Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6553
Title: Almost Selfcomplementary Graphs and Extensions
Authors: Das, Kumar Pramod
Advisor: Rosa, Alexander
Department: Mathematics
Keywords: Mathematics;Mathematics
Publication Date: May-1989
Abstract: <p>In this thesis the concept of selfcomplementary graphs is extended to almost selfcomplementary graphs. We dine a p-vertex graph to be almost selfcomplementary if it is isomorphic to its complement with respect to Kp-e, the complete graph with one edge deleted. An almost selfcomplementary graph with p vertices exists if and only if p=2 or 3 (mod 4), ie., precisely when selfcomplementary graphs do not exist. We investigate various properties of almost selfcomplementary graphs and examine the similarities and differences with those of selfcomplementary graphs.</p> <p>The concepts of selfcomplementary and almost selfcomplementary graphs are combined to define so-called k-selfcomplementary graphs which include the former two classes as subclasses. Although a k-selfcomplementary graph may contain fewer edges than a selfcomplementary or an almost selfcomplementary graph it is found that the former preserves most of the properties of the latter graphs.</p> <p>The notion of selfcomplementarity is further extended to combinatorial designs. In particular, we examine whether a Steiner triple system (twofold triple system, and a Steiner system S(2,4,v), respectively) can be partitioned into two isomorphic hypergraphs.</p>
URI: http://hdl.handle.net/11375/6553
Identifier: opendissertations/1861
3040
1356834
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
6.05 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue