors and .WATFOR‘?'T compilerg is excegsive f;'om the viewpoint of
: operafions requirements.

The Intel 8087, 80287 or equivalent nume.ric data processors; make
execution PC enviroh:hent c;.omparable with the mainframe computers. .Difi‘erences
~ noted in the results between the mainframe and PCs could be attributed to the larger
word size for CYBER 171 mainframe computer. The difference noted between the
results of MS-FORTRAN and WATFORT7 for Test 'A' may be the result of rounding

off technique. More testing by similar computationally intensive programs are,

however, required to ascertain the reasons.

6.4 Input Requirements

The flexibility of computer program use, the transportability among
various operating environments and robustness is directly associated with the input
requirements of the model. An othe;"wise efficient prbgram would lose its f_ef'ﬁciency if
the input requirements are excessive, too sparse, obscure or site depen'dent.

Based on the experience gained in transposing the moving element from a
powerful numerical algorithm into an efficient, site independent, practical computer
program, the input requirements for the model were optimized. This does not,
however, preclude further improvements in input setup when the moving element

technique is generalized into an operational tool for flow forecasting and simulation.
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In the present computer program development phase data are read in two
‘ su;ges. At the first stage in the main program vanm{;s control paramet.ers areread in, -
These include the number of nodes grid size, mt.erval of printing result.s temporal
a.nd spatml wmghtmg parameters, convergence h:mts etc. The remaining input data
comprises the channel geometry mformanon, upstream hydrograph, downstream flow
conchtmn and initial flow condxtmns
Appendix G describes the input requirements and type of data for
simulating the Teton Dam - Break Flood. For executing some of th: prismlatic
channel model runs, & minimum of thirteen lines of data would suffice the input
requirements. On the othar hand, for simulating floods in the Grand River, described

in the next chapter, 51 lines of data were sufficient. A sample of input files for

computer runs simulating various experiments are included on the diskette,

6.5 Output Déscription

The efﬁcienc.y of a cemputerized model, such as the moving element
method, is not properly realized unless the program outputs meaningful information.
With the foregoing as fhe’background, objectives were set in printing qutput in an
efficient manner.

Following the example of a number of existing models, it was decided to
echo the input variables along with the variable name and its function. This
minimizes the need of a user manual‘foﬁnterpreting the output. Another objective
required the printing of profiles in such a menner that the output can readily be
employed in displaying the results grabhically. In fact most of the results reported in
Chapters 5 and 7 were develobed directly from the computer output.

The output can be divided into six major components. These are:



-

(2)

(3)

(4)

I's

" Echoof input: In this section the input is echoed a]ong with a description of

the vanable This consists of all control variables, channel geometry, et.c

A sample of this part of the output is shown in Appendxx H.

Initial conditions: In the moving element model the initial conditions can
be specified in three diﬂ'erﬁ_ways. For prismatic channels with st.endy
uniform ﬂow,. the deptl} and flow can be specified at the upstream
boundary. The depth and flow at other points are simply reflected from fhe
upstream values. This was used more out of convenience due to horizontal °
bed and pool conditions for many of the c.omputer runs. Strictly speaking,
this technique should only be used for supercritical initial flow conditions.”
The initial condlitions may also Be indicated by specifying the depth of Now
and flow rate at Ehe furthest downstream points. The depth and low at
other points are compuée_zd in the backwater subroutine employing a
momentum balance criteria. Finally, the depth of flow and flowrate can be
specified at each computation node of the initial grid configuration. This
information is printed in the section.

In the thira group, the flow profile is printed at predetermined fixed time
intervals. The interval for printing is specified in the B input card. The
variables that are printed inciude node lqcation, discharge, stage, depth of
flow, velocity and top-width. Most of the graphs produced for the numericai
experiments were extracted from this group. !

:I‘he hydrographs for a specified number of nodes are saved and printed in

the fourth group of output data. The information consists of node location,

time since computation started, flow rate, depth of flow and stage.
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6.6

The'qﬁality of inberpblétion, of time step, etc. are reflected in the mass
conservation or, striétly speaking, volume conservation calculations.

Information is printed for volume of water entering tl}e domgin, volume

leaving, and the éhange in storage between initial and final time-steps and

‘ -
the error introduced. For Lagrangian mede solution, it was not uncommon

to have perfect mass balance if l;.he initial conditions are specified correctly.

The sixth group of output data was added when computer simulations of the
Teton Dam break and the Grand Rive; flood were carried out. It is rare to
ﬁnci continuous temporal inforniation at a number of points on the river.
The most readily ol;tained information is the highest elevations that are
recorded along the stream. To reflect this, the program v‘vas enhanced to
store the highest computed elevations and maximum disci\arge. As the
highest elevation and maximum discharge are reached at different times,
these times are also stored. The envelope -of maximum elevation and
discharge and associated times are printed. A sample from the Grand River

output for the 1974 flood is displayed in Appendix I.

Summary

In this chapter, the transition of the moving element model from a

numerical algorithm to a practical forecasting tool was highlighted. While it is

important for the research to be captured and represented by a computer program, the

advantage of the technique cannot be realized until it can be demonstrated that the

computer program indeed is g viable tool for operational flash flood forecasting. This

]

" wasg achieved in this section.



',' I
- The course of the model development was charted h_long with the extensive
tests the various versions were subjected.’ The postability of the model was

established by first evaluating the program coding on two mainframe computers.

Subsequently, the program was posted to a number of micrecomputers.




CHAPTER 7" SR
APPLICATIONS

7.1. ' [ntroductlon

The extensive and controlled numerical te.stmg reported in Chapter 5
provided the backdrop for extending the apphcanon of model to solve fieId problems.
The computer program described in Chapter 6 required only slight modification when
applying the model to different problems. This will be described. in detail and this
requirerﬁent of modifications should not be interpreted as béing very site specific. The
need argse from describing a partic.:ular feature which then could easily be
generalized,.

In this chaptgr, five applications end two laboratory experiment veri-
fications are described. Of the applications, only two are with real field data and
observed flood events. One other ap‘plication examines the impact of mild slopes and
- channel expansions on flood characteristics. Another application is in a controlled
channel section with an observed flood hydrograph; in this study comparisons
between other dambreak models by Wurbs (1986) are extended. Finally, the fifth
application explores the flooding characteristics when a hypothetical dambreak flood
is imposed on a calibrated continuous flow medel. The experience in simulaﬁing
| laboratory experiments is described in Section 7.7.

This somewhat makeshift approach to the demonstration of the model
became necessary for several reasons. Among them are:

(D The general lack of field data in terms of continuous or near-continuous

stage hydrographs at a number of locations throughout study reach:

300
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(2)  Only few control pomts exlst that would allow conversion of depth of flow to

- dischargeto study ﬂow attenuation propertxes -
{3) No mformatmn is availble on the variation of roughness with depth; and
(4) Overall lack of data for near discontinuous flow éituation

-In the absence of such \ntal mformatlon, l:he model becomes, more or loss, a
black box between the upstream boundary usually controlled (either physxcnlly or by
information), and the downstream control pomt. . _

Thxjeé‘of the applicgtions are related to the flood event following the failure
of the Teton Dam ﬂoodingl and two applications deal with flooding in the .l-ower

reaches of the Grand River. These are further broken down as follows

(1) Teton Dam failure si&mlation; ;

(2) Teton Dam failure simulatior; with prismatic channel,

(3) Teton Dam failure simulation on mild sloped channel,

(4) Grand River ﬂood simulation; and,

(5) Grand River flood simulation with hypothetical dambreak hydrograph.

The details of these applications are described in the following sections.

7.2 " Teton Dam Failure Simulation

The Teton Dam is located near Rexburg in south-eastem Idaho, U.S.A. The
dam, straddling across the Teton Ri‘ver. was designed as a zoned earthfill embank-
ment with a maximum height of 305 feet above the river bed. The dam was
experiencing the first fill after construction in 1976, when the failure due to piping
occurred on June 5. The !ocatiorll map of the Teton i)am is shown in Figure 7.1,

"The hydraulic events surrounding the failure have been recorded and

reported by a number of agencies. Noteworthy reports were prepared by gundlack
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and Smith (1977) and Fread (1982). A val;iéty of scenarios hg(ré been postulated in
support of developing inflow hydrographs &l;ld subsequent hydraulic routing. For the
purpose of this study, ?ﬁhe hydrograph éenérated by the .U.S. National Weather
Service Model DAMBRK developed by Fread t197 8) was employed.

The information in this section is arranged as follows:

(1) description of the physical geometry, channel properties, ete.;

(2) initial flow and bour;dary conditions;
(3) model seflup; and,
(€] discussion of results.

7.2.1 /\Physical Description

For modelling purpose, the information was obtained by reducing the duta
supplied with the DAMBRK computer model. The reach length modelled was 59.5
miles, starting at the Teton Dam and ending at Shelly Gaging station. The channel
flows through three quite distinct reaches. For the first five miles the river flows ina
steep walled canyon and empties into a very wide shallow valley. This valley is
approximately 36 miles long; in the final reach the river once aguin traverses a weil
defined section, through the City of Idaho Falls, for the remaining distance of 18.5
miles.

The channel cross-section data supplied with DAMBRK consist of a table of
elevations and top widths for the conveyance section with a similar arrangement for
the over-bank storage, available at 12 locations where the channel geometry was
representative of the reach. Manning’s roughness coefficients were also obtained at
these points. DAMBRK also provides a table of the coefficient of roughness as a

function of depth.




304 -

. The moving elg.ment. n;)del was ﬁol: equipped ft;r th‘e eomfiqtatidﬁ of section .
properties like DWbPER, therefore, the stage-top width iz)formatliop-_}vas .ébr'w'erted
intc;) an exponentml power relaﬁonshi;). A tgrpicai érhss;set_:tion deﬁ-ne;l By the moving

. glement niodel.is lﬁhlown‘_in Fig"llre 72. In the model the channel properties are defined
asa functiori of the depth of flow. | - L -

The functional form is'defined as follows:

= 2 : 20 ) - (71
A=Cily -y 2+ T b, - 7) + 0, - )72 ._ (7-1)
g et ac - (7-2)
T"Tl.-{-ciz(ys-y;)
« If the flow is below the bank then
- : o - (1-3)
A=C(y, ~y)72 N
' o ‘ ' (7-4)
T=C,~-yy | :

A = areaof cgoss;-section

T = top width ’

Ci = channel side slopes below bank

C2 = channel side slopes above barik ‘

T\ = channel top width at bank level

¥4 = thaiweg elevation

¥y = bank ele;'ﬁtion

¥s = water surface eleval;ion

Similar relationships were used in calculating the wetted parameter and
the first moment of area about the water surface. Table 7.1 reflects the constants used

for describing conveying and non-conveying section properties. A constant Mannirﬁ"
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roughness coeﬁ'ic:ent wes used at each sectmn. t.hese ranged from 0.08 in t.he canyon
1mmedmtely downstrealn of the dam to 0 034 in the valley |

There wes only one croas-sectlon which caused some problam This sact.mn
was loeated at Mile 16.0 (that 1s. 16.0 :mles below the dam). The thalweg elevation at
this point differed by 20 feet between l:he data from DAMBRK and.one reportecj by
Gundlééh and Snﬁi't:h (1977). Thisyi erence could be attribﬁted to using two diﬂ'arent,

. L
forks of the stream in the valley. The moving element model was set up and run in

‘both modes; this is reported in the following sections.

7.22 . Initialand Bounda_ry Conditions . 4 - ¥

Propér initial conditions are necessary to ensure that the nurﬁe::icql
computat.io‘ns proceed as‘.squthly as possible. Similarly, the boundary ¢onditions.
have to be formulated in such a v;rag; that trivial a.olutions are not obtained.

For this problem the Shelly G:-agilng stgtion wag assun;ed to have a single
value stage-discharge reiatxonslup This was a departure from the ;:ondltlons used by‘
DAMBRK where a looped rating curve was employed The uut:al flow was assumed
to be 13,000 cfs at all points. A depth of ﬂow corresponding to 13,000 cfs was provided
at the downstream bouqdary.

To calct;late the initial flow depths, the backwater computation routine was
invoked. This routine was referred éo in Chapter 6 <.

The inflow ﬁydrogrlaph at Ehe ul;stream boundary consisted of a table of
time versus flow rate gt;nerated by a subroutijne’in the DAMP;RK ‘nodel. The inflow
hydrograph rose sharply frc_)fn 13,000 cfs to 1,684,000 cfs within 1:25 hours followed-by
an éxporiential decay over a period of 9.0 hours before a base flow of 13,000 cfs was

restored. Despite the fact that the inflow hydrograph was of about 11 hours duration,
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the coltnﬁﬁfations' were carried out for 50 'hpu'rs to account for the-pa'ass'age, of the peak

flow through the system. ~

7.2.3 °  Model Set up
To simixlatle .thq Teton Dam failure hydrographs, the moving element x;lo-del
was initially setl up for three diﬁ‘efgnt element sizes. Thése were 0.25, 0.5 and 1.0
mile. The model- with 1.0 mile element size was t.oo coarse and resulted in cﬁnver-
gence problems ciué to highly nonlinear channel geometry va'riatibn. With the other
two elemént sizes, the model _operated reasonably; the time step requirements,
however, for the 0.25 mile element size forced the e;cecution times to be more than
four times that for 0.5'-.rhnile element sizé and this element size wasg therefore
abandoned. - After establishing an element size of 0.5 mile, 120 nodes and -119.
| elements were required for the 59.5 mile reach.

Two different tﬁne steps were employed to route the hydrograph for the 50-
hour period. During the first 10 hours, when the.hydrugraph is changing quite
rapidly and velocities sufficiently large to violate the suggested criteria for the
moving element scheme; consequently, a time step of 450 seconds was used. After 10
hours, the wave characteristics are reduced to that of a continuous flow problem, and
the time st;ap was doubled to 900 seconds without causing any convergence problem.

The model was executed at centered spatial and temporal weightings. The
mterpolatlon at the Eularian regridding was obtained by the Three Point Lagrangian

“formula. When applymg_a numencal model to problems such as these, there are
always several minor studies within the overall study to investigate certain aspects of

L .
the flow in exaggerated detail. In this study several items were considered, some were
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not pursued and no discussion _énsue‘d, whereas others reqt:lired furth.er analysis and

these discm;sions are presented in the next section.

. For example, the model was hﬁﬁﬂly set up with no division between the
conveying and the non-conveying over bank section. Althou-gh the modal worked-. the
‘timing of peak flow, peak flow rate and depth were not consistent with the observed
values. This aspect of modelling is t.herefqre not reported. -

7.24 Discussion éf Résulté _
Following the .paSSage of the flood, damage to natural features ;-Jrovi.ded

evidence of the peak stage achieved by the waveuin the form of high water marks

along the trees, buildings, bridge piers, ete. This information was subsequently
surveyed and re_lated to the geodétic bench marks. These data along with indirect
establishment of hydrographs provided a basis of comparison. Initially, this was
considered more than adequate. As ﬁhe results were gradually analyzed, however, it
was found that the ﬁeld-:&noramtion could be duplicated by varying a number of
different parameters due to uncertainties in data.

Some of these features are now discussed.

a) Transition from canyon to valley: Although the moving element mcdei
produced no abnormal results, the sudden change in flow behavior in the
valle‘y may be an indicator of a control sectioﬁ at the canyon cutlet. This is
evident from the maximum flow envelope shown in Figuré 7.3. Ifthe grid is
made finer by emplc.);ng smaller e-l“e‘m.clent sizes and time steps, the results
showed considerable improvements. This is discussed further in tll'te next

application.
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Slope cha.nge at Mﬂe 16.0: As in the problem of the channel expansxon. A

sudden ehnnge in slope caused sumlar model performance. The logical

reasoning for this behavior would be the same as for the previous case. To

illustrate the problem, 3.5 miles of reach length was lsolated and plotted
along with the initial water surface profile and the state reached by.
operating the model at the initial flow rate of 13,000 cfs for 40 hours. The
minor diﬁ'erence in profiles can be attributed to the fact that for eom'p'uting
the initial flow profile, the forces on the water b.ody‘due to form changes are
neé included. This information is presented in Figure 7.4. it appears that
the cheking effect of the backwater stretching in£o the steeper reach extend .
about 0.5 mile into this steep sloped section.

This influence i3 evident m Figure 7.3 wt;ere the impact of slope
changes due to alternate thalweg elevations of 4817 and 4837 ft are
investigated. In this comparison, the flow 