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In the name l)fGod, the Beneficent, the :\1erciful

Read in the nllme ofyour Lord Who creates,
creates man from a clot
Read, for your Lord is most Generous
[it is Hel Who teaches by means of the Pen
teaches mlln what he does not know. {

(Surah:The Clot, Verses 1 - 5)
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ABST~ACT

Over th~:.Ye~, ~pidly '.varying channel flow land discoritinuities in th! ..~"
, ',-'. I ~,~~J!

soluti~n of flUid' mechanics problems have provided stimulation an~~l1allenge't~;'~"

numerical tnbdelers. Traditional (inite difference and finite'element methods produce'- .
accurate' but oscillatory solutions, AttemptS to selectively eliminate these parasitic

waves-have been only partially successful in that the cost of a smoother profile ~s a

lower .a~~~y sQhiti?n. ~t is com~o~ ,to ery either internal and external

dissipation parameters or a provision ofdispersive interface,

In thi's. thesis, the'problem of rapidly ~arying open channel now is

represented by a :a~ ~f nOl\lin~ar partial differen~iale.quatio\ which ure solv,cd by u

po~erful moving finite element technique. The method devel6ped in this research is, .'

based on the linkin,g ~f a novel Lagrangian mode solution with th'e convenience 9f the

Eularian grid at each time step. This seco~d order scheme was employed i~ solving ~:.~

variety Mdevised ~d reported open channe flow problems with near discontinuities,
l 04.'.~'.

Compatisons with solutions obtain using the finite difference und finite
"

element methods with Cran~-Nicholsoncentred. eightings demonstr~te'sthe qU&lity. "

improvements which have been achieved by this m ving element scheme, The basic. .

..... '~.: "-"!~~

'." .:::::
~

'-

\ scheme~""'as further generalized in'both spatial and tempor~J dime'nsions. Sensitivity. .
. ,

analysis of theseogeneralized parameters e~tablished the grid size relaxations for a. (" .
variety ~f pro~emso T:e mov~ng element tec*,que solved near discontinuous and

gradually varied flow'problemif both in supercrit"cal and subcritical regimeso
~ .-

An alternate form of Petrov-Galerkin weighting function was t~d and

found to give promising' resul~·. Further experime~tationand testing ure ~eqUired
...

before implementation.
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The robustn~S8 of the ;wlution 'procedure is indiCfted by the adaptation of

the model from the numerical and laboratory experiment stage to field·p~blems, The

model was succe~sfully applied to-the Teton Dam break flood and flood routing

problem in the '(Ontario) Grand River basin: Sensitivity analysis with very mild

sloped channels with topographical features such as sudden expansions and off-

channel storage suggest t.J1at the Eulerian-Lagrangian mode algorithm provides the.. ..."

. missing link between the fluid mech~ics ofdiscontinuities an~ aipr~ctical tool for the

modelling of rapidly varying open channel flow.
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