Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6535
Title: Radar Clutter Classification
Authors: Stehwien, Wolfgang
Advisor: Haykin, Simon
Department: Electrical Engineering
Keywords: Electrical and Electronics;Electrical and Electronics
Publication Date: Nov-1989
Abstract: <p>The problem of classifying radar clutter as found on air traffic control radar systems is studied, and an algorithm is developed to carry out this classification automatically. The basis for the algorithm is Bayes decision theory and the parametric maximum a posteriori probability (MAP) classifier. This classifier employs a quadratic discriminant function and is optimum for feature vectors that are distributed according to the multivariate normal density. Separable clutter classes are most likely to arise from the analysis of the Doppler spectrum. Specifically, a feature set based on the complex reflection coefficients of the lattice prediction error filter (PEP) is proposed. These coefficients are also used in the maximum entropy method (MEM) of spectral estimation, and this link establishes many of their characteristics. A number of transformations are necessary, however, before they can be used as features.</p> <p>The classifier is thoroughly tested using data recorded from two L-band air traffic control radars at different sites. The collected data base contains extensive bird, rain, and ground clutter, as well as thunderstorms, aircraft and ground-based moving vehicle echoes. Their Doppler spectra are examined; and the properties of the feature set, computed using these data, are studied in terms of both the marginal and multivariate statistics. Several strategies involving different numbers of features, class assignments, and data set pretesting according to Doppler frequency and signal-to-noise ratio, were evaluated before settling on a workable algorithm. Final results are presented in terms of experimental misclassification rates and simulated and classified PPI displays.</p>
URI: http://hdl.handle.net/11375/6535
Identifier: opendissertations/1843
3058
1357645
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
9.98 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue