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ABSTRACT

Numerical analysis for turbulent buoyancy-driven flows shares many common
topics with other computational fluid dynamics (CFD) fields. However, it has several
special problems that must be dealt with. The major contribution of this thesis is the
development of a new algorithm, SIMPLET, for buoyancy-driven flows.

The essence of the SIMPLE method lies in its coupling between the momentum
and continuity equations. Almost all the algorithms of the SIMPLE family are based on
one precondition, that is, the corrected velocity is obtained from the corrected pressure
only. However, in buoyancy-driven flows, there are two major forces driving the fluid
movement: the force caused by the temperature gradients and the force caused by the
pressure (including kinetic pressure) gradients. In this thesis, the effect of the
temperature correction on the velocity correction is considered during the dernivation of
the pressure linked equation. A modification to the SIMPLE algorithm -- SIMPLET --
was proposed.

The development of the SIMPLET is divided into two stages. The first version of
SIMPLET was developed on the basis of the Boussinesq assumption. Since the
temperature variation in the flow fields encountered in modern electronic equipment and

other industrial facilities is large enough that the Boussinesq assumption is not

iii



acceptable, the second version of SIMPLET was developed to remove this restriction so
that it can be used for general cases. Because large temperature variations invariably
cause turbulence, the flows with appreciable length scales are nearly always turbulent.

As a preview of the application of the SIMPLET algorithm to real industrial problems,
this thesis investigates several cases of turbulent mixed convection flows in a cavity
problem using the RNG turbulence model. The test cases show that the SIMPLET
method can speed up the energy equation convergence rate because of its linkage between
temperature and velocity. When the convergence rate of the energy equation becomes
the determinant in reaching a solution, the advantage of the SIMPLET method will be

prominent.
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NOMENCLATURE

coefficient in discrete equation
cell area

constant in discrete equation
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pressure coefficient in velocity correction expression
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turbulent kinetic energy
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S source term

S, source term in energy equation

Sc constant part of linearized source term
Se coefficient of ¢, in linearized source term
t time

T temperature

u velocity component in x direction

U velocity vector

\% velocity component in y direction

\Y viscous terms in momentum equation
w velocity component in z direction

X Cartesian Coordinate

y Cartesian Coordinate

z Cartesian Coordinate

Greek Symbols

a thermal diffusivity

r diffusion coefficient
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temperature coefficient in velocity correction expression

3 Kronecker delta

AT  temperature difference

AV volume of control volume

€ the dissipation rate of turbulent kinetic energy
¢ general dependent vanable

u dynamic viscosity

\Y kinematic viscosity

P density

c, turbulent Prandtl number

T shear stress

T, turbulent shear stress
Superscripts

' variable correction

* variable before correction
Subscripts

c cold

e,w,n,s control volume faces

E,W,P,N, S grid points

eff

effective
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CHAPTER 1
INTRODUCTION

i.1 The CFD Method and its Applications

With the rapid development of computer hardware and Computational Fluid
Dynamics (CFD) methods, more and more engineers and scientific researchers recognize
numerical analysis as a cost-effective and convenient way of obtaining detailed information
for describing complex fluid flows. Various commercial CFD software packages for
different application fields are available nowadays such as FLUENT, PHOENIX,
FLOWTHERM, FLOVENT, ANSYS etc..

Numerical heat transfer has emerged as a new field which has significant impact on
scientific research and industrial product development. Thermal analyses have been
traditionally applied to product design, such as turbine design, combustor design etc..
These products are operated under high temperature and forced convection is used to
control the operating temperature. Because of rapid improvements to numerical heat
transfer methodology in recent years, thermal analyses have become a modem technology
to be applied for ordinary product design even when the products are operated at low
temperature and natural convection or mixed convection are used for temperature control.
One example of this is the rapid growth in electronic equipment design. Recent trends
such as high power densities on the chip, the increasing use of muiti-chip modules,

surface-mount technology, avoidance of fans to reduce noise and reduced package
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dimensions add to the thermal problem in electronic product development. Thermal
analyses have played an important role in such product designs.

Buoyancy-driven flows are encountered in many engineering applications, such as
building structures, space cooling and heating, nuclear reactors, radioactive waste
containers, electronic equipment, solar collectors, the casting industry etc.. Estimates of the
details of flow field are of crucial importance for evaluating equipment performance and
designing products.

Buoyancy-driven flow is a particular kind of convective flow, where the buoyancy
force cannot be neglected. The goveming differential equations for convective flows
involve the mass continuity equation, the momentum equations and the energy equation.
The derivation of these equations is based on the conservation of mass, momentum, and
energy respectively. The detailed derivation of these fundamental equations can be found
in any fluid dynamics or heat transfer textbook (eg. [1]). If the flow is turbulent, turbulence
model equations will also be involved. The solution of these equations under given
boundary conditions (including initial conditions if the flow is unsteady) will provide
detailed information about the distribution of pressure, temperature, velocity etc.. Based on
this information, all the flow field behavior can be displayed with various computer
software. Unfortunately, these governing equations can only be solved analytically, with
significant simplifications, for a few cases [1,2]. The validity and reliability of this method
of analysis depends on how well the differential equations and the boundary conditions
represent the real physical phenomena. An oversimplified equation, a rough model, or an

incorrect boundary condition assignment will lead to an inaccurate solution or even a wrong



conclusion. Oversimplification must be avoided and therefore, the governing equations
with reasonable simplification are usually solved numerically. That means the solution
procedure involves two steps: converting the differential equations to discrete algebraic
equations and then solving the algebraic equations. Modem computer technologies and
mathematical tools are now so powerful that the solution of these discrete algebraic
equations is nearly always available if these equations are properly formulated. The
solution we obtain in this way is usually called a numerical solution and, in fact, is the
solution to the discrete algebraic equations and therefore an approximate solution to the
original differential equations. If no round-off error is considered, the precision of the
solution depends on how well the discrete algebraic equations represent the original
differential equations.

The approach used to convert the differential equation to a discrete algebraic
equation is called the discretization method. The most important discretization methods
are the finite difference methods, including the finite volume method, and the finite element
method. The finite element method was originally developed for computational solid
mechanics use, but it has found more and more applications in the CFD field nowadays.
The detailed description of these methods can be found in any CFD textbook (cf. [2],[3])-
However, the most widely used method to solve buoyancy-driven flows and convective
flows is still the finite volume method.

In the finite volume method, a computational domain is divided into a finite number
of control volumes which are constructed by grid lines. The integral of each governing

conservation equation is implemented for every control volume. The surface and volume



integrals are approximated using appropriate schemes and the differential equation is then
converted to an algebraic equation. In the discrete equations, only the value of the
variables at the grid nodes are involved. If we sum equations for all the control volumes,
we obtain the global discrete algebraic equations for the whole computational domain. [3]
The solution we are looking for is in fact the solution of the discrete equations and not the
initial differential equations. Therefore, the validity and the reliability of this type of
numerical solution depend not only on how well the differential equations and the boundary
conditions represent the real physical phenomena but also how well the discrete algebraic
equations represent the differential equations.  All in all, the solution precision of a
numerical method depends on how good the final equations we are solving are.

Once the discrete algebraic equations are created for a particular flow, the last
problem is how to solve them. Though the solution scheme and procedure will not change
the equations we are solving and therefore will not change and influence the solution
precision, it is still an important part of the process. Without an efficient solution
procedure, the equations may not be solved practically with limited computer facilities or
may even not be solved at all. The current thesis concentrates on the topic of the solution

scheme only.

1.2 Background to the Problem
The solution procedure for the governing equations is problem dependent. For
turbulent, buoyancy-driven flows, the discrete algebraic equations are nonlinear and

coupled. For such kinds of nonlinear and coupled algebraic equations, the most widely



used solution method is the sequential scheme [3] in which the equations are solved one by
one with an iterative method. Each equation is linearized and solved for a single unknown
only. All the other unknowns and even the unknown being treated, when used in a
coeflicient in the equation, are assigned the currently available values. After one iteration,
all the coefficients are updated and all the equations are solved again. The iteration
continues until all of the unknown variables are reasonably unchanged and no more
iteration is needed. ( i.e. the solution is said to be converged)

When the iteration method is used and the equations are solved one by one, the
major problem is the lack of an independent pressure equation. In a laminar isothermal
fluid flow problem for example, the four independent variables are the three components of
the velocity vector plus the pressure while the four governing equations are comprised from
the three momentum equations and the continuity equation. The mass continuity equation
is only a constraint on the velocity field. An independent pressure equation may be
developed by combining the momentum equations and the mass continuity equation as
mentioned in {3]. The most widely used method is to develop and solve a pressure
correction equation instead of an equation for the pressure itself [4].

In 1972, Patankar and Spalding [5] successfully developed the SIMPLE (Semi-
Implicit Method for Pressure-Linked Equations) method using a staggered grid system.
The essence of the method lies in its treatment of the coupling between the momentum
and continuity equations. Since then, several variants of SIMPLE have been proposed to
improve its convergence rate. In 1980, Patankar [4] introduced the SIMPLER method in

which an extra equation was solved for the evaluation of pressure and the pressure-



correction equation is used for correcting the velocities only. In 1984, Van Doormaal and
Raithby [6] proposed the SIMPLEC method to improve the consistency of the SIMPLE
method. This modification usually provides faster convergence when the pressure-
velocity coupling is the factor mainly responsible for slow convergence. In 1985, PISO,
a method similar to SIMPLER, was proposed by Issa [7]. In the same year, Latimer and
Pollard [8] developed a method called FIMOSE to introduce a new, fully implicit
solution algorithm. In 1991, based on the minimization of the global residual norm ,
Chatvani and Turan [9] proposed a pressure-velocity coupling algorithm to determine the
under relaxation factor in the pressure equation. In 1992, Lee and Tzong [10]
introduced an artificial source term into the pressure-linked equation. In 1993, Yen and
Liu [11] introduced an additional explicit correction step to decrease the number of
iterations. It can be seen that all these modifications are based on one precondition: the
velocity correction is evaluated with respect to the pressure correction only. There is no
temperature-velocity coupling considered in the pressure-linked equation.

In parallel with the SIMPLE family of methods where the equations are solved
one by one; simultaneous solution methods or partly simuitaneous solution methods are
also available [12-14]. In the CELS (Coupled Equation Line Solve) method developed by
Galpin and Raithby in 1986[13], the temperature-velocity coupling was also considered.
However, while they obtained good results for certain laminar natural convection cases,
they made a statement in their paper [13] “...... In natural convection flow, the momentum
to energy coupling is strong for any significant convection. When the energy-to-

momentum coupling is also strong, the T-v coupling is bidirectional and requires special



consideration for solution.....”. In 1990, Davidson [14] applied the CELS method to
turbulent flows, but the application was still for natural convection only. To the author’s
knowledge, there is no publicaticn in the open literature about the application of CELS
method to mixed convection flows where “the T-v coupling is bidirectional”.

Simultaneous solution methods were originally developed for solving linear coupled

equations. When the equations are nonlinear and the iteration method must be
combined into the simultaneous solution to linearize each of the individual equations, the
method becomes difficult to use [3]. The technique of introducing under-relaxation
factors to prevent divergence ( as used in the sequential method ) cannot be effectively

applied to the simultaneous solution.

1.3 Major Contributions of This Work

In this thesis, an alternative method of coupling the temperature and velocity was
developed. It still uses the sequential method. The central concept of this method is to
modify the pressure linked equation in the SIMPLE algorithm to reflect the physical
behaviour of two driving forces: the force caused by the pressure (including kinetic
pressure) gradient and the force created by the temperature gradient in buoyancy-driven
flows. The modified pressure linked equation considers the effects of both the pressure
correction and the temperature correction on the velocity correction and therefore, this
new method, called SIMPLET, is more appropriate for buoyancy-driven flows.

The major research efforts of this work have been summarized into two papers.

One entitled “A Modification to the SIMPLE method For Buoyancy-Driven Flows™ was



published in the Journal of Numerical Heat Transfer, Part B: Fundamentals, Vol. 33, PP
65-78, 1998. The other entitled “New Version of SIMPLET and Its Application to
Turbulent Buoyancy-Driven Flows” was published in the Journal of Numerical Heat

Transfer, Part A: Applications, Vol. 34, PP 821-846, 1998.



CHAPTER 2

SIMPLE ALGORITHM REVIEW

The development of the SIMPLET method is based on the SIMPLE algorithm. A
short review of the SIMPLE method is given in this section to provide a context for
SIMPLET. Most of the contents of this discussion are based on the textbook of Patanker

[4] which should be consulted for the details.

2.1 The Discretization Equation

A detailed derivation of the governing differential equations can be found in [1].
In order to discuss the discretization of these equations, it is easier to mathematically
write the equations in same form of [4] as follows:
Apd)/ot + div (pU¢) = div (T'grad ¢) + S 1)
where ¢ is 1,u,v,T, k and € respectively (if the k-¢ turbulence model is used), I' is the
diffusivity which may be laminar or turbulent and S is the source term. The quantities T’
and S are specific to the particular meaning of ¢ but they will not influence the algorithm
development.

For the purpose of illustration, two dimensional flow will be considered.

Extension to three dimensions is straightforward. The governing differential equation for
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a two-dimensional, steady flow in Cartesian coordinates can be simplified to:
S(pud)/ax +d(pve)dy = 3/ax(T'ad/3x) + 3/3y(Tad/dy) + S @)

where ¢, I and S can be summarized in the following table.

Table 1 Summary of the Governing Differential Equations

¢ |T S
Continuity Equation 1 |0 0
Momentum Equation u | e -0p/0x +0/3X(l o OW/OX)
in X Direction +8/0y(pq OVIOX) + pg,
Momentum Equation V| My -0p/3y +0/0x(l ¢ Ou/By)
in Y Direction +0/3y(p . OV/BY) + pg,
Energy Equation T |oapye |0 cfeq. 61
Turbulence Kinetic Energy |k |ou., |G, +G,-pe cf. Eq. 49”
Equation
Turbulence Dissipation Rate | € | o, uy | C,.£k[G, + (1- Cy. )G, )- cf. Eq. 50’
Equation C,. pe¥/k

According to the basic idea of the control volume method, the computation
domain is divided into a number of cells as shown in Fig.1 and the differential equation is
integrated over each cell which surrounds one grid point, ( for example, P ) to obtain the

corresponding discretization equation.
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The convection terms 3(pu)/3x, 3(p vP)/dy and the diffusion terms 5/x(I'3¢/3x),
0/3y(I'd¢/3y) for each cell can be evaluated in terms of neighbor grid point values using a
discretization scheme[4]. After linearizing the source term S as S = S¢. + S;¢, and using
the hybrid discretization scheme [4], we will have the following discrete equation:

apdr = 2:Pp + awdw + andy + ashs + b (3)

or, in compact form as follows:

apdp = Y au b, + b (3a)
where ¢, ¢ by, $y and ¢ are the values of the variable ¢ at the grid point P and the
four neighbor grid points, East, West, North and South respectively. The summation is

over the appropriate neighbor points, nb, and the coefficients are given by

a,=ag+ay +ay+tag-S;AV 4)
b=S.AV (5)
a; =D. A (P +(-F, 0) (6a)
ay =D, A (P.])) + (F., 0) (6b)
ay =D, A (IP,)) + (- F,, 0) (6¢)
as =D, A (IP,)) + (F,, 0) (6d)

For the hybrid scheme (cf. [4]),

A (IP)) =<0, 1- 0.5[P]) )
The special symbol { ) stands for the largest of the quantities contained within it.
In equation (6), F is the mass flux at the grid face and D is the diffusivity coefficient

given by
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F=pu ®

D =TI/8x %
The ratio of F over D is defined as a Peclet number, P.

P=F/D (10)

Different grid systems and discretization schemes will change the expression of
each of the coefficients in the discrete equation but will not change the equation form (3)
and affect the discussion of the solution procedure. Therefore, the introduction to the
SIMPLE algorithm and the development of its modification as a means of solving the

governing equations are based on the initial and popular ones in open literature. [4][6]

2.2 Pressure Linked Equation

Noting that each individual equation is nonlinear and the equation set is coupled,
an iteration method is used to linearize each equation and solve the discrete algebraic
equations sequentially until a converged solution is reached. n The main problem with
using this method is that there is no direct equation for the pressure, p, which is one of the
dependent variables and its gradient forms a part of the source term in the momentum
equations. The calculation of the velocity field depends on the unknown pressure field.
The central part of the SIMPLE method is the development of a pressure linked equation
to treat the coupling between the momentum and continuity equations.

The staggered grid system shown in Fig. 1 is used to develop the SIMPLE
algorithm. The main grid points are arranged at the cross points of the main grid lines,

while the velocity component grid points are shown by short arrows. The grids for
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velocity components are arranged on grids that are different from the grids used for other
variables. With respect to the main grid points, the u-velocity locations are staggered
(displaced) in the x direction joining two adjacent main grid points. The velocity
components v and w (if the computational domain is three dimensional) are similarly
defined.

To develop the pressure linked equation, let ¢ be the velocity u and rewrite eq.
(6a). After extracting the pressure term from b, the resulting discrete algebraic equation
for the variable u and the control volume centered at € can be written as
3. = Y a,Uy, +b + (Pp-peA, (11)
In eq. (11) the term (p,-pg)A, is the force acting on the control volume caused by the
pressure gradient in the x direction, A, being the area on which the force acts. It is
obvious that due to the use of the staggered grid system, the expression of this term is
concise and easy to compute. No interpolation for pressure is needed as p, and p; are
nodal values.

Based on a guessed pressure p’, this u-momentum equation can formally be
solved to obtain a u’ that satisfies
au, = Yauly +b+(pp’-pe)A, (12)
Now, introducing
p=p +p’ (13)
where p’ is a correction to the guessed pressure so that p is nearer to the correct value
and defining

u=u +u’ (14)
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and subtracting eq.(12) from eq.(11), we obtain an equation for the velocity
correction u,’:
acuc’ = zanbunb, + (pP"pE,)Ae (15)

Assuming Y a,u,,’ is zero (cf. the SIMPLE method, Patanker [4]) gives

U’ = AJ/a, (Pe’-Pe’) = d(Pe’-Pe’) (16)
where

d.=A./a (17)
Therefore,

u =u’ +d. (pp’-pe’) (18a)

As discussed in ref. [4], the omission of Y a, u,.’ is acceptable, for it will not change the
ultimate solution. (ie. in the converged solution all velocity corrections will be negligible)

Similarly, for u, ,v,, and v, we have

u, =u,” +d.(pw’-pe’) (18b)
v, = v, +d, (p’-pPx’) (18c)
Vs = vs. + ds (pS,°pP,) (18d)

To obtain an equation for the pressure correction, p’, the corrected velocities given by
egs. (18) are substituted into the following discrete continuity equation:
(pu). A, - (pu)y, A, +(pV), A, - (pV); A, =0 (19)

It should be stated that this concise form of the discrete continuity equation is also
the result of using the staggered grid system.

Finally after substitution of egqs. (18) into (19) we obtain the following pressure

linked equation for the pressure correction



a,pPp’ = Yaupy t+b

where the coefficients are given by

a'p=zanb=as+aw+aN+aS

a; = (pAd),
ay = (pAd),
ay = (pAd),
as = (pAd),

and the source b is given by
b =cy - cg + c5- ¢y [-b also represents a mass source]

where c; = (pu’A),

cw = (pu’'A),
e =(pV'A),
Cs = (pv.A)s

The solution of eq.(20) yields the pressure correction.

2.3 The Solution Procedure of the SIMPLE Method

The detailed solution procedure can be found in ref. [4].

(20)

1)

(22a)
(22b)
(22¢)

(22d)

(23)

(24a)
(24b)
(24¢)

(24d)

16

[terations start from

guessed initial fields and the momentum equations are solved sequentially to obtain u’

and v'. The pressure linked equation is then solved to obtain p’ . Finally we make the

corrections to the velocity field and pressure field using eqs.(13) and eq.(18) and then

solve the energy equation and other equations (if any) to find the updated fields.

Since

the individual equations are nonlinear and the equation set is coupled, the coefficients in
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the discrete equations (ag, ay,etc.) are related to the dependent variables and are based on
the previous iteration and need to be updated. Sufficient iterations should be executed

until a specified convergence criterion set is satisfied for all equations.



CHAPTER 3

THE SIMPLET ALGORITHM

In buoyancy-driven flows, there are two major forces which drive the fluid
movement: the force created by the temperature gradient and the force caused by the
pressure (including kinetic pressure) gradient. The central concept of the SIMPLET
aigorithm is to reflect this physical phenomenon in the pressure linked equation and the

solution procedure.

3.1 The Modification of the Pressure Linked Equation

During the derivation of the pressure linked equation in the SIMPLE algorithm,
only a pressure related term is extracted from the constant “source” term, b, (cf. Eq.(11) )
in the discrete momentum equation and the remaining terms are considered constant
during one iteration. This mathematical treatment adequately reflects the physical
situation except for natural convection and mixed convection problems where the
buoyancy driving force cannot be neglected and sometimes is the major force driving the
flow. Noting that the velocity change is caused not only by a pressure change but also
by a temperature change, the buoyancy driving force should also be extracted from the
constant term, b, in addition to the pressure term. By introducing the Boussinesq

approximation [15], the buoyancy force applied to the control volume centered at e is

18
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8. AV B(T;+Tg) /2  where g, is the gravity component in the x direction, B is the
derivative of density with respect to temperature at the reference temperature T, (the
volumetric expansion coefficient), T, and T, are the temperature at the grid point P and
E. The reference temperature T, is usually assigned T. or some other well-defined
temperature.

Introducing

T=T+T (25)
and defining

B.=g.BAV/2 (26)

egs. (11-21) can then be rewritten as follows:

au, = Y a,u,, +b + (Pp-peA, + (Te+Tp) B, (117)
au. = Ya,uy, +b +(p-pe)A. + (Te +Te )P, (127)
au.” = Yauuy’ + (Pp’-pe’)A. + (Tp'+Te)B. (157)
U’ =d(pp’-pe’) + (T +T¢) (167)
where

6.=P./a, (17°)

so that u, is determined from u,” and two corrections:

u =u + d. (pe’-pe’) + 6. (T’ +T¢’) (18a)
Similarly,
u, =u,” +d, (Pw'-pp’) + &, (Tw'+T’) (18b’)

Vo=V, +d,(Ps’-px)+ o, (Ty'+T\) (18¢’)
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V.=V, +d,(ps’-py’) + 8, (Ts'+Ty") (18d")
The final pressure linked equation keeps the same form as eq. (20)
a, Pp’= L ayPy’ + b (20°)
where a, , a; , ay;, ay , a5 are the same as in equations (21) and (22). However, b changes
and is now given by:
b= cy-cgtcg-cy

tl(ew-agt+ ag-oy) Ty

toy Ty -ag T +agTs’ - ay Ty ] (23°)

where ¢, ¢y, Cy, Cs are the same as in eq. (24) and

ag=(pAd), (27a)
oy =(pAd), (27b)
oy =(pAS), (27¢)
os=(pAd), (27d)

It can be seen that the extra square bracketed term shown in eq. (23) is the only
difference between the original pressure linked equation in SIMPLE and the new one for

SIMPLET.

3.2 The Solution Procedure

In order to use the modified pressure linked equation, the solution procedure
should also be modified. Referencing the detailed solution procedure of the SIMPLE
method [4], the solution procedure of the SIMPLET method for two dimensional

buoyancy flows can be summarized as follows:
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l. Guess an initial field, including a pressure field p’ and a temperature field T .

2. Solve the momentum equation to obtain u” and v .

3. Solve the energy equation to obtain T and evaluate T' =T -T".

4. Solve the pressure linked equation to obtain p’ .
5. Correct the velocity field and the pressure field to obtain u, v, and p.
6. Solve the energy equation to obtain the temperature field T.

7. Solve other ¢ equations (if any, such as k, € for turbulent flows).

8. Update properties to prepare for the next iteration.

Obviously, this procedure is very similar to the procedure of the original SIMPLE
method. The major difference is that there is an extra step, step 3 to evaluate T’ . It
should also be noted that an approximation has been introduced in the evaluation of T .
We solve the energy equation at step 3 using u” and v’ instead of u and v so that the u’
and v’ are omitted. When the solution approaches convergence, u’ and v’ approach zero.
This kind of omission will not change the ultimate solution and is the spirit of the
development of the original SIMPLE method [4].

The modified pressure linked equation should provide a more reasonable pressure
correction in flows where buoyancy is important since it considers the effect of the
temperature change on the velocity change. The corrected velocity field and pressure field
are thus consistent. The energy equation is solved based on these consistent velocity and
pressure fields and therefore the convergence rate of this equation should be improved.
This will be shown for the laminar flow test cases in chapter 4 and the turbulent flow test

cases in chapter 5.



CHAPTER 4

THE LAMINAR FLOW TEST CASES

The motivation of the SIMPLET algorithm development is to make the pressure
linked equation adequate for buoyancy-driven flows and to provide a solver with a better
numerical coupling of the temperature and velocity fields dominated by buoyancy. It is
not to improve the precision of the solution. If we could solve the goveming differential
equations analytically, the solution would be an exact and precise one. Since we are using
a discretization method to solve the equations numerically, the solution we obtain is the
solution to the algebraic, discrete equations and therefore is an approximate solution to the
original differential equations. The precision depends on how well the discrete equations
represent the differential equations. The modification to the SIMPLE method introduced in
this thesis does not modify the conversion of the original differential equations to the
discrete algebraic equations in any way nor does it change the final discrete algebraic
equations at all. Hence the precision will be neither influenced nor improved. In the test
cases, there was no precision issue involved; the solution obtained with SIMPLE and
SIMPLET yielded the same results. The purpose of the test cases is to show how the
SIMPLET method is implemented and how good the convergence rate of the energy

equation is when compared to SIMPLE.
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The SIMPLET method for laminar buoyancy-driven flows was tested on two
typical examples. The first involves a natural convection problem in a square cavity;
while the second considers a mixed convection problem behind a vertical backward-
facing step. The computer code was developed by the author in FORTRAN and the
computations were carried out on the Cray C-90 supercomputer at the San Diego
Supercomputer Center. The test cases did show that the solutions provided by SIMPLE

and SIMPLET were the same, as expected.

4.1 Test Case I----The Heated Square Cavity Case

The heated square cavity problem is a typical two-dimensional, steady, buoyancy-
driven flow. The left wall is maintained at a higher temperature T, and the right wall is
maintained at a lower temperature T.. The top and bottom walls are insulated ( 6T/3y =
0 ). The fluid movement inside the cavity is caused by the temperature difference
between the right wall and the left wall. The problem was solved for air with P, = 0.71
using an array of 32 X 32 irregularly spaced grids. The non-uniformity of the grids is
generated in an exponential fashion with the refined grids near the wall boundaries. By
introducing the Boussinesq approximation, the governing equations for a steady two-
dimensional flow can be written as follows:
3u/ox + 3v/dy =0 (28)
d(uu)/9x + d(uv)/dy = -1/pdp/ox + u/p( 6/0x(Gw/dx) + 3/8y(3u/dy)) (29)
d(uv)/5x + d(vv)/dy = -1/pdp/dy + p/p (3/3x(Gv/5x) + 3/3y(Av/3y)) + gB(T - T,)/ p

(30)
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d(uT)/ox + d(vT)/3y = a(3/3x(3T/5x) + 0/0y(3T/3y)) @31

The boundary conditions are given by

x =0; u=0, v=0, T=T, (32)
x =1 u=0, v=0, T=T, (33)
y=0; u=0, v=0, dT/oy=0 34)
y=h=/[ u=0, v=0, dT/0y=0 (35)

The convergence is usually judged by the residual, Res, or the normalized
residual, Res . The residual, Res, is the imbalance in the discrete equation eq.(3),
Res = [agdg + ayPy, + andn + asds + b - a,d,| , and the normalized residual, Res o, 1S
determined by Res ., = Res /| a,¢y|. For the pressure correction equation, the residual,
Res, is the imbalance in the discrete continuity equation eq.(19),
Res = |(pu), A, - (pu), A, + (PV). A, - (pV), A,|, and the normalized residual, Res .., 1s
determined as follows since there is no a,¢; available.
Res ... = Res/ (Res),
where (Res), is the residual at the second iteration.

Both Res and Res ,, should be summed over all of the computational grid points.

The convergence criteria used in this thesis were taken from the default ones set in
the FLUENT software package [16] as they represent industry standards:

Res ., =1.0-10° foru,v, p

Res ., =1.0-10° for T

The test was first performed for the case of Rayleigh number, Ra, equal

to 1.0-10°, where
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Ra =G Pr
G, =gBAT PV the Grashof number
Pr=C, u /k the Prandtl number

B=-(p/3T)/p the thermal expansion coefficient

C, specific heat at constant pressure
k thermal conductivity

M dynamic viscosity

v kinematic viscosity

The problem was also solved with the commercial CFD package FLUENT choosing the
options of SIMPLE and SIMPLEC to obtain solutions for comparison. No Boussinesq
approximation is introduced in the FLUENT solution procedure. The residual histories
for the two options, SIMPLE and SIMPLEC, using FLUENT are shown in Fig. 2(a). It
can be seen that the application of these two methods resulted in almost the same
convergence rates, particularly for the temperature, T.

Using the same grid distribution and the same discretization scheme but
introducing the Boussinesq approximation, a computer code was written to solve the
same problem using the SIMPLE and SIMPLET algorithms. The residual histories for
these cases are plotted in Fig.2(b). A noticeable increase in the convergence rate was
obtained when using the SIMPLET method. Further tests for different Rayleigh numbers
were then executed and the residual histories for these cases are shown in Figs. 3-5. The
required iterations for different Rayleigh numbers are summarized in the Table 2. Note

that in each case significantly fewer iterations were needed when the SIMPLET method
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was used. [n every case, the underrelaxation factors for the two methods, SIMPLE and
SIMPLET, were kept the same since the convergence rates are related to the
underrelaxation factors being used. The results show that for the same SIMPLE method,
the introduction of the Boussinesq approximation improves the convergence rate,
-especially in the initial stages of the iteration. For all the cases shown in Fig.3-5, the
SIMPLET method provides faster convergence rate compared to the conventional
SIMPLE method. Fig.6 and Fig.7 show the contour plots of temperature for Rayleigh
number, Ra, equal to 1.0-10° and 1.0-10° respectively. Both SIMPLE and SIMPLET
provided the same plots. Comparing to the corresponding bench mark plots shown in the
ref. [17], there are only slight differences between our calculations and the bench mark
solutions since the viscosity was considered as a constant in the ref. [17] and allowed to
vary with temperature in our calculations. As expected, steep temperature gradients exist

in the near wall region. These get even steeper as the Rayleigh number increases.

Table 2 Required Iterations for Test Case I

Ra 1.0-10* 1.0-10° 1.0-10° 1.0-10°

SIMPLE 420 375 380 340

SIMPLET 215 170 200 245
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4.2  Test Case II----The Mixed Convection Case Behind A Vertical Backward-Facing step

Test case II, a mixed convection problem behind the vertical, backward-facing step ,
is shown in Fig. 8. It was originally chosen from Ref. [18] . In the paper, the local axial
conduction along the wall DF was not provided but was used in the computation (PP. 44).
Because of this unavailable information, the boundary condition for the hot wall was
changed from fixed heat flux in the original paper to fixed temperature in the test case II.
This change also meets the requirement of the SIMPLET algorithm development to
investigate the application of SIMPLET to the mixed convection flows with different
Richardson numbers. The test cases were solved for air using a 72 X 29 grid array
with the refined grids around the walls.

The governing equations for this two-dimensional, steady, mixed convective flow

are the same as those in eqgs. (28-31). The boundary conditions are given by:

Symmetric plane AE du/ox = 0,0v/9x = 0,0T/6x=0 (36)
Right wall BC u=0, v=0, dT/ox=0 37
Right wall DF u=0, v=0, T=T, (38)
Inlet Plane AB u=u,,v=0, T=T, (39)
Step wall CD u=0, v=0, dT/oy=0 (40)

Outlet EF ow/dy = 0,0v/dy = 0,0T/8y =0 41)
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in the test cases,

DF =167.4 mm , BC =5.6mm;
EF =10 mm, CD=1.0mm;
T, =35°C, T, =65°C;

The inlet air velocity u,, was set to different values to provide different Richardson

numbers, R; as shown in Table 2.

where R,=G/R}? the Richardson number
R.=ullv the Reynolds number
G, = gBAT P/v? =1.668-107 the Grashof number

The Richardson number represents the ratio of buoyancy force to inertial force. When it
approaches infinity, the mixed convection flow becomes a natural convection flow, while
Ri = 0 implies forced convection.

The computations were conducted using the same convergence criteria as before

and the required iterations for different Richardson numbers were summarized in

Table 3.
Table 3 Required Iterations for Test Case II
R, oo 100 10 1 0.1 0.01
SIMPLE 1640 1210 545 770 615 650
SIMPLET 1140 595 455 670 515 500
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Figs. 9-10 show the temperature distribution plots for the cases of Richardson
number equal to 100 and 0.01. When the Richardson number is equal to 100, the flow
approaches natural convection flow. The heat transfer is weak and the temperature
gradients near the hot wall are so small that the center of the channel can sense the hot
wall. When the Richardson number equals to 0.01, the flow approaches forced
convection flow. The heat transfer increases and the temperature gradients near the hot
wall are much greater than for the case when the Richardson number is equal to 100. The
center of the channel even cannot sense the existence of the hot wall. Fig. 10 also shows
that the temperature gradient at the section of y = 0.006m is less than the ones at the
sections of y = 0.02m and y = 0.05m. It implies that the point on the wall at y = 0.006m
is in the recirculation zone caused by the backward facing step. The reattachment point
moves downwards when the Richardson number increases.

Figs. 11 and 12 show the residual histories for Ri = = and 100. It can be seen
that when the Richardson number is large, indicating that buoyancy is the dominant
factor driving the flow, the SIMPLET method provides faster convergence than SIMPLE.
When the Richardson number is small, the number of iterations required for SIMPLET is
only slightly less than that for SIMPLE and therefore, the faster convergence effect of
SIMPLET becomes more moderate. As with the SIMPLER method [4], an extra
equation (step 3 of solution procedure) must be solved in each iteration for SIMPLET.
This extra computational work per iteration will increase the CPU time around 10% and

offset the benefit obtained from a decrease in the number of iterations required.
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4.3 Summary

For laminar, buoyancy-driven flows, there is no direct link between velocity and
temperature in the original momentum equations . The temperature influences the
velocity indirectly through changes in the density. By introducing the Boussinesq
approximation, a direct link between the velocity and temperature is established, and the
temperature, T, is treated as an explicit variable in the discrete momentum equations.
The introduction of the Boussinesq approximation makes it easier for the solution to
reach convergence as shown in Fig. 2.

The SIMPLET algorithm was developed to make the direct link between velocity
and temperature not only in the discrete momentum equations but also in the solution
procedure. The derivation of the pressure linked equation considers that the velocity
change is caused by both pressure changes and temperature changes. Therefore, the
solution procedure is consistent and usually provides faster convergence.

The solution procedure is not the only factor that influences the convergence rate.
The initial estimate and the under-relaxation factors are usually the major factors which
influences the convergence rate. Therefore, no quantitative conclusion about the
convergence rate can be drawn except when identical initial estimates and under-
relaxation factors are used. This is universal for all algorithm development. In addition
to that, the faster convergence benefit is usually conditional. For example, the
SIMPLEC method usually provides faster convergence than SIMPLE does, but not
always. Fig. 2(a) , for example, shows that SIMPLEC even provides a slightly slower

convergence rate when compared with SIMPLE for this particular case. The CELS
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method for natural convection flows usually provides faster convergence than the
SIMPLE family of methods as shown in the figures of ref. [13], but not always. When
the time step is small, the CELS method provides slower convergence than SIMPLER
and SIMPLEC do as shown in Fig. 8 in ref. [13]. Compared with SIMPLE, when the
pressure-veiocity coupling is the factor mainly responsible for slow convergence, the
SIMPLEC usually provides faster convergence[6]. In a similar fashion, when the
temperature-velocity coupling is the factor mainly responsible for slow convergence,
SIMPLET usually provides faster convergence than SIMPLE.

Like the development of SIMPLE itself and other modifications such as
SIMPLER and SIMPLEC, the development of SIMPLET algorithm was done for a
steady two-dimensional flow with staggered grids in a Cartesian coordinate system.

This can be considered as its weakness. However, it is also its merit. For example, the
SIMPLE method can be extended to collocated grid system instead of staggered grid
system[3], the SIMPLET can then also be extended to collocated grid system without any

special consideration since its development was exactly the same.



CHAPTERSS
THE APPLICATIONS OF SIMPLET TO

TURBULENT BUOYANCY-DRIVEN FLOWS

The temperature variation in the flow fields encountered in modern electronic
equipment and other industrial facilities is large enough that the flows with appreciable
length scales are nearly always turbulent. As a preview to the application of the SIMPLET
algorithm to real industrial problems, this thesis investigates several application cases of
turbulent mixed convection flows in a cavity where the geometry is relatively complex and

convex corners are involved.

5.1 The New Version of SIMPLET

When there are large temperature differences in the flow field, use of the
Boussinesq approximation is not appropriate [19]. Based on the Boussinesq
approximation, the buoyancy force is computed by gpp(T - T,)= gB(T - T,), where g is
gravity, B = - (8p/0T),/p is the thermal expansion coefficient and T, is the reference
temperature. It is obvious that once the Boussinesq approximation is applied, the
buoyancy force will not only depend on the temperature, but also on the reference
temperature. How the reference temperature, T, , is determined, is always a controversial

issue. More than that, in order to keep the truncation error of determining the buoyancy

4
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force to a certain level, the allowed temperature variation range is limited.

Fig. 13 shows the relative error of determining density caused by introducing the
Boussinesq approximation for water at a reference temperature of T, = 50°C. It can be
seen that the allowed temperature variation range is only + 10°C in order to keep the
computational error in determining the buoyancy force less than 5%. Therefore, a new
version of the Pressure Linked Equation which does not employ the Boussinesq

approximation was developed.
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Introducing a density correction in a manner similar to velocity correction and
pressure correction used previously gives:
p=p +p (42)
and noting that the velocity change is caused not only by a pressure change but also by a

density change, an updated pressure linked equation can be developed in the following

way.
By removing the Boussinesq approximation, eqs. (11°-23°) can be rewritten as
follows:
U, = Y ayly, +b + (Pp-Pe)A, + (Pptpe)g, AV/2 (11)
au.’ = Yauly, +h+ (e -pe)A: + (P +Pe) 8 AV/2 (127)
au.’= Yaul, '+ (p’-pe’)A, + (Pp’+Pe)g, AV/2 (157)
u’ =d(pe’-pe’) + 8pp’+pe’) (16)
where d,=A_/a, (17)
d.=g, AV/(2 a) a7’)

so that, finally

u =u, +d. (P-pe’) + 8, (P +Pe") (18a™)
Similarly,

u, =u,” +dPw'-pe’) + 8.(PwtPp) (18b)
Vo= Vo +d, (pp’-px’) + 6, (e’ +PN) (18¢c™)
ve= v, +d,(ps-p) + 8, (ps’ +pe’) (18d’")

The final pressure linked equation keeps the same form as before, as follows:
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a,pp’ = Ya,p. +b (20%)
where a, , Ya,, , 3, ay , 3y, a5 are the same as in equations (21) and (22) and
b =cy-cg+cs-cy
+[(aw-ag+ag-ay) pp’
T owpPw - 0P tosps’ - anpy ] (23")
where cg,cy,Cn,Cs Qg @y, @y ag are the same as in eq. (24) and eq. (27)
In the new version of the pressure linked equation for general cases, the density
appears directly in the extra, square bracketed term.
It is obvious that nothing needs to be changed in the solution procedure except for

the use of the new version of the pressure linked equation instead of the old one.

52 Turbulent Buoyancy-Driven Flow Test Cases

As mentioned in Chapter 4, the motivation of the SIMPLET algorithm development
is not to improve the precision of the solution. The present modification does not change
the final discrete algebraic equations. Therefore no precision issue is involved. The
solutions using SIMPLE and SIMPLET are the same ( as shown in chapter 4 ). The main
purpose for the test cases is to show how the method is implemented and how much the
convergence rate of the energy equation would be improved.

Fig.14 (a) shows a sketch of the test cavity to be studied in the present work. It
represents a cavity which has been investigated experimentally quite extensively. [t has a
height of 297 mm, a width of 149 mm, and a depth of 48.5 mm.  Water enters the

horizontal inlet which has a height of 8 mm, a length of 203 mm and is incorporated into
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the cavity at the top of the left vertical wall. A horizontal exit of the same size is
connected at the bottom of the same vertical wall. All the walls are considered to be
adiabatic except for the right vertical wall which is maintained at a uniform temperature
using copper block heaters. This test cavity has been investigated in the heat transfer
laboratory at McMaster University for several years. It was motivated by industrial
applications and has its important applications to at least one company in Ontario. Two
former Ph.D. students in our group also worked on it. Both experimental results and
traditional numerical results are available in the thesis of G. Nurnberg. [20] My research
is based on their experimental research efforts. The major conclusions from their thesis
are:

1. Because the width of the model is not too great and the boundary along this
direction is not insulated, a three dimensional effect exists. However, the flow still can
be reasonably treated as a two dimensional near the mid-plane.

2. The inlet is long enough (/ = 25d) to stabilize the flow entering the cavity.
The perturbation caused by the water supply system (the pipe system, the instrument
transducer location etc. ) will not seriously affect the flow inside the cavity. A precise
measurement of the velocity distribution profile and the turbulence level of the fluid at
the section A-A’ can therefore be avoided.

3. The flow inside the cavity is turbulent because of the flow separation in the
cavity and the heat transfer from the hot wall, though the inlet Re number is lower than

1000. This will also be illustrated later.
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For all the test cases, the common boundary conditions are assigned as follows:
1) Constant temperature, T,, , is maintained on the right wall. All other walls are
assumed to be insulated and boundary fluxes are zero.
2) No slip conditions, u =0, v = 0 are applied to all the walls.
3) Neumann conditions, 3¢/0x = 0, are prescribed at the outlet boundary for all the
variables, ¢.

The inlet conditions for u, v, T are prescribed to provide the three different test
cases (see Table 4). The Grashof number and the Richardson number, Ri, are based on
the height of the cavity. In all the test cases, the Grashof numbers are greater than
1.0-10° . Therefore, the flow inside the cavity will be turbulent.[1] The Richardson
number represents the ratio of buoyancy to inertial force. The importance of the

buoyancy force increases in the order A, B, C.

Table4 Summary of Test Cases

CASE A B C

u (m/sec) 0.124 0.063 0.063

v (m/sec) 0 0 0

T (°C) 223 24.0 259
T.. CC) 425 63.0 80.6

Gr 2.87-10° 10.7-10° 24.2-10°
Ri 1.27 11.9 19.4
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53 Turbulence Models

For turbulent flows, the main concern for engineers is not the details of turbulence
behavior, but its time-averaged effects. The process of time-averaging, however, will
introduce some statistical correlation terms involving fluctuating velocities U, and
temperature (T’) into the conservation equations. These terms can only be determined
by turbulence models. Analogous to Newton's law of viscosity, Boussinesq [21]
introduced a turbulent stress t, and a turbulent viscosity g, to model the Reynolds stress
term, U/, as follows:
t, = - pUU; = p,3U/x; - 2/38,pk (43)
When i is not equal to j, T, = p, dU/Ox; , which accounts for the shear stress due to
turbulence motion, otherwise, t, = W, dU/9x; - 2/3pk , which accounts for the normal
stress due to turbulence motion, the counterpart of molecular motion being the static
pressure term p/p. Unlike the molecular viscosity, the turbulent viscosity, yu,, is not a
property of the fluid but is a flow parameter dependent on the local turbulence. Its value
usually varies from point to point within a given flow field. In a similar manner, the
turbulent heat flux can be expressed as
U'T = adT/ox,=v, /o, dT/dx (44)
where o, is the turbulent Prandtl number.

Once the turbulent viscosity concept is introduced, the governing equations can be

rewritten as follows:

duy/ox; =0 (45)
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dUyot + U; aUyax; = -1/pd/ox; [p + 2kp/3 ]+ 0/9x; [(v + v)U/Ox; ] + g (46)
oT/at + U; dT/ox; = 9/9x; [(e +a, )T/0x;] 47)
The introduction of turbulence viscosity, v, , provides a framework for
constructing a turbulence model, but it does not constitute a model itself. The remaining
task is to express the turbulent viscosity in terms of known or calculable quantities. The
turbulence model equations for calculating the viscosity, v, , are part of the governing
differential equations and therefore will significantly influence the flow field solution.

For turbulent flows, the solution depends on the turbulence model being used.

5.3.1 The Standard k-€, Two Equation Model

One of the most widely used turbulence models is the so-called k-€, two equation
model. The k is the notation for turbulent kinetic energy per unit mass, so k'” describes
turbulent velocity fluctuation strength. The € is the rate of dissipation of turbulent
kinetic energy. From dimensional arguments it can be shown that € ~ u’’// where / is an
integral length scale. Analogous to the evaluation of molecular viscosity from kinetic
theory, the turbulent viscosity, v,= i, /p ~ u’/, can be expressed as:
v=C, k' ke =CyK'/e (48)
where

C. is a constant coefficient

k'? is the turbulent velocity fluctuation strength

k*?/€ is the turbulence length scale

The detailed derivation and modeling of the two equations for k and € can be found in
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[22]. The commonly used version of the k and € equations are:
ok/ot +U; ok/ox; = 8/9x; [(v + v, /a, )ok/dx;] + v, (BU/8x; + dU/9x,) U/3x; - €
(49)
Je/dt +U; de/ox; = 9/0x; [(v + v,/0¢)3e/dx;] +
v, C,e/k(0U/dx; + dU/3x;) dU/dx; - C,e’/k (50)

where the commonly accepted values for the model constants are [23]:

C,=0.09
C,=144
C,=1.92
o,=1.0
ge=13
0,=09

Owing to assumptions made in the modeling of the k and € equations, this model
is only valid for high turbulence Reynolds number, fully developed turbulent flows. It
cannot be applied to the near wall region, where the local Reynolds number is low and
the flow is not fully developed turbulent or may even be laminar. To solve this
problem, an empirical or semi-empirical wall function is often used to assign values to
the near wall grid points and thus exclude the near wall region from the application
domain of the turbulence model. The wall function concept is to divide the near wall
region into two sub-layers; the fully turbulent inertial sub-layer and the viscous sub-
layer. In the fully turbulent inertial sub-layer, the velocity profile and temperature

profile are assumed to follow a universal semi-empirical logarithmic velocity profile and
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temperature profile determined experimentally. It is further assumed that the production
and dissipation of turbulent energy balance and the Prandt!’s mixing length model holds.
In the viscous sub-layer, turbulence can be neglected. The detailed wall function

treatment can be found in [24].

5.3.2 The Modified k-¢, Two Equation Models

In order to use the standard k-€ two equation model in wall bounded flows, a
suitable wall function must be provided by experiment in advance. A standard wall
function was designed for plane wall with zero curvature and zero pressure gradient along
the wall. Its application is limited. More than that, in certain cases, such as in
recirculating flows, no suitable wall function can be determined. Then, the standard k-€
two equation model must be abandoned. The buoyancy- driven flow dealt with in this
test cavity belongs to such a case.  There are many modified k-€ two equation models
developed by different investigators for solving different problems, mostly for separated
flow problems. In order not to use the wall function, some extra terms or coefficients are
introduced into the k, and € equations and the v, expression to modify the model so that
the updated model can be used in the whole computational domain including near wall
regions where the local Reynolds number is low and the flow is laminar or in the
transition regime. For this reason, these modified k-€, two equation models are usually
referred to as low Reynolds number k-€, two equation models. The general form of

these models can be expressed as follows.
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Ok/3t +U, ak/dx; = 8/x; [(v + v, /0, )aK/ax] + v, (BU/3x; + dU/ox,) dU/3x, - €

(49°)

d(e - D)/3t +U; &(e - D)/ax; = 8/9x; [(v + v,/0e)d(e - DYx] +
v, C, f, (€ - DY/k(3U/dx; + U/dx) dU/3x; - C, f, (€ - DY’k + E (50°)
v,=C, f, ke (48")

The damping functions (f;, f;, f,) and extra coefficients are summarized in Table 5 from a

number of researchers.
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Model Conventional Lam-Bremhorst[25] | Lam-Bremhorst [25]

(Neumann) (Dirichlet)

€, Wall Function Oe/dy =0 va’k/Fy

C. 0.09 0.09 0.09

C, 1.44 1.44 1.44

C, 1.92 1.92 1.92

o, 1.0 1.0 1.0

O¢ 1.3 1.3 1.3

fu 1.0 [1- exp(-0.0165R))* | [1- exp(-0.0165R)]?
(1 +20.5/R) (1 +20.5/R)

f, 1.0 1.0 +(0.05/ £,y 1.0 +(0.05/ f,)’

f, 1.0 1.0-03 exp (-RY) 1.0 - exp (-R})

D 0 0 0

E 0 0 0




Table 5 Continued

58

Model Hassid-Poreh [26] Hoffman [27] Launder-Sharma [28]
€, 0 0 0
Cy 0.09 0.09 0.09
C, 1.45 1.81 1.44
C, 2.0 2.0 1.92
o, 1.0 2.0 1.0
Oc 1.3 3.0 1.3
f. 1 - exp(-0.015R,) exp[-1.75/(1 + R, | exp[-3.4/(1 + R/S0)?]
/50)]
£, 1.0 1.0 1.0
f, 1.0 -0.3 exp (-R?) 1.0-03exp (-R?) 1.0 -exp (-R)
D 2vk/y? v/y k/dy - 2v (3K /ay)
E - 2v(6k'#/3y) 0 2vv (3, 13x,)
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Model Dutoya-Michard [29] | Chien [30] Reynolds [31]

€, 0 0 vok/Fy

Cu 0.09 0.09 0.084

C, 1.35 1.35 1.0

C, 2.0 1.8 1.83

o, 0.9 1.0 1.09

Oc 0.95 1.3 1.3

f, 1 - 0.86 exp[-(R,| 1-exp(-0.0115y") 1- exp(-0.0198R,)
/600)]

f, 1 - 0.04[-(R,/50)%] 1.0 1.0

£, 1.0 - 03 exp[-(R,|1.0 - 022 exp[-(R,| {1.0 - 0.3 exp[-(R,
/50)?] /6)%] 131} /fu

D 2v(3k'?/9y)* 2vk/y? 0

E -C,f,e DKk -2ev/y’exp(-0.5y") 0
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Model Nagano-Hishida [32] | H.G.G.G [33] To-Humphrey [34]

€, 0 3e/dy =0 2v(3k'2/3y)

Ca 0.09 0.09 0.09

C, 1.45 1.44 1.44

C, 1.9 1.92 1.92

o, 1.0 1.0 1.0

Oc 1.3 1.3 1.3

f, 1 - exp (-y" /26.5) [1- exp(- | exp[-2.5/(1 + R,/50)]
0.0066R)J*-[1+500
exp ( -0.0055 RY/R,]

f 1.0 1.0 + (0.05/ £,)’ 1.0

t, 1.0- 0.3 exp (-R}) 1.0 - 0.3/[1-0.7 exp(- | [1.0 - 0.3exp (-R})]-f
RJ] - exp (-R/) Ify" >S5, f=1;if y°

<1, f=1.0-exp (-R?)
D 2v(9k'?/ay)? 0 0
E (1- fu )vv Gy, /3°x)* | O 0
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5.3.3 Turbulence Models for Buoyancy-Driven Flows

By introducing the Boussinesq approximation, there is an extra term, pg;(T - T),
in the momentum equation for buoyancy-driven flows. Handling this extra term in a
similar manner to the other terms in the momentum equation to derive the k, and €
equations means there will be an extraterm, - fg;v/o, T/0x;, in the k equation and an
extra term, - C,e/kBg;v/0,dT/9x;, in the € equation. Different approaches have been put
forward for determining the coefficients C,, C, = C, [35] or C, = 0.7 {36] or C; = tanh
|v/u| [34].

Considering a heated vertical wall, a large source of the buoyancy-induced
turbulence production occurs in a relatively small temperature gradient along the vertical
direction. The term, - fgv/o, dT/3x; in the k and € equations cannot reflect this
behavior correctly.  Daly and Harlow presented the generalized gradient diffusion
hypothesis (GGDH) [38] to replace the modeling of velocity temperature correlation
(also see [39], [36],[40)).

Even adding the above mentioned extra terms, the standard k-g, two equation
model and the modified k-, two equation models still cannot simulate the turbulent
mixed convection flow well [41]. The difficulty comes from various aspects. In
natural convection, the transition from laminar to turbulent flow occurs at relatively high
Rayleigh numbers and in most cases, the molecular effects and turbulent-molecular
interactions remain significant in some regions of the flow field while others are fully
turbulent. In certain cases, even at very high Rayleigh numbers, turbulence may be

confined to only some regions of the flow domain [41]. The velocity distribution near a



62

wall does not follow a universal rule. In the case of natural convection over a horizontal
heated surface, turbulence occurs instantly as soon as the Rayleigh number exceeds a
critical value. The velocity close to the wall is very low or has a value of zero. For a wall-
jet like boundary layer along a heated vertical wall, the velocity exhibits a sharp peak very
close to the wall [41]. For the flows near to the vertical non-adiabatic surfaces, George and
Capp [42] identified an inner layer and an outer layer, separated by the position of
maximum velocity. The inner layer can be further divided into two sub-layers. [42] In
summary, turbulence modeling for buoyancy driven flows is difficult and buoyant flows are
known to exhibit features which cannot easily be described by statistical averaging.

Detailed information about this section can be found in [41], [42].

5.3.4 The RNG Turbulence Model

The RNG (RENORMALIZATION GROUP) turbulence model has received much
attention in the years since it was first presented in 1986 [43]. It uses the following
expression for the effective viscosity, ., to account for the low Reynolds number effect
Var = v, {1.0 + k [C, /(v, £)]'2)? (51)

The k and € equations for the RNG model are:

a(pk)/ot + HpUK)/Ox; = 0/ox[apq (K/OX)] + Gy + G, - pE (497)
Ape)/ot + ApUg) /0x= 0/0x[a p q (Oe/0x)] + C, e/k[G, + (1 - C3) G, ]
-G, peik (50™")

where G, is the production of turbulence kinetic energy due to velocity gradients:

G, =ns’ (52)
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S =(2S;Sy)"” (53)
S; =(3U; /0x.+ dU/ox;)/2 (54)
G, is the production of of turbulence kinetic energy due to buoyancy:
G, =- g au/p op/ox; (55)
a is determined by the following implicit formula

[ (@ -1.3929)/(a, -1.3929)] > | (o +2.3929)/(a, +2.3929)| 367

ol 1T (56)
a, = 1/Pr =k /(uC,) (57)
Cyoe =Cyp + [C. M (1 -/Mp))/(1 + B7’) (58)
n = Sk/e (59)
no = 4.38
B =0.012

Coefficients take the following values:
C, =0.0845
C,. =1.42
C,. = 1.68
C,,=0.8
a, =a, are determined by the following implicit formula
| (o -1.3929)/(1.0 -1.3929)] %' | (¢« +2.3929)/(1.0 +2.3929)| °*7 = u/pu ¢
(60)

The RNG energy equation is



G(pT)/ot + XpU;T)/Ox; = d/ox[ap.q (TT/0x))] (61)

where the Prandtl number, «, is determined by the following implicit formula

| (o -1.3929)/(ax, -1.3929)| 2! | (@ +2.3929)/(a, +2.3929)] °3%° = /1 .

(62)

a, = 1/Pr=k /(nC,) (63)

It can be seen that the low Reynolds number effect is also considered through the
treatment of turbulent Prandtl numbers in equations for k, ¢, and T (a,, a,, ) as a
function of p/p.s . A rate of strain term R in eq. 58 is introduced to capture the
sensitivity of turbulence to flows with streamline curvature to make the model suitable
for flows with massive separation and anisotropic large-scale eddies.

R=[C,n’ (1 -nMy)V(1 +Bn’) e’k (64)
The RNG model is being accepted by more and more researchers and has become one of

the three turbulence model choices in the FLUENT software, the industry standard.

5.3.5 Other Turbulence Models

In the early stages of turbulence model development, zero equation and one
equation models played an important role but they are too simple to be applied in the test
cases under study. A detailed review of these models is given in [20,23]. In addition to
the k-€ two equation model, there are some other two equation models such as the k-
model, where ® stands for the square of the fluctuating vorticity [22].

Most turbulence models are based on the concept of a turbulence viscosity.

However, this concept is not always acceptable, especially for certain heat transfer
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problems [44,45]. There are many other methods such as differential or algebraic
Reynolds stress turbulence models to model Reynolds stress and turbulent heat transfer.
Theoretically, these models can predict flow fields more precisely. However, the many
coefficients involved in these models cannot be determined analytically and must be
evaluated experimentally. Also, these coefficients are usually not universal but field
dependent. Therefore, their applications are not as promising as at first sight. Detailed

reviews of these models can be found in [46], [47].

5.3.6 Closing Remarks

Turbulence modeling is a very complex topic that has not yet reached maturity.
The development of all the turbulence models are partly based on experimental results.
Any modification to them without experimental support is therefore suspect. Natural
convection is extremely sensitive to changes in the container configuration and the imposed
boundary conditions so that the use of results from “similar’” problems is dangerous [48].
Since no experimental research was involved in this thesis project, no modification to the
turbulence model being used is introduced in the present study.

Different turbulence models fit different flow fields and there is not a perfect
model for every flow. As far as precision and computation cost are concemed, the best
model is field dependent. For the test cavity under study, the exit duct is at the same
side of the cavity and the flux cross sections change suddenly at B-B’ and E-E’. There
should be at least four small separation zones at the comer of C, D, E’ and B’. The

convection caused by the buoyancy also leads to flow separation somewhere in the
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cavity. These local separation zones can create turbulence. Besides, when the
temperature difference between the right wall and the fluid is high enough, the buoyancy
also promotes turbulence. [1] Therefore, even when the entering water velocity is as low
as 0.124m/sec and the entrance duct Reynolds number is lower than 1000, the flow is
still turbulent in the cavity. However, unlike ordinary high Reynolds number turbulent
flow, the turbulence inside the cavity is usually not fully developed and somewhere near
the wall, molecular viscosity cannot be neglected. Besides, there are rapid strain and
streamline curvature regions in the recirculation zones. Based on this preliminary flow
field analysis, the standard k-e two equation model will not be considered for use.

Various low-Reynolds number k-€¢ two equation models have been used to
simulate buoyancy-driven flows. Modifications are introduced to the empirical constants
and the damping functions that are a function of normal distance to the wall. Obviously, the
normal distance to the wall will jump around any convex comer in the computational
domain and will cause a discontinuity problem.

In the newest version of the RNG turbulence model, a new variable, the distance to
the nearest wall, is introduced to replace the normal distance to the wall to avoid the
discontinuity problem [16]. Though the RNG turbulence model is also a semi-empirical
model, compared with the other two equation k- € models, it has better theoretical
foundations (cf. [43]). It has also been tested for various cases and been applied to
commercial software. The statement in the FLUENT users guide document that “.....All

the features listed above make the RNG k-& model more accurate and reliable for a wide

class of flows than the standard k-€¢ model.....” (cf. Ref 16, PP.6-21) shows that this
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model is worth recommending though it is not perfect. Therefore, the RNG turbulence
model is used in the present study.

It is claimed that the RNG turbulence model can be applied to the whole
computational domain without a near wall treatment as most low Re-number models do.

However, there is no reason to reject the use of a wall treatment when the RNG

turbulence model is used. The FLUENT software also offer this option for use. In the
current work, the near wall treatment is introduced with a two-layer model as follows,
[16].

First, a Reynolds number based on distance from a wall is defined
Re, = pk'? y/ p, (65)
where y is the normal distance to the nearest wall
y =min ||r - r, [ (66)
r is the position vector at the field point
r,, is the position vector at the wall point r,el,
[, is the union of all the wall boundaries involved.
When Re, > 200; the k- € equation are solved to find , and p ., as usual.
When Re, < 200; the molecular viscosity plays an important role in this near wall region

and a one equation model is used to determine y, :

u,= pC, k"I, (67)

where k is solved by the k differential equation and /, is given by an algebraic equation

as follows:
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l,=C, y [1.0 - exp(-Re, /A))] (68)
A=70
C,=xC,* (69)
K =042
e =k, (70)
I.=C,y[1.0 - exp(-Re, /A))] (71)
A.=2C, (72)

5.4  Numerical Test

Computation was carried out on the Cray C-90 Supercomputer at San Diego
Supercomputer Center. Coding by the author was initiated using the standard k-e
turbulence model with course grids and then an increased number of grid nodes was used
to confirm that the solution was grid independent. When the RNG turbulence model
with a two-layer model wall treatment was used, a denser grid distribution compared to

that used in the standard k-€ model was necessary in the regions near the walls.

5.4.1 Code Development

The code development was based on the one developed for laminar flows in
chapter 4. The RNG turbulence model was introduced into the code. The boundary
conditions were clearly stated in section 5.2 except for the turbulence kinetic energy, k

and the dissipation rate, €. In fact, there should be no turbulence at the entrance of the
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inlet, because the Reynolds number there is very low. The turbulence in the inlet is
caused by the sudden cross-sectional area change at the entrance to the cavity and the
recirculation inside the cavity. The natural convection inside the cavity also creates
turbulence when the Rayleigh number is high. The turbulence in the inlet is caused by
the downstream disturbance only and therefore is very weak. The turbulence kinetic
energy, k, at the entry to the inlet (section A-A’) is small. Since there are no
experimental results available for setting the inlet condition of k, and € in the present
computations, the inlet condition is set as usual for turbulent conduit flows, ie.

k, = 0.01- 3u,%/2

€q = Kz **/ dy, where d, is the hydraulic diameter of the inlet section.

This assumption is acceptable for the following reasons:

1. A certain level of turbulence in front of the inlet always exists except in a well
designed water tunnel which is not the case here.

2. Since inlet length is over 25d long and the Re number is less than 1000, the
flow will laminarize. Therefore, the flow at the exit section of the inlet channel (B-B’) is
almost laminar whatever the turbulence level is in front of the inlet. (That is the reason
why there is a long narrow inlet in front of the cavity.) It is not necessary to precisely
measure and assign the turbulence level at the entry to the inlet (A-A’).

3. Numerical experiments showed that there was not much difference when the
inlet turbulence kinetic energy was increased by ten times or decreased to a tenth of the
original value. The temperature distribution profile and velocity vector plots show no

noticeable dependence on the inlet boundary conditions for k and €.
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The coefficients a, = a, = a introduced in the k and € equations of the RNG
turbulence model are determined by the following implicit formula:
| (o -1.3929)/(1.0 -1.3929) °2' | (o +2.3929)/(1.0 +2.3929)] **™ = /-

The coefficient, a, introduced in the energy equation, when the RNG turbulence
model is used, is determined by the following implicit formula:
| (@ -1.3929)/(ax, -1.3929)] °2 | (&0 +2.3929)/(cx, +2.3929)| 3 = /.
where a, = 1/Pr =k /(u,C,)

The determination of these coefficients should be conducted for every grid point
and every iteration. When the Newton bisection method is used for this purpose, the
computer code for determining these coefficients cannot be vectorized, and thus it will be
computationally costly. In addition to that, all the model constants in turbulence models,
including the other model constants in RNG, are of three digits accuracy only, therefore it
is acceptable to simplify the determination of a. In this work, the following
approximation formula for determining o was used to keep its value to a precision of
three digital only.

o = C/[In(Mer /1)]° + Co/lIn(ieq /)Y + Co/[In(per /)] + C/lInCter /)P

+ Co/[In(ie /1)) + Co/lIn(ueg /)] + Cot Colln(pey /)]

+ Co[In(iegr /)T + CyolIn(ee /)T + Crilin(eq /n)]* + CpofIn(ueq /1))

+ Cys[In(pee /1))° (73)

where the coefficients C; i = 1, 13 are determined once for a given Prandtl

number by a separate subroutine instead of solving the implicit equation. The whole
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variation range of p. /u, should be divided into several sections so that the
computational error will be controlled to the level of 1.0 -10”.  For the range of Prandtl

number in the present study, 4-6 sections were sufficient to satisfy this demand.

5.4.2 Numerical results of the Field Behaviors

All the test cases were solved using both the SIMPLE and SIMPLET methods.
As expected, the final velocity and temperature results are independent of the algorithm
used.

Fig. 14 (b) shows the contour plot of the ratio of the turbulent viscosity to the
molecular viscosity for the typical test case, case B. It can be seen that the flow inside
the cavity is turbulent and that the turbulence in some regions is very weak. This makes
the simulation difficult since no turbulence model is totally adequate for this kind of flow.

A precise numerical prediction is nearly impossible.

Fig. 15 shows the numerically predicted velocity vector plots for the three test
cases. From these plots it can be seen that the flow field in the cavity can be considered
to be composed of two parts: one is the pressure-driven flow entering from the left inlet
duct and tumning downward and then exiting from the left exit duct; the other is the
buoyancy driven flow moving up along the hot wall caused by the temperature difference
between the right hot wall and the fluid.

In test case A, the mean kinetic energy of the entering flow is relatively high and
the temperature difference between the right wall and the fluid is low. The main flow

can reach the right wall and turn downward along the wall. The buoyancy-driven force



72

causes the flow near the right wall to move upward. Since the buoyancy is relatively
weak, this second flow soon meets the main flow and separates from the hot wall to form
a recirculation zone as shown in Fig. 15 (a). With a decrease in the entering flow mean
kinetic energy and increasing buoyancy driving force due to the temperature difference
between the right wall and the fluid, the separation point moves upward and the
recirculation zone becomes larger as shown in Fig. 15 (b) for test case B. With a further
increase in the buoyancy- driving force, the second flow caused by buoyancy is strong
enough to reach the top wall then turn left. In contrast, the entering flow from the inlet is
relatively weak, and after meeting the second flow, it separates from the top wall before it
reaches the right wall. The flows interact with each other and then exit the cavity. The
interactions between these two flows include momentum exchange and heat exchange.
This is the case shown in Fig. 15 (c ) for test case C. Figs. 16 show the corresponding
velocity vector plots (on a coarser grid) obtained by experiment using LDA (Laser
Doppler Anemometer) measurements for the three test cases A, B and C [20]. It can be
seen by comparing figures 15 and 16 for comparable cases that the numerical results and
the experimental results are in qualitative agreement.

More computations were conducted to support the preceding analysis. Fig. 17
contains the velocity vector plots for test case A where the inlet velocity was decreased
from 0.124m/sec to 0.094 m/sec and 0.063 m/sec respectively.  As expected, the
recirculation-zone size increases and the separation point moves up the heated wall with
decreasing inlet mean flow kinetic energy.

Figs. 18-20 show the numerical and experimental (from ref. [20]) temperature
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distributions near the hot vertical wall at three different locations: y, = 80 mm, y_= 140
mm and y, =200 mm. It can be seen that there are large temperature gradients along
the normal direction to the hot wall and the temperature profile soon levels off in the
region away from the wall. Numerical simulations are in good agreement with the
experimental data.

By comparing the results of case A and C provided by Nurnberg [20] using the
standard k-e turbulence model , the Lam and Bremhorst [25] low Reynolds number
model and the results provided in this thesis using the RNG turbulence model, it can be
seen that in these two cases, both the Lam and Bramhorst low Reynolds number model
and the RNG turbulence model provide qualitative agreement with experimental results.
However, in case B, where the two driving forces caused by pressure gradient and
temperature gradient are nearly in balance, only the RNG turbulence model provides
qualitative agreement. Fig. 21 shows the direct comparison of velocity vector plots
between experimental results [20] and the numerical results using the three different
turbulence models mentioned above. The most difficult case to simulate is mixed
convection flow where the two driving forces caused by pressure gradient and
temperature gradient are nearly in balance. In such a case, the advantage of the RNG

turbulence model over other models becomes apparent.

5.43 Convergence Criteria and Algorithm
Due to the use of the RNG turbulence model and the two-layer model wall

treatment, the underrelaxation factors for the present turbulent flow test cases are very
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low. In the present work, the under relaxation factor for u, v, k, are at the level of 0.01
and different from case to case but kept the same when the SIMPLE and SIMPLET
algorithms were used. The number of iterations required for convergence is much larger
when compared to the cases using the standard k-€ turbulence model with wall function.

In turbulent flows, the interaction between the turbulence model and the
momentum equations is usually the factor mainly responsible for slow convergence and
the convergence rates of Kk, €, u and v are the determinants in reaching a solution if the
convergence criteria set in FLUENT {16] are used ( ie. the normalized residual of
temperature be less than 1.0 -10° and the normalized residuals of other variables less
than 1.0 -107%).  Therefore, any of the SIMPLE family of algorithms does not show
dramatic advantages over the simplest scheme, SIMPLE [49]. Figs. 22-24 show the
residual history plots of u, v, m, T, k, and € for the three test cases — case A, B and C
respectively. For the sake of clarity, the figures for residual histories in turbulent flows
are created for every 100 iterations. In order to make sure no misunderstanding is
introduced, when parts of the plots are confusing, detailed residual history files were
created for clarification. For case A , serious oscillations occur but suddenly disappear
after 35000 iterations. The detailed residual histories of the variables using both SIMPLE
and SIMPLET were created for each iteration. Fig. 25 shows the residual histories and
the detailed oscillation situations.

It can be seen that the SIMPLET method usually provides a faster convergence
rate than SIMPLE for temperature, but the convergence rates for achieving a solution

are almost the same when SIMPLE and SIMPLET are used. However, in certain cases,
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such as in test case B, where the driving forces are nearly in balance, the convergence rate
of T is the determinant in reaching a solution. Here the SIMPLET method does provide
faster convergence and the advantage of the SIMPLET algorithm becomes apparent. In
fact, it is difficult to reach a converged solution using the SIMPLE algorithm at all if the
requirements on the normalized residuals given above for all the variables are strictly
satisfied. While a converged solution was reached after 25000 iterations using
SIMPLET,; after 40000 iterations, the residual of energy equation is still 2.0 -10° and no

converged solution can be reached when SIMPLE was used.
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Fig. 15 (a) Numerical Prediction of Velocity Vector (Case A)
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Fig. 16 (b) Experimental Results of Velocity Vector by LDA (Case B)
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Fig. 16 (c) Experimental Results of Velocity Vector by LDA (Case C)
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

The major contribution of this thesis is the development of a new algorithm,
SIMPLET, for solving buoyancy-driven flows. It can be applied to natural convection
flows or mixed convection flows, laminar flows or turbulent flows.

The judgement of a converged solution used in this thesis is based on the
commonly used convergence criteria recommended in FLUENT. The convergence
criterion for temperature, T, is Res < 1.0 -10° while the convergence criteria for the
other variables are Res < 1.0 -10°.  This work further proved that the smaller
convergence criterion for temperature was necessary. In fact, even if this criterion is
satisfied, in certain cases, the temperature has not yet reached convergence. Fig. 26
shows the test resuits for variable profiles at the outlet section F-F’ after different
iterations for test case A but with the duct width increased to 12.7 mm from 8.0 mm used
in chapter 5. It can be seen that a more strict criterion for T is required in this case to
ensure convergence. When precise predictions are required, more attention should be
paid to the temperature convergence check.

The turbulence model used in the test cases is the RNG turbulence model with a

two-layer model wall treatment. Because of the difficulties in modeling the turbulence
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behavior in buoyancy-driven flows [41], the numerical results using the RNG model are
still not totally satisfactory. = However, this work does provide one more example to
support the RNG turbulence model. For buoyancy driven flows such as the test case B
in this thesis, the RNG turbulence model provides better results than proper low-
Reynolds number k-¢ turbulence models do (see Fig.21). In the RNG turbulence model,
the low-Reynolds number effect is considered not only in the expression of p,, but also in
the k and € equations. The turbulent Prandtl numbers a,, o, a in the k, €, T equations
are no longer constants but are a function of u/p, . The extra term in the € equation
captures the sensitivity of turbulence to streamline curvature and therefore makes the
model suitable for a wide range of flows with serious separation and complex
recirculation zones. The coefficient treatments in the RNG turbulence model can be
considered to be quite universal for low Reynolds turbulent flows. The two layer zonal
model successfully replaces the wall function treatment which is only applicable to
simple and high Reynolds number turbulent flows.

The development of SIMPLET is divided into two stages. The author started this
work from the CELS method developed by Galpin and Raithby [13]. The central
concept of their method was to solve the continuity equation, the momentum equations
and the energy equation simultaneously. The temperature velocity coupling in the
momentum equations is created by introducing the Boussinesq approximation and is
created by Newton-Raphson linearization in the energy equation: the nonlinear heat flux

term, uT becomes
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uT =u*T + T*u - u*T*
where the superscript * denotes the values from the previous iteration. The final equation
set along a constant y grid line, the grid line j, is as follows[13]:

Ay, + Ay u, +AS vV, +b° =0

A%y = A%y, A, +AY D + A%ep, + AT T + AV T, + b°

AV, =Av, + A", + A p, + AT, +b°

AT, =A% T, + AT, T, , + A™u, + A™u, + AT v, + b’
where the velocity components u, v, the pressure, p, and the temperature, T are the four
variables to be solved. Their subscripts, i-1, i, i+1, denote the grid point location along
the x direction. All the coefficients A and b with different superscripts and subscripts are
constants. They are determined based on the currently available field values and the time
step for unsteady flows or the under relaxation factor for steady flows. Since an efficient
solver was developed to solve the equation set simultaneously, it usually provides faster
convergence than the SIMPLE family of algorithms does when a converged solution can
be reached. The detailed development and its performance shown in [13] encouraged
the author to try its application to mixed convection flows. Though the possibility of its
application to mixed convection flow can not be excluded, the difficulty is obvious. The
simultaneous solution method was originally developed for solving linear coupled
equations. Here, the equations are nonlinear and the iteration method is combined into
the simultaneous solution procedure to linearize each of the individual equations. The
coefficients and constants in the equations to be solved simultaneously must be updated

after each iteration. Thus the method is only a partly simultaneous solution method and
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the iteration procedure plays an important role in the solution procedure. When the
equations are solved one by one using the sequential method, the under-relaxation factors
introduced to prevent divergence in each equation can be different. In fact, the under
relaxation factors for u and v equations are usually the same, but different for other
equations. When the four equations are solved simultaneously, logically, the under
relaxation factors should be kept the same. If different under relaxation factors for each
equation are still used, one under relaxation factor will not only influence one equation
but also influence the other equations since the equations are solved simultaneously.
Therefore, the methodology of using the under relaxation factor to prevent divergence
cannot be freely and effectively applied to the simultaneous solution method. It is not
accidental that there is no application of the CELS method to mixed convection flows in
the open literature. The latest open publication related to CELS method is still for natural
convection flows [50].

Based on over half a year’s work, the author decided to apply the velocity
temperature coupling concept involved in the CELS method only and give up using the
simultaneous solution procedure and returned back to using the SIMPLE family of
algorithms. The idea of velocity temperature coupling also originated with the
observation that the introduction of the Boussinesq approximation into the momentum
equations made the solution easier to converge when the SIMPLE algorithm was used.
By intreducing the Boussinesq approximation, a direct link between the velocity and
temperature was established, and the temperature, T, was treated as an explicit variable in

the discrete momentum equations. These considerations prompted the author to make
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the linkage of the velocity correction and the temperature correction in the pressure
linked equation and in the whole solution procedure to speed up the convergence rate.
Meanwhile, based on the physical analyses of buoyancy-driven flows, there are
potentially two major forces which drive the fluid movement: the force caused by the
temperature gradient and the force caused by the pressure (including kinetic pressure)
gradient. From a logical point of view, the pressure linked equation should also be
modified to include buoyancy effects. The SIMPLET method was then developed for
buoyancy-driven flows. The derivation of the pressure linked equation considers the
velocity changes to be caused by both pressure changes and temperature changes. For
most laminar flows, where the velocity and temperature coupling is important, the
SIMPLET method usually provides faster convergence than the traditional SIMPLE
method. Like all the other algorithm modifications, the faster convergence benefit of
SIMPLET is conditional, but it can be applied to both natural convection flows and
mixed convection flows.

The second stage of the SIMPLET development started with the intention of
applying the algorithm to the real industrial problems where the temperature variation in
the flow field becomes significant and the Boussinesq assumption is not appropriate.
Fortunately, the analysis of the SIMPLET algorithm development shows that we only
need to link the velocity change and temperature change in the pressure linked equation
and the solution procedure. It is not necessary to follow through with the mathematical
treatment by introducing a volumetric thermal expansion coefficient to consider the effect

of temperature change in the momentum equation and the pressure linked equation. A
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new version of SIMPLET was then developed for the general cases of buoyancy-driven
flows. Since large temperature variations invariably cause turbulence, the new version
of SIMPLET was tested for turbulent flows. In retrospect, it was not necessary to
have developed the old SIMPLET version first. The original intention of this thesis
project was to extend the application of the CELS method, ie., to apply it to mixed
convection flows. The SIMPLET development initially grew out of a study of the CELS
method and adopted a key point of the CELS method: introducing the Boussinesq
assumption to create the velocity temperature coupling. It was not until the initial
SIMPLET method was developed, did the author realize that this restriction can be
removed.

As mentioned in chapter 4, the faster convergence benefit using a particular
algorithm is always conditional. When the pressure-velocity coupling is the factor
mainly responsible for slow convergence, the SIMPLEC usually provides faster
convergence than SIMPLE does [6]; Compared with the SIMPLE method, when the
temperature-velocity coupling is the factor mainly responsible for slow convergence, the
SIMPLET method usually provides faster convergence. However, in turbulent flows, the
interaction between the turbulence model and the momentum equations is usually the
factor mainly responsible for slow convergence. In such cases, the convergence rates of
k, €, u and v are the determinants in reaching a solution if the convergence criteria set in
FLUENT [16] are used ( ie. the normalized residual of temperature be less than 1.0 -10°
and the normalized residuals of other variables less than 1.0 -10°).  Therefore, any

SIMPLE family algorithm does not show dramatic advantages over the simplest scheme,
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SIMPLE [49]. The SIMPLET method is not exceptional. Only in certain cases, such as
test case B in chapter 5, where the driving forces are nearly in balance, does the
convergence rate of T become the determinant in reaching a solution. Here SIMPLET
will provide faster convergence. Fig. 27 shows a direct comparison of the energy
equation convergence histories using SIMPLE and SIMPLET for test case B in chapter
5. While a converged solution is obtained using SIMPLET after 20000 iterations, the
SIMPLE method never provides a converged solution if the convergence requirement of
the normalized residuals on all the variables is strictly satisfied. I do not discount the
possibility that a solution may be obtained with SIMPLE when more tests of
underrelaxation factors are conducted. However, in all the cases tested, the SIMPLET
method always provides a faster convergence rate for the energy equation than SIMPLE
does. When the convergence rate of the energy equation becomes the determinant in
reaching a solution, the advantage of the SIMPLET method will be prominent.

When the conventional SIMPLE family of methods is used to solve flows
dominated by buoyancy with a weak pressure field, some special considerations must be
taken to approach a converged solution. In the FLUENT software package, for example,
several solution options are recommended for flows with strong body forces [16]. In his
review paper in 1994 [41], Hanjalic mentioned that " most users employ the numerical
solvers developed for pressure dominated forced flows, in which the pressure field is
corrected in the course of numerical iteration to satisfy the continuity of the mean
velocity field. This approach is inadequate for flows dominated by buoyancy with weak

pressure field. An efficient solver with a better numerical coupling of the temperature
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and velocity fields dominated by buoyancy is needed, particularly for more complex
flows". The work done in this thesis strongly supports his argument. It does show that it
is possible to find a way to couple the temperature and velocity using an iteration method
for buoyancy-driven flows although the SIMPLET method is perhaps not the type of

solver that Hanjalic has called for.
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