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ABSTRACT

Over the past decade, lattices have been increasingly recognized as an

important source of codes {or the Gaussian channel. The 8-dimensional Gosset

lattice has figured prominently in these new developments because it offers an

asymptotic coding gain of 3 dB over conventional pulse amplitude modulation and

can be soft decision demodulated/decoded with a reasonable amount o{ speed. In

the present work, we revive a little used definition of the Gosset lattice and show

that codes derived from this construction exhibit a null at dc in their baseband

spectrum. Such codes are useful as line codes for baseband signalling on channels

that do not support a dc spectral component or for bandpass transmission where

spectral shaping is required to combat intersymbol interference.

Previous applications of lattice codes have been aimed primarily at voiceband

data communications. This thesis was motivated by the need to develop a decoder

that would make applications in the multi-megabit range of data transmission

possible. To achieve this goal, a two-stage approach to demodulation was

developed. The first stage makes a fast estimate of the transmitted vector and has

the ability to declare an erasure when it knows its estimate is unreliable. This

initial erasure declaring stage controls the throughput of the demodulator. BeCc1.use

it is far simpler than a maximum likelihood demodulator, greater speed is achieved.

The second stage is provided to correct the occasional occurrence of an erasure and

maintain the error performance of the lattice. To complete the decoder structure,

we outline a method of lexicographic ordering the signal set that leads to a compact

set of decoder look-up tables used to obtain a binary message sequence from each

demodulated vector. Finally, we evaluate the effects of quantization on the

probabilities of erasure and error and give results from a Monte-Carlo simulation

undertaken to verify the demodulators performance.
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