Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6646
Title: Modifications to the simple method for buoyancy-driven flows
Authors: Sheng, Qian Yi
Advisor: Sheng, G.
Shoukri, M.
Wood, P.
Department: Mechanical Engineering
Keywords: Mechanical Engineering;Mechanical Engineering
Publication Date: 1999
Abstract: <p>Numerical analysis for turbulent buoyancy-driven flows shares many common topics with other computational fluid dynamics (CFD) fields. However, it has several special problems that must be dealt with. The major contribution of this thesis is the development of a new algorithm, SIMPLET, for buoyancy-driven flows. The essence of the SIMPLE method lies in its coupling between the momentum and continuity equations. Almost all the algorithms of the SIMPLE family are based on one precondition, that is, the corrected velocity is obtained from the corrected pressure only. However, in buoyancy-driven flows, there are two major forces driving the fluid movement: the force caused by the temperature gradients and the force caused by the pressure (including kinetic pressure) gradients. In this thesis, the effect of the temperature correction on the velocity correction is considered during the derivation of the pressure linked equation. A modification to the SIMPLE algorithm--SIMPLET--was proposed. The development of the SIMPLET is divided into two stages. The first version of SIMPLET was developed on the basis of the Boussinesq assumption. Since the temperature variation in the flow fields encountered in modern electronic equipment and other industrial facilities is large enough that the Boussinesq assumption is not acceptable, the second version of SIMPLET was developed to remove this restriction so that it can be used for general cases. Because large temperature variations invariably cause turbulence, the flows with appreciable length scales are nearly always turbulent. As a preview of the application of the SIMPLET algorithm to real industrial problems, this thesis investigates several cases of turbulent mixed convection flows in a cavity problem using the RNG turbulence model. The test cases show that the SIMPLET method can speed up the energy equation convergence rate because of its linkage between temperature and velocity. When the convergence rate of the energy equation becomes the determinant in reaching a solution, the advantage of the SIMPLET method will be prominent.</p>
URI: http://hdl.handle.net/11375/6646
Identifier: opendissertations/1953
2948
1352998
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.85 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue