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ABSTRACT

In this thesis the concept of selfcomplementary graphs is extended to almost
selfcomplementary graphs. We define a p-vertex graph to be almost
selfcomplementary if it is isomorphic to its complement with respect to Kp—e, the
complete graph with one edge deleted. An almost selfcomplementary graph with p
vertices exists if and only if p = 2 or 3 (mod 4), i.e., precisely when
selfcomplementary graphs do not exist. We investigate various properties of
almost selfcomplementary graphs and examine the similarities and differences with

those of selfcomplementary graphs.

The concepts of selfcomplementary and almost selicomplementary graphs are
combined to define so-called k-selfcomplementary graphs which include the former
two classes as subclasses. Although a k-selfcomplementary graph may contain
fewer edges than a selfcomplementary or an almost selicomplementary graph it is

found that the former preserves most of the properties of the latter graphs.

The notion of selfcomplementarity is further extended to combinatorial
designs. In particular, we examine whether a Steiner triple system (twofold triple
system, and a Steiner system S(2,4,v), respectively) can be partitioned into two

isomorphic hypergraphs.
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CHAPTER 1
INTRODUCTION

A simple graph is called selfcomplementary (s.c.) if it is isomorphic with its
complement. These graphs were first studied independently by G. Ringel [44] and
H. Sachs [48] in 1962. In 1963, R. C. Read [43] enumerated the number of
selfcomplementary graphs and digraphs. Since 1973, more than fifty papers have
already appeared on these graphs dealing with the construction and the study of
their various properties [1, 8-13, 30, 34, 3641, 44, 48, 49]. The amount of work

already done is a clear indication of the importance of this class of graphs.

There are apparently several reasons for studying this important class of
graphs. First of all the number of selfcomplementary graphs is asymptotically
much smaller than the number of all graphs with 2 given number of vertices. For
instance, there are 720 s.c. graphs with 12 vertices whereas the number of all
graphs with 12 vertices is over 165 billion [26] (A complete list of s.c. graphs with

12 vertices is given in [30]).

Furthermore, this class proved important from the view point of theoretical
computational complexity. Colbourn and Colbourn [14] have proved that the
graph isomorphism problem is polynomially equivalent to the isomorphism
problem for s.c. graphs. The study of graphical invariants of a graph and its
complement may be initiated from the study of similar invariants for s.c. graphs

[27]. This list could be extended further.
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The class of s.c. graphs, though interesting and useful, suffers from the
drawback that a s.c. graph with p vertices can exist only if p is congruent to 0 or
1 (mod 4). It is clear from the definition that the corresponding complete graph
must have an even number of edges, and thus a s.c. graph with p vertices does not
exist when p is congruent to 2 or 3 (mod 4). This provided us with the
motivation to remove this "trivial obstacle" by deleting some suitable odd number
of edges (in our case one edge) from the complete graph, and then look for a
partition of it into two isomorphic spanning subgraphs. We call this

selfcomplementary-like graph an almost selfcomplementary (a.s.c.) graph.

There seem to be no known instances of this concept appearing in the
literature except for a quite recent paper by Zelinka {55] where he briefly mentions
a similar class of graphs and uses them in a different context. As for this thesis,
we study the class of a.s.c. graphs along the lines of s.c. graphs and examine the
similarities and differences between the two classes. Subsequently, the concept is
further generalised to so called k—selfcomplementary (k—s.c.) graphs to include both
of these classes, as well as further graphs of selfcomplementary nature. The edge
set of the union of such a graph and its restricted complement possibly "misses"
more than one edge from the corresponding complete graph. This is followed by a
brief study of the idea of selfcomplementarity for combinatorial designs, in
particular, for Steiner triple systems, twofold triple systems and Steiner systems

S(2,4,v). For the terms not defined here, the reader is refered to see 3, 24, 25).

A more detailed outline of the present work is as follows:



In Chapter 2, we define an almost selfcomplementary (a.s.c.) graph to be one
containing one edge less than its complement but which is isomorphic with the
graph obtained after deletion of a suitable edge from its complement. Thus an
a.s.c. graph is exactly a part of the partion of a graph, obtained after deleting an
edge from the corresponding complete graph, into two isomorphic spanning
subgraphs. We study various properties of the isomorphism involved, called
complementing permutation (c.p.), and in the process, we provide a construction
method for an a.s.c. graph with a given c.p.. Since there exist no regular a.s.c.
graphs, we discuss two subclasses of a.s.c. graphs which are "nearly regular". This

chapter also includes a decomposition of a.s.c. graphs.

Chapter 3 contains results on the existence of a hamiltonian path and of
cycles of different lengths in an a.s.c. graph. We also prove that a hamiltonian

a.f.c. graph is recessarily pancyclic.

In Chapter 4, we provide a construction of an a.s.c. graph with a given
graphical degree sequence satisfying some prescribed necessary conditions. A lower
bound on the number of triangles in an a.s.c. graph is obtained in terms of its
number of vertices. It is also proved here that the diameter of a connected a.s.c.

graph is 2 or 3.

The concept of selfcomplementary graphs is extended further in Chapter 5 to
what we call k—selfcomplementary (k-s.c.) graphs. These include s.c. and a.s.c.,
but also other graphs. A k-s.c. graph is a graph isomorphic to its complement

with respect to a complete graph from which a matching with k edges has been



deleted. Thus k cannot exceed half the number of vertices. A construction of a
k—s.c. graph for any k satisfying this obvious constraint is given, and several

results on paths and cycles in such graphs are obtained.

Finally, in Chapter 6, we have attempted another extension of the notion of
selfcomplementarity to combinatorial designs. Observing that a Steiner triple
system with v elements (STS(v)) may be viewed as a partitioning of the edges of 2
complete graph with v vertices into triangles, partition of an STS into two
isomorphic parts is essentially the same as finding a s.c. graph or a s.c.-like graph
(according as the number of triples in STS(v) is even or odd respectively)} with v
vertices whose edge—set consists of a collection of edge—disjoint triangles. We call
such 2 s.c. graph or s.c.-like graph a Steiner selfcomplementary (s.s.c.) graph or
almost Steiner selfcomplementary (a.s.s.c.) graph respectively. We obtain a
necessary and sufficient condition for the existence of 2 s.s.c. graph and an a.s.5.c.
graph separately for which the complemernsing permutation is an automorphism of
the corresponding Steiner triple system. Similar questions are also examined for

twofold triple systems and Steiner designs S(2,4,v), with only partial answers.



CHAPTER 2
ALMOST SELFCOMPLEMENTARY GRAPHS

2.1. Introduction

A simple graph G is selfcomplementary (s.c.) if it is isomorphic with its
complement G (cf., e.g., [44, 48]). For a s.c. graph with p vertices to exist, the
number of edges in the complete graph K p must be even, and thus any s.c. graph
G with p vertices necessarily has p congruent to 0 or 1 (mod 4). Moreover, this
simple necessary condition is also sufficient. A substantial amount of work has
been done towards constructing and studying these graphs. [1, 8-13, 30, 34,
36-41, 44, 48].

The concept of s.c. graphs with p vertices can also be interpreted as
partitioning the edge set of a complete graph K D into two isomorphic halves, i.e.,
each half is isomorphic to the other, which is also its complement. So such a
partitioning of the edge set of a Kp is not possible when Kp has an odd number of
edges, i.e., when p is congruent to 2 or 3 (mod 4). However, after deleting some

suitable odd number of edges from K_ the remaining graph may be partitioned

P
into two isomorphic halves. In this chapter we discuss the simplest of these
possibilities, i.e., we delete one edge from Kp where p is congruent {o 2 or 3
(mod 4) and define a s.c. like graph. We always denote by e the edge deleted from

Kp before the proposed partition and call it the missing edge.



Definition. A simple graph G with p vertices is almost selfcomplementary (a.s.c.)
if it is isomorphic with its complement G with respect to the graph fcp =K -c,

the complete graph from which one edge e has been deleted.

This definition fixes an edge e corresponding to a given a.s.c. graph G such
that G U G= I-{p =K p~ e. Examples of a.s.c. graphs with 6 vertices are given
in Fig. 2.1. We have the following simple result regarding existence of a.s.c.

graphs.

Theorem 2.1.1. An almost selfcomplementary graph with p vertices exists if and

only if p = 2 or 3 (mod 4).

Proof. Necessity is obvious. For sufficiency, first suppose p = 2 (mod 4). Take a
s.c. graph G/ with p-1 (odd) vertices. By the properties of s.c. graphs with odd
numbers of vertices [48], such a G/ always exists and there is a permutation of
V(G*) taking G’ to G* which fixes exactly one vertex, say v of G*. Now taking a
vertex, say x, not in V(G*) and joining x to all those vertices of G already joined
to v, the resulting graph with vertex set V(G*) U {x} is an a.s.c. graph with p
vertices where (x,v) is the missing edge. Next for p = 3 (mod 4), take a s.c. graph
G, with p—2 vertices which again has a vertex, say u, fixed by a permutation of
V(G,) taking G, to G,. Then take two vertices, say x and y, not in V(G,). Join
both x and y to those vertices of G1 which are already joined to u and also join u
to one of x and y. The graph obtained on the vertex set V(G,) U {x,y} is an a.s.c.

graph with p vertices, where (x,y) is the missing edge.
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It may be remarked that not all a.s.c. graphs with given number of vertices

can be constructed by the method discussed in the above proof.

2.2. Complementing permutation and its cycle structure.

Suppose G is an a.s.c. graph with p vertices and the missing edge e. Then,
just like for s.c. graphs, an isomorphism between G and G is given by a
permutation 7: V(G) — V(G), called a complehenting permutation (c.p.) of G.
However (unlike in the case of s.c. graphs), there are two kinds of c.p.’s in the case
of a.5.c. graphs, depending on whether or not the missing edge e is fixed by the
c.p.. If 7{e) = e then 7 is called a strong c.p., otherwise 7 is a weak c.p..
Although these two kinds of isomorphisms are independent of the number of
admissible vertices, the two have different cycle structures. In either case we
assume that 7, being a permutation, can be written as a product of disjoint cycles.
Note that a given a.s.c. graph G may admit more than one c.p., while, on the
other hand, nonisomorphic a.s.c. graphs may have the same c.p. (this is precisely
what happens to s.c. graphs as well). Fig. 2.1 below shows all a.s.c. graphs with 6

vertices together with their (strong or weak) c.p.’s.

(a) (b) (c)

(a), (b) and (c) are all with strong c.p. (1234)(56) or
(1432)(56) and same missing edge (5,6



] 2 ) 5
5 6 2
3 4 4 3
(d) . (e) .

(d) with strong c.p.. (1234)(5)(6) (e) with weak c.p. (123456)
or (1432)(5)(6§ and missing ethe or (163452) and missing edge
(5,6). (3,6) or (2,5) respectively.

Figure 2.1

The following elementary obsecvations regarding the cycle structure of a
complementing permutation 7 of an a.s.c. graph G are parallel to those for s.c.

graphs, and so are stated without proofs.

Lemma 2 2.1. T has no cycle of odd length > 3. Also, if 7 has a cycle of length 3

then 7 is necessarily a weak c.p. and has no other cycle of odd length.

(A c.p. T of a s.c. graph has no odd cycle of length > 1 [48]).

This is due to the fact that there exists an a.s.c. graph G with 3 vertices and
a weak c.p. consisting of a single cycle, where E(G) contains exactly one edge.
Moreover, this (disconnected) a.s.c. graph can always be taken as an induced a.s.c.
subgraph of at least one a.s.c. graph with 4n+3 vertices such that deletion of these

three vertices results in a s.c. graph.



Lemma 2.2.2. 7 fixes at most two vertices of G. If 7 fixes two vertices u,v then

e = (u,v) is the missing edge, and 7 is a strong c.p. of even degree.

(A c.p. of 2 s.c. graph fixes at most one vertex [48])

Temma 2.2.3. 7 has at most one cycle of length £ > 1 such that £= 2 (mod 4). If
7 has a cycle of length £ = 2 (mod 4) > 2 then 7 fixes at most one vertex of the

corresponding a.s.c. graph, and 7 in this case is a weak c.p..

(For a s.c. graph, we have £ = 0 (mod 4) for every cycle of length £> 1 of a c.p.

[48])

Lemma 2.2.4. The order of an a.s.c. graph with a strong c.p. containing two cycles

of length 1 is always even.

Remark. An a.s.c. graph with more than 3 vertices is disconnected if and only if
it has eractly two components of which one is pancyclic and the other is an
isolated vertex. Also the associated c.p. is a strong c.p. containing 2 unique cycle
of length 2. TFig. 1(c) is an example of such a graph. (A proof of this remark is
given on page 15) .

The a.s.c. graphs with two or three vertices are always disconnected and we
call these trivial a.s.c. graphs. Further, in view of the above remark every
nontrivial a.s.c. graph with a weak c.p. is always connected. On the other hand
every nontrivial connected a.s.c. graph with a strong c.p. satisfies the following

condition.
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"If G is an a.s.c. graph with a strong c.p. 7 containing 2 unique cycle of
length 2 then there is either at least one cycle 7; of length > 2 in 7 such that both
vertices of the unique cycle of length 2 are adjacent to either of the fixed halves of
the vertices of 7; or one vertex of the two cycle is adjacent to all vertices of at
least one cycle in 7 and the other vertex is adjacent to all vertices of a different

cycle in 7",

Henceforth an a.s.c. graph in our discussion will always mean a connected

a.s.c. graph.

Lemma 2.2.5. If 7 is a strong c.p. of an a.s.c. graph G then 2 is an
automorphism of G. But if 7is 2 weak c.p. of an a.s.c. graph G then 72 is not an

automorphism of G.
(For a c.p. 7 of a s.c. graph, 7 is always an automorphism.)

This is due to the presence of a unique cycle of lengih either
{=2(mod 4) > 2 or £ = 3 in 7, where the image under 72 of the missing edge is

not itself. But 72 is an automorphism if 7 is a strong c.p..

2.3. Construction method
In this section we obtain a method of constructing an a.s.c. graph with a
given complementing permutation and then note some immediate consequences.

Here we do not distinguish between the symbols of the permutation and vertices of

the graph.

A simple extension of the construction algorithm for s.c. graphs by Gibbs

[21] yields a method of constructing all a.s.c. graphs with a given (strong/weak)
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c.p.. First, suppose 7 is a weak c.p. with no odd cycle of length > 1, whose
symbols are the numbers 1, 2, ..., p. Order the cycles (of lengths > 1) of Tin
non—-decreasing order of their lengths with the unique cycle of length 1

(if p = 4n+3) at theend. Ifr; =(123 .. 4n,) is the first cycle in this ordering
then denote by S the set of all numbers 2, 3, ..., 2n1+1; the first 4n1 numbers of
cach subsequent cycle and p (if p = 4n+3). M = (12... 4n,+42), 0y < m, is the
first cycle then S consists of numbers 2, 3, ..., 2n;+1, 2n;+2; the first 4n,+2

numbers from each subsequent cycle and p (if p = 4n+3).

Now to construct an a.s.c. graph, say G, whose vertices are labelled
1,2, ..., p and c.p. 7, decide arbitrarily whether the unordered pair (1,j), for every
j €S, is to be an edge or a nonedge in G. Then the same will be true for

(r2(1), 72(3)) with

i =12,.,2n,, if j is in a cycle of length 4ni ;
J J

= 1,2,...,2ni_+1, if j is in a cycle of length 4n, +2 and n, $ng,
J J J
= 1,2,...,2n, +1, if j # 2ny+2 is in the cycle of length 4n1+2,

= 1,2,..,ny-1, if j= 2n1+2 is in the cycle of length 4n,+2,

and i varies from 1 to 2n, or 2n;+1 according as the first cycle is of length 4n, or

4n,+2 and j = p(= 4n+3).

This gives all the edges of G(rl) and all the edges joining vertices in G(r,)
with those in G(7\7;). Then delete G(r,) and repeat the process for the c.p. T\7y

and continue till all cycles of 7 are exhausted. Since p is finite the process will
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terminate after finitely many steps. Note that if the &h cycle is (x)Xg...x4, t+2)
then (xp, /L X4n [|_2) is the missing edge provided (x;, o, [I-2) ¢ E(G)

otherwise (x;, Xo, ['_2) is the missing edge.

Suppose T is a weak c.p. whose elements are the numbers 1,2,3,...p(=4n+3)
and 7 contains a cycle of length 3, say 7* = (p-2, p-1, p). By Lemma 2.2.1, 7 in
this case does not have any other cycle of odd length. First construct a s.c. graph
G’ with p-3 vertices and a c.p. T\7 by the same procedure as above. Then join
the vertices labelled p-2 ard p-1 by an edge, and also join each vertex of 7/ to
every vertex in a complementary half of the vertices in G*. This results in an

a.5.c. graph, say G, with p vertices, a weak c.p. 7 and missing edge e = (p-2, p).

Next suppose that 7 is a strong c.p. whose symbols are the numbers

1,2, ..., p. Then, besides the cycles of lengths divisible by 4, 7 contains either

(i) two cycles of length 1 (if p = 4n+2)
or (i) one cycle of length 2 (if p = 4n-2)
or (iii) one cycle of length 2 and one of length 1 (if p = 4n+3).

This is due to the fact that a strong c.p. of an a.s.c. graph fixes exactly one edge,
say e = (x,y), which is our missing edge, and each of the vertices x and y accounts

for a 1-cycle or both together account for a 2—cycle in the strong c.p.
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In cither of the above cases the construction of an a.s.c. graph G with n
vertices may be carried out by treating the cycle(s) of length 1 and length(s) > 2
in the same way as in case of a weak ¢.p.. For the cycle of length 2, one of the
two vertices is treated like a cycle of length 1, and then the other vertex is joined
to the same vertices of at least one cycle of length > 2 which are already joined to
the first one while for the other cycles of lengths > 2 one only needs to maintain
the self complimentarity (cf. remark on page 9). If there is a cycle of length 1 in
addition to the cycle of length 2 then exactly one of the latter is joined to the
vertex of the former. Here the missing edge is the edge joining the vertices in a

unique 2-cycle or the two 1-cycles of the given strong c.p.

Now in both cases of weak and strong c.p. it can be easily checked that the
resulting graph G is, in fact, an a.s.c. graph. For illustration of the above
construction method take a weak c.p. 7= 7,7,, where 7; = (1234)and
Ty = (56789 10). ThenS ={2,3,5,6,7, 8. Take the unordered (1,j) as an
edge, for each j € S. Then by the construction method, (1,2), (3,4), (1,3), (1,5},
(1,6), (1,7), (1,8), (3,7), (1,9), (3,5), (3,9), (3,8), (1,10), (3,6), (3,10) are edges in
G(r;) and edges joining the vertices in G(r;) with those in G(ry). In the second
step of the construction we take the case of G(7,) by taking the "new"

S = {6, 7, 8} with (5,) € E(G(7,)) for each j € 5. So the edges in G(r,) are
(5,6), (5,7), (5,8), (7,8), (7,9), (3,10) and (9,5). The resulting graph is given in
Fig. 2.2. Here the missing edge is (7,10).

From the above construction method the following are immediate.
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Figure 2.2

Lemma 2.3.1. The induced subgraph on the set of vertices of any subset of the

cycles of a (strong/weak) ¢.p. is either a s.c. graph or an a.s.c. graph.

(For a s.c. graph, the induced subgraph on any subset of the cycles of a

corresponding c.p. is always a s.c. graph.)

Lemma 2.3.2. The vertices of any cycle of length > 3 in a (weak/strong) c.p. of
degree p alternate in vertex degree and the sum of the degree of any pair of
complementary vertices is p—1 except exactly for one pair, in the cycle of length

¢ = 2 (mod 4), which have degree sum p-2.

(In case of a c.p. of s.c. graph this holds without exception).
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Lemma 2.3.3. The adjacencies among the vertices of two cycles of lengths
{=0 (mod 4) and £ = 2 (mod 4) with & X ¢ have exactly four possibilities, i.e.,
all the vertices of either cycle are adjacent to a fixed half of the other cycle.

Lemma 2.34. Every a.s.c. graph with more than three vertices and a weak c.p.

consisting of a single cycle is connected.

Proof. Suppose G is an a.s.c. graph with p > 3 vertices and a weak c.p.
7=(12...p), where V(G) = {1, 2, ..., p}. Clearly p is even and 7 partitions
V(G) into two disjoint parts, say V; = {x, 1'2(x), ...} and Vo = {7(x), ra(x), vecdy
for some x € V(G). Also one of G[V,] and G[V,] is complete while the other is
totally disconnected, and G[VI,V2] contains at least on edge. Without loss of
generality, take G[V,] = Kp /2 G[Vy] = Kp /2 and (u,v) € E(G) for some u € V;
and v € V,. Then (Tzr(u), 'rzr(v)) € E(G) for every positive integer r. This
implies that every vertex of V2 is joined in G to at least one vertex in Vl‘ Thus

G is connected.
Now we give a proof of the remark on page 9.

Sufficiency of the remark is immediate. For necessity, suppose G is a
disconnected a.s.c. graph. By the above lemma, and as every strong c.p. of an
a.s.c. graph contains at least two cycles, any c.p. of G has at least two cycles. Let
G’ be the maximal s.c. subgraph of G (using Lemma 2.3.1). Then the c.p. of G
restricted to G\G’ has exactly one cycle and is of length 4n°+2 (n’ being a

nonnegative integer). If n” # 0 then G\G" is a connected a.s.c. graph. Also
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E(G[V(G’), V(G\G")]) # 8. This means that G is connected — a contradiction.
So n’ = 0, i.e., G\G’ has exactly two vertices. Again G being disconnected, only
one of the two vertices of G\G" is joined to all the vertices of G’ while the other

vertex of G\G" is an isolated vertex of G.

Now the fact that every s.c. graph, and hence G, has a hamiltonian path,
implies that the component of G containing G, by the above observation, is

clearly pancyclic.

Theorem 2.3.1. Suppose 7(G) = G and 7 = (123 .. p)is a weak c.p., where
p = 4n+2 (n 2 1). Then

(a) there is a set of exactly n consecutive odd (even) labelled vertices each
of which is adjacent to exactly n+1 even (odd) labelled vertices and the other set

of consecutive n-+1 odd (even) labelled vertices are each adjacent to n even (odd)

labelled vertices.

(b) G has vertices of four degrees: for some 1, n ¢ 1 < 2, there are n+1
vertices of degree r; n vertices of degree r+1; n-+1 vertices of degree 4n-T, and n

vertices of degree 4n+1-1.

Proof. (a) Suppose (L, 2i) € E(G) for i < n. Then 7" 737 (1,2) =

(1, 4n+4-2i) ¢ E(G) for all i ¢ n, as the image of an edge under every odd power
of 7is a nonedge. This implies that the vertex labelled 1 is adjacent to at least n
consecutive even labelled vertices. So every odd labelled vertex is adjacent Lo at

least n consecutive ever labelled vertices. Now we have two cases:
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Case (i). (1, 2n+2) € E(G). Then r‘o‘j(l, 2n+2) ¢ E(G) for all j > n due to our
construction of G, i.e., 2n+1 is the first odd labelled vertex which is not adjacent
to the same number of even Jabelled vertices as the vertex 1. So each of the first
n odd labelled vertices 1, 3, 5, ..., 2n-1 is adjacent to exactly n-1 even labelled

vertices.

Case (ii). (1, 2n42) ¢ E(G). Then (2, 2n+3) € E(G) and s0, as above,

'r2j(2, 2n+3) ¢ E(G) for all j > n. That is each of the first n+1 odd labelled
vertices 1, 3, ..., 2n+1 is adjacent to exactly n even labelled vertices and each of
the remaining n odd labelled vertices is adjacent to exactly n+1 even labelled

vertices.

(b) From (a) above each odd (even) labelled vertex in G is adjacent to n or
n+1 even (odd) labelled vertices. Now for the adjacencies among the even labelled
vertices only or the odd labelled vertices only consider an edge (i, i+2) in G with i
odd or even. The images of (i, i4+2) under different even powers of r contribute
degree 2 to each odd or even labelled vertex according as i is odd or even
respectively such that the sum of the degrees of an odd labelled vertex and an even
labelled vertex due to these adjacencies is 2n. Thus an odd {even) labelled vertex
is adjacent to either none, two, four, ...., 2[n/2] other odd (even) labelled vertices

in G. ‘Then the proof follows by taking r = n+j, where j € {0,2,4,...,2[n/2] }.

Remark. If r = 2n in the proof of (b) then G has vertices of only twc degrees:
2n+-2 vertices of degree 2r and 2n vertices are of degree 2n+1 each. However, this

is possible only when n is even.
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For the a.s.c. graph considered in Theorem 2.3.1., an edge or a nonedge (1,)
contributes 2n+-1 edges or nonedges for G through even powers of 7 for j ¢ 2n+1,
whereas the edge or nonedge (1, 2n+2) contributes only n edges or nonedges. We

call the first category the full orbits and the second the half orbits of 7. Now we

have

Corollary 2.3.1.1. Suppose G and 7 are as in Theorem 2.3.1. Further, if
d1 2dg 2. 2dy ) 49 is the degree sequence of G then the ends of the missing

edge have degrees

(1) d; 41 2nd dg) . o, provided G has vertices of four degrees,
or, (i) dg 41 and dg . o, provided G has vertices of two degrees.

Proof. Consider the spanning subgraph G’ of G containing only the edges
generated by the full orbits of 7. Then G’ is quasi regular or regular according as
G has vertices of four or two different degrees. In the first case the vertex set
V(G-) is partitioned into two classes as odd or even labelled vertices with degree
difference of at least two between any two vertices of different parity. But any
edge due to the half orbit always joins two vertices of opposite parity and so,
exactly n vertices of each of the two classes of vertices of G/ will have an
additional degree in G while the rest have the same degree as in G/. With this

the proofs in both cases follow immediately.

Corollary 2.3.1.2. Suppuse G and 7 are as in Theorem 2.3.1. Then the ends of the

missing edge are adjacent to exactly a vertices in common.
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We note that there are no parallel results in case of a strong c.p. since a
strong c.p. of an a.s.c. graph always contains at least two cycles. However, a

result regarding adjacency of the ends of the missing edge is following.
Lemma 2.3.5. If G is an a.s.c. graph with p (=4n+2 or 4n+3) vertices and a
strong ¢.p. then the ends of the missing edge are adjacent to some j (0 < j € 2n)

common vertices.

2.4. Quasi regular and almost repular a.s.c. praphs

The remark at the end of Theorem 2.3.1 guarantees the existence of an a.s.c.
graph with 4n+2 vertices and a weak c.p. 7 = (1 2 ... 4n+2) which has vertices of
only two different degrees (differing by 1) provided n is even. However, the
restriction of n being even is not necessary in case of a strong c.p.. Such a.s.c.
graphs with vertices of two different degrees, differing by 1 only, are called guasi
regular a.5.c. graphs. By Lemma 2.3.2, every a.s.c. graph with p (= 4n+2)
vertices has exactly one pair of complementing vertices with degree sum p—2
whereas this sum for all other complementing pairs is p-1. If such a G is quasi
regular then take a new vertex, say x, and let it be fixed by a corresponding
(weak/strong) c.p. of G. Now joining x to precisely all the vertices in a
complementing half of the vertices of G of lower degree we obtain an a.s.c. graph
with dn+3 vertices of whick 4n+2 vertices have degree 2n+1 each and one hus
degree 2n. Such a graph is called an alinost regular a.s.c. graph. It may be noted
that such 2 graph may be obtained through a different construction. For example,
take a s.c. graph with 8 vertices and degree sequence (5,5,5,5,2,2,2,2), and an a.s.c.

graph with 3 vertices and exactly one edge. Then joining every vertex of the



5

20

latter to all the vertices of minimum degree of the former, an almost regular a.s.c.
graph with 11 vertices is obtained in which 10 vertices have degree 5 cach and one
has degree 4. Examples of these two types of a.s.c. graphs are given in Fig. 2.3

below along with their c.p.'s.

]

7
6
{(a) : {b)
(a) quasi regular a.s.c. graph with (b) almost regular a.s.c.
10 vertices and weak c.p. = (12...10) graph with 11 vertices and
(missing edge (5,10)). weak c.p. = (12...8)(9 10 11)
(missing edge (9,11)).

Figure 2.3

The following are some of the results on the existence of such graphs.

Iemma 2.4.1. There exists no regular a.s.c. graph.

(For every positive integer n, there exists a regular s.c. graph with 4n+1 vertices).
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Lemma 2.4.2. If n is even then there exists a quasi regular a.s.c. graph with 4n+2

vertices and a weak c.p. 7= (1 2 ... 4n4-2).

Lemma 2.4.3. There exists a quasi regular a.s.c. graph with 4n+-2 vertices and an
almost regular a.s.c. graph with 4n+3 vertices for every positive integer n and a

strong c.p.

(There exists a quasi regular s.c. graph with 4n vertices for every positive integer

n, but no almost regular s.c. graph).

So, in general, we have

Theorem 2.4.1. For every positive integer n, there exists at least one quasi regular
a.s.c. graph with 4n+2 vertices and at least one almost regular a.s.c. graph with

4n+3 vertices.

Proof. Consider a quasi regular a.s.c. graph G’ with 4n vertices (which always
exists, Sachs [46]). Then G’ will have 2n vertices of degree 2n and the rest 2n
vertices of degree 2n-1 each. Also the vertices of the two kinds are
complementary of one another. Take two new vertices x and y, and join both to
all vertices of degree 2n—1 of G. The resulting graph is a quasi regular a.s.c.

graph.

Next, consider a regular s.c. graph G* with 4n-+1 vertices. Then G* has a

vertex, say x, fixed by some c.p. o of G*. Take two new vertices u and v not in
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G* and join u to some 2n vertices and v to the other 2n+1 vertices of G* such
that the self complementarity is preserved, i.e., (v,y) € E(G) & (v,a(y)) € E(G),
x # y € V(G*) and (x,v) € E(G), where G is the new graph. Notice that all the
vertices except u of the new graph G with V(G) = V(G*) U {u,v} are of degree

2n+1 and u is of degree 2n. Hence the graph G is an almost regular a.s.c. graph.

Corollary 2.4.1.1. For every almost regular a.s.c.’graph with 4n+3 vertices there

corresponds a quasi regular a.s.c. graph with 4n+2 vertices but not conversely,

A trivial result may be stated that there is no quasi regular a.s.c. graph with
an odd number of vertices and no almost regular a.s.c. graph with an even number

of vertices.

2.5. Decomposition Theorem

Gibbs {21] has proved a decomposition theorem for s.c. graphs in terms of
the smallest nontrivial induced s.c. subgraphs. To obtain a similar result for a.s.c.
graphs, we need only to check the result for the induced a.s.c. subgraph on the
vertex set of the cycle of length > 3 and not congruent to 0 (mod 4) in a weak c.p.

of an a.s.c. graph.

Lemma 2.5.1. Suppose 7{G) = Gand 7= (12...4n42). Then G contains a
subgraph, induced by the vertex set {1, 2, 2i-1, 2i} for some i, 2 ¢ i ¢ n+2, which

is isomorphic to the four—vertex s.c. graph.
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Proof. Recall from Theorem 2.3.1(a) that the odd vertex 1 is adjacent to n+1

even vertices of G. So suppose i is the smallest positive integer such that exactly
one of (1, 2i) and (1, 2) is in E(G). In particular, take (1, 2} € E(G) then
#2711, 2) = (211, 2i) € E(G). Also exactly one of (1, 2i~1) and (2, 2i) is in
E(G) by the definition of the c.p. 7. Finally (2, 2i-1) ¢ E(G), for otherwise

(1, 2i-2) ¢ E(G), contradicting our choice of i. Thus the vertex set {1, 2, 2i-1, 2i}
induces a four vertex s.c. subgraph. The other case when (1, 2) ¢ E(G) is similar.

Lemma 2.5.2. If 7(G) = G and 7 = (12 ... 4n+2) then G contains a collection of

n disjoint induced four—vertex s.c. subgraphs.

Proof. By the previous lemma, G has an induced four—vertex s.c. subgraph on the
vertex set {1, 2, 2i~1, 2i} for some i, 2 ¢i < n+2. Then it follows from the
construction method and the properties of the weak c.p. 7 that the induced
subgraph on the vertex set {'rzr(l), frzr(2), 'r2r(2i—1), 1'2:(21)} is also a four-vertex

s.c. graph, for eachr = 1, 2, ..., n-1. This completes the proof of the lemma.

Recall that the withdrawal of the vertices of the unique cycle of length
¢ £ 0 (mod 4) or the two 1—cycles from a weak/strong c.p. of an a.s.c. graph

results in a s.c. graph. So combining the above lemma with Gibbs’ result, we have

Theorem 2.5.1. If G is an a.s.c. graph with 4n+2 vertices then G possesses a

collection of n disjoint induced four—vertex s.c. subgraphs.
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In passing it may be mentioned that the general result (Theorem 6) of Gibbs
[21] regarding the (0, 1, --1)-adjacency matrices of s.c. graphs holds for a.s.c.

graphs as well.



CHOAPTER 3
PATHS AND CYCLES IN a.s.c. GRAPHS

3.1. Introduction

Suppose 7 = (1 2 3 ... p) is a (weak/strong) c.p. of an a.s.c. graph G, where
V(G) = {1, 2, ..., p}. Also suppose that the numberiug in every cycle of length >
4 in 7 begins with an odd integer. Without loss of generality, we assume that the
edges (i, i+2) € E(G) for all i odd in any cycle of length > 4 in 7. For if not,
(i+1, i+3) € E(G) and we can relabel the vertices appropriately. Further, if
7= (12 ... p) consists of a single cycle then we also assume that (i, i+1) ¢ E(G)
for all i odd. Otherwise (1, 2}, in particular, is a nonedge and then 7 may be
replaced by = (1p (p-1) ...2) and the vertices may be relabelled suitably.
This assumption is frequently used throughout this chapter.

With the above assumption regarding existence of some edges within an
individual cycle in 7, we next define a relation among different cycles of 7. Denote
the cycles of lengths > 4 of 2 c.p. (weak/strong c.p.) of a s.c. (an a.s.c.) graph G
by T, Tor ven Ty Then for any two cycles 7; and of 7, define an order relation

J

7 < ] if some even vertex of 7; is adjacent to some odd vertex of 7] (cf. Clapham
[9]). This, then, implies that every even vertex of 7 is adjacent to some odd

vertex of Tj'

Now we state some results on s.c. graphs from Clapham [9] and Rao [37]

which will be useful in what follows.

25
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Theorem 3.1.1. Suppose G is a s.c. graph with 4n vertices and a c.p. T whose
cycles have an ordering Ty < Ty <o < T Then G has a hamiltonian path
containing a pair of consecutive odd vertices of Ty appearing consecutively and
whose end vertices are consecutive even vertices of T Further, such a
hamiltonian path has some even vertex of T and some odd vertex of T+l

(1 < i ¢ m~1) appearing consecutively.

Theorem 3.1.2. If G is a s.c. graph with 4n > 8 vertices with a c.p. 7, containing
at least one cycle of length > 8, then for every integer £, 4n—4 ¢ £ < 4n-1, Ghasa
path of length £ containing a pair of consecutive odd vertices appearing

consecutively, and whose end vertices are consecutive even vertices of .

It may also be noted that either the pair of consecutive odd vertices or the
pair of consecutive even vertices mentioned in the above two theorems may be

chosen arbitrarily (cf. Remark 2.1 [37]).

Theorem 3.1.3. If G is a s.c. graph with p > 8 vertices then G has an {~cycle for
each 3 < { < p-2.

Corollary 3.1.3.1. If G is a s.c. graph with p (even) vertices and a c.p.
(7y7g-T)» Where 73 < Ty for all i < j, then a (p-2)—cycle in G can be chosen
containing a pair of consecutive odd vertices of Ty and a pair of consecutive odd

vertices of Tm appearing consecutively.

3.2. Paths and cycles in a special class of a.s.c. graphs

In this section we consider a.s.c. graphs each of which possesses a weak c.p.

consisting of a single cycle.
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Lemma 3.2.1, Every a.s.c. graph with 4n+2 (n > 1) vertices and a weak c.p.

consisting of a single cycle is hamiltonian.

Proof. Suppose G is an a.s.c. graph with 4n4-2 vertices and a weak c.p.

7= (123 .. 4n+42). Then, by the assumption at the beginning of this chapter,
the edges (i, i+1) and (i, i+2) € E(G) for all i odd. So, in particular, the edges
(1,2), (1,3), € E(G). Again, for n > 1, the edge (1,4) € E(QG) iff (2,5) ¢ E(G).

Since 4n4-2 > 4, we have in G,

either (a) the edges (1,4), (3,6), ..., {4n+1, 2)
or (b) the edges (2,5), (4,7), ..., (4n, 1), (4n+2, 3).

In case (a), a hamiltonian cycle in G is
2,1,4,3,6,5, .., 4n, 4n-1, 4n+42, 4n+1 (1)

(starting with 2 then subtracting 1 and adding 3 alternately).

In case (b), it is
1,2,5,6, .., 40-2, dn+1, 4n4+2; 3, 4, 7, 8, ..., 4n—4, 4n-1, 4n (2)

(starting with 1 and then adding 1 and 3 alternately),
where the numbers are taken residues modulo 4n+2.

This completes the proof.

This result can not include the case n = 1 for there is an a.s.c. graph G with
V(G) = {1, 2, 3, 4, 5, 6} and edge set E(G) = {(1,2), (3,4), (5,6), (1,3), (3,5),
(5,1), (1,4)} which is not hamiltonian.
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In the above Lemma we already have (i, i4+1) € E(G) for all i odd. So,
switching the last two vertices in (1), a hamiltonian path in G in the case (a)

above is given by

2,1,4,3,6,5, ..., 4n, 4n-1, 4n+1, 4n+-2.

Also (1,3) € E(G) and so reversing the order of the vertices from 1 to 4n+2 in
(2), a hamiltonian path in the case (b) is given by

4n+2, 4n+1, 4n-2, 4n-3, ..., 6, 5, 2, 1; 3, 4, 7, 8, ..., 4n—4, 4n-1, 4n.

Thus a direct checking for the case n = 1 completes the proof of the

following lemma.

Lemma 3.2.2. Every a.s.c. graph with p = 4n+42 (n 2 1) vertices and a weak c.p.
r consisting of a single cycle has a hamiltonian path containing a pair of

consecutive odd vertices of 7 appearing consecutively and consecutive even verlices

of T at the ends.

Theorem 3.2.1. If G is an a.s.c. graph with p = 4n+2 (n > 1) and a weak c.p.

consisting of a single cycle then G is pancyclic.

Proof. Suppose V(G) = {1, 2, ..., p} and 7= (1 2 ... p) is 2 weak c.p. of G.
Then (i, i+1) and (i, i+2) € E(G) for all i odd. Again, by the construction
method of a.s.c. graphs discussed in Chapter 2, (1,j) € E(G) with j < 2n+2 implies

that the image of the edge (1,j) under any even power of 7 is also in E(G).
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Case I. (1,5) € E(G) = (i, i+4) € E(G) for all i odd (since 5 < 2n+2). Then G
hasg induced subgraph G’ with the former’s 2n+1 odd vertices in which the edges
(i, i+2), (i, i+4), (i, i-2), (i, i4) € E(G’) for all i in V(G*), where the vertices
are to be taken residues modulo 4n+4-2. So G- is a 4 regular graph and it can be

easily checked that G’ on 2n+1 vertices is pancyclic.

Case I(i). (1,4) € E(G) = (i, i+3) € E(G) for all i odd. Then every pair of
alternate odd vertices in the hamiltonian cycle in case (a) of Lemma 3.2.1, are
adjacent in G. So by withdrawing one, two, ..., (2n+1) even vertices successively

from that hamiltonian cycle in G one gets &cycles, 2n+1 € £ < 4n+42.

Case I{ii). (1,4) ¢ E(G) # (2,5) € E(G) » (i, i+3) € E(G) for all i even. Also we
have (i, i+4) € E(G) for all i odd. Then by the same procedure the desired
{—cycles, 2n+1 < £< 4n+2, in G can be obtained.

Case . (1,5) ¢ E(G) =2 (2,6) € E(G) 2 (i, i+4) € E(G) for all i even (since

5 < 2n+2). Here again we consider two possibilities:

Case II(i). (1,4) € E(G) 2 (i, i+3) € E(G) for all i odd. For even j, and 4 < j < 2n,

consider the cycle

(1,4,3,5,8,7,9 ... 2}, 21, 2+1; 2j+2, 2j~2, 26, ..., 6, 2, 1)

of length 2j4+2. Since (i, i-++2) € E(G) for all i odd, one can withdraw successively
one, two, three, ..., j/2 even vertices, whose labellings are multiples of 4, from this
cycle to get cycles of lengths 2j+1, 2j, ..., 3j/2-+2 for each even j. Now varying

even j within its chosen bounds one gets &cycles, 8 < £< 4n+2. The remaining
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cycles of lengths 7, 6, 5, 4, and 3 are (1, 3, 5, 7, 10, 6, 2), (1, 4, 3, 5, 6, 2},
(1, 3, 5,6, 2), (1, 3, 6, 2) and (1, 3, 4) respectively.

Case II(ii). (1,4) ¢ (E(G) 2 (2,5) € E(G) = (i, i+3) € E(G) for all i even. For

even j, and 4 < j < 2n, consider the cycle

(4, 7,8, 11, 12, ..., 25, 2j4, 2j, 21, 2j+1, 2542; 2-2, 23,
246, 25T, ... 2, 1, 3, 4)

of length 2j42. Since (i, i+3) € E(G) for all i even, one can withdraw successively
one, two, ..., (j~1) vertices from this cycle with vertex labels in {5, 7, 9, ..., 2j-3}
U {2}, 2j+2} to get cycles of lengths 2j+1, 2j, ..., j+3 for each even j. Then
varying j within its chosen bounds one gets f~cycles in G for 7 ¢ £ £ 4n+2. The
remaining cycles of lengths 6, 5, 4, and 3 are (7, 9, 10, 6, 2, 5), (6, 2, 1, 3, 5),

(5, 2, 1, 3) and (2, 5, 6) respectively. [

From the above proof along with a direct checking for n = 1 follows:

Theorem 3.2.2. If G is an a.s.c. graph with 4n+2 (n > 1) vertices and a weak c.p.
7 consisting of a single cycle then for every integer ¢, 3 < £< 4n, G has an £—cycle.
Moreover, each such &<cycle in G with 4 < £ € 4r, has a pair of consecutive odd

vertices of 7 appearing consecutively.

Now employing the withdrawal technique of Theorem 3.2.1 in Lemma 3.2.2

one can easily prove:
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Corollary 3.2.2.1. If G is an a.8.c. graph with p (2 6) vertices and a weak ¢.p. 7
consisting of a single cycle then for every integer { p—4 < £ < p-1, G has a path of
length £ containing consecutive even vertices of 7 at the ends and in which a pair

of consecutive odd vertices of 7 appear consecutively.

3.3. Paths in a.s.c. graphs

In this section we show the existence of a hamiltonian path (and of other

paths) in any given a.s.c. graph by an explicit construction.

Theorem 3.3.1. Every a.s.c. graph G with a weak c.p. 7 containing no cycle of

length 3 has a hamiltonian path.

Proof. First suppose that [V(G)| = ¢ (=4n+2). Also suppose that 7 is a weak
c¢.p. of G whose cycles are o, T Tor oo Ty such that o is the unique cycle of
length not divisible by 4. We consider the following three possibilities with

respect to the ordering of the cycles of 7 defined earlier.

(i) < T <Tg< .. < T,
(i1) TI< Ty < <1 <0

and (iii) 7 <Ty<..< T<O< Ty < < T
Let us take a hamiltonian path P in G(¢) by Lemma 3.2.2. But the ends of

P are consecutive even vertices of ¢ each of which is adjacent to some odd vertex

of 7y in (i) above, P can be inserted into a hamiltonian path (Theorem 3.1.1 and

the note following theorem 3.1.2) of G(7\¢) containing a pair of consecutive odd

veriices of Ty appearing consecutively which are, in turn, adjacent to the ends of P

to get a hamiltonian path in G. The case with possibility (ii) is proved similarly.



For (iii), the two segments of P obtained after deleting the edge between the
consecutive odd vertices of o may be inserted into suitably constructed
hamiltonian paths of G(-rl-rz...-rj) and G(Tj +17j +2...'rm) to get a required
hamiltonian path in G as shown in the Fig. 3.1 below.

.even
‘vertex o

Glepgy ) even vertex of ’CJ

P: even vert .
of & {consecutive

vertices ofes

even vertex of ¢~

GlGe&al "ty : ¥ seven vertex of T
odd odd . m
even vertex ofzn, (consecutive odd

vertices of ¥,,)

Figure 3.1

Next, suppose that |V(G)| = p (= 4n+3). In this case a weak c.p. of G has "
a unique cycle of length 1, say o with the vertex labelled x. Suppose the other
cycles of 7 have an ordering Ty < Tg <o < T Take a hamiltonian path P of
G(r\o*) as above. Note that for every cycle T of 7, vertex x is adjacent to every

odd or to every even vertex of T Then the following are the possibilities.

(i) 1f x is adjacent to the odd vertices of 7, then a hamiltonian path in G is
obtained by inserting x between the adjacent consecutive odd vertices of 7y in P

(i) If x is adjacent to the even vertices of 7_, then a hamiltonian path in
G is obtained by joining x to either end of P’.

(iii) If neither (i) mor (i) holds then x is adjacent to the even vertices of 7
and the odd vertices of e for somei, 1 ¢ i ¢ m’~1. Then using theorem 3.1.1,

x can be inserted suitably into P’ to get a hamiltonian path in G. ¥
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Remark. If G is an a.s.c. graph with a strong c.p. then it may not have a
hamiltonian path because such a graph may be disconnected. For example, take a
strong c.p. 7= T, T, where 7; = (1234) and 7, = (56). Construct a s.c. graph G*
with 4 vertices and a c.p. 7. Then join the vertex labelled 5 to all vertices of G*.
The resulting graph, say G, is an a.s.c. graph with six vertices and strong c.p. 7.

The vertex labelled 6 is an isolated vertex of G and so G is disconnected.

Further, there always exists an a.s.c. graph with an odd number of vertices
and a weak c.p. such that this graph does not have a hamiltonian path. For
example, take a s.c. graph G1 with 4k vertices of which exactly two vertices are of
degree 1 each. Then adjoin an a.s.c. graph G, with vertex set {xl, Xo x3} and
edge set {(x;, x5)} to G, by joining each vertex of the former to every vertex in a
complementary half of vertices of maximum degree of the latter. Clearly this

resulting graph does not have a hamiltonian path.

Corollary 3.5.1.1. Suppose G is an a.s.c. graph with p = 4n42 (n > 1) vertices

and a weak c.p. 7. Then for every integer £, p—4 < £ < p-1, G has a path of length
{ containing a pair of consecutive odd vertices of 7 appearing consecutively, and

whose end vertices are consecutive even vertices of 7.

Proof. We have a path P of length p-1 (hamiltonian path) constructed in the
proof of the above theorem. Also the weak c.p. 7 contains a unique cycle of length
4n’42,1<n’ <n. Ifn=n’ then the result follows from Corollary 3.2.2.1. If

2 < n’ < n then one may follow the withdrawal technique (described in

Theorem 3.2.1) and withdraw suitable intermediary even or odd vertices from the
segment(s) in P of the unique cycle of length 4n’+2 in 7 to get paths of lengths

n-2, n-3 and n—4 in G, If n’ =1, i.e., 7 Lias unique cycle, say 7*, of length 6 then
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one can withdraw only one intermediate even vertex of 7/ from P Lo get a path of
length p—2. But if at least one cycle of 7 is of length > 8 then also the result
would follow from Theorem 3.1.2. So we need to consider the case have that 7 has
exactly one cycle of length 6 and each of the other is of length 4. To construct
paths of lengths p—3 and p—4 in this case we consider two possibilities:

Suppose 7 is not the first cycle in our ordering of the cycles in 7. Then by
Lemma 2.3.3 every even vertex of the cycle, say T', preceding 7 is adjacent to
every odd vertex of 7/ (Lemma 2.3.3). Notice tha..t the above path of length p-2
in G contains two consecutive odd vertices, say x and y, of 7/ appearing
consecutively and one of them, say x, being adjacent to an even vertex of 7*.
Deleting x and joining y to this even vertex one gets a path of length p-3 with the
required property. Again by the same Lemma 2.3.3, either every even vertex or
every odd vertex of 7* is adjacent to every odd vertex of 7. Necessary

adjustments for these two alternatives are shown below in Fig. 3.2 and 3.3

respectively.
even
/ [
even (rycleT)
/ ( L .zI)
even cycle
even

wlthdrawn

Figure 3.2

£ven
even PR

withdrawn Figure 3.3
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Finally, if 7 is the first cycle in the ordering, similar adjustments can be

made with the vertices of 7 and the cycle 7* following it (Fig. 3.4).

R bA z
even “odd even
a
even odd
even  odd
.
[
*
Figure 3.4
In the above Fig., (x) deletion of even z and joining y with u
gives a (p~2)-path.
(3xx) deletion of z and u, and joining y with s
gives a (p-3)-path.
(300x) deletion of u, s, t, and joining z with b

gives a (p—4)-path.

3.4. Cycles in as.c. graphs
We now use the resuits obtained in the previous sections to construct cycles

of different lengths in a given a.s.c. graph.

Theorem 3.4.1. If G is an a.s.c. graph with p = 4n+2 (n 2 1) vertices and a weak

c.p. 7 then for every integer ¢, 3 £ £< 4n, G has an é<ycle.

Proof. (By induction on the number of cycles in 7.) Suppose 7= 7,7y....7

where 7 < Tipp 1 <i<m-l. For m = 1 the resuit follows from Theorem 3.2.2.

Solet m > 2.
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Case I. Every cycle except the unique cycle of length 4n’+2 (n’ < n) which is
not 7y, is of length 4.

Then the induced subgraph G’ = G(7\r;) is an a.s.c. graph with 4n-2
vertices whose weak c.p. has m-1 cycles. So by induction, G’ and hence G has

cycles of length ¢, 3 < £ < 4n4.

Case Ii). Suppose 7, is of length 4. Note that the above (4n—4)-cycle in G’
contains all the vertices of the cycle 7, in a single segment. So cycles of lengths
4n-3, 4n-2, 4n-1 and 4n in G can be constructed by suitably in-erting one, two,
three and all four vertices of m respectively into the segment containing all

vertices of 7, in the above (4n—4)—cycle in G.

Case I(ii). Suppose 7, is the unique cycle of length 4n’+2. Note that the above
(4n—4)—cycle in G’ contains as a segment a hamiltonian path of G(r,) whose end
vertices are a pair of consecutive even vertices, say To 21 and T) 2042 Now take
paths of lengths 4n’+2, 4n’+3, 4n‘+4, 4n’+5 with vertices from G('r1 u 1'2)
whose end vertices are 7991 and 79,9042 (such paths exist by Coroliary 3.3.1.1).
Then inserting these paths in place of the hamiltonian path of G(7,) in the above

(4n—4)—cycle of G one gets cycles of lengths 4n~3, 4n-2, 4n-1 and 4n in G.
Case II. 7 has cycles not satisfying the condition of case L.

Consider the induced subgraph G’ = G(\r) of G and suppose
[V(G*)| = p’. If G’ is an a.s.c. graph, then, by induction or otherwise by
Theorem 3.1.3., G’ and hence G has {~cycles, 3 < {< p’-2. Also by Corollary
3.3.1.1. if G’ is a.s.c. and by Theorem 3.1.2 if G* is s.c., G’ has paths of lengths
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p’—4, p’=3, p’~2, and p’~1 whose end vertices are Tm—1,2r and Tm—l,zr 42 (a pair
of consecutive even vertices of 7 _,). Choose a pair of consecutive odd vertices

Tm,2+1 and Tm, 23 of 7, such that (Tm—1,2r, T 2 +1) and

(Tm—1,2r 42 Tm,2s+3) € E(G). Now adjoining the path (Tm-l,zr’ T, 25+1

Tm,2s+3' Tm—1,2r +2) to the above paths of lengths p’—4, p‘-3, p’-2 and p’-1,
one gets cycles of lengths p’~1, p’, p’+1 and p’+2 respectively in G. If m has
four vertices then we are done. If Tm is of length > 6 then we take a 4—cycle in
G(,,) containing a pair of consecutive odd vertices appearing consecutively.
Notice that this pair of consecutive odd vertices can be decided arbitrarily so that
they are adjacent to the fixed pair of consecutive even vertices Tm-1,2r and
1,242 in the way needed, provided G(-rm) ig a s.c. graph. Otherwise, the
pair of consecutive even vertices of Ty & the ends of the paths of lengths pi, 1
<i<4in G’ can be suitably decided, for in that case G('rm_l) is a s.c. graph.
Now inserting the paths of lengths p’~2 and p’-1 into the 4—cycle of G('rm)
suitably one gets (p’+3) and (p’+4)—cycles respectively in G. This process can be

repeated till all the required cycles in G are obtained. B

Theorem 3.4.2. Suppose G is an a.s.c. graph with p > 7 vertices and a weak ¢.p..

Then for every integer ¢ 3 < £< p-2, G has an &cycle.

Proof. Suppose V(G) = {1,2,3,...,p} and 7is a weak c.p. of G. Then the edges

(i, i42) € E(G) for all i odd in every cycle of lengths > 2in 7. If p = 4n+2, ie,,
p is even, then the result follows from Theorem 3.4.1. So take » = 4n+3. In this
case T has either a unique cycle of length 1 or a unique cycle of length of 3. In the
first case, the induced subgraph G’ of G with 4n+2 vertices obtained by excluding
the vertex, say p, representing the unique cycle of length 1 in 7, is an a.s.c. graph.

Then by above theorem, G’ and hence G has an f~cycle for every £ 3 < £< 4n.
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Now we need only show the existence of a (4n+1)-cydle in G. Suppose
T =TT T is a weak c.p. of G such that 73 < Tigl for alli, 1 <i< m-1 and
T = 7(p) where (p) denotes the unique cycle of length 1 with vertex labelled p.
Then G* has a 4n—cycle, say C, in which a pair of consecutive odd vertices of 7y
appear consecutively. Also some even vertex of T and some odd vertex of Tigl
appear congecutively in C for 1 ¢ i ¢ m-1. Further note that the vertex p of the
unique 1-cycle in 7 is adjacent to either all even vertices or all odd vertices of any
other cycle of 7. If the vertex p is adjacent to either all odd vertices of 7, or, all
even vertices of T and all odd vertices of Tigl for some i, I <i < m-1, then the
vertex p can be inserted suitably into C to get a (4n+1)—cycle in G. Suppose the
vertex p is adjacent to all even vertices of every other cycle of 7. Take a path of
length 4n-1 of G (using Corollary 3.3.1.1) whose end vertices are consecutive

even vertices of 7 and join these ends to the vertex p to get a (4n+1)—cycle in G.

Next, suppose 7 has a unique cycle, say 77 = (x1 X x3), of length 3. Then
7 has no other cycle of odd length (Lemma 2.2.1). Take the induced s.c. subgraph
G, = G(7\r) with 4n vertices and a c.p. T\T’ = 7| Tq...T Such that 7, < 744
foralli,1 <i< m-1. Then by Theorem 3.1.2, Gl’ and hence G, has f<cycles,
3 < £ < 4n-2. Now to construct cycles of lengths 4n-1, 4n, 4n+1 in G, take a
hamiltonian path P (say) following Theorem 3.1.1. in G, and the induced a.s.c.
subgraph G, = G(7*) where V(G,) = {x, x,, X}, E(Gy) = {(x, x9)} and
(x;, x5) is the missing edge. Note that all vertices of G, in this case are adjacent
to precisely all the vertices in a complementary half of the vertices in every cycle

of 7\7’. Then we have the following different possibilities:
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(i) If every vertex in G, is adjacent to all odd vertices of 7; and T thEn
delete both even vertices of Tin 3 the ends of P. Join the ends of the resulting
path of length 4n-3 to x, to get a cycle C (say) of length 4n—1 in G. Then
inserting the vertex X, OI X5, and the edge (xl, x2) between the two consecutive
odd vertices of 71 appearing consecutively in C one gets cycles of lengths 4n and

4n+1 in G respectively.

| (ii) If every vertex of G, is adjacent to all even vertices of 7; and all odd
vertices of 7, +1 for some i, 1 < i < m-1 then take a cycle C of length 4n-2
obtained by deleting the ends of P and joining the ends of the resulting path.

Note that an even vertex of T and an odd vertex of 7., , appear consecutively at

i+1
two different places in C. So inserting one, two and three vertices of G, at these
two places in C suitably one gets cycles of lengths 4n-1, 4n and 4n+1 respectively

in G,

(ifi) If every vertex of G2 is adjacent to all odd vertices of 7, 1 <i ¢ m-l,
and all even vertices of 7 then take a cycle C of length 4n—2 in G as in (ii)
above. From C one obtains cycles of lengths 4n-1 and 4n by inserting any one
vertex and the edge (xl, Xo) in G, respectively between the pair of consecutive
odd vertices of 7y in C. Also a cycle of length 4n+1 is obtained by joining the

ends of P to any one vertex of G2.

(iv) If every vertex of G, is adjacent to all even vertices of every cycle in
7\7’ then a cycle of length 4n+1 is obtained as in (iii). Next, delete two vertices
from one of the ends of P. Then joining the ends of the resulting path with any
one vertex and with the ends of the only edge in G, one gets in G cycles of

tengths 4n-1 and 4n respectively. E
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The result in the above theorem can also be extended to the a.s.c. graphs

with strong c.p.. Combining the two we have the following theorem.
Theorem 3.4.3. Every a.s.c. graph with p > 10 vertices has &~cycles, 3 ¢ £ < p-2.

Proof. In view of Theorem 3.4.2 and Remark on page 9, we need only to prove

the result for connected a.s.c. graphs with strong c.p..

Suppose G is a connected a.s.c. graph with p > 10 vertices and a strong c.p.
7. Then G has an induced s.c. subgraph G with p-2 vertices and so, by Theorem
3.1.3, G’, and hence G, has £—cycles for 3 < £ £ p—4. Let us order the cycles of
lengths > 4in 7as 7y < 79 < ... <7 .. Then, by Corollary 3.3.1.1,
G’ = G('rl, Tos eoy 'rm) has a cycle, say C, of length p—4 in which a pair of
consecutive odd vertices of T and also a pair of consecutive odd vertices of ™
appear consecutively. Also for any i, 1 < i { m-1, this cycle C has some even

vertex of T and some odd vertex of ., , appearing consecutively exactly twice.

i+l
Case ]. Suppose p = 4n+42 and 7 has a unique cycle of length 2 with vertices, say
x and y. In order to keep G connected, assume that either both the vertices x and
y of the unique 2—cycle of 7 are adjacent to all the vertices of a complementary
half of the vertices of at least one cycle T for some i, 1 <i < m or the vertex x is
adjacent to all vertices of one cycle of 7 and the vertex y is adjacent o all vertices

of a different cycle of 7. We, then, consider the following:

(i) Ifx and y are both adjacent to some even vertex of 7; and some odd
vertex of Tl for some i, 1 <i ¢ m-1, then these two vertices can be inserted into

C suitably to get a (4n~1)-cycle and a 4n-cycle in G.
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(ii) If x and y are adjacent to only odd vertices of every cycle 7;, 1 <i < m,
then one can also get a (4n—1)- and a 4n—cycle in G by inserting x and y into C.

(iii) If x and y are adjacent to only even vertices of every cycle 7; then, by
Theorem 3.1.1, take a hamiltonian path P in G/ containing a pair of consecutive
odd vertices of 'rl appearing consecutively and whose end vertices are consecutive
even vertices of T’ Deleting the adjacent pair of consecutive odd vertices of T
from P and joining the resulting segments by x and y suitably one gets a 4n—cycle
in G. Again, deleting a pair of consecutive vertices from one end of P and then
joining the ends of the resulting path to either x or y one gets a (4n~1)-cycle in G.

(iv) If x and y are both adjacent to all odd vertices of every cycle ;,
i < m’ for some m’ < m and to all even vertices of the cycles 'rj, m’ <j<m,
then a (4n-1)—cycle in G is same as that in (i) above. Next, take hamiltonian
paths P; and P, in G(TIT2""Tm'—1) and G(r, Tm/4l T,)» respectively and
delete the two even vertices at the ends of P, Then the two ends of P, and those

of the truncated P, can be joined to x and y separately to get a 4n—cycle in G.
For the second possibility the verification of the result is straight{orward.

Case IT. Suppose p = 4n+3. Then 7 has a unique cycle of length 2 and another
unique cycle of length 1. So as in the previous case one can have cycles of lengths

p-3 and p-2 in G.

Case IIT. Suppose p = 4n+2 and 7 has two cycles of length 1 each. Denote by G’
the maximal induced s.c. subgraph of G obtained by deleting the vertex
representing one of the two cycles of length 1 in 7. Then G/, and hence G, has
{—cycles, 3 < £< 4n-1 (since n > 1). Finally, a 4n—cycle in G can be constructed

by considering diffcrent possibilities of adjacencies of the deleted vertex.
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From this theorem and with a direct checking for a.s.c. graphs with 6 and 7

vertices, we have

Corollary 3.4.3.1. There is no nontrivial a.s.c. bipartite graph.
Theorem 3.4.4. Every hamiltonian a.s.c. graph with a2 ¢.p. is pancyclic.

Proof (by contradiction). Suppose G is an a.s.c. graph with V(G) = {1,2,3,...,p}
and a hamiltonian cycle C = (1,2,34,...,p). Then by Theorem 3.4.3, G has
Lcycles, 3 < £ < p-2. So it remains to show the existence of a (p-1)-cycle in G.
Assume that G, and hence é, has no (p-1)-cycle. This implies that the edges
(i,14+2) € E((-?.) for all i except possibly one edge which may be the missing edge e.

Case I: p odd.

Clearly é has a hamiltonian path irrespective of the situation whether an
edge (i, i+2) is the missing edge e or not, for some i. Let us take such a

hamiltonian path

ig+2, igH4, o PHGL gL, igH3, -y PHG2, i

(where the vertices are to be taken residues modulo p) in G in which (igr igt+2)
may be the missing edge e for some fixed i, 1 < iy ¢ p. Then (io, i0+4) ¢ E(é)

for otherwise

[i0+4, g6, ., PHgL, igH1, igH3, .y PHG2, i, i0+4]



43

is a (p-1)—cycle in G — a contradiction. We can choose one iy such that

(igs ig+4) is not the missing edge. Then (i, i0+4) € E(G). This implies that
none of the edges (i0+2, p+i0-1), (i0+2, i0+5), (i0+3, p+i0-2) can be in G, for
the presence of any of these in G would give a (p-1)-cycle in G. Note that the
vertices i0+5, i0+6, p+i0—1, p+i0—2 are all distinct if p > 7. Again at most one
of the above four edges can be the missing edge. So assume p > 7 and

(ig+L, ig+6) and (ig+2, p+ig-1) € E(G). Then-

[p-i—io-l, Prbig=3, s ig+6, gL, i3, s DHG2, gy TgH2 p+i0-—1]
is a (p-1)—cycle in G (missing the vertex iy+4), which is a contradiction. In case
p = 7 and (1,2,3,4,5,6,7) is a hamiltonian cycle in G, neither (1,5) nor (3,6) is in
E(E}). Also at least one of these two edges is different from e. Suppose (1,5) # e.
Then neither (3,6) nor (3,7) is in E{(G). So at least one of (3,6) and (3,7) is in
E(é), which immediately gives a 6-cycle in (-}, a contradiction. Hence G must
have a (p-1)-cycle.
Case IT: p even

Claim. (i, i+j) ¢ E(G) for all i,j; 1 <1i,j ¢ p and j even.

Suppose (i, i+2) is the missing edge e for some fixed odd vertex i = i,

Then
iO’ p+i0-2, p+i0—4, ey i0+4, i0+2

is at least a path in G containing all odd vertices, and the vertices
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i0+1, i0+3, vesy p+i0-’1, i0+1

from a cycle in G containing all even vertices of G. Suppose (io, irt+]j) € E(G).
Then none of the edges (i+2, p+ig-1), (ip+2, ig+it1), (ig+1, ig+j+2) and
(]0+J—1, p+10-2) is in E(QG), for the presence of any such edge in G gives a
(p-1)—cycle in G, which is not possible. So at least three of these edges are in G.
However, one can always choose either the edges (10+2, iy +i+1), (ig+i-1, p+1o-—2)
or the edges (iy+2, p+ig-1), (igHl ig+ j=2) to be in G. For both the cases G
contains a {p-1)-cycle, a contradiction. It may be noted that if no (i, i+2) is the
missing edge e, that the above checking may be started with any odd i; otherwise
with that odd i for which e = (i, i+2). So, by symmetry of odd and even vertices,
the above claim is established. But then G is bipartite, which is a contradiction.



CHAPTER 4
SOME OTHER RESULTS ON a.s.c. GRAPHS

4.1. Degree sequence of an a.s.c. pgraph

Suppose the p nonnegative integers dl’ d2, cery dp denote the degrees of the
vertices of an a.s.c. graph G with p vertices. Then, as usual, we call the sequence,
T = (dl’ doy +ens dp), the degree sequence of G. Recall that the results following
the construction method in Chapter 2 imply some structural properties of an a.s.c.
graph in terms of its degree sequence. Here again, we discuss some more results
involving the degree saquence of the said graph. To start with, the following are a

few simple observations.

Lemma 4.1.1. If G is a quasi regular a.s.c. graph with 4n4-2 vertices and a weak
c.p. then the degree sequence of G realizes an a.s.c. graph with a strong c.p. and

conversely, provided n is even.

Proof. The degree sequence of G, written in a nondecreasing order, is of the form
d, = dy = ... = dy, = 2015 d2n+1 = .. = d4n+‘2 = 2n. Then the degree
sequence

d;-2, dy-2, ..., dy -2, d d

1 on~2 Gopp90 ot o Qgpyo (1)

satisfies the suitability condition (Clapham and Kleitman [13]) for a s.c. graph

with 4n vertices, and also is clearly graphical since G is already a graph. So the

45
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degree sequence (1) realizes a quasi regular s.c. graph, say G’. Then by taking
two new vertices, not in G*, of degree do 41 = don 49 =2n each and joining
both to the vertices of degree d,-2, dg-2, ..., dzn-‘z in G’ one gets an a.s.c. graph

with a strong c.p. containing a unique cycle of length 2 or twe 1-cycles.

For the converse, let us label the vertices as Vi Vo s Vgnoao such that the
vertices with the first n odd subscripts have degree 2n+1 each, the vertices with
the remaining odd subscripts have degree 2n each, the vertices with the first n
even subscripts together with the last vertex v, +2 have degree 2n each and cach
of the remaining vertices with the even subscripts has degree 2n+1. Now it can be
easily checked that the given degree sequence of a quasi-regular a.s.c. graph with a

strong c.p. also realizes an a.s.c. graph with a weak ¢.p. ("1"2""’4 1 +2).

Further, since all the edges of this graph joining the vertices with subscripts
of the same parity are divided into two equal halves, one joining only odd
subscript vertices and the other joining only even subscript vertices, the

requirement of n being even is necessary. g

In Chapter 2, we already had the simple observation that a given a.s.c.
graph may have more than one complementing permutation and a given
complementing permutation may produce more than one a.s.c. graph. But the
above result implies that a given degree sequence may produce different a.s.c.
graphs depending upon whether the degree sequence is taken as one with a strong
c.p. or with a weak c.p.. However, this result fails when the number of vertices is
odd. This is due to the fact that there is no quasi regular a.s.c. graph with an odd

number of vertices and a weak c.p..
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Lemma 4.1.2. If G is a quasi regular a.s.c. graph with 4n4-3 vertices and a strong

c.p. then the degree sequence of G does not realize an a.s.c. graph with a weak c.p.

Lemma 4.1.3. I G is a guasi regular graph with 4n+2 vertices and a weak c.p. 7
then the induced subgraph ¢z the vertex set of the unique cycle of length 4n’+2
(n’ < n) is also quasi regular, provided n” is ever and the length of no other cycle

in 7 is divisible by 4n’+2.

Proof. Consider the induced subgraph G’ of G on the vertex set of the unique

cycle of length 4n’+42 in . If n = n’ then G = G*, and there is nothing to prove.
So take n’ < n. If G“ is not quasi regular then it has vertices of four different
degrees (Theorem 2.3.1(b)). This induces a partition of V(G*) into four different
sets as A, B, C and D of cardinality n’, n’+1, n’ and p/+1 respectively, in which
the degree of any vertex in the seis is 4n’+1-1/, 4n‘-r*, r’+1 and

r/(n < 1’ ¢ 2n°) respectively, when restricted to G (Lemma 2.2.3). Now looking
back to G, every vertex of G\G* is adjacent to exactly a complementary half of
the vertices (all of A and B, or all of C and D) of G’. Notice that in the process
of getting G from G/ the degrees of the vertices in C and D can be equal to those
in A and B respectively, provided 4n’~2r* = 0 (mod 4), i.e., r* is even. But 1’ is
even only when n” is even, for r* = n’-+an even integer (20) (by Theorem
2.3.1(b)). Thus the vertices of G* must remain as ver “.es of four different degrees
in G, when n’ is odd. This implies that G is not quasi regular, which contradicts

the hypothesis. L]

Now we arc all set for the main result of this section dealing with the
construction of a nontrivial a.s.c. graph from a given degree sequence satis{ying

prescribed necessary conditions for a.s.c. realization.
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The degree sequence 7 = (dl' dy, vy dp), d, 2 di-i-l for 1 < i< p-1, of every
a.s.c. graph with p vertices satisfies the following necessary conditions (cf. Lemma

2.3.2).

(A) If the number of vertices is p = 4n+2 then
(1) () d+dg =40+, fori=1,2, .., m-1, mtl, .., 2+l
() dp +dgis =4,
and
(2) ifmisodd (i) d2j = d2j—1’ forj=1,2, .. |m/2]
(ii) d2.i = d2j+1’ for j = |m/2|+1, ..., n
(i) dp=dp
and if m is even

forj=1,2,..,(m/2)-1

(@) dpj=1dpiy
(ii) d2j = d2j+1 for j = m/2, (m/2)+1, ...,n
(i) d__, =d_+1.

B) If the number of vertices is p = 4n+3 then
(
(1) (@) 4+ dynagi = 4n+2, fori=1,2, .., m-1, m+1, .., 2n+2
and
(2) if m is odd (i) d2j =d
(1) dz.j =d

2517 forj=1,2, .., |[m/2]

2j+17
i) d_=d

for j = |m/2]+L, ..., n

and if m is even
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(i) d2.i = d2j—1 forj=1,2, .., (m/2)-1
(ii) d2j = d2j+1 for j = m/2, (m/2)+1, ..., n
(iii) dp ;= dp+1.

Remark. If the unique cycle of length £ = 2 (mod 4) with £ > 2 also satisfies
¢ =2 (mod 8) or the unique cycle is of length 3 in a weak c.p. then m is odd,
otherwise m is even. If there is a unique cycle of length 2 or two cycles of length

1 in the c.p. then m is always odd.

The following Lemma has been proved by Wang and Kleitman for general

graphs.

Lemma 4.14. [53]. If r= (dl’ dos -y dp), d; 2 d2 2.2 dp is a realizable
graphical sequence then the residual sequence, after connecting the vertex of degree

dk to the first d; vertices in 7 other than itself, is also graphical.

From the above T.emma, one can easily prove

Corollary 4.1.4.1. A nonincreasing sequence 7 = (dl’ S P dp) of positive
integers is realizable as the degree sequence of a simple graph if and only if the

residital sequence

7r' = (dl'—2, d2_2, vaey dd _2, dd.+1 —1, eny ddj'_l, ddj+1, seny dj_l, dj+2, sany d

)
i+l i+l P

is s0, provided the sequence
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T = (dl—l, d2—-1, esey ddj""l. ddj+1, vaey dj_l, dj+1, reey dp)

is nonincreasing.

Theorem 4.1.1. If 7 = (d;, dy, .., dp), p = 4n+2, is a nonincreasing sequence of
positive integers which is graphical and satisfies the necessary condition for an

a.s.c. realization then there is an a.s.c. graph with degrce sequence 7.
Proof. The proof is divided into three cases:

Case 1. m = 2n+1. Then, by (A), dopy1 = dgpgg = 20 Taking j = m in (A),
the sequence  satisfies the requirement in the above Corollary, and so, = being
graphical, the residual degree sequence

d;2, dy2, .., dg 2, d d

on—2 Qopr30 don i g 1 dyngo

is also graphical. But the latter sequence satisfies the suitability condition for s.c.
realization, and so realizes a s.c. graph, say G* (Clapham and Kleitman [13]).
Then, by taking two new vertices of degree d2n 1= dop e 2n and joining both

to all the vertices of degree d.-2, 1 < i < 2n, one obtains an a.5.c. graph.

Case 2. m = n+1 and 7 contains only four distinct integers 2 n. In this case the
degrees are d; = dg = ... = d, = 4n+l-T, dn_*._1 =..= d2n+1 = 4n-r,
d2n+2 =..= d3n+1 = r+l and d3n+2 =..= d4n+2 =1, where n < 1 ¢ 2n.

Rearrange the second half of the sequence 7 so that the sum of each pair of
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numbers equidistant from the beginning and the end, excepting the middle pair, is
4n+1 and that of the middle pair is 4n. Then label the first 2n+1 vertices by

1, 2, ..., 2n+1 starting from the beginning and the rest 2n+1 vertices by

1/, 27,37, ..., (2n+1)* starting from the end. With this labelling the following

procedure gives the required graph.

(i) Join vertex pairs with labels i and (i+j)’ by an edge for each
i=1,2..,2n+l,and j=0,1, ..., n-1L.

(ii) Join the vertex pairs labelled i and (i+n)’ by an edge for

i=12 ..,n

After these connections, the remaining degree sequence is

3n-r, 3n-r, ..., 3n-r, -0, -0, ..., I-0

2n+1 2n+1

(iii)  Join the vertex pairs with labels i and i+j by an edge for all
i=1,2, .. 2n+l,and j=1, 2, ..., 30T,

This completes the construction if r = n,
(iv)  Ifr > n then join each of the vertex pairs labelled i’ and
(3n-r+i+j) by an edge for all i = 1, 2, ..., 2n-+1 and

j=12, .. 11,

where the numbers are to be taken residues modulo 2n+1.
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Case 2. (Alternative method) (cf. [13]).

Arrange the degree sequence in nonincreasing order. Then

1.  connect the last vertex with degree dp to the first dp vertices of
maximum degrees and then reduce the degrees accordingly.

2. connect the first vertex with degree d,-1 of the reduced degree
sequence to the first d,~1 vertices of maximum degrees, and then

reduce the degrees accordingly.

Continue this process from the end and the beginning alternately til! all the
degrees are exhausted. This process ultimately produces an almost s.c. graph with

degree sequence .

Case 3. Cases different from Case 1 and Case 2 above, i.e., when there is a unique
cycle 7 of length 4n+2, {n* < n) in 7. Note that the part of the degree
sequence 7 corresponding to the degrees in 7/ may appear in one segment or in
two different segments of equal lengths in 7. In either of these cases (since both
differ from case 1), the subsequence of  corresponding to 7 must have four
different degrees as 4n-+1-t, 4n—T, r+1 and r such that the pairs of vertices with
degree sum p-2 are equidistant from the beginning and the end, and are of degreces
4n-t and r, where r > n’. Moreover, these degrees appear at the middle of the two
equal segments due to 7. This enables one to recognize the part(s) of the degree
sequence 7 corresponding to 7/. Now, by Theorem 2.3.1(b), to construct an a.s.c.

graph in the present case we consider the following subcases:
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Subcase (i). Suppose the degrees corresponding to the vertices in 7/ are at the

beginning and the end in 7, i.e,

(:l1 == dn, = 4n+-1-T,

dn'=1 =..= d2n’+1 = 4n-r,

dp—2n' = dp—2n'+l = = dpr—n’-i-l =+l
dp—n’ = dp—-n'+1 =..= dp' =TI

Denote |(r—n’)/2] by s, which is > 0. Connect each of the last 2n-+1 vertices to
the first 25 vertices by an edge and also connect each of the first 2n‘+1 vertices to
the first 4(n-n’)(2n’4-1) vertices by an edge, in both cases starting with the
vertex of degree d2 ne41° Then the sequence with the reduced degrees is divided
into two parts, one consisting of the first 2n’+1 and the last 2n’+1 degrees in 7
giving an a.s.c. subgraph (by Case 2) with a weak c.p. 7% and the other giving a
s.c. subgraph with 4(n-n’) vertices by the method in Clapham and Kleitman [13].

Subcase (ii). Suppose 7 does not begin with degrees corresponding to 7. Then a

s.c. subgraph with vertices of degrees dl' d2, d and dp together with the

p-1’
connections of these vertices with the rest of the vertices can be constructed by the
method in Clapham and Kleitman [13]. Then delete these four vertices and repeat
the process till we reach subcase (i), i.e., the reduced degree sequence begins with

the degrees corresponding to 7°. a

It may be remarked that the above construction procedure could have been

simplified further provided the induced a.s.c. subgraph, with 4n’+2 vertices and a
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weak c.p. consisting of a single cycle, would have another weak c.p. consisting of

more than one cycle. In this sense it is worth mentioning that an a.s.c. graph G,
with 10 vertices and a weak c.p. consisting of a single cycle, does not have a weak
c.p. consisting of more than one cycle. We believe that this situation for an a..é.c.

graph may be checked with the help of a computer.

Next, the case of odd p (= 4n+3, n > 1) is simple since deleting the degree
d2n +2 and reducing each degree preceding d2n +1 in 7 by 1, the new degree
sequence satisfies conditions (A). So one can first construct an a.s.c. graph G*
with the new degree sequence and 4n+2 vertices. Then taking an additional
vertex not in G/ and joining it to each of the first d2 a1 vertices of maximum

degree in G’ one gets an a.s.c. graph with p vertices.

4.2. Triangles in a.s.c. graphs

In 1958, Bostwick [5] posed the following problem:

Prove that at a gathering of any six people, some three of them are cither
mutual acquaintances or complete strangers ¢o each other.

Goodman [23] considered this problem in a more general setting and proved

Theorem 4.2.1. (Goodman) In any 2-edge colouring of a complete graph K P the

number of monochromatic triangles is at least

%n(n—l)(n—Z) ,if p = 2n,
%n(n—l)(4n+1) ,if p = 4n+1,
Zn(n+1)(4n-1) ,if p = 4n+3,

and this number is best possible.
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Clapham [12], using the above result, determined the minimum number of
triangles in a s.c. graph. Here again through Goodman's result we determine the
lower bound on the number of triangles in an a.s.c. graph. For this, suppose t(G)

denote the number of triangles in a graph G.

Theorem 4.2.2. (a) If G is an a.s.c. graph with p > 3 vertices and a weak c.p.
then

3

8n° - 4n+3 ,if p = 4n+2,

HG) 2
Blan+3n—a) ,ifp = 4n+3;

(b) If G is an a.s.c. graph with p vertices and a strong c.p. then

Bn-1)(n+1) , if p = 4042,
4(G) 2
%(4n2+3n—4) ,if p = 4n+3;

and these results are best possible.

Proof (a). Note that t(G) = t(é) for an a.s.c. graph G, where G is the restricted
complement of G (cf. the definition of a.s.c. graph). So colouring the edges of G
and G blue and red respectively, the number of blue triangles is equal to the
number of red triangles in Kp -e=GU é, where e is the missing edge. First
take p even. Then, by Corollary 2.3.1.2, joining the ends of the missing edge in G
(or in é) with a blue (or a red) edge increases the number of triangles in G (or

in G), and hence in Kp, by n provided the corresponding c.p. (say 7) consists of
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exactly one cycle. Since r may consist of more than one cycle, let us suppose that
the length of the unique cycle 7/, not divisible by 4, in 7is 4n’+2 (n’ > 1).
Clearly the ends of the missing edge are in 7/ and are adjacent to exactly n’
common vertices of 7. So this number of common adjacencies of the ends of the
missing edge can be at most 2n-n’, for both ends together may be adjacent to at
most half of the vertices in every other cycle in 7, i.e., 2(n-n’) vertices in rest of
the cycles of . Thus t(G) is at least half the number obtained after subtracting
2n-n’ from the number in Goodman’s theorem. But, in order to make our result
independent of n’, i.e., independent of the length of 77, we may take 7’ to be of
minimum possible length which is 6. This gives n’ = 1 and correspondingly we
obtain the bound in our theorem.

Next, for odd p, there are two ways of obtaining an a.s.c. graph with an odd
number of vertices and a weak c.p.. One is by adding a new vertex suitably to an
a.s.c. graph with p-1 vertices and a weak c.p.. The other is by taking a s.c. graph
with p~3 vertices and an a.s.c. graph with three vertices and a weak c.p., and
adjoining them suitably. It can be easily checked that the ends of the missing
edge are together adjacent to at most 2n-1 {or 2n) commen vertices in the first (or
second) construction of the graph. So the required bound for ¢(G) is obtained by

taking the second construction.

Then (b) follows from Lemma 2.3.5 and the argument in (a) above.

4.3. Diameter of an a.s.c. graph

For any graph G, the diameter of G, denoted by diam (G), is the maximum

of the distances between pairs of vertices of G. The class of s.c. graphs and that
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of a.s.c. graphs share the same result regarding their diameters. Here we prove the

result for a.s.c. graphs.
Theorem 4.3.1. Every nontrivial connected a.s.c. graph has diameter 2 or 3.

Proof. (By contradiction). Suppose G is a nontrivial connected a.s.c. graph.
Clearly diam (G) # 1, since G is not complete. Take diam (G) 2 4. Then by
definition of a.s.c. graph, and diameter being a graphical invariar4, diam (é) > 4.
Let u and v be any pair of vertices in G (and hence in é) such that

dist . (u,v) = 4, i.e., there is a shortest path, say u, x, y, z, v of length 4 in G
G

joining u and v. Then none of the edges (u,y), (u,3), (x,2), (x,v), (y,v) is in G.

Note that at most one of these edges may be the missing edge e, where

G= é + e. In any case, we get distc(u,v) > 2, which is a contradiction because

diam(G) > 4 implies diam(G) ¢ 2 (see [4]). Hence diam(G) = 2 or 3. B

Theorem 4.3.2. For all admissible p > 6 and for all D, 2 < D ¢ 3, there exists an

a.s.c. graph with diameter D.

Proof. Take any a.s.c. graph G’ with p—4 vertices and a (weak/strong) c.p. 7.

Suppose the vertices of G’ are 1,2,..,p—4. Then cunstruct a graph G with
V(G) = V(G*) U {x,3,2,t}

and E(G) = B(G") U {(xy), (y,2), (2.t), (x,i), (i) : L < i < p~4}.
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Then the a.s.c. graph G has a (weak/strong) c.p. 7/(yxzt) which map G onto G.
Now it is easy to check that diam (G) = 2.

The construction of an a.s.c. graph G of diameter 3 follows by taking edges

(v,i) and (z,i) in place of the edges (x,i) and (t,i) above, 1 <i ¢ p—4.



CHAPTER &
k-SELFCOMPLEMENTARY GRAPHS

5.1. Introduction

In the preceding chapters we considered the class of a.s.c. graph which is
defined by extending the notion of s.c. graphs. It requires deleting an edge from
the complete graph K p’ for suitable p, and then partitioning it into two
isomorphic parts. The basic question here is whether it is possible to partition a
(not necessarily complete) graph into two isomorphic parts. Thus, examining the
concept of s.c. and a.s.c. graphs, we observe that a graph, obtained after deleting
some suitable small number of edges from Kp, can always be partitioned into two

isomorphic parts. This leads us to the following definition.

Definition. A simple graph G with p vertices is called k-selfcomplementary
(k-s.c.) if and only if it is isomorphic to its complement G in Kl'), where Kl') is
obtained by deleting k mutually nonadjacent edges from Kp. The deleted k edges
are called the m7-sing edges of G.

The following are some simple observations from the above definition.

(1) If k = 0 then we have O-s.c. or simply the s.c. graphs and if k = 1 then
we have 1-s.c. or the a.s.c. graphs.

(2) Since the k edges being deleted from K p 2re r2utually nonadjacent, we
have 0 < k < p/2. Also for any |p/2]-s.c. graph with p vertices, the set of missing

edges forms a 1-factor or a near 1-factor.

59
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(3) If k is even then in order for a k—s.c. graph with p vertices to exist, the
number of edges in Kp must be even. This implies that p = 0, 1{mod 4).
(4) If k is odd then in order for a k-s.c. graph with p vertices to exist, the

number of edges in K 5 is odd. This implies that p = 2,3 (mod 4).

Theorem 5.1.1. A k-s.c. graph withk p vertices (0 < k < p/2) exists if and only if
p = 0,1 (mod 4), provided k is even and p = 2,3 (mod 4), provided k is odd.

Proof. Necessity follows from the above observations (3) and (4).

For sufficiency, we consider the two cases separately.

Case I: k even.
Suppose k = 2r. Then take a s.c. graph G’ with p—4r vertices, which always
exists since p = 0,1 (mod 4) and hence p4r = 0,1 (mod 4). Also take r 4-vertex

2-s.c. graphs G; on the vertex set V; = {x.

i xiz, xi3, x. } each of which contains

i
4
only a pair of edges (x; , x; ) and (x; ,x; ), for 1 i <r. Then join all the

i iy g’ Ty
vertices of each G,1¢igrtoa complementary half of the vertices of G*. Also

join all the vertices of G; to a complementary half of the vertices of Gj for all

1<i<randj>i. The graph obtained is a required k-s.c. graph.

Case IT: k odd.
Take a (k-1)-s.c. graph G with p-2 vertices as in Case I. Then take a K,
and connect both vertices of K,,, to a complementary half of the vertices of G*.

The resulting graph with p vertices is a required k-s.c. graph.
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5.2. Complementing permutstion

If G is a k—6.c. graph with p vertices then an isomorphism from G onto C-:',
where G U G = Kp = {egs €gy e, }, can be exprassed as a permutaticn 7 of
V(G). Such a permutation 7 is, as usual, called a complementing permutalion
(c.p.) of G. Further, following the terminology of a.s.c. graphs, a c.p. 7 of a1 k-s.c.
graph G is called a strong c.p. if (U} = U, where U is the set of k missing edges
for G. And, if & c.p 7 is not strong then it is called a weak c.p.. Also we assume
that any (strong/weak) c.p. of a k-s.c. graph ceu be expressed as a product of

disjoint cycles.

Note that in case of a 0-s.c. graph (i.e., a s.c. graph) there is nc distinction
between a strong and a weak c.p. and thus the notion of a complementing

perimutation here clearly agrees with the well-known notion of c.p. for s.c. graphs.

Suppose G *= a k-s.c. grash with p vertices and a strong c.p. 7. Then, by
definition, 7 fixes exactly k mutually nonadjacent edges, say €y gy wy € of G. If
T denotes the sci of end vertices of the edges ey, €y, ..., & then 7{T) = T. So
77+ G[V\T] — G[V\T] is a c.p. of G[V\T] and the induced subgraph G[V\T] of G
is a s.c. subgraph with p-2k vertices irrespective of whether k is even or odd,
whiere 7/ is the restriction of 7 to G[V\T]. By the properties of s.c. graphs, the
cycle lengths of 7/ are multipie: of 4 together with at most one cycle of length 1.
But the lengths of the cycles of the part 7\7* (= 7*, say) of the c.p 7 may be any

combination of the following possibilities:

(i) 7* may have at most 2 cycles of length 1 each.
(ii}) 7* may have at most k cycles of length 2 each. If it has k cycles of

length 2 each then it has no other cycle.
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(iii) 7* may have either cycles of lengths divisible by 4 only.
(iv) 7" may have cycles of lengths which are odd multiple of 2 only.

Hence the class of k—s.c. graphs with p vertices with strong c.p. may be
divided into three categories.

(1) p=2k. Then Kf) is obtained after deleting a 1-factor from Kp and
there is no subcomplementing permutation like 7/ mentioned above.

(2) p = 2k+1. Here Kf; is obtained from K p after deleting a near 1-factor
and so 7 in this case consists of exactly one cycle which is of length 1.

(3) p > 2k+1. In this case p—{2k+1) > 4, for otherwise we can not have a
k-s.c. graph. Suppose T is the set of 2k vertices fixed by a strong c.p. T of a
k~s.c. graph G. Then G consists of two parts; one a s.c. graph on the vertex set
V(G)\T and the other a k—s.c. graph with the vertex set T. Note that the second

part is same as the situation (1) above.

Next, suppose G is a k-s.c. graph with p vertices and a weak c.p. 7. By
definition, 7 fixes at most (k-1) edges and the cycle structure of 7 is dependent
upon the number of edges fixed by it. For instance, if 7 does not fix any edge
then it can neither have a 2—cycle nor more than one 1—ycle. This implies that
there is no weak c.p. for a 0-s.c. (or simply s.c.)'graph. Similarly, if 7 fixes
exactly one edge then it can have either exactly one 2—ycle or exactly two
I-cycles. Thus p > 2k+1, whenever 7 is a weak ¢.p. of a k-s.c. graph with p

vertices.

Some examples of k-s.c. graphs along with their (weak\strong) c.p.’s are

given below:
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b - 2 ] iyl ] »3
Je 4 4 39 * 4 2. 4

Strong c.p. (1234) or Weak c.p. (1234) Strong c.p. ((12) (34)
(1432§ or (13) (2) (4) and missing edges or-(1_2g) (33 4) and

and missing edges (3,4), (4,1). missing edges (1,2),
(1,3) (24). (3.4)

] 3 ] 2 2

2" b4 ed 43 4

Strong c.p. (1234)(5) or (1432)(5)
and missing edges {1,3),(2,4).

)

Both with weak c.p. (1234)(5
and missing edges (3,4),(4,1).

1

i e
5 1‘\ .5 1 3 5
de \.I 2 4

A1l with strong c.p. (12)(34)(5) and missing edges (1,2), (3,4)

Fig. 5.1. (2-s.c. graphs with 4 and 5 vertices)



2b :l &

Strong c.p. (123456) and

missing edges (1,4),{2,5),(3,6).

5

Strong c.p. (1234)(56) and
missing edges (1,3

All with strong c.
missing edges

L

5 J
(2,4),(5,6).
] @5 ] 3
2 4 6 2§ i go
)1,2(2;,2()3(,?1/;?}56) and

G4

Weak c.p. (123456) and
missing edges (1,5),(2,6,(3,6).

2

Weak c.p. (1234)(56) and
missing edges (3,4),(4,1),(5,0).

/3 =G
P 4 6

5,6).

Fig. 5.2 (3-s.c. graphs with 6 vertices)
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The following are some of the elementary properties of a (strong/weak) ¢.p.
r for a k-s.c. graph G with p vertices.

(a) T has no cycle of odd length > 2k+1 provided 7 is a weak c.p.,
otherwise it has no odd cycle of length > 1.

(b) The number of 1—cycles in a strong c.p. 7 is even or odd according as p
is even or odd.

(c) The set of vertices in any subset of cycles of 7 induces a k’-s.c.
subgraph of G where 0 ¢ k’ < k.

(d) If  contains some 1-cycles then G can not be extended to another
k~s.c. graph with p+1 vertices. On the other hand, a k-s.c. subgraph with p-1
vertices can be obtained from G if and only if 7 has exactly one 1—cycle.

(e) If ris a strong c.p. then every cycle of length 2i in 7 fixes either exactly
i edges or no edge at all. (This is due to the definition of strong c.p..)

(f) If 7is a weak c.p. then it has at least one cycle of length 2i (i > 1)

which fixes j edges, where 0 < j < 1.

It is clear from the definition and examples of k-s.c. graphs that such graphs
may be disconnected. Also the disconnectedness is due to the presence of 2—cycles
in the c.p. Thus in case we wish to restrict the discussion to connected k-s.c.
graphs then an assumption like the one for almost s.c. graphs (Chapter 2) is

necessary.

5.3. Construction of a k—s.c. graph

Here we describe a method of constructing a k—s.c. graph with a given
(strong/weak) c.p.. First take a strong c.p. 7 with p elements to construct a k-s.c.
graph with the c.p. 7. By definition of strong c.p., p > 2k. Suppose 7= 7/7°7",
where 7 is a product of all 1—cycles (if any), 7* is the product of all 2—ycles (if

any)
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and 7" is the product of all cycles of lengths > 2 in 7. We assume that each of
7/, 7 and 7" contains at least one cycle for otherwise the method of construction

discussed below can be modified suitably.

Suppose that 7/, 7* and 7 contain respectively p’ = t+1, p* and
p - p* —t — 1 elements, where t = 0 or 1 according as 7 contains one or two
1-cycles. Note that k 2 t+(p*/2). Take k’ = k-t—{p*/2). Now 7 being a strong
¢.p., 7" contains a product 'r'i‘ of cycles with exactly 2k’ elements together. Take
™= (-r'i' 'r§), where Ir_'.'z‘l 20and 73 is a product of those cycles of length > 2 in
7 which have no edge in the set of missing edges. Also suppose
] = [Tlnl 'r1112 Tlnm] where |Tln.| < lTln.l for alli < jand

1 J
T, = (123 .. Zni). Denote by S the set of integers 2,3,...,ny and the first 2n)
i

integers from each subsequent cycle in 7].

Now to construct a k’-s.c. subgraph G(-r’i’) with 2k’ vertices and a strong
c.p. 77, denote the 2k elements of 77 as the vertices of G(r7). Then for 1 € 7,
designate arbitrarily the unordered pair (1,j) to be an edge or a nonedge in G('r'i')

for every j € S. Then the same adjacency will be true for

[0 0] = [, #0)

with r = 1,2,...,n,, il j is from a cycle of length 2n,. This gives all the edges of

G(ry, ) and the edges joining the vertices in G(7,_ ) and those in G(r7\7, ).
n lnl \ lnl

1
Then delete G(r; ) and repeat the process for G(r7\r; ). This ultimately gives
1 1

a k’—s.c. graph G(77).
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On the other hand, construct a s.c. graph G('rg) and then join each of the
vertices in V(G(77])) (or, V(G(3))) to each of the veriices in a complementary
half of V(G(5)) (or, V(G(77))). This results in a k’-s.c. graph G(77).

Finally, take G(7*), which consists of either a vertex or two vertices but no
edge, and G(7*), which consists of p* /2 copies of K,,. Join the vertex in each
1-cycle of 7/ to a complementary half of V(G(+")) and to exactly one vertex of
cach K2 (or one vertex of each 2—cycle in 7*). Then name the 2—cycles in 7° in
any fixed order, say 7* = 0y, 0g...0, and join both vertices of each o; to exactly
one vertex of each o'j, for all j > i and to each vertex of a complementary half of
V(G(7™)).

This results in a required k—s.c. graph with a strong c.p. 7.

Next take a weak c.p. 7 with p elements to construct a k-s.c. graph G with
c.p. 7 having no odd cycle of length > 1. Clearly p > 2k. As in earlier case, take
7= (r*7*7"), where 7/,7* and 7~ have their usual meaning and cardinality.
Unlike the case with a strong c.p., now k > t+p*/2. Take k’ = k-t-p*/2.
Choose a subset of cycles in 7™ containing 2k* elements together such that
k- > k* and k’ — k* is as small as possible. Then choose a cycle from the rest of
the cycles in 7™ containing 2(k’—k*)+-2k™ (k™ being even, and > 0) elements.
Thus 7™ = 0,050, (say), where o; is the product of the cycles which together
contain 2k* elements, g, is a single cycle with 2(k‘~k* +k™) elements and 74 is the
product of the rest of the cycles in 7. If there is no such cycle 2 with required
number of elements alter the choice of a4 then g, may be chosen differently so

that a suitable 0, Can be chosen.
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To construct a required k-s.c. graph G, denote the vertices of G vy the
clements of 7. Then the construction of G(¢,), which is a k*-s.c. graph with a
strong c.p. oy i6 the same as the construction of G(77) and that of G(c,) is the
same as that of G(77) as in the case of a strong c.p. above. Next, we have lag| is
even or odd multiple of 2 according as k’—k’ is an even or.odd. So it readily
satisfies the necessary condition for the existence of a (k‘—k*)-s.c. graph G(o,)
with 2(k’—k*+k™) vertices. Denote the elements of g, by the integers
1,2,3,...,2(k’=k*+k™) and by the set S the integers 2,3,...,k’—k"+k", k*-k*+k"+1,
k’—k*+k"+2. For 1 € o, arbitrarily designate the unordered pair (1,j) to be an
edge or a non-edge in G(o,) for j € 5. Then the same will be true for
[a%r(l), agr(j)] with r = 1,2,....k’~k* +k™ provided 2 ¢ j ¢ k’~k*+k”+1, and with
r = 1,2,...,.k" in case j =k‘—k*+k"+2. This results in a (k’—k*)-s.c. graph G(oy)
with 2(k’—k’+k"™) vertices. Then join all the vertices of G(o,) to each vertex of a
complementary half of the vertices of G(o,), for 1 ¢ £ < &’ < 3. This completes

the construction of G(7™).

Finally the edges among the vertices of G(7/), G(7*) and G(7™) can be
joined as in case of a strong c.p. above. This ultimately produces a k-s.c. graph G

with a weak c.p. 7.

Now the case left is that of a weak c.p. 7 which contains some odd cycles of
length > 1. But such an odd cycle in 7 may contribute one or more edges to the
set of missing edges. Thus in this case we obviously cannot present a construction

method along the lines of that outlined above.

It may be remarked that the construction of a k—s.c. graph with a strong and

a weak c.p. described above does not prod.ice all possible k—s.c. graphs with a
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given number of vertices and a fixed suitable k. In particular, a k-s.c. graph with
a weak c.p. may not have the symmetry used in the latter construction. This is
due to the fact that the missing edges for a k—s.c. graph (k > 1) with a weak c.p.
may not be restricted to a single orbit of edges even when the c.p. consists of only
one cycle. So studying the properties of a k-s.c. graph with a weak c.p. through
the cycle structure of the latter for k > 1 seems very complicated. On the other
hand, the missing edges of a k—s.c. graph with a strong c.p. always constitute all
edges in one or more orbits of edges (observation (e), page 65). Hence the rest of

our discussion is restricted to the k-s.c. graphs with strong c.p.

5.4. Hamiltonian path in a k-s.c. graph

In this section we discuss the existence of a hamiltonian path in a given
k-s.c. graph and give an explicit construction whenever one exists. In view of the
observation at the end of Section 5.2, we begin with the construction of a
disconnected k-s.c. graph and hence conclude that such graphs cannot have a

hamiltonian path.

Lemma 5.4.1. For every positive integer p > 4 there exists a k-s.c. graph (for

suitable k > 1) with p vertices without a hamiltonian path.

Proof. Suppose there is a k-s.c. graph with p vertices. Then an even k implies

p = 0,1 (mod 4), i.e., p~2k = 0,1 (mod 4), and an odd k implies p = 2,3 (mod 4),
i.c., p~2k = 0,1 (mod 4). Take a s.c. graph Gy with p-2k vertices and @ set of k
Kz’s. Join all the vertices of Gy to one of the vertices in any one K2. The
resulting graph, say Gl’ containing one isolated vertex is a 1-5.c. graph. Then
take another K2 and join one of its vertices to all the vertices of G, togeta graph

Gg. This graph G, is a 2-5.c. graph containing an isolated vertex. Continue this
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process until all the & K'2's have been used. This finally gives a k-s.c. graph G

which is disconnected. Hence Gk has no hamiltonian path. |

Lemma 5.4.2. Every k-s8.c. graph with p (> 10) vertices and a strong c.p.

consisting of a single cycle is hamiltonian, provided p is an odd multiple of 2.

Proof. Suppose G is a k—s.c. graph with p (2 10) vertices and a strong c.p.

7= (123 ... p) where p is an odd multiple of 2. By the construction of sucha G
discussed Section 5.3 and for p > 10, G has at least three full orbits of edges
beginning with the edge or nonedge (1,2),(1,3) and (1,4). As in Chapter 2, we
assume (1,2) and (1,3) € E(G). This implies (i, i+1) and (i, i+2) € E(G) for all i
odd. Also (1,4) € E(G) & (2,5) ¢ E(G), i.e(i, i+3) € E(G) & (i+1, i+4) £ E(G)
for all i odd. Hence we can construct a hamiltonian cycle in G as in Lemma 3.2.1.

We note that the above proof works for even multiples of 4 provided
(1,4) € E(G). But the restriction in the Lemma implies that if p is an even
multiple of 4 then there always exists a nontrivial k-s.c. nonhamiltonian graph (for
some suitable k) with p vertices and a strong c.p. consisting of a single cycle. For

example, take p = 8, k = 4. Then the graph with the edges
(1,2), (3,4), (5,8), (7,8), (1,3), (3,5), (5,7), (7,1), (2,5), (4,7), (6,1) and (8,3)
is a 4-s.c. nonhamiltonian graph with c.p. = (12345678).

Corollary 5.4.2.1. Every k-s.c. graph with p (> 8 and even) vertices and a strong

c.p. consisting of a single cycle has a hamiltonian path containing a pair of



71

consecutive odd vertices of the c.p. appearing consecutively and whose end vertices

are consecutive even vertices of the c.p.
Further, cither the consecutive even vertices at the ends or the pair of
consccutive odd vertices appearing consecutively in the hamiltonian path may be

chosen arbitrarily.

Proof. Suppose that G is a k-s.c. graph with p(> 8) vertices and a strong c.p. 7

consisting of a single cycle. As before we assume that (i, i+1) and (i, i+2) € E(G)
for all i odd.

Case (i). (1,4) € E{G) = (i, i+3) € E(G) for all i odd. Then G has a hamiltonian

cycle

(2, 1,4,3,6,5, ..., p, -1, 2).

Suppose we wish to have a pair of consecutive odd vertices, say i and i+2,
appearing consecutively in a hamiltonian path of G. We start by breaking the
above cycle into a hamiltonian path, say P, so that the vertices i and i+1 appear
at the ends. Then, by switching the pair of vertices at the end containing the
vertex i of P, one gets a required hamiltonian path containing the pair of
consecutive odd vertices i and i+2 appearing consecutively. Notice that this

hamiltonian path has a pair of consecutive even vertices i+1 and i+3 at its ends.

The case of a chosen pair of consecutive even vertices to appear at the ends

of a hamiltonian path of G is similar.
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Case (ii). (2,5) € E(G) = (i, i+3) € E(G) for all i even,
First suppose that p is not a multiple of 4. Then G has a hamiltonian path

1,2,5,6, .. p-1,p 34,78, .., p-3, p=2. (1)

In order to construct a hamiltonian path containing a chosen pair of

consecutive odd vertices, say i and i+2 appearing consecutively, we consider two

possibilities:

(I) Ifi occurs in the first half of (1), take the segment to the left of the
vertex i (if any) into the right end of (1) so that the ends of the resulting
hamiltonian path are i and i-3. This is always possible since (1, p-2) € E(G).
Then revessing the segment from the vertex i to the vertex preceding the vertex

i+2, one gets a desired path.

(II) Ifi occurs in the last half of (1) then interchanging the vertices i and
i4+-2 in (I) above one gets a desired path.

Next, suppose that p is a multiple of 4. Construct two disjoint paths of G
by writing the vertices in increasing order such that one contains all vertices of the
form 4r+1 and 4r+2, and the other contains all vertices of the form 4r+3 and
4r+4-4, where 1 is a nonnegative integer. It may be cbserved that these two paths
in fact form two disjoint cycles, each containing exactly half the vertices of G.
Also, no pair of consecutive odd or even vertices are in the same cycle. Since
every » .r of consecutive odd vertices are adjacent (by the assumption at the
beginning), these twa cycles can be broken up and then the two resulting paths

can be joined together suitably to get a desired hamiltonian path.
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Again, the case of a chosen pair of consecutive even vertic=s appearing at the

ends of a hamiltonian path of G is similar, [

The result of this corollary may also be extended to a k-s.c. graph with an

odd number of vertices in a restricted sense.

Corollary 5.4.2.2. Every k-s.c. graph with p (odd) vertices and a strong c.p.

consisting of one cycle: of length £-1 and another of length 1 has a hamiltonian

path.

Prool. Suppose G is a k-s.c. graph satisfying the hypothesis, i.e., G has a strong
C.p. T = T Ty, where 7| = (12..p-1) and 7, = (p). Take G, = G(ry). Then by
the above result, G, has a hamiltonian path, say P, containing a pair of
consecutive odd vertices of T appearing -onsecutively and whose end vertices are
consecutive even vertices of 7. Now the vertex labelled p of G is adjacent to
either all even or all odd vertices of Gl‘ So in either case the vertex p may be

adjoined suitably to F to get a hamiltonian path of G. [

Theorem 5.4.3. Suppose G is a k--s.c. graph with p vertices and a strong c.p.
7= (7]...T,,) such that 7 has at most one 1-cycle but no 2-cycle, and each G(r;)

has a hamiltonian path. Then G has < hamiltonian path.
Proof. Suppose G is a k-s.c. graph satisfying the hypothesis.
Casc . p even.

In this case lTil > 4 for all i = 1,2,...,m. Also, by Corollary 5.4.2.1, the

induced subgraph G(7;) of G has a hamiltonian path containing a pair of
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consecutive odd vertices of 7; and whose end vertices arc consccutive even vertices
of 7, for each i provided that |'ri| > 8. But this property also holds for the
induced subgraph G(7;) with |7;| = 4 since G(;) has a hamiltonian path which
implies that G (7;} is 2 s.c. graph. Now noting that 7 has no cycle of length 6,
order the cycles of 7 as 7 < 7 if some even vertex of 7, is adjacent to some odd
vertex of Ty for all i and j (see Chapter 3). Then the technique of Theorem 3.3.1

gives a required hamiltonian path of G.

Case I1. p odd.

This case iz similar to that of Theorem 3.3.1.

Corollary 5.4.3.1. (cf. Clapham {13]) Every s.c. graph has a hamiltonian path.

5.5. Cycles in a k—s.c. graph
This section deals with the existence of cycles of different lengths in a k-s.c.
graph. To this end we first prove a few results relating to the existence of some

paths and cycles in special cases.

Lemma 5.5.1. Suppose G is a k-s.c. graph with p (> 10 and even) vertices and a
strong c.p. T consisting of a single cycle. Then for every integer £ p—4 < {< p-1,
G has a path of length £in which 2 pair of consecutive odd vertices of T appear

consecutively and whose end vertices are consecutive even vertices of 7.

Further, either the pair of consecutive odd vertices within or the consccutive

even vertices of 7 at the ends of such paths can be chosen arbitrarily.
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T'his lemma may be proved from Corollary 5.4.2.1 and using the withdrawal
tcchnique in Chapter 3. It may be noted that the above lemma does not hold for
the case p = 8. For, it can be checked directly that paths of lengths 5,6,7 exist in
a k-8.c. graph with 8 vertices and a strong c.p.. But the arbitrary choice of
consccutive even vertices at the ends or a pair of consecutive odd vertices within

such paths is not always possible.

Temma 5.5.2. Suppose & is a k-5.c. graph with p (> 10 and even) vertices and 2
strong c.p. 7 such that the induced subgraph on each cycle of 7 has a hamiltonian
path. Then for every integer & p—4 < £ < p-1, G has a path of length { containing
a pair of consccutive odd vertices of 7 appearing consecutively and whose end

vertices are consecutive even vertices of 7.

Proof, Suppose G is a k-s.c. graph with p vertices and a strong c.p. 7 satisfying

the hypothesis. We note that = has no 6—cycle, and consider the following cases:

Casc 1. Suppose that at least one cycle T of 7 has length > 10. Then by

Lemma 5.5.1, G('ri) has paths oi lengths Ll, p;—4 ¢ Ll <py-l, satisfying the
hypothesis, where | V(G(7;))| = p;. Now ordering the cycles 7y, 7o, ..., Tpy of 7as
before one can join hamiltonian paths of G(Tj), j #iand paths of length £ of G('ri)
suitably to get paths of lengths ¢, p~4 ¢ £ < p-1, in G satisfying the required

conditions.

Case I1. Suppose that every cycle of 7 is of length < 10. Also assume that k > 0,
for stucrwise G is a s.c. graph and there is nothing to prove. Then 7 has at leasi

one §-cycle. Take r= (7 7y...7 ), where 7; < 7,4, 1 <1< m-1.
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Case I1{i). Suppose again that 7 has exactly one cycle, say T;, of length 8 for some
fixed i, and each S is of length 4, 1< j<¢mand j #i. Take

7; = (u) Ug Uz U, Ug Ug Uy Ug). By assumption, we have (uy,u,) and

(ug,ug) € E(G(ry). If (upuy) € E(G(;)) then G(r;) has paths of lengths 4,5,
and 7. These paths and a hamiltonian path of each G(-rj) may be joined suitably
to get desired paths in G. So take (u;,u,) ¢ E(G). This implies (u,,u,) € E(G).
In this situation it is enough to check that the induced subgraph G('ri U +1) or
G('ri ] Ti-l)’ according as i # m or i = m, has paths of lengths 11,10,9 and 8
satisfying the hypothesis. First, take G(r; U 7; +1)’ i¢mand 1, = (VVoVavy):
Since 7; < 7 +17 each even vertex of T is adjacent to some odd vertex of g1
Suppose (u,,v;) € E(G). This implics (ug5vq)s (ugovy), (ug,vq) € E(G). Then a
path of length 11 in G(r; U 7; +1) satisfying the required conditions is

V2 Vl 'U6 115 U2 l.ll 1.13 U4 117 U8 V3 V4.

Further, if (u,,v5) € E(G), which implies (uy,v4)) (ugv4), (ug,v,) € E(G), then
paths of lengths 10,9 and 8 in G('ri U +1) are respectively

Vg Vi Ug Ug Ug Uy Ug Uy Uy Vg Vy,
Vo Vy Ug Ug Uy Ug Uy Uy Vo Vy,
and Vo ¥y Uy Ug Uy Ug Ug Vg V.

If (ug,v5) £ E(G) then (ug,v,), (ug,vy), (u6,v2), (ugivy) € E(G) and the paths of
lengths 10,9 and 8 in G(r; U Ti+l) are

Vo ¥ilgUs U U U3 g U7 Yg Ve
Vo V) Up Ul lg Uy iy Ug Vg Vy,
and Vo Uy Uj Ug U, Uy Ug Vo Vy respectively.
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Suppose (u,,v,) # E(G) then (ugyva)s (ugsvy)s (ugvq), (ug,v;) € E(G) and

again the result may be checked directly as above.
Also the required checking is similar to that for the case G(r; U ;_4),i = m.

Casc II(ii). Suppose each 7; is of length 8. Here we only need to show that the
induced subgraph G(r; U r2) has paths of lengths 15, 14, 13 and 12 satisfying the

required conditions. But the required constructions are the same as above.

lLemma 5.5.3. Suppose G is a k-s5.c. graph with p (> 8 and even) vertices and a
strong c.p. T consisting of a single cycle. Then for every integer £, 3 < £<{p-2, G
has an {~cycle, Further, each such {~cyde of G has a pair of consecutive odd

vertices of T appearing consecutively provided 4 € £ £ p-2.

Proof. Suppose |V(G)| = p(=2r > 8) and 7 = (1 2 .... p) is a strong c.p. for G.
Then, by the assumption at the beginning, we bave (i, i+1) and (i, i+2) € E(G)
for all i odd in 7. Also p > 8 implies that both the orbits starting with the edge
or the nonedge (1,4), and the edge or the nonedge (1,5) are full orbits each giving r

edges in G. Now consider the following different possibilities:

Casc I. (1,5) € E(G) = (i, i-+4} ¢ BE(G) for all i odd. Then the induced subgraph
on the r odd vertices of G is a 4-regular graph with the edges (i, i+2), (i, i+4),
(i, i-2) and (i, i-4) being incident to i where the vertices are to be taken residues

modulo p. One can easily check that this subgraph is pancyclic.
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Case I(i). (1,4) € E(G) = (i, i+3) € E(G) for all i odd. Take the hamiltonian

cycle

(2,1,4,3,6,5, ..., p, p1, 2)

in G. Since conszcutive odd vertices are adjacent in G and they occur alternately
in the above cycle, one can withdraw one, two, ..., r even verlices successively

from this cycle to get an &—cycle,p 2 £21,in G.

Case I(ii). (1,4) ¢ B(G) = (2,5) € E(G) = (i, i+3) € E(G) for all i even. If p is
not a multiple of 4 then

(1,2,5,6,9,10, ..., p-1, p; 3, 4, 7, 8, ..., p-3, p-2, 1) (1)

is a hamiltonian cycle of G. But, if p is a multiple of 4 then G may not have a
hamiltonian cycle. In this case G does have two disjoint cycles together containing
all the vertices of G. One contains all the vertices of G of the form 4n+1 and
4n+2 ir order and the other contains all the vertices of the form 4n4-3 and 4n+4
(0 < n < (p/4)-1) in order. Then deleting the vertex labelled p-2 from the first
cycle and the vertex p from the second cycle, and joining each of the pairs of

vertices 1,3 and 4n-3, 4n-1 by an edge we get a cycle

(1,3, 4, ..., -1, p-3, p5, ..., 6, 5, 2, 1) (2)

of length p-2 in G. Since (i, i+4) € E(G) for all i odd, withdrawing none, one,
two, ..., r even vertices from (1) successively we get an &~cycle, p 2 £2 1, in G.
Similarly withdrawing none, one, two, ..., r—2 even vertices from (2) successively

one gets an £cycle, p—22 {2 r,in G.
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Case 1. (1,5) ¢ E(G) = (2,6) € E(G) = (i, i+4) € E(G) for all i even. Here

again we have the following two cases:

Case IT (i). (1,4) € E(G) = (i, i+3) € E(G) for all i odd. For jeven, and

4 € j < r-1, consider the cycle

(1,4, 3, 5, 8, 7,..., 2j, 21, 2j+1; 2j+2, 22, 2j6,..., 6, 2, 1)

of length 2j+2. Since (i, i+2) € E(G) for all i odd, withdrawing none, one,

two, ..., (j/2) even vertices, whose labellings are multiples of 4, successively from
the cycle (3} one gets cycles of lengths 2j+1, 2j, ..., 3(j/2)+2 for each even j. Now
varying j within its chosen bounds one gets &cycles, 8 < {< p, in G. The
remaining cycles of lengths 7, 6, 5, 4, and 3 are, respectively, (1,3,5,7,10,6,2),
(1,4,3,5,6,2), (1,3,5,6,2), (1,3,6,2) and (1,3,4).

Case I1 (ii). (1,4) ¢ E(G) = (2,5) € B(G) = (i, i+3) € E(G) for all i even. For

even j, and 4 € j € -1, take the cycle
(4,7, 8, 11, 12, ..., 2j-5, 214; 2j, 2i-1, 2j+1, 2j+2;
2j-2, 2i-3, 26, 2j-7, ..., 2, 1, 3, 4) (4)
of length 2j+2. Since (i, i-+3) and (i, i+4) € E(G) for all i even, withdrawing
none, one, two, ..., (j-1) vertices from this cycle (4) with vertex labels in

{5,7,9,...,25-8} U {2j, 2j+2} one gets cycles of lengths 2j+1, 2j, ..., (j+3) for each j.

Now varying even j within its chosen bounds one gets £~cycles in G for 7 < £< p.
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The remaining cycles of lengths 6,5,4 and 3 are (7,9,10,6,2,5), (6,2,1,3,5), (5,2,1,3)
and (2,5,6) respectively.
The second part of the lemma is quite clear from the construction in cach

case above. B

Theorem §5.5.1. Suppose G is a k-s.c. graph with p (even and » 8) vertices and a
strong c.p. 7 such that the induced subgraph of G on each cycle of 7 has a

hamiltonian path. Then for every integer £, 3 < £ < p-2, G has an {—cycle.

Proof. (By induction on the number of cycles in 7).

Suppose 7 = TyTge+ Ty Such that Ti < Tipl for 1 <i { m-1. Then every
even vertex of 7; is adjacent to some odd vertex of Tix1 (by definition of the
ordering ¢ < ' in Chapter 3). If m = 1, the result follows from Lemma 5.5.3. So
take m > 1 and, by the induction hypothesis, suppose that the result holds for the
induced subgraph G’ = G('rl'r2...'rm_1) of G, i.e,, G, and hence G, has &<cycles,
3 ¢ £ ¢ p—r-2 provided | V(G’)| > 8, where I'rml =r. Since 7 is a strong c.p. and
each G(r;) has a hamiltonian path, || # 6 foralli. So we divide the proofl into

two cases.

Casel r=4. If |[V(G’}{ > 10 then, by Lemma 5.5.2, ‘ake paths Py, Py, Pyand
P4 of lengths p-8, p-7, p-6 and p-5 respectively containing a pair of consecutive
even vertices of Tn—p & the ends. Then adjoining the edge with ends the odd
vertices of 7., 0 the above paths one gets cycles of lengths p-5, p~4, p-3 and p-2

respectively. If [V(G~)| < 8 the result may be checked directly.
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Case I1. r # 4. Then r > 8 and the result may be proved using the Lemmas 5.5.2

and 5.5.3.

Thus the result holds by induction and this completes the proof.

The above result also holds when G contains an additional vertex which
accounts for a 1—cycle for the c.p. 7. Thus we state the following without proof

which includes both even and odd p.

Theorem 5.5.2. Suppose G is a k-s.c. graph with p(> 8) vertices and a strong c.p.
 containing at most one 1—cycle such that the induced subgraph of G on each
cycle (of length > 1) of 7 has a hamiltonian path. Then for every integer

¢ 3 < L< p-2, G has an {<ycle.



CHAPTER 6
HALVING COMBINATORIAL DESIGNS

6.1. Introduction

In this Chapter the notion of selfcomplementarity is extended to
combinatorial designs. In particular, we examine whether a Steiner triple system
(i.e., a BIBD (v,b,r,k,A) with k = 3 and A = 1) or a corresponding truncated
system (obtained by deleting a triple if the total number of triples is odd) can be
partitioned into two isomorphic sets of triples, with v elements each. This is done
by obtaining a necessary condition for such existence, and then providing 2 method
of construction in each case. Similar questions for twofold triple systems and

Steiner systems S5(2,4,v) are also discussed.

6.2. Steiner selfcomplementary graphs

The probler: of partitioning the set of all triples in a Steiner triple system
with v elements (STS(v)) into two isomorphic sets of triples, with v elements cach,
is the same as finding the class of selfcomplementary graphs with v vertices such
that the edge set of each of these s.c. graphs is a collection of edge—disjoint

triangles. This leads us to the following definition.
Definition. A simple graph G with v vertices is called Steiner selfcomplementary

(s.5.c.) if it is isomorphic with its complement G, and E(G) is a set of

edge—disjoint triangles.

82
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For example, take v = 9, i.e., V(G) = {1,2,...,9} and E(G) = {(1,2), (1,4),
(2,4); (3!4): (3,6), (4,6); (5s6): (5,8), (6,8); (7.8), (8::2): (7.2); (1,5), (5,9), (1,9);
(3,7), (3,9), (7.9)}.

Figure 6.1

Note that the graph G in this example is a regular graph. Since the number
of vertices in a s.s.c. graph is odd, every complementing permutation (c.p.) of such
a graph always contains exactly one fixed vertex. The fixed vertex of a c.p. is

usually denoted by w.

A simple numerical argument gives the following necessary condition for the

axictence of a s.s.c. graph.

Lemraa 6.2.1. If there is a s.s.c. graph with v vertices then v = 1, 9, 13, 21

(mod 24).
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The class of s.5.c. graphs being a sullass of s.c. graphs, every s.s.c. graph is
connected. It can be illustrated by simple examples that if 7is a c.p. of a s.5.c.

graph G then a subgraph of G induced or the vertex set of a subset of cycles of 7

is not necessarily a s.s.c. graph.

Lemma 6.2.2. Suppose 7is a ¢.p. of a 5.5.c. graph. Then for any two cycles
(of length > 1) in 7, the length of one is an integral multiple of the length of that
of the other.

Proof. Suppose y and To A€ any two cycles (of length > 1) in 7 such that the
length of neither is an integral multiple of the other. Now we use the structural

property of the corresponding STS to complete the proof.

By definition of STS, every element from 7, must occur exactly once with
every element of Tq in the triples of the STS. This can happen in three different
ways. These are: two elements from 7, with one elemen. of 7, and/or one
element from 7; with two elements of 7, and/or one element from 7, and one
element from 7, with an element from some third cycle (say, 7'3) of 7in the triples
of the STS. Looking at the orbit containing such 2 triple, it can easily be checked
that the first two cases violate the cordition A = 1 for an STS. For the last case
the length of the corresponding orbit must be the Lc.m. of the lengths of the three
cycles. But this orbit again contains an element of Tg with either an element of 7|

0r Tq appearing at least twice, which is not allowed in an STS. B
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Construction of a s.s.c. graph with v vertices for v = 1,9 (mod 24) follows
from the construction of 1-and 2-rotational STS(v) given in Phelps and Rosa [35].
"This is done by taking alternate triples in every orbit of the STS as triangles in

the s.s.c. graph since each orbit contains an even number of triples.

Before proceeding to consider the remaining two classes of values for v, we
notc that a c.p. of a s.5.¢. graph is not necessarily an automorphism of the
corresponding STS. For example, the s.s.c. graph G with 13 vertices whose edge

sct consists of the edge—disjoint triangles

0,1,3; 1,2,10; 2,5,6; 3,5,12; 3,4,10; 6,9,10; 6,11,12; 4,8,12; 4,9,7; 0,9,11; 1,8,11;
2,7,8; 0,5,7

has a c.p. (0) (123456789 1011 12) which is not an automorpkhism of the
STS = GUG.

Since we do not have a method, in general, to deal with the construction of
s.s.c. graphs with v = 13, 21 {mod 24) vertices at this point, we restrict our
discussion of these s.s.c. graphs to those whose c.p.’s are always automorphisms of
the corresponding STS(v) and call this class strictly s.s.c. graphs. This
immediately implies that there are no strictly s.s.c. graphs with 13 vertices since
neither of the two nonisomorphic STS(13) has an automorphism which satisfies the

cycle length restriction in a complementing permutation of a s.c. graph (cf. [33]).

Now with the nonexistence of a strictly s.s.c graph with 13 vertices in hand,

we look at the question of the existence of a strictly s.s.c. graph with
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v = 13, 21 (mod 24) vertices. Recall that every c.p. in either case has a fixed
point, w. If v =13, 21 (mod 24) then any c.p. of a strictly s.s.c. graph with v
vertices contains cither an odd number of cycles of length 4 or a cycle with length
an odd multiple of 4, But the second possibility may be reduced to the first by
taking some suitable ods, power of the c.p.. Thus, without loss of gencrality,
assume that every c.p. of a strictly s.s.c. graph of order v = 13, 21 (mod 24) has an
¢dd number (say r) of cycles of length 4 each. If r = 1, each vertex of the 4-cycic
in 7 must occur in pair with each of the other three vertices of this 4-cycle exactly
once in the triples of STS(v). Two of the six such possible pairs may be combined
with o to give two triples and the remaining four pairs must combine with vertices
of some other cycle of length > 4 in 7. But then 7 would produce a pair of

vertices of the 4—cycle appearing in more than one triple, violating the definition of

STS.

Next, take odd r > 3. Suppose Tpr Tgr ooy Ty BT€ the 4—cycles in 7. There are
two ways of forming triples by taking a pair of vertices from some one 4-cycle and
one vertex from another 4—cycle. One way is taking an orbit by combining two
vertices from 7 ('rj) and one vertex from 7 (7;) which together produce 8 triples.
These together with the four triples each with a pair of vertices either in 7, or i
and o as the third vertex account for all triples with veitices from 7, 7] and (o).

This reduces the number of 4-cycles to be taken care of in terms of its verlex pairs

to (r-2). It ultimately reduces to the case r = 1, and 5o, is not possible.

The other way of forming orbits with vertices from the two 4-cycles 7, and

Tj is to combine a pair of vertices from T and one vertex from Tj' and then
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combine a pair of vertices from f with one vertex from some 4-cycle other than
ut In this case each vertex of 7; has been paired with two vertices of 7 by the
above combination. So each vertex of 7, must be paired with the remaining two
vertices of 7] in order to satisfy the definition of STS(v). But this requires
vertices from some other cycle of 7. However, this third cycle is neither (w} nor of
length > 4, for the latter would violate the condition A = 1 for an STS. So the
third cycle in 7 required above must also be of length 4. Thus we are reduced to
the case that the subset of all 4—cycles in a c.p. 7 of a s.5.c. graph together with o
form a 5.5.c. subgraph. Let us denote by 7 the subset of all cycles of length 4 in
r and the cycle (w). Then ('r')2 is an involution consisting of 4r+1 (r odd)
clements. But there exists no reverse STS(4r+1), r odd, by Rosa [45]. Hence we

have the following result.
Theorem 6.2.1. There exists no strictly s.s.c. graph of order v = 13, 21 (mod 24).

Combining Lemma ¢.2.1 and the above theorem, we have the following

theorem:

Theorem 6.2.2. A strictly s.s.c graph with v vertices exists if and only if

vz 1,9 (mod 24).

Corollary 6.2.2.1. If T is an automorphism of an STS(v), v = 13, 21 (mod 24),

with block orbits O,, Oy, ..., O  then |O;| is odd for at least one i, 1 < i<s.

Although by Theorem 6.2.1 there exists no strictly s.s.c. graph with
= 13, 21 (mod 24) vertices, this still leaves a possibility that a s.s.c. graph with

such a number of vertices may exist. In fact we have the following theorem.
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Theotem 6.2.3. Let v = p® = 13 (mod 24) be a prime power. Then there exists &

8.8.c. graph with v vertices.

Proof. Ifv = p% = 13 (mod 24), take Bose's construction of a cyclic STS(v)

(cf. Theorem 15.3.4 [24]). The base blocks are (xi, x2"+i, x‘“"H), i=01,..,t1,
where x is a primitive root of GF{p®). In our casc the number of orbits (i.e., of
base blocks) is even. Include in G all orbits with even i. Then 7, defined by

7(u) = xu for all u € V(G), is an isomorphism between G and G.

Remark. We do not know whether there exist non-strict 5.5.c. graphs for

non-prime-power orders v = 13 (mod 24) or any orders v = 21 (mod 24).

6.3. Almost Steiner selfcomplementary graphs

It is well known that an STS(v) exists if and only if v = 1, 3 (mod 6). Every
STS(v) with v = 1, 9, 13, 21, (mod 24) has ar even number of triples whereas
those with v =3, 7, 15, 19 (mod 24) have an odd number of triples each. So the
blocks of an STS in the second class cannot be partitioned into two isomorphic
parts. However, by analogy with almost selfcomplementary graphs, we may

proceed for this c'ass of STS(v) as foliows:

Consider an STS(v) with v = 3, 7, 15, 19 (mod 24) and delete one of the
triples. Then we may ask whether the remaining triples can be partiticaed into
two isomorphic sets of triples, each with v elements. It is a trivial observation
that any STS with the above mentioned order may be seen as a complete graph
whose edge set is a collectior of edge—disjoint triangles. Thus we are led to the

following definition.
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Definition. A simple graph G with v vertices is called almost Steiner
selfcomplementary (a.s.s.c.) if it is isomorphic with its restricted complement
G = I-(v\G, where I-(v = K \T, T is a triangle in K, and E(G) is a set of
edge-disjoint triangles.

The triangle T in K_ is called the missing triangle. An example of such a

graph is given below

]

7 2 7, 2

7
c®
6
5 4 Se 4 »5
'-“
G G T

Figure 6.2

Note that unlike a s.s.c. graph, an a.s.s.c. graph is not always connected. It
is clear from the definition that an a.s.s.c. graph is in 2 way similar to a 3-s.c.

graph with 2n odd number of vertices. This gives us the following obvious result.

Lemma 6.3.1. If there exists an a.s.s.c. graph with v vertices then

v=3,7, 15, 19 (mod 24).
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As before, an isomorphism 7: G — G can be considered as a mapping of the
vertex set which maps edges of G onto edges of G and nonedges of G onto
nonedges of G. Thus risa c.p. of the a.s.s.c. graph and for the above figure, 7
may be taken as (1 2 3 4)(5 6)(7). In keeping with the terminology of a.s.c.
graphs, here again we distinguish two types of c.p.’s of an a.s.s.c. graph. If a c.p.
fixes the miwsing triangle then it is called a strong c.p., otherwise it is called a

weak ¢.p.. So the c.p. 7= (1 2 3 4)(5 6)(7) mentioned above is a strong c.p.
The following are some of the properties of a ¢.p. of an a.s.s.c. graph.

Lemma 6.3.2. A (weak/strong) c.p. 7 of an a.5.5.c. graph G has at most 3 fixed

elements (i.e., 7 can fix at most three vertices of G).

Proof. By definition of a.s.5.c. graph, 7 can fix at most the three sides of the

missing triangle. This implies that 7 cannot fix more than three vertices of G.
The following is an example of an a.s.5.c. graph with 15 vertices and a c.p. 7

fixing three vertices.

V(G) = {1,2,.,12} U {x,3,2}, 7= (1 23 4)(5 6 7 8)(9 10 11 12) (x)(y)(2)

and the set of edge—disjoint triangles constituting E(G) is
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{1,3.x; 5,7,y; 9,11,7; 1,9,y; 3,1L,y; 1,8,2; 1,7, 5,9,%; 7,11,%; 1,2,7; 3,4,5; 5,6,11;
7,8,9; 9,10,3; 11,12,1; 1,8,10; 3,6,12},

where the missing triangle is obviously x,y,z.
Lemma 6.3.3. 7 has at most one cycle of length 2.
Proof. Suppose T has more than one cycle of length 2. Then each of the edges
with ends in the same 2—cycle of 7 is fixed by . Moreover, these edges being
pairwise nonadjacent, at most one of them can be an edge of the missing triangle.

Hence T can have at most one cycle of length 2. |

Lemma 6.3.4. For any two cycles (of lengths > 1) in 7, the length of one is an
integral multiple of that of the other.

Proof. Similar to the proof of Lemma 6.2.2.
The rest of the section deals with the construction of an a.s.s.c. graph with a
given number of vertices. This is done by considering the different cases

separately.

Lemma 6.3.5. If v = 3 (mod 24) then there exists an a.s.s.c. graph of order v.
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Proof. For v = 3 {mod 24), there exists a 1-rotational 8TS(v) and so the
construction of an a.s.s.c. graph with v vertices follows from Theorem 2.2 of
Phelps and Rosa [35], for an STS obtained there contains exactly one orbit of odd
length. Note that the c.p. here is a weak c.p. consisting of only two cycles, one of

which is a 1-cycle.

Lemma 6.3.6. If v = 7, 15 (mod 24) then there exists an a.s.s.c. graph with v

vertices.

Proof. In theorem 4.19 of [20], Gardner gives a construction of an STS(v),

v =7, 15 (mod 24), with an automorphism 7 = (w)(2 b)(0 1 2 ... (v—4)). Since
each of the orbits (except the one containing the single triple {w, a, b}) of triples
in the said construction is of even length, an a.s.s.c. graph with v vertices can be
constructed by taking alternate triples from each of the orbits of even lengths of
the corresponding STS(v). We note that the (strong) c.p. of the resulting a.s.s.c.
graph is the automorphism 7 of the S'S(v) and the triple {w, a, b} is the missing

triangle.

Now to complete the construction of a.s.s.c. graphs with v vertices, for
admissible v, we only need to demonstrate the construction of an a.s.s.c. graph
with v = 19 (mod 24) vertices. For this we first construct a corresponding STS(v)
with an automorphism such that each orbit of (except one containing exactly one

triple) of triples is of even length.
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Theorem 6.3.1. There exists an STS(v) on the set {Z,,, +g* (L2)}U {w,a,b} of
v (=24t+19) elements admitting 7 = (w)(a b)(0;1, ... (12t+7);)(051, ... (12t47),)

as an automorphism.

Proof. We use a direct construction applying Bose’s method of "symmetrically

repeated differences" (cf., e.g., [24]).

The pure differences from each of the cycles 7, = (0,1, ... (12t+7),) and
Tg = (091, ... (12t+7),) of 7 are

1,2, 3, ..., 6t+3, 6t+4
while the mixed differences are
1,23, .., 12t+7.
It is clear from the cycle structure of 7 that {w,a,b} is a fixed block of the system.

Then taking the pure difference 6t+4 from each of the cycles 7, and 7, we get a
set of blocks

B, = {{il, (6+4),, o}, {is, (6t+4)y, 0} | 1=0,1,2, .., 6t+3}.

For the construction of the remaining blocks we consider two cases:
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Case I: t even.
Partition the pure differences 1,2,...,6t+3 from the cycle Ty into 2t+1 triples
(a'i’bi’ci) satisfying a;+b, = ¢;, i = 1,2,...,2t+1, by using, say, Skolem sequences
(cf., e.g., [24]). This is always possible for 2t+1 = 1 (mod 4). These difference
triples are used to form 2t+1 base triples. Denote by B2 the set of all triples
developed from these base triples. Next, partition the mixed differences
0,1,2,...,12t+4,12t+6 into 6t+3 pairs using hooked Skolem sequence. These pairs
with the pure differences 1,2,3,...,6t+3 from the cycle 7, form 6t+3 difference
triples. Suppose B3 is the set of all triples obtained by developing the
corresponding 6t+3 base triples. Then the remaining mixed differences 12{4-5 and

12t+7 are used to get the set of blocks
B, = {{il, (126+5+i),, 2}, fiy, (1247 H)g, b} | =0, 1, ., 12t+7}.

Now B, UB, UB; UB, U {w,3,b} is the block set of the STS(v), with 7 as an

automorphism.

Case IT: t odd.

Since t is odd, there are odd number of odd differences among the pure
differences 1,2,...,61+3 of the cycle Ty So these cannot be partitioned into triples
as above. However, it is easily seen that one can partition all the above pure
differences except the differences 1, 4 and 6 into difference triples (e.g., by taking
an appropriate hooked Skolem sequence) [50]. Thus the pure differences
2,3,5,7,8,...,6t+3 are partitioned into 2t difference triples which are used to form 2t

base triples for our STS. Denote by Bé the set of all triples developed from these
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base triples. Also let B} be the set of all triples developed by the base triple
formed from the difference triple (2,4,6) from the cycle 7,.

Next, partition the mixed differences 1,2,....,12t+1,12t+3 into 6¢-+1 pairs
with differences 3,4,...,6t+3. This can be done by using honked Langford sequence
with d = 3, (see [50]). These pairs together with the pure differences
{8,5,7,8,...,6t--3} from the cycle 7, and {4,6} from the cycle 7, form 6t+1
difference triples, which, in turn, produce 6t+1 base triples for the system.

Suppose B} is the set of all triples generated by these base triples.

Finally, the pure difference 1 from each of the cycles U and Tos and the
mixed differences 0, 12t+2, 12t+4, 12t+5, 1246 and 12t-+7 give the set of triples

By = {{il,(i+1)1,(12t+6)2},{iz,(i+1)2,(12t+8)1},{i1,i2,a.},{il,(12t+2+i)2,b}
[i=0,1, .., 12t+7}.
SoB, UB5 UB3 UB; UB; U {»,a,b} is the block set of the required STS(v).

Now taking the automorphisia 7 in the above theorem as a strong c.p. for an

a.s.s.c. graph, we have the next Corollary.

Corollary 6.3.1.1. If v = 19 (mod 24) then there exists an a.s.5.c. graph with v

vertices.
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6.4. Twofold triple systems
A balanced incomplete block design BIBD with k = 3 and A = 2 is called a

twofold triple system (TTS(v)). It is well known that a TTS(v) exists if and only
if v=0,1 (mod 3). Here again we attempt to partition the set of triples in a
TTS(v) into two isomorphic sets of triples. For this, we note that, unlike an STS,
the total number of triples in a TTS is always even. Thus, every TTS satisfies the

necessary condition for our desired partition.

Since for v = 1, 3 (mod 6) there exists an STS(v), we may obtain for such v
the required partition in a trivial manner by simply taking two isomorphic or even
identical copies of an STS. Thus, unless we want to impose additional conditions,
which we will not do, we may dismiss this case. This leaves us to consider only

the values of v = 0, 4 (mod 6).

In order to check the existence of at least one partition of a TTS(v),
v =0, 4 (mod 6), in the sense mentioned above, we first consider the class of cyclic
TTSs. To this end, we have the following useful result due to Colbourn and

Colbourn.

Lemma 6.4.1 [16]. A cyclic TTS(v) exists if and only if v = 0,1,3,4,7,9 (mod 12).

Thus, restricted to v = 0,4 (mod 6), this lemma guarantees that there is at
least one TTS of order v, with v = 0 or 4 (mod 12) which can be partitioned into
two isomorphic sets of triples. This further reduces our problem to orders

v =6 or 10 (mod 12).
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As usual, let us call an isomorphism defining a desired paxtition of a TTS(v)
a complementing permutation (c.p.) for the partition. But the fact that every pair
of distinct elements in a TTS occurs exactly twice allows a c.p., in this case, to
contain cycles of various odd and even lengths. This presents difficulties which we
are not able to overcome at present. Thus, we remain far from a complete answer
to our problem in this case. However, it can be checked directly that the unique

TTS(6) can not be partitioned into two isomorphic sets of triples.

6.5. Steiner systems 5(2,4,v)

In this section we ask questions similar to those asked in the preceding
sections concerning partitioning of a Steiner system S(2,4,v) into two isomorphic
sets of quadruples. It is well known that a Steiner system 5(2,4,v) exists if and
only if v = 1 or 4 (mod 12). Further, the number of quadruples in a Steiner
system S(2,4,v) is even or odd according as v = 1, 16 (mod 24) or

v = 4, 13 (mod 24) respectively.

Considerably less is known at present about Steiner systems S(2,4,v) than
about STSs. For instance, although many infinite classes of cyclic 5(2,4,v)'s are
known (cf. [17, 24, 31]), a necessary and sufficient condition for the existence of
cyclic 5(2,4,v)’s remains unknown. Cyclic S(2,4,v) for v = 16,25,28 are known nol
to exist and it is conjectured [31] that they exist for all other orders
v =1or 4 (mod 12). It is obvious that if this conjecture were true it would
instantly imply that for each order v = 16 (mod 24), except for v = 16, there

exists a S(2,4,v) whose blocks can be partitioned into two isomorphic sets.
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The unique S{2,4,16) (i.e., the affine plane of order 4) is easily seen to be
partitionable in the above sense. For this it suffices to take as set of elements

V= 12g {1,2}, and as base blocks

{01: 41: 02! 42}: {011 11: 22} 31} {021 22) 32: 51} (mOd 8)'
Thus we make the conjecture of our own:

Conjecture. For every v = 16 (mod 24) there exists an 5(2,4,v} whose blocks can

be partitioned into two isomorphic sets.
Let us remark that the conjecture is true for v = 16,40,64.

We can say even less about §(2,4,v)’s if v = 1 (mod 24). Of the 16 known
nonisomorphic 5(2,4,25)'s, only one (no. 1 in the listing of {29]) admits partitioning
into two isomorphic "halves". We can say virtually nothing about large orders,
except perhaps that the (conjectured) existence of cyclic S(2,4,v)’s is of no help for

our problem in this case.



CONCLUSION

The study of selfcomplementary (s.c.) graphs has generated considerable
intercst though such a graph exists with v vertices only for v = 0,1 (mod 4), i.e.,
when K_ has an even number of edges. Besides the interesting properties of this
class of graphs, the basic idea involved in the definition of s.c. graphs is to
partition a complete graph Kv‘ for admissible v, into two isomorphic spanning
subgraphs. In this thesis, this notion is extended to a partitioning of an almost
complete graph f{v (obtained after deleting one edge from the complete graph Kv
with an odd number of edges) and the properties of the new class of graphs, called

almost selfcomplementary (a.s.c.) graphs are studied.

It is found that the a.s.c. graphs and s.c. graphs have many properties in
common. In addition, it is also proved that many of the properties of the s.c.
graphs are preserved by the graph (the so called k—s.c. graph) obtained by
partitioning a certain subgraph of 2 complete graph (from which some or all edges
of a matching contained in the complete graph have been deleted) into two

isomorphic subgraphs.

The enumeration problem for a.s.c. graphs is one of the open problems that
remain. Another possible extension of the idea of selfcomplementarity, along the
lines of a.s.c. graphs, is to study partitions of an r-partite complete graph with an
odd number of edges, and their properties. The class of r-partite s.c. graphs has

been studied in [19, 42].
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The class of strongly regular s.c. graphs has been studied by many authors

[32, 39, 46, 47], due to the connection of these graphs with combinatorial designs.
But there exist no regular a.s.c. graphs and so it seems that nothing can be done
in this direction. However, in Chapter 6, the notion of selfcomplementarity is
exiended to combinatorial designs by examining whether a Steiner triple system
(twofold triple system, and a Steiner system S(2,4,v), respectively) can be
partitioned into isomorphic hypergraphs. This chapter also contains many

questions about the existence of such a partition still to be answered.

Above all, the feasibility of selfcomplementary or "nearly" selfcomplementary
partitioning of a complete graph or of a complete multigraph, possibly with some
additional conditions imposed, implies that the notion of such partitioning may be

extended to many other complete configurations.
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