Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6540
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBuda, R. deen_US
dc.contributor.advisorTaylor, D.P.en_US
dc.contributor.advisorCarter, C.R.en_US
dc.contributor.advisorYipand, P.-
dc.contributor.authorSecord, Pierre Normanen_US
dc.date.accessioned2014-06-18T16:35:57Z-
dc.date.available2014-06-18T16:35:57Z-
dc.date.created2010-06-15en_US
dc.date.issued1989-11en_US
dc.identifier.otheropendissertations/1848en_US
dc.identifier.other3053en_US
dc.identifier.other1357549en_US
dc.identifier.urihttp://hdl.handle.net/11375/6540-
dc.description.abstract<p>Over the past decade, lattices have been increasingly recognized as an important source of codes for the Gaussian channel. The 8-dimensional Gosset lattice has figured prominently in these new developments because it offers an asymptotic coding gain of 3 dB over conventional pulse amplitude modulation and can be soft decision demodulated/decoded with a reasonable amount of speed. In the present work, we revive a little used definition of the Gosset lattice and show that codes derived from this construction exhibit a null at dc in their baseband spectrum. Such codes are useful as line codes for baseband signalling on channels that do not support a dc spectral component or for bandpass transmission where spectral shaping is required to combat intersymbol interference.</p> <p>Previous applications of lattice codes have been aimed primarily at voiceband data communications. This thesis was motivated by the need to develop a decoder that would make applications in the multi-megabit range of data transmission possible. To achieve this goal, a two-stage approach to demodulation was developed. The first stage makes a fast estimate of the transmitted vector and has the ability to declare an erasure when it knows its estimate is unreliable. This initial erasure declaring stage controls the throughput of the demodulator. Because it is far simpler than a maximum likelihood demodulator, greater speed is achieved. The second stage is provided to correct the occasional occurrence of an erasure and maintain the error performance of the lattice. To complete the decoder structure, we outline a method of lexicographic ordering the signal set that leads to a compact set of decoder look-up tables used to obtain a binary message sequence from each demodulated vector. Finally, we evaluate the effects of quantization on the probabilities of erasure and error and give results from a Monte-Carlo simulation undertaken to verify the demodulators performance.</p>en_US
dc.subjectElectrical and Computer Engineeringen_US
dc.subjectElectrical and Computer Engineeringen_US
dc.titleDemodulation/Decoding of a DC Free Construction of the Gosset Latticeen_US
dc.typethesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.35 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue