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ABSTRACT

The problem of classifying radar clutter as found on air traffic control radar
systems is studied, and an algorithm is developed to carry out this classification
automatically. The basis for the algorithm is Bayes decision theory and the parametric
maximum a posteriori probability (MAP) classifier. This classifier employs a quadratic
discriminant function and is optimum for feature vectors that are distributed according
to the multivariate normal density. Separable clutter classes are most likely to arise
from the analysis of the Doppler spectrum. Specifically, a feature set based on the
complex reflection coefficients of the lattice prediction error filter (PEF) is proposed.
These coefficients are also used in the maximum entropy method (MEM) of spectral
estimation, and this link establishes many of their characteristics. A number of
transformations are necessary, however, before they can be used as features.

The classifier is thoroughly tested using data recorded from two L-band air
raffic control radars at different sites. The collected data base contains extensive bird,
rain, and ground clutter, as well as thunderstorms, aircraft and ground-based moving
vehicle echoes. Their Doppler spectra are examined; and the properties of the feature
set, computed using these data, are studied in terms of both the marginal and
multivariate statistics. Several strategies involving different numbers of features, class
assignments, and data set pretesting according to Doppler frequency and signal-to-noise
ratio, were evaluated before settling on a workable algorithm. Final results are

presented in terms of experimental misclassification rates and simulated and classified

PPI displays.
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Chapter 1
INTRODUCTION

Modem air traffic control (ATC) radar systems rely heavily on digital
technology to ease controller workload in identifying and tracking aircraft targets in
busy airport terminal areas. Airbomne transponder-based secondary surveillance radars
(SSR) and fully processed synthetic displays have significantly altered the role of
primary radar within the ATC system. It is now used mainly to provide a backup to
the SSR and to "reinforce" their targets: primary radar measurements of range and
azimuth are generally more accurate. Its ability to detect airborne hazards can,
however, assist controllers immensely in vectoring aircraft around storms and, in some
cases, bird flocks. Unfortunately, the advent of digital (synthetic) displays prevents
radar operators from using their wained judgment to interpret the raw data as it would
have appeared on the older style plan position indicator (PPI). There is thus a need to
identify these hazards automatically and present the results on the processed display.

The two most common hazards to aircraft are weather and birds. The most
dangerous forms of weather are thunderstorms and heavy precipitatdon (in which
airframe icing frequently occurs). Winds within thunderstorms present a serious threat
to airliners, especially during the landing phase, and can literally tear small aircraft
apart. Aircraft collisions with birds can result in serious damage, crashes and fatalities.
The small size of birds and the very high closing speed of jet aircraft makes collision
avoidance by pilots extremely difficult. Low-flying jets are particularly vulnerable, as



are aircraft taking off and landing. Bird scaring techniques are partially successful at
airports, but this is clearly no solution elsewhere. Periods of heavy night-time
migration during the spring and fall present a major problem for night flying jet
training operations and may require a complete halt to such activities.

Traditional radar detection schemes consider all non-aircraft targets as
undesirable "clutter”, which must be suppressed to enhance the visibility of aircraft
within the clutter areas. The moving target indicator (MTI) is essentially a Doppler
filter designed to remove all non-moving echoes such as ground clutter. Modern digital
MTI filters are quite effective and provide as much as 50 dB improvement for detecting
targets flying over areas with strong ground clutter. Fast-moving rain and storm
systems, however, break through the filter and appear on the processed displays as
targets, often overloading the digital target processing units. The number of these false
alarms is then controlled using constant false-alarm rate (CFAR) or programmable
sensitivity time control (STC) circuits, or both. These, unfortunately, also reduce the
detectability of legitimate radar targets.

The latest generation of primary radars will improve on the MTI filters
using the so-called moving target detector (MTD) [Rabinowitz er al., 1985; Taylor and
Brunins, 1985]. This detector consists of a bank of Doppler filters, each tuned to a
different frequency. Separation of targets and clutter, which generally travel at
different velocities, can thus be achieved and the probability of detection increased
considerably. Other algorithms include model-dependent detectors which adapt to the
clutter rather than use fixed filter banks, but they too aim to completely remove clutter,
While these improved detectors allow progressively weaker targets to become visible in
the presence of clutter, they also further suppress the availability of information

regarding airbomne hazards. At the same time it is not clear how these systems respond



to bird echoes, which can take on radar cross-sections (RCS) and groundspeeds similar
to those of small aircraft, and don't often appear as distributed clutter. Their detection
will only confuse controllers unless they are specifically identified as birds.

In this thesis an attempt is made to classify the different forms of radar
signals, rather than detect moving targets. It can be said that detection is simply
classification with two classes, and thus this work is a generalization of the detector.
There is, however, an important distinction to be made: in classification the
characteristics of the classes, once determined, are generally fixed or updated only
gradually, The modern detector, on the other hand, adapts itself to the background and
as such continuously changes the characteristics of the background class in order to

maximize the probability of detection for the target class.

12 The Classifier Model

A generic block diagram of the classifier is shown in Figure 1.1. The
measurements available from the surveillance radar are the amplitude and phase of the
received echo pulses. Pulses are transmitted at regular intervals, and even though the
radar antenna is continuously rotating, the transmitted beam is wide enough to provide
several echoes from the same source before the beam has scanned past it. This time
series of echoes thus contains information on the size and velocity of the scatterers, as
well as its internal motion. Since not all of this information is unique to any one
clutter type, those features which can reliably identify the clutter need to be extracted
and passed on to the classifier.

The classifier must then decide which class ¢ the measurement sample
vector x belongs to. This is frequently achieved using the notion of a distance metric.

The distance of the sample from each possible class is computed, and that class to



which the sample is closest is then chosen. If it is possible to define the statistics of
the class and the measurement samples, then potentially fewer misclassifications may
result whenever x is assigned to c, such that the a posteriori probability

J
P(cj|x) > P(c‘|x) for all i # j. Using Bayes Rule [Duda and Hart, 1973],

(x|c,)Pc)
P(c.|x) = p___.l..L_LL (1.1)
J p(x)
where
n
pe) = T pix|c)Pc) (1.2)

This maximum a posteriori probability (MAP), or Bayes classifier is in fact optimal
when the a priori probabilities P(cj) and the probability densities p(x| cj) are known. In

most cases, however, only estimates for these quantities are available and the classifier

DISPLAY
TRANSDUCER
decision

measurement

data output
FEATURE
EXTRACTOR CLASSIFIER

feature vactor

Figure 1.1 Block diagram of the classifier



will necessarily perform subeptimally.

The actual increase in the rate of misclassification through the use of a
suboptimal classifier is not clear, and some classifiers have been devised to
accommodate cases where parametric estimates (based on, for example, assumptions of
normality) are clearly poor representations of the true statistics. These nonparametric
techniques, such as the nearest neighbor rule [Duda and Hart, 1973], require that all
labelled samples be stored and compared in some way to each new sample. This can
lead to prohibitive memory and computational requirements, especially for radar data
which becomes available and must be processed at rates of more than one million
samples per second.

Parametric estimates which provide sufficient information for successful
(even if sub-optimal) classification are thus essential for realtime systems. Acceptable
performance must therefore be achieved by defining features and classes in such a way

that the estimates will reflect the true statistics as closely as possibie.

1.3 _Spectral Parameters as Features

A central question for the classification of clutter concerns the selection of
features, that is which features, if any, are present in coherent radar returns and able to
uniquely identify each clutter type. The amplitude of the returns is related to the radar
cross-section (RCS) of the target and, in the case of distributed clutter, the radar
reflectivity per unit velnme. It is, however, also a function of the angular position of
the target within the antenna beam pattern, which cannot be determined without
knowledge of the altitude of the target. This knowledge is generally not available in
surveillance radars and as a result no definitive statement can be made about the target

size regardless of the amplitude of the retumns.



The phase difference between successive returns (or, more precisely, the
rate of change of the phase or Doppler frequency) is a measure of the radial velocity
(or range rate) of the clutter or target. As such it does not reveal much about the
clutter either, except in the case of ground clutter which is never expected to deviate
much from zero velocity. Finding zero radial velocity does not, however, prove that
the clutter is ground based, it simply makes it more likely: targets moving tangentially
to the radar will also show a zero range rate. In addition, a phase shift of integer
multiples of 27 radians between successive pulses will appear as zero Doppler
frequency and hence zero range rate. Such aliasing will further reduce any uniqueness
that might have been contained in the radial velocity, especially for low pulse repetition
frequencies (PRF).

Besides radial velocity, computing the spectrum of the sample series will
also reveal the "purity" of the velocity. The spectral spread is an indication of the
presence of sidebands to the Doppler frequency itself. There are a number of causes
for these. First is the modulation of the time series by the azimuth gain pattern of the
main scanning beam, which is usually approximately Gaussian or sin(x)/x. Clearly, the
fewer samples available from the target, the wider the spectral spread will be. Another
cause is amplitude modulation resulting from pulse-to-pulse scintillation, which results
from rapid changes in the observed radar cross-section or reflectivity (target glint).
Internal motion, or instantaneous deviation from the average velocity will manifest
itself as frequency modulation with the potential of large spectral spreads. The
presence of muldple scatterers and hence multiple frequencies leads to both frequency
and amplitude modulation. This is parnticularly true for windshear conditions in
weather systems, and large numbers of birds within a radar resolution cell moving in

different directions and at different speeds. Such internal motion has most cetainly



different characteristics for the various clutter types and should provide the basis for

any feature set, provided of course that it is not completely obscured by the scanning

modulation.

Previous work [Stehwien, 1983] established and analyzed the Burg
reflection coefficients as a potential feature set for classification. The early stages of
this research were concerned with the proof of concept of the application of the
reflection coefficients to the parametric Bayes classifier. A comparison with other,
distance metric based classifiers showed superior performance in virtually all cases
[Stehwien, 1984]. Unfortunately, these analyses all suffercd substantially from a lack
of data and little could be said about the asymptotic statistics of the feature set or the
classifier performance. In fact there is considerable suspicion that the apparently good
results were simply due to local differences in the data, and thiat the necessity of testing
the classifier on the training set provided excessively optimistic results. Hence, before
any algorithm could be declared successful, a much greater volume of data was needed
in order to allow exhaustive training and testing, (Exhauvstive within practical limits, of
course.)

This need could only be met by allocating a major portion of the research
time to collect and analyze large quantities of radar data. Two radar sites were visited
and nearly five hours of data in 18 minute segments were recorded [Stehwien and
Haykin, January 1986]. Selected segments of this data were transferred to a research
computer for analysis. Software was written to efficiently examine and display the data
for verification of integrity and further selection of training sets. Daily weather and

bird migration forecasts and reports along with time-exposure photographs of the PPI



and experience in observation served to establish the a priori knowledge about the
nature of the recorded clutter which was necessary for the training of the classifier.
Several scenarios for classifier training were tested to maximize the
separability of the clutter classes. It was not clear at this stage how many classes could
be, or perhaps even needed to be defined for optimal performance given certain
computational restrictions.  Little theoretic analysis could be applied to such
considerations as feature selection and extraction, dimensionality, data window size per
feature set, number of classes per clutter type, and classifier performance. Hence
several cycles of feature extraction from the data, class definition, and pe:formance
testing were required before the algorithm could be considered workable. The final
test, of course, lies less in numbers but in the presentation of the classifier output as an

air traffic controller might see it. Generation of such displays rounded out the research

activity.

1.5 Thesi in

The thesis is structured to provide a fairly complete picture of the radar
classification problem. It begins, in Chapte: 2, with a review of the developments
leading up to the current work. The requisite theory is presented in Chapters 3, 4,
and 5. The presentations are necessarily aimed at achieving a practical solution and
thus contain a strong component on the relationships between sample size and error
performance. Chapter 6 details the experimental work and its results, and Chapter 7
examines the practicality of the final algorithm in terms of its implementation in real
time, and its finite precision performance. Chapter 8 concludes by highlighting the
research findings and contributions. A more detailed overview of the thesis is given in

the following outlines.



Chapter 2 reviews the background to the research as reported in the
literature, starting with the initial recognition of the problem (Section 2.1) and early
attempts at classification using noncoherent radars in Section 2.2, These attempts were
really studies in clutter characterization and feature selection, and were quickly
expanded to include Doppler signatures as well (Section 2.3). Research into automatic
classification itself, however, has progressed largely as an independent discipline and
its application to radar clutter (Section 2.4) appears not to have received much
attention.

A detailed analysis of the spectral content of radar clutter is given in
Chapter 3. The radar is first introduced as a sensor of the environment followed by, in
Section 3.2, a discussion of the physical phenomena which control the scattering of
radar energy by clutter sources and targets of interest. This discussion is illustrated
with sample spectra. Section 3.3 examines how the clutter phenomena determine the
spread of these spectra, and Section 3.4 expands this to include the effects of the
scanning beam modulation. A brief discussion on the consequences of the use of
staggered PRFs, which is common in radar systems designed around conventional MTI
filters, concludes the chapter.

Bayes decision theory as applied to classification is reviewed in Chapter 4.
First, the relevant Bayes theory is reviewed in Section 4.1, Performance prediction is
essential for the selection of effective features, but quite difficult for the parametric
multiclass Bayes classifier. Some error bounds and their application to the multiclass
problem are discussed in Section 4.2. Measures of confidence in the decision can be
quite useful to the radar operator who has to interpret the classifier output. Two such
measures are proposed in Section 4.3. Finally the problem of classifier training is

addressed. The solution to this problem is critical to a satisfactory performance of the
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classifier. A priori knowledge is required to allow the assignment of labels to training
samples: bad labelling will inevitably lead to substandard, and perhaps even completely
erroneous decisions. Because of the non-separable nature of the data, clustering
algorithms used in unsupervised learning techniques will not likely perform well. In
addition to a priori knowledge, a large sample size is also essential to develop
confidence in the class prototype. This is particularly true for long feature vectors
(high-dimensionality classifiers).

Chapter 5 is concerned solely with the feature vector. The question of
optimal feature selection is examined first, along with the reasons for the contirued ad-
hoc nature of the feature selection process. In Section 5.2 the proposed feature set is
derived from the Burg reflection coefficients. Several transformations are required
before they can be used effectively. Their statistics, both asymptotic and experimental,
are discussed in Section 5.3, along with the relationship to data availability. The
problem of dimensionality is examined in more detail with respect to the chosen feature
set in Section 5.4. Section 5.5 then presents an ad-hoc solution to the nonlinear
dependence of all features on the signal-to-noise ratio (SNR) which, if not removed, is
sufficiently strong to almost completely distort the classification process into one of
simply assigning classes based on the SNR alone.

Experimental results are presented in Chapter 6, after first describing the
radar system and the data derived from it. A performance analysis of the radar with
respect to point targets in general and bird clutter in particular is also included. The
training strategy and the selection of the labelled samples is discussed in Section 6.2.
During this process considerable insight was gained into the behavior and statistics of
the clutter data. Various experiments and their resuits are interpreted in Section 6.3.

Finally, classified radar images are shown as the "proof of the pudding”.



11

Chapter 7 deals with the implementation of the algorithm in real time,
Computational requirements of the algorithm are summarized and compared to the real-
time needs of the radar. Some thoughts are presented on the feasibility of using finite
precision and fixed point arithmetic, and modern, highly parallel processors.

Several appendices are included to supplement the understanding of the
radar system. The first three deal with its specifications, detection performance, and
the elusive nature of the proof for the presence of bird clutter. The expected value of
the reflection coefficients given a complex-sinusoid-in-noise case is derived in
Appendix D. In Appendix E, an attempt is made to quantify the sensitivity of the first
reflection coefficient to in-phase and quadrature (/ and Q) channel misalignments,
namely different gain and noise levels per channel, as well as phase misadjustments (Q

not orthogonal to /).



Chapter 2
HISTORICAL PERSPECTIVE

This chapter presents a brief review of the developments leading up to the
current state of research into radar clutter classification, particularly as it concerns air
traffic surveillance radars. The presentation is essentially chronological although, in
the interest of cohesiveness, independent disciplines are discussed under their own
section headings. The history of radar itself is not addressed here; an excellent
overview, patticularly from the British perspective, may be found in Eastwood's book
on Radar Omithology [Eastwood, 1967]. More recently, Skolnik [1985) prepared a
brief history and discussion of the state of radar today. References provided in this
chapter have been chosen to be representative and significant to this research. Other

and related work is amply referenced in the comprehensive review papers and books.

2.1 The Desire to Classify Radar Targets and Clutter

The desire to classify Jates back to the earliest days of radar
experimentation, when it was found tnat “spurious” or clutter echoes from airborne
scatterers such as clouds could be sufficiently strong to obscure the real targets of
interest: aircraft. There was also the wartime need for the identification of friendly
and enemy aircraft and, to a lesser extent, the need 10 identify the type of aircraft. A
solution to the latter problem was quickly found by installing transponders on board
aircraft as part of a system called Ideniification, Friend or Foe (IFF). This system is

still in use today and has found application in air traffic control systems as a secondary

12
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surveillance radar (SSR) or, more formally, the Air Traffic Control Radar Beacon
System (ATCRBS) [Skolnik, 1970]. While this system provided aircraft visibility in all
kinds of clutter (and still does), it did nothing for the identification of clutter or aircraft
without transponders, and radar operators were still required to use their judgment and
experience with unprocessed radar data displays [Eastwood, 1967].

After the Second World War, when radars became more powerful and used
higher and higher frequencies, clutter problems also became greater and various clutter-
suppression techniques, including the moving target indicator (MTI), were devised. At
the same time, researchers devoted more time to the study of "angels", that is unknown
and unidentifiable radar echoes. Many meteorological conditions were relatively easy
to correlate with radar observations, but the realization that many of these "angels"
were birds and even insects, came more slowly [Eastwood, 1967; Flock and Green,
1974]. With that realization also came an interest by ornithologists to study birds using
radar, which grew throughout the 1960's and continued into the early 1970's [Vaughn,
1985]). Aviators also became interested in scparating birds from aircraft, particularly
with the advent of high-speed jet aircraft and the phenomenal increase in air traffic
(Stables and New, 1968]. The use of radar to help avoid bird strikes seemed logical,
especially since most busy airports use radar for air traffic control [Blokpoel, 1974].

Most of the clutter identification techniques in current use are based on
visual examination of PPI displays by trained radar operators. If the unprocessed radar
video is available, an "educated guess" may be made with a reasonable probability of
success. Photographic records are more reliable, either in the form of time-lapse
motion pictures or single time-exposures, where bird tracks become readily apparent.
Unfortunately, the time delay involved in processing the photographs limits their use

for bird-strike avoidance. They can, however, be very useful for ornithologist in
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migration studies, and for migration forecasts used in the planning of flight opertions
[Gunn and Solman, 1968; Blokpoel, 1973].

Bird-strike avoidance programs will undoubtedly benefit from migration
studies and forecasts, but immediate information will always be required. While acute
problems at airports can be managed, to some extent, with visual observations and bird-
scaring techniques, en-route avoidance would be much more successful if up-to-date
radar wamnings can be issued [Blokpoel, 1976). Unfortunately, modemn target detection
and clutter suppression techniques remove, if not all of the clutter, much of the
identifying information and make manual clutter classification quite unreliable.
Synthetic radar displays are designed to eliminate clutter and leave the radar operator
with little or no data on airborne hazards, apart from what is automatically detected and
displayed with special symbols. Research into automatic clutter classification thus

arose from this need to present airbormne hazard information to the radar operator in real

time.

Most early radars provided only signal strength (signal amplitude) with
which a detection decision could be made. Resolution was usually too low to form true
"images" of the target, and the only information that could be obtained about the target
was a lower bound on its maximum length [Skolnik, 1970]. The actual value was
clearly a function of orientation and only broad categories of targets could be
identified. Even today, the resolution of surveillance radars is low enough that
practically no information about target size is available. What is available, however,
are signal amplitude and its spatial distribution, amplitude modulation, polarization

dependence, scan-to-scan motion and fluctuation characteristics,. =~ While probably
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insufficient for the identification of targets, these parameters provide useful information
about clutter.

Much work has been done to find amplitude signatures of bird echoes and
several good reviews have been published on this subject [Schaefer, 1968; Flock and
Green, 1974; Vaughn, 1985]. These studies found wingbeat modulation frequencies of
a few Hertz to tens of Hertz, which have been observed over periods of several
seconds. The difficulty with a scanning surveillance radar is, however, that the target
dwell time (the time the beam spends directed at the target) is quite short and often
insufficient for the formation of a reliable estimate of the signature. With dwell times
measured in milliseconds and scan times of several seconds, surveillance radars will
interpret such signatures as scan-to-scan fluctuations with little possibility for a positive
identification. Flock and Green [1974] recognized this problem and proposed a
combination of surveillance and signature analysis radar, the latter using pulse-Doppler
techniques.

Much less work has been done on the spatial distribution and polarization
properties of bird clutter. Spatial amplitude distributions have been examined by Barry
et al. [1973), and Dill and Major [1977] actually studied the distributions of bird flocks
in three dimensions. Some references to the work on polarization properties were
provided by Vaughn [1985].

Meteorological clutter has long been the subject of study and much is
known about the characteristics of rain and storm clutter [see Nathanson and Reilly,
1968; Smith et al., 1974]. Long-term pulse-to-pulse correlation is much greater than it
is for bird clutter [Zawadzkd, 1973], as is the spatial uniformity in amplitude
distribution and area movement. Many modern radars make use of a weather channel

to derive weather contours for presentation to the operator, and attempt to filter weather
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clutter out completely from the target detection channel. These contours are simply
derived from amplitude thresholding [Taylor and Brunins, 1985]. Weather radars
represent a further evolution in the desire to learn more about meteorology, and are
used extensively as an aid in forecasting and to provide weather reports to the aviation
community. These radars derive rain intensities from calibrated reflectivity
measurements which are then plotted in color on PPI displays.

Ground clutter is, perhaps, the most complex of all commonly occurring
clutter types. Its lack of homogeneity makes it difficult to characterize, although many
attempts have been made [Long, 1975]. Even today, ground clutter characterization
cannot be considered complete [Barton, 1985]. Air traffic control radars generally
combat clutter through the use of moving target indication (MTI) and moving target
detection (MTD) techniques and ground clutter maps [Muehe et al., 1974; Rabinowitz
et al., 1985; Taylor and Brunins, 19835).

Some attempts to classify clutter based on this knowledge have been made,
but they demonstrated only marginal success. Perhaps one of the simplest techniques
to automatically detect the presence of birds is to determine the spatial density of
targets and to relate this density to the various clutter types. Hunt [1977] describes
automatic equipment which computes this density by counting targets, and relates it to
the probability of a bird strike. Unfortunately, since this device counts all detections
and not just birds, it would likely become rather unreliable when weather clutter is
encountered.

The desire to add as little new equipraent as possible to existing
surveillance radars lead to several studies into the spatial amplitude characteristics of
clutter at the Communications Research Laboratory (CRL) at McMaster University.

Haykin and Carter [1975] reviewed the then current literature and theory, and proposed
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a processor to measure the distribution of amplitudes and Doppler spreads. Their report
also contains an appendix describing the work on weather and bird clutter carried out
by other Canadian and U.S. agencies. Currie er al. [1977] continued this work by
testing the processor algorithms using recorded radar data. They tested amplitude
histograms, adjacent sample variabilities, and clatter area movement (scan-to-scan),
The most promising of the three appeared to be the adjacent sample variability
measure, although the authors state that the area movement algorithm may be of some
use. Amplitude histograms of bird and weather clutter were found to be too similar to
be useful. It appears that this work has not been continued beyond this point, with the

emphasis shifting to the study of Doppler spectra.

2.3 Evolution of the Use of Spectral Paramneters

The principles of Doppler radar have been known since the 1930's, but it
did not see widespread exploitation until the development of digital technology in the
1960's [Skolnik, 1985). Spectral analysis is in fact a form of correlation analysis and
thus can be carried out on noncoherent radar data to find spatial and temporal
correlation parameters. Temporal correlation will clearly detect the wingbeat
characteristics of bird clutter and could serve well to distinguish it from weather clutter
and aircraft targets. Due to their short dwell times, however, surveillance radars cannot
effectively measure such temporal correlation, and any "discovered" spatial correlation
must be corrected for the effects of the scanning antenna beam.

Analysis of the Doppler shift, which arises from the motion of the target,
had the promise of providing additional information for discrimination. Haykin and
Carter [1975] proposed, and Currie er al. [1977] tested the viability of using the spread
of the Doppler spectrum as a discriminant. Chan and Haykin [1976] compared the
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performance of the Fast Fourier Transform (FFT) and the Maximum Entropy Method
(MEM) as spectral estimators of the clutter spectrum, given that only a few samples
were available. Kesler [1978] extended this work and concluded that, for clutter which
can be modeled as an autoregressive process, the MEM is a superior estimator than
FFT-based and other linear methods. The authors found, using their recorded data, that
significant differences appear to exist in the spectral spreads of bird, weather, and
ground clutter. These results may also be found in [Haykin et al., February 1979,
Haykin and Kesler, 1979]). Chan and Haykin [1979] further explored the properties of
the MEM for use with radar signals, and Currie [Currie and Haykin, 1981; Haykin
et al,, 1982] actually constructed a working "classifier" prototype which computed
"turbulence indices" to warn of the dangers of the airborne hazards. These indices were
then related to individual clutter types for identification.

The CRL work did not, however, relate the observed characteristics 10 any
of the physical phenomena at work in the scatterers which cause the clutter; once the
theory was developed, it proceeded largely on an empirical basis. On the other hand,
studies which correlated the physical motion of clutter with their spectra used special
purpose radars. Bird clutter analyses were mostly done using non-scanning radars
which allowed continuous measurements for several seconds [Flock and Green, 1974;
Vaughn, 1985]. From these, researchers were able to define many of the amplitude 2uid
Doppler signatures of individual species of birds. The amplitude modulation
introduced by the scanning beam modulation, though acknowledged, was not generally
discussed.

Weather radars supplied much of the knowledge on weather clutter
[Nathanson and Reilly, 1968; Smith et al., 1974]. These radars do rot, in general, use

fan beams such as those used by air traffic surveillance radars. Pencil beams are used
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to enable a more detailed breakdown of the scanned volume. As a consequence,
resolution cells are not columns and their smaller vertical extent increases the
homogeneity of the measured characteristics. These characteristics include, in addition
to reflectivity, the Doppler or radial velocity, the Doppler velocity profiles and
gradients with height and range [Wilson er al, 1980], and Doppler spectral spread

[Aviation Week, 1983] to detect turbulence.

2.4 The Application of P R ition Techni

The work discussed up to this point essentially all dealt with finding
characteristics of clutter on which basis several categories could be distinguished. No
actual classification had been carried out: in fuct, the term classification was often used
rather loosely where the term feature selection would have been more appropriate.
Several excellent books on pattern recognition techniques were published in the early
1970's [Fukunaga, 1972; Duda and Hart, 1973; Young and Calvert; 1974].
Comprehensive summary papers on the state of the research at that time were written
by Ho and Agrawaa [1968) and Kanal [1974]. Most of this work is still valid; and
more recent research results have been compiled by Fu [1980] and Jain [1987].

In regard to radar, Skolnik [1970] presents several techniques for automatic
classification of radar targets, which is cited as an example of M-ary detection. Two
candidates are given as examples: filtering (one matched filter and detector per class)
and cross-correlation (similar to template matching). The difference between these two
classifiers is in fact only one of practicality; fundamentally they are substantially the
same and belong to the category of linear machines [see Duda and Hart, 1973]. Barry
et al. [1973] used such a linear machine in an attempt to separate "angels” from aircraft

targets. They applied as many as four hyperplanes to feature vectors consisting of 20
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successive amplitude samples, amplitude distribution statistics and correlation
measures. They claimed success rates of up to 95% angel rejection.

Most work reported in the literature on sraristical pattern recognition takes
a more direct approach based on Bayes decision theory. As a result, the decision rules
tend to be much more complex than those described in [Skolnik, 1970}, but also much
more effective. While this work is now considered relatively mature [Jain, 1987], it
has not been applied broadly to radar signal analysis. Non-radar applications appear to
have received considerably more attention. Electrocardiogram (ECG) waveforms have
frequently been used as examples of time series classification [Young and Calvert,
1974], and "optmal" rules have been devised for speaker v/aveform recognition
[Kashyap, 1978]. Chen [1982] used the nearest neighbor algorithm to classify seismic
waveforms based on parameters derived directly from maximum-entropy spectra.

Work with radar clutter is much more recent. Agnel [1984, 1985] tested
the effectiveness of the parametric Bayes classifier on three classes of recorded
noncoherent ground clutter data (plowed fields, trees without leaves, and snow covered
ground), and achieved up to 90% correct classification. He also compared the
performances of the so-alled minimum intra<class distance (MICD) and nearest
neighbor classifiers, but concluded that they were not satisfactory. Several feature
vectors were used, but most of them were derived from autoregressive analysis; that is,
they ostensively measured the spatial correlation of the clutter. Stehwien [1984;
Stehwien and Haykin, 1986, 1989] appears to have been the first to apply the Bayes
classifier to parameters arising out of the estimation of the Doppler spectrum. This
work is continued in this thesis.

A final mention is in order, for the sake of completeness, of the application

of syntactic pattern recognition techniques to the analysis of radar clutter. These
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techniques approach the problem from the perspective of image or scene analysis and
attempt to describe the spatial properties of the clutter along with scan-to-scan changes
in shape and position. Algorithm inputs are usually in the form of processed and scan-
converted data. As such, syntactic techniques are ideal companions to follow statistical
classifiers, Duda and Blackmer [1973] applied such techniques to weather radar data to
trace echo contours and track weather systems. Blackmer ef al. [1973] extended the

work and used the echo descriptions to forecast weather system movements.



Chapter 3
SPECTRAL CONTENT OF RADAR CLUTTER

The basic premise for radar clutter classification is that the 1adar returns
contain sufficient information to allow such classification to be made. In this chapter
the information content of clutter is examined in some detail. No attempt has been
made to describe and test for macro level behavior such as spatial coverage and overall
movement of the clutter, both within a scan and from scan to scan. Such behavior
could be described and analyzed using syntactic pattern recognition techniques [see, for
example, Duda and Hart, 1973], rather than the statistical methods proposed in this
thesis. The following discussions thus deal with relatively short term (measurable
within 50 ms) changes in and distributions of RCS and position relative to the radar.
Section 3.1 introduces the radar as a sensor of reflectivity and velocities. Section 3.2
describes the physical phenomena inherent in the various clutter and target types,
followed by a discussion of the effects of intemal motion on their spectra in
Section 3.3. The scanning motion of the radar further modulates the target echoes and
is dealt with in Section 3.4. Finally, the consequences of using staggered PRFs, 2
common technique used to resolve range and velocity ambiguities, are outlined in

Section 3.5.

3,1 The Radar as a Sensor
A surveillance radar consists of a high power pulse transmitter, a rotating

antenna, and a receiver [Skolnik, 1970, 1980]. The antenna focuses the pulse energy
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into a beam of some finite width, and scans the surrounding volume of space with it.
Any reflector within this volume will return some energy back to the antenna. The
number of pulse echocs received by the radar is a function of the beamwidth, the pulse

repetition frequency (PRF), and the rate of antenna rotation, and is given by
=f1, =53 3.1
Ne =fity = Jsw G.D
a

where Ng is the number of pulses, f is the PRF in Hz, 1, is the dwell time on the
target, 0 is the beamwidth in radians, and @ is the antenna rotational velocity in
radians/second. If the receiver operates coherently with the transmitter, then both
amplitude and phase of the echo pulses can be meusured. The phase is related to the
distance, hence a change of phase from pulse to pulse (Doppler frequency shift) implies

a change in distance or velocity. The phase @, as measured at a distance x from the

transmitting radar ¢ seconds after ransmission, is
ox) = KO0 +ws-0 7 (3.2)

where (0,0} is the starting phase of the pulse, @, is the transmitter carrier frequency,
and c is the speed of light. The pulse frequency for a moving receiver is thus the rate

of change of the phase

do _ ldx _
Pro-0:5=0+0 (3.3)
which can be split into the original carrier frequency and the Doppler shift @ 2
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This shift arises from the relative motion of the receiver or, in the case of a monostatic
radar, the change in the round-trip distance 2x due the velocity of the target v.
Equation (3.4) can be written in terms of the wavelength A and the Doppler frequency

expressed in Hertz

= -7 (3.5)

The carrier frequency will have been removed in a coherent receiver, reducing

Equatior (3.3) to dg/dt= ” A pulsed Doppler radar is inherently a sampled system

and therefore

mf, = a =22 =75Ap =10 (3.6)

where ¢ = A@ is the relative Doppler frequency. Combining Equations (3.5) and (3.6)
then provides the relationship between target velocity and the pulse-to-pulse phase

change

v=_5"%—;§ 3.7)

where the velocity v is expressed with the same distance units as the wavelength A.
Clearly, the largest unambiguously measurable Doppler frequency is the Nyquist
frequency of ifs/2. Larger frequencies will be folded back in the spectrum onto lower
frequencies about the Nyquist rate (aliasing). To resolve the sign of ¢ both in-phase
and quadrature demodulation is necessary, resulting in complex-valued video data.

This coherent video data is sampled at fixed intervals, whose length
depends on the range resolution. To ensure a low probability of missing targets the
data is typically oversampled, that is the sampling interval is much smaller than the

width of the transmitted pulse, often less than half. The entire sampled data set then
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consists of a number of time series, one per range cell. The limited dwell time on any
one target limits the number of samples which can be regarded as having originated
from the same target to Ny (per Equation 3.1). Because of the oversampling, adjacent
range samples will usually contain returns from the same target. The number of
adjacent time series which may be used to extract information from any one target will
depend on the length of the sampling interval relative to the pulse width.

A number of excellent books on radar and radar theory have been
published, notably by Skolnik [1970, 1980] and Nathanson {1969]. In-depth studies of
radar reflectivity and range performance were published by Long [1975] and Blake
[1980], respectively. Barton (among others) compiled a rather extensive collection of
papers about various aspects of radar, of which two volumes are of particular interest
here [Barton, 1974, 1975]). More recently, Brookner [1977, 1988] comprehensively

summarized the state of radar technology.

3.2 Physical Phenomena in Clutter and Tarpets

Radar echoes arise from any reflecting surface or object within the line of
sight of the radar. These objects include, besides aircraft, a range of more broadly
distributed features such as mountains, hilisides, trees and other vegetation, buildings,
rain clouds, birds, and even insects. Only a few of these objects are truly static; even
ground based structures such as trees and towers sway and change their position
continuously, albeit very slightly. This change in position leads to both the observed
scintillation in net reflectivity and the measured relative velocity. The nature of these
changes provides a clue to the type of target or clutter observed.

The discussions in this section are illustrated with MEM spectra of the

respective clutter types. These 9™ order spectra were computed using the multisegment
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Burg formula and the procedure outlined in Section 6.1.3. To allow comparisons,
similar signal strengths (30 dB SNR) were selected except where not available (rain

clutter at 20 dB). Mean Doppler shifts were also removed.

321 T { Moving Vehicl

Targets are often modeled as a moving sphere with a given radar cross-
section. Such an object, moving in a straight line, will present a radial velocity
comaponent to the radar and as such result in a line spectrum in the absence of any
modulation. This model works well in some cases; however, slight adjustments are
frequently made. In a scanning radar the finite width of the beam will modulate the
amplitude of the pulse return in accordance with the beamshape. If this shape is
Gaussian, then the spectrum will also be Gaussian and no longer a line. This is evident
from the spectrum of an idealized non-fluctuating target, shown in Figure 3.1. The
effects of beamshape modulation are explored in more detail in Section 3.4.

The irregular shape of aircraft (from the radar's point of view) can cause
significant variation in RCS depending on the angle, or aspect, from which the aircraft
is seen by the radar [Nathanson, 1969; Skolnik, 1970]. Neither do aircraft move in
pure straight lines. Any maneuvering or vibrations will change the aspect, and thus the
observed RCS. Turbulence in the air will modify the flight path and consequently
modulate the velocity, particularly of light aircraft. Another and potentially more
significant source of velocity and amplitude modulation are rotating propellers and jet
engine compressor blades [Skolnik, 1970]. In general, however, the body of the
aircraft is expected to be the dominant reflector in all but the nose and tail aspects.
Any propeller or compressor blade modulation is thus likely to be found at low levels,

especially for large jet aircraft which dominate today's air traffic environment.
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Figure 3.2 presents sample aircraft spectra which display some of these characteristics.
Ground-based moving vehicles are often mistaken by radar operators as
light aircraft following a highway due to their similar speeds. There are a few
significant differences, however. The RCS of cars is likely quite low compared to
aircraft whose wings present a large reflecting surface. Trucks are therefore the most
likely ground-based vehicles to be observed, with modulation present due to tire motion
and vibration. Other vehicles such as tractors and construction machinery are usually
very slow moving and are unlikely to be mistaken for aircraft by radar operators. The
absence of wings and the reduced maneuverability will also result in much lower RCS
fluctuations. Neither do cars and trucks have propellers, and as such less velocity
modulation is expected. The proximity to the ground does, however, imply that if the
vehicle is visible to the radar, so will be other nearby ground based objects and,
perhaps, the ground itself. This will introduce an additional spectral line at zero
frequency. The spectra shown in Figure 3.3 have been normalized to move the primary

peak to zero frequency, hence the ground clutter peak is elsewhere.

2.2 Ground Clutter

This type of clutter consists of returns from mountains, hillsides, buildings,
towers, power lines, and vegetaton such as trees, bushes, and cultivated ficlds
(particularly when wet). Building reflections are particularly annoying to radar
operators since they tend to be the strongest of all clutter types and dominate in radars
located near large cities. By its very nature ground clutter is fixed in position and does
not exhibit any overall velocity relative to the radar. Some internal motion is usually
present, however, except in low or massive buildings. Trees, transmitter towers, and

tall buildings all sway by varying amounts, depending on wind conditions. Higher
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frequency vibrations, depending on strength, may also be visible to the radar.

Distributed features such as forests and cultivated fields consist of many
individual "targets" or scatterers within any one radar resolution cell, and the effects of
the relative motion of each add coherently. This summation can either enhance or
reduce the net return strength and thus the apparent reflectivity. Scintillation or
amplitude modulation results from the constently changing positions of the individual
scatterers relative to each other,

The character of the clutter does change somewhat with range as the
resolution cell of the radar widens and more scatterers are included within it. Long-
range returns are also subject to changes in the refractive index of the atmosphere.
Atmospheric inversions can lead to ducting phenomena which make ground clutter
visible well beyond the line-of-sight horizon. Ranges to 80 nmi are not uncommon.
The total return path is a function of the refractive index. At L-band (wavelength
A =23 cm) a one-way path length change of 6 cm (0.4 parts per million at 80 nmi) will
cause a 180° phase shift of the echo return. Rapid fluctuations in the refractive index
will thus modulate the phase of the echo, resulting in apparent nonzero instantaneous
velocities. Nevertheless, the intrinsic spectrum of ground clutter is expected to be very
narrow, much narrower than the effects caused by the antenna scanning modulation.
An example of ground clutter spectra is shown in Figure 3.4. More details on ground

clutt=r may be found in |Long, 1975; Skolnik, 1985].

3.2.3 Rain and Storm Systems
Water is a good reflector of radar energy, which makes clouds (consisting
of suspended water droplets or ice crystals) a common source of clutter. Clouds, unlike

ground clutter, can show a significant velocity component relative to the radar
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depending, of course, on wind speed and direction. While all water droplets within the
cloud move in generally the same direction, there are several mechanisms that cause
some internal motion as well. First, wind and gravity effects on the individual
velocities of the droplets will vary with their size. The larger droplets will be more
resistant to changes in wind velocity and also tend to fall toward the ground faster in
the absence of any updrafts. Considerable downward motion of this type will itself
cause downdrafts, as well as updrafts to replace the downward moving air.
Thunderstorms are examples of cloud systems with particularly violent turbulence of
this type. The second mechanism for internal moticn is mechanical turbulence, present
in low-altitude clouds and caused by the uneven drag of the earth's surface and
obstacles such as mountains and buildings. This turbulence, while not generally as
severe as that found in thunderstorms, can still result in significant variations in droplet
velocities relative to each other. The third mechanism is windshear, or radically
different wind speeds and directions at different altitudes.

Turbulence, or the (on a macro level) random internal motion of the water
droplets will modulate the measured velocity of the cloud system somewhat.
Obviously, the greater the turbulence, the greater will be the modulation. Scintillation
is not usually a consequence due to the very large number of individual scatterers,
although it may be observed in windshear conditions when the overlaying of two or
more clutter areas, each with its own distinctive overall velocities, will result in a type
of spatial interference pattern.

Yet another mechanism that affects the clutter spectrum is beam
broadening. The width of the beam, both in elevation and azimuth, is such that
particles travelling through the beam with a constant velocity will exhibit different

Doppler frequencies at different points in the beam. This is a direct consequence of the
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changing geometry and leads to a minimum spectral width even if no internal motion s
present. This applies to both vertical (gravity-induced) and horizontal (wind-induced)
motion.

Examples of rain clutter spectra are shown in Figures 3.5 and 3.6. While
the main spectral peaks are similar in both cases, the presence of a windshear
component is visible in Figure 3.6. The data for these spectra have been taken from
different areas at different distances from the radar, but within the same time period.
More information on rain and weather clutter may be found in the comprehensive

reviews published by Nathanson and Reilly [1968] and Smith er al. [1974].

3.2.4 Birds and Bird Flocks

Birds have long perplexed radar operators who refer to their echoes as
“angels" [Eastwood, 1967). It is very difficult to correlate bird echoes with visual
observations (see Appendix C), and aside from the often large numbers of echoes
present, each individual echo resembles that of a small aircraft both in strength and
velocity. It is now known that echoes of single birds are usually too small to be scen
on long-range surveillance radars, and it is whole bird flocks which, depending on the
number of birds present within a resolution cell, make up single strong echoes. Unlike
water droplets, which passively move with the wind, birds are individually powered
scatterers who do not move in exactly the same direction and at the same speed. Birds
are continuously shifting their position within the flock, even those who fly in a
particular formation. This causes large fluctuations in net echo strength as individual
cchoes sum constructively at one moment and destructively the next. Clearly the

variation in net velocities, and consequently the spectrum, will be quite large for the

same reason.
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Bird echoes are well known to exhibit wingbeat modulation, that is a
variation in RCS as a furction of the wing motion [Schaefer, 1968; Flock and Green,
1974]. This wing motior: also causes instantaneous changes in the relative velocity as
the bird moves up and down. It is unlikely that the wings themselves contribute much
to the echo itself; their mass is quite small and the feathers do not reflect radar energy
very well. Both wingbeat and velocity modulation will vary considerably with the
species. In gencral, biid echoes exhibit the largest variation in the spectrum of all
clutter types. This is dramatically demonstrated with the spectra shown in Figure 3.7.
An excellent and more complete summary of the current knowledge about birds as

radar targets has recently been published by Vaughn [1985].

3.2.5 Insects and Other Angels

Insect echoes have been observed with shortrange high resolution radars.
Their RCS is much too small, however, to be a factor in the long-range surveillance
radar of the type used for this research [Riley, 1985]. Other unidentified clutter, by
definition, cannot be characterized unless it is known to be all from the same source.
The fact that it has been observed [see, for example: Hardy and Katz, 1969] should
lead to the conclusion that noat all is known about clutter and an 'unknown clutter' class
should be included in the classifier. More concerns about the classifier training

strategy are addressed in Chapter 6.

3.3 Speciral Spread and Shape
Equation (3.5) shows the linear relationship between target velocity and
Doppler frequency. Figure 3.8 illustrates the geometry of the target velocity and its

effects on the Doppler specoum. Clearly only the radial component v, conwributes to
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<l

/ to radar

Figure 3.8 Moving target geometry

The target velocity V is resolved into its radial and tangential
components Vr and Vi. The internal motion relative 0 Vmean is Vi, which modulates
the radial velocity Vr about its average Va. These velocities give rise to frequency

modulated doppler shifts. The diagram contains no information regarding target
strength and amplitude modulation.
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the Doppler shift. The width of the Doppler spectrum is determined by the bandwidth
and amplitude of the modulation waveform whick is proportional to the velocity v,
relative to the average radial velocity Ve The shape itself will depend on the nature of
the internal motion and the value of the modulation index.

Changes in RCS, such as wingbeat modulation in bird echoes, modulate the
entire pulse echo in amplitude. This will further contribute sidebands to the spectrum.
Their strength is proportional to the range of the RCS fluctuations, and their spread is a
function of the frequency of the changes. Figure 3.9 illustrates the effects of both
amplitude and frequency modulation on the MEM spectra of a complex sinusoid in
noise. The modulating signal was a single 20 Hz sinusoid, adjusted such that it would
result in a modulation index of 50% for the AM case, and a peak deviation of 20 Hz
for the FM case. Both were also used simuitaneously for the spectrum labelled AM
and FM. Both sth_ and 9™ order sets of spectra are shown for comparison. It is
interesting to note that frequency modulation appears to dominate and widen the
spectrum much more than the particular level of amplitude modulation chosen. A
20 Hz frequency deviation corresponds to approximately 4.5 knots and is not an
unreasonable level of intemal motion. A 20Hz modulation is typical and
representative of the wingbeat for bird echoes [Vaughn, 1985] and the Doppler
spectrum deviations for rain clutter [Nathanson and Reilly, 1968].

The presence of more than one scatterer within a resolution cell leads to
more complex and variable spectra. This can occur quite frequently in surveillance
radars since their fan beam is designed to detect targets at various heights. The
resolution cell is thus a column extending from near the ground to altitudes of over
50,000 feet. Each target or group of targets has its own average velocity and internal

motion, and thus leads to individual spectral peaks. Superposition of thesc spectra
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leads to rather variable, and often unpredictable composite spectra. Destructive as well
as constructive superposition will distort the spectrum significantly, and expected
adjacent spectral peaks will either disappear or merge into one. Little can be done
about this with target-like clutter such as birds. Rain, on the other hand, has & larger
spatial extent and it may well be possible to take in sufficient data to derive accurate
spectra,  Still, the effects of beam broadening will always be present, especially in
distributed clutter and for time series extending over large scan angles. Pure line
spectra are thus never expected, even in calm weather conditions. As turbulence
increases, however, the spectral spread will increase further and two (or more) distinct

peaks may then become discernible in windshear conditions.

14 Eff f the A Scanning Moti
The presence of unique characteristics within the Doppler spectrum of the
echo returns is a necessary, but not a sufficient condition for classification to be
possible. These characteristics must also be present in the spectral estimate, or at least
the feature set arising from the estimate. Unfortunately, a number of measurement
limitations severely restrict their visibility. The first limitation is quite simply the small
number of samples per target as the beam scans past it [from Equation (3.1): 13.5 to
14 hits/beamwidth for the TRACS—ASR, see Appendix A]. This will lead to a
relatively large variance in the spectral estimate and, conversely, any feature set arising
from it. The statistics of maximum likelihood correlation and covariance estimates,
which will provide the basis for the feature extractor, are known to be [Burington and
May, 1970]
E{(z—=)] = &*N (3.8)
E{6*] = AN-1)/N (3.9
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E{(8*~0dY) = 26%N (3.10)

where o® is the true variance of the underlying, normally distributed (Gaussian)
process, and N is the number of samples used for the estimate. The increase in
variance with low values of N has the effect of obscuring small details and effectively
reducing the resolution capabilities of spectral estimators. This again suggests that as
much data as possible should be included in the estimate, particularly if the true
variance is already known to be large.

Another limitation is the shape of the antenna beam itself. As the beam
scans past the target, the echo pulses will be modulated accordingly. This amplitude
modulation, usually approximating a Gaussian or sin{x)/x pulse shape [Blake, 19801,
will convolve with the basic spectrum, introduce additional spreading, and further
reduce the maximum available resolution (see Figure 3.10). For distributed clutter this
may not appear to be a problem since new scatterers are continuously entering the
beam. These new scatterers are moving independently, however, and this can, in many
cases, lead to significantly different spectra. As they superimpose the resulting
spectrum will spread, and therefore the resolution of individual clutter spectra may not
necessarily be any better.

The third limitation is the introduction of an apparent Doppler shift due to
the size and orientation of reflecting objects. A building which presents a reflecting
surface wider than the beamwidth, but with a non-tangential orientation, will result in
successive returns of similar magnitude but continuously changing phase as the center
of the beam scans past it. This will result in a fairly sharp spectral peak at a nonzero

frequency, quite unlike that of a non-moving point target with its Gaussian spectrum.
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3.5_Eff f ihe Use of Staggered PREs

The use of fixed pulse repetition frequencies in MTI radars has two
problems associated with it. First, aliasing can occur about the PRF and if, as in the
case of the TRACS radar, this frequency corresponds to a velocity much lower than is
expected from aircraft, blind speeds can result. Second, spatial aliasing is possible if
strong targets are found at distances greater than that allowed by the interpulse period.
This will give rise to second-time-around echoes and cause problems with the operation
of the radar.

Staggered PRFs solve both difficulties by spacing the pulses at variable
intervals, thus forcing phase shifts to occur for all moving targets travelling at any
speed and placing second-time-around echoes at different ranges to "tear" them apart.
In practice, the number of different intervals is fixed ana the sequence repeats itself
continuously. This means that blind speeds still occur, although at a much higher
frequency. For maximum benefit, the sequence contains at least as many different
intervals as the number of hits on a target per beamwidth.

The forced phase shifts, when taken from successive pulses, consttute a
signal with a considerably broader spectrum than before. As a result, some energy will
appear at most or all frequencies and will pass the MTI filter and allow detection.
Unfortunately, this same broadening obscures much, if not all of the discriminating
information required for successful classificatdon. Staggered PRFs cannot therefore be
used for the classifier if conventional, fixed sampling interval based spectral estimation
techniques are to be used.

The modeling of time series with unequally spaced observations has been
studied by u v -+ researchers, notably Jones [1980, 1981] and Dunsmuir [1981].

The resulting - . -2 generally discrete ARMA or continuous time AR, and are
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found using maximum likelihood iterative techniques and the exact sample spacings.
Such iterative techniques are not very suitable for real-time applications, and will not
be discussed further. It is interesting, however, to consider the type of information
extracted by these algorithms compared to that found when using equally spaced
samples. An insight into the differences may be found in [Masry e al., 1978], where
the problem of finding the true and complete spectrum (without aliasing) is approached
through the use of random sampling.

Suppose the process to be analyzed is stationary and has no well defined
bandwidth. Clearly, the use of fixed intervals will always introduce aliasing and
obscure the true spectrum. To minimize the foldover energy the sampling rate must be
much higher than the highest frequency, and this may not be possible or practical. The
use of random sampling will, at least in theory, provide information about the entire
spectrum if carried on long enough. If, however, only a limited number of samples are
available, then an information theoretic tradeoff must be made: random sampling
provides information for as many different frequencies as possible, but no frequency
will be looked at twice and the estimates remain noisy. Fixed interval sampling, on the
other hand, repeatedly examines the same low frequencies and reduces the variance of
the estimates, but provides fewer of them. The tradeoff is thus one of a low variance
spectral estimate with a limited frequency range versus a high variance estimate with
an extended frequency range. As will be seen in Chapter 4, a low variance is
parainount for low ermror rate classification. The actual Doppler frequency is not very
important, and the spectral width is well within the range of the fixed PRF (see

Figures 3.1 to 3.7). Conse uently, random or staggered sampling is undesirabie even if

it could be analyzed in real-time.
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3.6 Symmary

In this chapter the expected spectral content of radar clutter, as seen with a

coherent Doppler surveillance radar system, was examined. The significant

informativial content of successive echo returns collected within a single beamwidth

was determined to be the amplitude and Doppler signature. The spectral spread and

shape, rather than the Doppler frequency itself, are most likely to allow discrimination

between clutter types. It was also found that:

1,
2.
3.

Ground clutter and aircraft targets have the narrowest intrinsic spectra.

Bird clutter has the widest and most variable spectra.

Weather clutter, due to its distributed nature, has narrower measured spectra
than either ground clutier, aircraft, or birds. Its spectra still have finite
width, however, and may exhibit several spectral peaks due to windshear.
An unknown clutter class is required to accommodate other, less common
clutter types.

Both amplitude modulation (RCS fluctuation and scintillation) and
frequency modulation (internal target or clutter motion) affect the clutter
spectrum.

Antenna scanning motion contributes most of the spectral spread, but does
not completely obscure the intrinsic spectral characteristics.

Spectra measured using staggered PRFs provide information different from

that needed for reliable classification.



Chapter 4
BAYES CLASSIFICATION

Chapter 3 addressed the question: which characteristics of the clutter
sources are visible to a surveillance radar? Having this information then leads naturally
to the follow-up question: how can a decision regarding the identity of the clutter
source be based on radar data alone, and how good is this decision? The answer may
be found in Bayes decision theory, which provides optimum decision rules when the
statistics of the problem are known. Section 4.1 preserts a brief review of Bayes
decision theory, and develops several discriminant functions which may be used to test
the data. Section 4.2 attempts to answer the second part of the question, and offess
some thoughts on performance predictors. Such predictors function essentially “off-
line"; that is, they do not provide an immediate answer as the decision is being made.
They are important, however, for the selection of features to use in the discriminant
function, and to test the effectiveness of the fearure extraction algorithm, "On-line”,
and working back from the discriminant function itself, it is possible to assign
confidence measures to the decisions, as is shown in Section 4.3. These measures may
be used under operational conditions to assess the quality of the decisions made.

Up to this point, knowledge of the underlying statistics has been assumed
and required. This proviso does, of course, lead to another question: can this theory
still be used if only an estimate of the statistics is available? The answer is clearly
dependent on the quality of the estimates. Quantifying performance degradation is

difficult at best when a priori knowledge abou: the statistics is not available, and may

50
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not even be possible in the multiclass case. Hence the emphasis must be on ensuring
that all estimates are as good as they can be. The discussion on classifier training in

Section 4.4 addresses this need for sufficient data for each class of interest.

41 Revi (B Classification Tt
The basic classification system has been briefly described in Chapter 1.

Figure 1.1 related the transducer to the radar itself. The feature extractor is the main
signal processing clement and is fully described in Chapter 5. This section deals with
the classifier itself, which operates on the feature vector and assigns it to one of many
possible and predefined classes. A thorough exposition of Bayes decision theory may
be found in [Young and Calvert, 1974). A more readable, but less rigorous treatment is
presented by [Duda and Hart, 1973].

Designating these classes ¢;, and the probability that the d-dimensional
feature vector x belongs to any one of them as P(C‘.|I), then a simple rule for
assignment of x to cj is one which chooses the class with the largest a posteriori
probability

P(cj]x) > P(c‘.|.t), alli#j 4.1)

These probabilities are, however, seldom known or directly measurable. It is more
likely that the a priori probabilities P(Ci) are known, along with the class-conditional
probability densities p(x[ci), which describe the statistics of the feature vector x, given

the underlying stochastic process belonging to class c. Then we may use Bayes Rule

pix|c,)P(c)
P(C‘. |I) = T (4-2)

where
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L
p@x) = i)llp(xlci)P(C,) (4.3)

and L is the number of classes under consideration. Note that the mixture density p(x)
is independent of the index i, and therefore acts only as a scale factor which may be
ignored when searching for the maximum per Equation (4.1).

It may well be that deciding simply on the basis of probabilities is
insufficient. For example, the cost associated with erroneously classifying a flock of
birds as rain could be extremely high, as numerous bird strikes in the past have
demonstrated. The reverse is much more tolerable. Let the loss incurred by taking
action o, whenever class ¢ is the correct class, be l(a‘|cj). Then the conditional risk

associated with taking action &, given the feature vector x is
L
R(e|x) = ):l(a£|cj)P(cj|x) (4.4)
j=1

The optimal decision rule (Bayes classifier) is then to choose that action o, which
presents the smallest risk. It can be shown [Duda and Hart, 1973] that this rule

minimizes the overall Bayes risk R. Combining (4.2) and (4.4):

plx|c .)P(cj)

7 (4.5)

L
R(e|x) = X Mo, | cj)
/=1

Hence,

L
R(a;|x)p(x) = ZMa|c IPEe) p(xlcj) (4.6)
j=1

The quantity R(a£|x)p(x) is a scaled risk and may be tested instead of the risk R(a‘.|x)
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without changing the outcome of the decision. The quantities h(ai|cj)P(cj) present, in
effect, a bias toward the most likely classes and least costly decisions and are
determined by the nature of the problem itself. In the clutter classification case, they
describe the probabilities of seeing the various clutter types and the safety
consequences resuiting from misclassification.

In the absence of any information indicating otherwise, the most prudent
action may well be to assume that each clutter type is equally likely to occur, and that

all misclassifications are equally costly. The latter leads to the zero-one loss function

0, i=j
A c) = 1-8, = all , j 4.7
o Y 1, i#j
which, when substituted in (4.4) yields
L
R(ee.|x) = L P(c.|x) = 1 -P(c.|x) (4.8)
i P i

This risk is now effectively an error rate, and minimizing this error rate is seen to be
equivalent to maximizing the a posteriori probability as in (4.1) (maximum a posteriori
probability (MAP) classifier). Further simplifying by setting P(c‘.) =1/L forall{ in
(4.2) gives

(R(e|x) - 1) pix) L = - plx|c) 4.9

and provides a classification rule based solely on the class-conditional probability
density function. Equation (4.9) leads logically to the concept of discriminant

functions, which may be used instead of the risk function itself. The classification rule
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then assigns feature vector x to class ¢ 7 if

g{x) > gx), alli#j (4.10)

In the most general case g i(x) = - R(ailx) and, for the case of equally likely classes and
cqually costly misclassifications, g/x) = p(x|cl.). In ecither case the structure of the
classifier is determined by the conditional densities p(xlc‘). For computational
purposes a simple structure is desirable, especially in multidimensional, multiclass
problems.

A simple, and for many situations a fairly realistic density function is the

normal, or Gaussian, density. Its multivariate form is written as follows

1 1 !
(xX) = ————= exp{- 5 (x-p) T (x-p1)] 4.11)
where
B o= Elx] (4.12)
2 = E[Q-p)(e-p)'] (4.13)

Note that the form of this probability density function is completely described by the

mean vector 4 and the covariance matrix Z. Defining the discniminant function
g = Inlp(x|c)] (4.14)
g™ = -3 G-H) T xp) - FIn2m) - 5 In| (4.15)

and removing constants yields a new discriminant function
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g® = @-u)Ei-p) +In| I (4.16)

The change of sign requires g;(x) to be minimized, that is, x is assigned to class ¢

whenever

gx < gx), alliz#) (4.17)

The quantity D?(x) = (x—u‘.)'L?l(x-u‘.) is also known as the syuared
Mahalanobis distance from x to p. The determinant |Z,] is the product of the
eigenvalues of 1‘.‘.. and as such a measure of the combined variances of the marginal
distributions of x, or the "volume" inside the multivariate distribution's equiprobability
contours. Adding the term In|Z;| to DX(x) thus biases the discriminant toward the
denser, lower variance classes.

Omitting this bias leads to the so-called minimum intra-class distance
(MICD) classifier. This is the most general of a class of minimum-distance classifiers
which use the notion of a metric to assign feature vectors to a class. In this
interpretation the inverse of the covariance matrix, 2;‘, can be viewed as the product of

a transformation matrix Gl. with its transpose. The linear transformation

is designed to ransform all samples x belonging to class C; into samples ¥; such that the
mean squared distance between them (intra<class distance) is minimum [Jernigan,
1984]. This tumns out to be an orthonormal whitening transformation: the features in ¥;
exhibit complete independence and are zero mean with unit variance. If the original

vector x is assumed to have independent features with unit variance, the matrix G:‘ will
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become the identity matrix and Equation (4.16) reduces to the Euclidean distance

classifier

g = ) (x-1) 4.19)

The computational advantage which may be gained through the use of such
simplified structures may make them attractive alternatives to the full Bayes or MAP
classifier. It has been shown, however, that the performance loss is quite significant for
the analysis of radar clutter [Stehwien, 1984]. This may be attributed to the non-
separable behavior of the clutter features. In other words, no well defined boundary
exists between classes: clutter characteristics are a continuum with considerable overlap
amongst clutter types. Hence classification must proceed on a statstical basis for
which the Bayes classifier is best suited.

The loss of performance expected and experienced when using minimum
distance classifiers cannot be justified with the minimal computational gain obtained
(see also Chapter 7): the classifier uses few resources compared to the proposed feature
extractor. In fact, the largest computational burden lies in the training process which
need not take place in real time. For the interested reader, [Fukunaga, 1972] presents
an excellent overview of suboptimal licear classifiers.

Nonparametric Bayes classifiers make no assumptions about the form of the
probability density function in (4.9). In principle, therefore, they offer an improved
performance potential over and above the parametric classifier using the normality
assumption (4.11). This is especially true for nonlinear feature extractors such as the
Burg algorithm used in this work. Two popular nonparametric classifiers are the
Parzen window density estimator, and the nearest-neighbor (or k-nearest neighbor) rule.

The Parzen window approach uses labelled samples to compute an estimate of the wue
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density p(x|c‘), which is then used in (4.9) directly. In the limit, as the number of
samples approaches infinity, the estimate converges on the truc density. The nearest
neighbor rule examines the labelled samples closest to the new feature vector and
assigns it to that class to which most of these £ nearest samples belong.

Both approaches require virtually all the data, with which the classifier is to
be trained, to be stored to assure good performance. This can lead to severe memory
and computational requirements, especially for high dimensionalities and large numbers
of classes. The vast quantities of radar data available and necessary for successful
classification make these approaches difficult to manage. Consequently they were not
investigated further. Comprehensive discussions on nonparametric classifiers can be
found in [Fukunaga, 1972; ° uda and Hart, 1973; Young and Calvert, 1974; Patrick,
1972].

12 Classifier Perf Predicti

Predictors of classifier performance are useful in two ways. First they
provide an indication of what sort of performance to expect in an operational
environment: if complete separability of the classes cannot be achieved, is the classifier
still of value? The second, and to the designer the most important use of predictors is
as an aid to the selection of features and the design of the feature extractor.

The probability of making an error is, for most probability densites, a
function of class separation. Hence measures of separability may be used to estumate
error rates. Two will be discussed in this section; they and several others are also
discussed in [Fukunaga, 1972; Lissack and Fu, 1976].

The conditional error rate was already shown above to be equivalent to the

conditional Bayes risk using the zero-one loss function. The overall error rate is
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P(e) = | P(e|x)p(x) dx (4.20)
Clearly,

L
P(e|x) = l—P(c‘lx) = EP(cj|x) 4.21)
JH

where ¢, is the correct class. Using Bayes rule
L L
PE) = X X, p(x|c )P(c j) dx (4.22)
i=1 JRi i /

where the integral is over all subregions R/ of the feature space wherever x is classified
into class ¢ ¢ For the general multiclass case these regions are difficult to evaluate and
no closed form solution to (4.22) is known to exist, even for the generally well behaved
normal density. For the general two-class case, the problem is solvable but difficult
and involves numerical integration [Fukunaga, 1972].

The probability of error for the two<lass, equal covariance matrix case may
be found by using log-likelihood ratios. The divergence Jij is defined as the difference

between the expected value of these ratios

p(x|c) px|c)
I, = E[ln cl.] -E[ln |c.] (4.23)
d p(x|c) plx|c)
For p(x]| ¢,) normal
Iy = 5 W) EHENG) + 5 (G AT 20) (4.24)

which, in the case of equal covariance matrices £ = X, = Ej , reduces to



59
Jy = W) B ) (4.25)

This is the squared Mahalanobis distance between the two class mean vectors. The

probability of error is computed as follows

Q(zJJ") (4.26)

where

o) = J' ¥(2:0,1) dz = leTrJ ezp(—zzﬂ) dz = Lefeal VB (427)
Z=

and #(z:0,1) is the normal density with zero mean and unit variance. This unique
relation to the probability of error is valid only for the two-class equal covariance
matrix case. For the unequal covariance case only bounds are available. From (4.22),

the two-class probability of error can be written as

P(eij) = [l{ min{ p(x|cl.)P(c‘.). p(x|cj)P(cJ.)]dx (4.28)

which, according to the inequality min{a,b] < /ab , may be written as

P(gy) S JPIc)P(C) | PGTCc)p(x]c) dx (4.29)
1] m J'
The quantity

Bij = -In EI{ Jp[cpix]c) cj) dx (4.30)

is known as the Bhattacharyya distance. The upper bound on the probability of error

may then be written as
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P(e) S VFTPPTC) exp(-B,) (4.31)
or, if P(c) = P(c) = 3
P(e) S ;3 ex(B)) (4.32)

The Bhattacharyya distance can be evaluated relatively simply if the densities are

multivariate normal

B =] ‘T4+Z) +11 %!z‘+}:j|
}

(4.33)

It is interesting to note that, in the case of equal covariance matrices I = El. =X, this

]
reduces to
-1 bseli ) = L
and thus, using (4.26)
P(e)y = 3 erfe (/B (4.35)

A lower bound on the probability of error is instructive and may be found using the

Kolmogorov variational distance
KU = ujz |px|c)P(c) - plx| cj)P(cj)| dx (4.36)
which is uniquely related to the probability of error as

1
P(e‘.j) = E(I-K:‘j) (4.37)
Noting that
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uf{[-/pixlc‘ipi )~ inxlcjiPchSPdr -
P(cl.) + P(cj.) -2 \/Pic‘jPic.i IIJ; vplx[c ‘Spix|cji dx
1-2 JPiciiPicji exp(-BU) (4.38)

and that |a - b| = |ya - yB||ya + yB}, the Schwartz inequality

[[148- 1 1@ + 1] s [~ B? [t + B2 @39)
leads to
Kf.j $ 1-4P)Plc) lqu(-B,.j)]2 (4.40)

1

(o]

Whenever ‘P(C:‘) = P(c j) =
K. < [1-exp(=2B)]"% < 1-Lexp(~28) (4.41)
ij i - 2 ij
From (4.32) and {(4.37) it can be seen that P(Exj) is bounded by
1 1
3 exp(—ZBij) < P(EU) < 3 exp(—-B,.j) (4.42)

Note that although these bounds diverge as B‘.j beconues large, the probability of error
at that point will be so small that, in practice, only the upper bound will be of interest.
These bounds are plotted in Figure 4.1. The probability of error for the equal
covariance matrix case (Equatdon 4.35) is included for comparison.

Up to this point, only two-class separability has beer discussed. While this

1s useful when selecting classes and class groupings in the multiclass problem, an
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overall error rate is desirable. Unfortunately, such a general measure has not been

found to date. While an upper bound may be established

L L
Pe) s £ X P(EU) (4.43)
i>j f=1

this bound will invariably be much too conservative if the pairwise upper
Bhattacharyya bounds are used. Even a class error rate bound, found by summing only

those bounds belonging to a single class

P(el.) < Ii P(eg) (4.44)
JH
will likely be so conservative as to be useful only for relative comparisons rather than
true performance predictions.

It has been pointed earlier out that the divergence-based computation of a
pairwise error rate using (4.26) is nor valid for the unequal covariance case. It is not
clear, however, what the deviation from the true value is if the calculation is
nevertheless applied. It may be hypothesized here that the error is not great in practice,
and that an approximate class error rate may in fact be computed using (4.24), (4.26),
and (4.44) with approximate equality replacing the inequality. The validity of this
hypothesis may be seen in the experimental results in Chapter 6. It is shown that the
class error rates calculated in this manner are quite close to the experimentally
observed rates.

The performance predictors discussed in this section provide not only the

theoretical basis for the evaluation of experiments, but also the insight required to
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improve performance. For example, Equations (4.24) and (4.33) show that increasing
separability without changing the mean vectors p, requires the determinant of the
covariance matrices to become small. The determinant is the product of the variances
of the features after an orthogonality transformation. Variance reduction must therefore
be an important consideration during the process of feature extraction. When adding a
new feature, its variance must be carefully weighed against the distance between the
class means in order to net a true increase in the divergence or the Bhattacharyya

distance.

43 _Assiening Confid M
In addition to establishing the classifier performance, it is very desirable to
know how good the decision of the classifier is at the time it is made. Obviously the

a posteriori probabilities themselves are such a measure. Recalling Bayes rule

p(xjc)P(c))
P(C,-|I) = (4.45)
Zp(x|c)Plc)

where the summation in the denominator is over all j = i to L. From (4.14) and (4.16)

pxlc) = explg®)] = expl-} g expl- 5 In2m)] (4.46)
Setting P(cl.',- = P(cj), Equation (4.45) becomes

expl-g! (x)/2]
P(c,x) = (4.47)
X exp(-g;(x)/2]
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Only onc exponential needs to be evaluated for each class from the discriminants
computed for the classifier. It is then possible to report this probability, or to reject the
sample x altogether if some arbitrary probability threshold is not exceeded. Chow
[1970] discusses such a strategy and presents rejection rate versus error rate tradeoff
curves. Clearly, any such rejection rule can only decrease the probability of correct
classification obtained using the Bayes classifier. Hence the decision to reject samples
simply to reduce the error rate must be made with care and with due consideration to
the application itself. The strategy which will be used for the clutter classifier is to
report low probabilities, but not reject any data on this basis.

There are, however, situations where rejection is in order. One concerns
the reduction of the misclassification rate by rejecting data that lie too close to the
decision boundary [Chow, 1970). It is also entirely possible to define numerous class
prototypes and still not account for the entire feature space. A new measurement may
thus be an outlier with respect to all defined classes, but still lie much closer to one
class than any of the others. Equation (4.47) clearly shows that a high a posteriori
probability may stll result, preventing the above strategy from rejecting the
measurement.  Instead, rejection should Le based on the likelihood that the sampies
could come from the class itself. Such a test may be applied to the discriminant
function gi(x) directly. The squared Mahalanobis distance D?(x) can be shown to be xg
distributed with d degrees of freedom, if the probability density p(x[c‘.) is normal, and
both the mean vector K, and covariance matrix E‘. are known [Young, 1978]. This

knowledge immediately provides a significance test:

reject x if : P[xg > D%(x)] < T (4.48)
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where T” is some application-specific threshold. A more practical, but equivalent rule

is to test against a threshold T’
reject x if : D%(x) > T (4.49)

where T’ is such that P[xz > T’]) =T”. This rule works well with the MICD classifier,
but presents a difficulty for the multiclass Bayes or MAP classifier. In that case using
(4.49) before evaluating g;(x) may lead to rejection of the preferred class as determined
by (4.17), and the selection of a less likely class. This is the result of adding the
different biases In{Z [, and is illustrated in Figure 4.2, The sample x would be
assigned to class ¢; when choosing the smallest discriminant g)(x). In this case,
however, the likelihood of the sample originating from ¢, is less than T”. In fact,
according to the ¥2 test, the class which x appears most likely to have originated from
is ¢, which exhibits the lowest Mahalanobis distance of all three. The answer to this
apparent contradiction is that the x2 test simply gives the likelihood of x, given that it
originated from c, It does not provide a comparison between classes in that such
comparison is necessarily influenced by factors (such as the a priori probabilities and
costs) which do not enter the x2 test. One must therefore apply caution before rejecting
samples on the basis of (4.49) alone. One possible rejection rule could be applied to

the discriminant itself
reject x if : g}(x) >T, T =T +maxin|Z|, i=1t0L) (4.50)

where gj'.(x) belongs to Cpn which is the class selected according to (4.17). This ensures

that rejection does not take place before condition (4.49) is simultaneously satisfied for
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all L classes.

44 Classifier Traini

The solution to the problem of defining the parametric class prototypes is,
perhaps, deceptively simple. All one needs to do, given a sufficient number of labelled
samples, is to find the quantities K, and Z, in accordance with Equations (4.12) and
(4.13), and then set up a classifier architecture to implement decision rule (4.17) and, if
desired, rejection rule (4.50). It must be remembered, however, that this theory is
based on knowledge of the underlying statistics. For most applications this knowledge
is simply not available and one must be satisfied with the best available estimates, The
qQuestions then naturally arise;: How good are these estimates? How well do they fit
the assumptions used? What is the impact on the classifier? The answers are no longer
simple, and this section will address them in the context of the clutter classification
problem.

It has been mentioned previously that the cbserved clutter features are not
likely to be separable, but rather present a continuum of characteristics with significant
overlap amongst classes. Clustering techniques {e.g. Fukunaga, 1972, which attemnpt
to collect all samples most likely to belong together, do not work well when non-
separable behavior is encountered. Other unsupervised learning techniques [Duda and
Hart, 1973], which attempt to divide the observed mixture density p(x) into its most
likely components are computationally complex and can never outperform supervised
techniques. This is especially true for the radar clutter data whose mixture density is
not conducive to simple separation. A starting set of labelled samples is often required
and as such the trade-off appears to be one of computational complexity versus the task

of assigning labels to samples. Clearly, if the samples can be labelled, then supervised
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parameter estimation procedures are preferred.
Several such techniques are available, including maximum likelihood
estimation and Bayesian learning. Maximum likelihood estimates of the mean vector

and covariance matrix are well known [Anderson, 1984]

. o1 N . 1 X ot
= ﬁnz:lx" and X = ﬁ—‘,nZ:,l (x -f)(x 1) (4.51)

The estimate I is unbiased, whereas X is not. An unbiased estimate is the sample

covariance matrix C
N

C= g 20,4 (4.52)
Clearly, for large N the difference between these two estimates is small and may be
ignored. Both estimates are consistent (they converge toward X in the limit as N — o0)
and either may be used successfully. The question of which one is better cannot be
answered simply, and most certaialy will depend on the application. The unbiased
estimate leads to larger variances and thus projects less confidence about the
"discovery” of dense clusters. The influence such "doubt" will have on the
classification is complex and difficult to generalize, but it does reduce the rejection rate
{4.50) and leads to more conservative error rate predications (4.26). For those reasons
alone use of the unbiased instead of the maximum likelihood estimate appears justified.

Bayesian learning is another approach to parameter estimation. Here both
ft and £ are considered random variables with probability densities of a known
parametric form. The procedure is then to find the joint a posteriori probability density

p(u.Z| D) given known or assumed forms for the a priori densities p(x|,X). I is the set
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of available and labelled samples. Initial guesses p, and I, are provided along with
their measures of uncertainty. The parameters of the resulting densities turn out to be
weighted averages between the guesses and the maximum likelihood estimates of
(4.51); and the weighting is directly related to the uncertainties [Fukunaga, 1972). The
lack of any prior knowledge about the clutter distributions effectively rules out the
Bayesian approach which, in any case, is equivalent to maximum likelihood estimation
if the confidence in the initial guesses is deemed to be zero.

The need for labelled samples for classifier training is paramount. Clearly,
good estimates can only be assured when the labels are substantially correct. An
incorrectly labelled sample can contribute to a substantial distortion of the estimate
away from its true value. It is possible to keep such distortions to a minimum by using
large quantities of samples which contain, at most, only a very small percentage of
incorrect labels. It is not possible, however, to definitively state how many such
samples can be tolerated since they may exhibit similar statistics to those correctly
labelled and thus have minimal impact. Yet, good performance can only be assured by
keeping their numbers very small.

Assuming that all samples are correctly labelled, it is then natural to ask
how many are required to ensure quality estimates, and more importantly, good
classifier performance. The latter question is rather difficult to answer, especially for
multidimensional, multiclass cases. No such measure has been found, and deriving
empirical estimates using Monte Carlo techniques is extremely time consuming. The
approach taken here is to verify classifier performance experimentally, and to use as
many samples as is practical for the estimates. Nevertheless, some quantitative
measure for the goodness of the estimates is helpful. Young [1978)] describes such a

measure. If the feature vectors x are distributed according to Mx:u,Z) and the
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parameters fi and C are computed per (4.51) and (4.52), the squared Mahalanobis

distance estimate

Dx) = (x-fu)'CYx-f) (4.53)

may be transformed into the variate F
= Pp) L[| [N
Fanag =P (’t)d[NH] [N—-l (4.54)

which has a central F-distribution with (d, N-d) degrees of freedom. This formulation
also requires the random vector x to be independent of, but identically distributed as the

set Z used to estimate j and C. From the properties of the F-distribution, when
N-d>4

E[D¥x)) = d[’%. [Nf’—;fz] (4.55)
and -
varlD¥x)) = M[N’f;i] :N;‘]Z[N‘f;fz]z (4.56)

It is immediately obvious that as ¥ increases

Nhj.'m E[D*x)] = d = E[D¥x) (4.57)
and
N’i"m var{DX(x)] = 2d = var[D¥(x)] (4.58)

which is reasonable since the consistent estimators fi and C are expected to converge to
the tue values p and Z, and the mean and variance of a y3-distributed variate are

known to be 4 and 24, respectively. This result then permits the computation of the
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deviation of the mean of D(x) from the true mean d

E[D%x)) = d["i“ﬁ‘-] [,-\,‘ij[z] = d(1+B) (4.59)
hence

- [t

The error Bd represents Byd/Z standard deviations. This gives a mensure of the
goodness of the estimates &t and C in the context of their use in the discriminant
function g}(x). Solving for N explicitly provides the minimum number of independent

samples required to ensure the mean to be within 100 J percent of its true value

N 2 (1+81)(d+2) (4.61)
For example, to maintain a 1% deviation from the mean, 3 = 0.01 and

N 2 101d + 202 (4.62)

This establishes a clear link between the dimensionality of the classifier and the
number of independent samples required to maintain satisfactory performance.
Consequently, increasing the number of features without the number of samples during
classifier training does not necessarily bring abeut a performance improvement. In
fact, if those new features do not add substantially to class separability, performance

may actually decrease! Thic problem has been recognized previously {Duda and Hart,
1973].
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4.5 Swpmary

This chapter presented several aspects of statistical pattern recognition
theory, including a brief review of the parametric Bayes classifier. Pure distance based
and linear classifiers were discussed and rejected for use with radar clutter data for
reasons of inferior performance in return for a negligible reduction in computational
requirements. Two error rate predictors were discussed as aids for the selection of
separable features: bounds on the rates of misclassifications based on the Bhattacharyya
distance, and an approximate multiclass error rate based on the concept of divergence.
Even though the actual rates may deviate significantly from the predicted values, their
use provides a quick means to ussess trends in separability without the need for
laborious classifier testing.

Knowledge of error rates does not, however, furnish any information about
the quality of the individual decision itself. The actual a posteriori probability P(c‘,|x)
can be computed relatively simply and can be used as an immediate confidence
measure, It can also be used to reject the data sample for automatic classification if no
class shows a clear dominance over all others. Sample rejection, or refusal to classify,
may also be appropriate when the likelihood that the sample belongs to any of the
classes is too small. Consequently, a rejection criterion based on testing the result of
the discriminant function, which in tun is based on ihe xﬁ-distributed Mabhalanobis
distance, was developed.

Finaily, the important issue of classifier training was discussed. The
importance of using as many labelles and statistically independent training samples as
possible was stressed. To this end, an expression was given which relates the accuracy
of the class prototype estimate, in terms of the expected value or mean of the

Mahalanobis distance, to the number of independent samples used to arrive at this
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estimate. This expression clearly shows that the number of samples required for a

given accuracy is directly proportional to the dimensionality of the classifier,



Chapter §
FEATURE SELECTION AND EXTRACTION

Before classification can proceed, the measurements must be transformed
into a set of features in order to enhance class differences which contribute to their
separability. This is not an easy task, especially if the measurements are contaminated
with dominant information which is not unique to any one class. Linear
transformations may not be successful in removing such information, and "optimal"
feature extractors may perform quite poorly under these conditions. The first section of
this chapter addresses this difficulty and the importance of matching the choice of
features to the problem itself. The features proposed for use in clutter classification are
described in Section 5.2, and their statistics are discussed in Section 5.3. The chapter
concludes with a discussion on the problems of dimensionality and signal<to-noise ratio,

both of which have a significant effect on classifier performance.

51 F for Optimal Classificati

Most feature selection and extraction techniques proceed on a rather ad hoc
basis. While several authors claim "optimality”, their procedures are, in fact, based on
assumptions which apply only to a specific group of problems {Kashyap, 1978]. These
procedures may be optimal if those assumptions are correct, but when they are suspect
one necessarily returns to ad hoc rules. In this thesis no claim regarding optimality is
made. Heuristic reasoning is used extensively to arrive at a workable classifier. Due

consideration is also given to implementation complexities. Ultimately only

75
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experimental verification will supply the "proof of the pudding”.

Radar data arrives in the form of a time series of finite length due to the
finite dwell time on any one point in space (see also Section 6.1). Considerable work
has been done on the classification of time series in fields such as speech recognition
and the analysis of electrocardiograms (ECGs), among others. An "optimal” feature
selection procedure for the use on time series is developed in [Kashyap, 1978]. The
sampled data is assumed to originate from a stationary autoregressive (AR) process of

order M

M=

X, =ZYX _+wW n>M (5.1)

n . n—i n
i=1

where w is normally distributed according to M(w:0,w’).  Stationarity of the

autoregressive process is ensured when the zeros of the polynomial
Mo
y(z)=1_2'yiz (5.2)
i=1

lie outside the unit circle {Box and Jenkins, 1976). The decision rule of (4.10) is used
with
gIW’) = - (7“7,-)'3{16“7;)/2‘7' + Bln(a /W) - /W’ +k, (5.3)

The features yand W’ are computed from the time series X, as follows

7= [Zx_x MSx x] (5.4)

n-1"n-1

W =2k -x_ 712 (5.5)
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where

3
*a-1= [xn-l’ Fpgr e xn_M] (5.6)

The summation range in expressions (5.4) and (5.5) is from n=M+1toN. The
quantities ¥ and W’ can be recognized as the least squares estimates of the AR
coefficients [Box and Jenkins, 1976] and the scaled prediction error power [Haykin and
Kesler, 1979], respectively. The quantities Yp Si’ o, ﬁ‘, and }’ci together form the class
prototype for class Cp and their estimates are computed from labelled sample time
series. Details may be found in [Kashyap, 1978].

This classifier is computationally not as attractive as the simple quadratic
form in (4.16). A major difficulty is the requirement for matrix inversion in real time,
as well as the computation of a logarithm. Expression (5.3) is based on the assumption
that the number of data samples N is large, in which case W’ converges towards W,
and ¥ towards . If N is small, however, a much more complicated decision rule must
be used if performance is not to be degraded. Use of Equation (5.4) may in this case
lead to nonstationary model estimates, that is ¥ may lie outside the bounded feature
space specified by the assumption of stationarity in (5.2) [Markel and Gray, 1976).
Clearly, such estimates are subject to rejection as they will not fall within the class
regions with high probability if those regions are accurately determined using large
sample sets. Improved estmates for W’ and 7, such as those derived from forward-
backward linear prediction (FBLP) and ones which ensure stationary estimates, may
help in this regard. Computationally efficient algorithms are also available [Kay and
Marple, 1981].

Another problem is the fact that the feature vector contains all information

contained in x , some of which may hinder successful classification. This may sound
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surprising, but if the identifying and non-identifying information are not linearly
separable, nonlinear mapping techniques become necessary to allow parametric
classification to proceed. To date, there exists no unified approach to the analysis of
nonlinear feature extractors, and the question of how to separate or remove this
information then leads once again to ad hoc rules [Young and Calvert, 1974; Fukunaga,
1972]. As will become clear later, the parameter vector ¥ does not lend itself readily
to the required transformations.

There are, however, important similarities between the two classifiers.
These similarities add some strength to the heuristics applied to the proposed feature
extractor. In particular, Kashyap's derivation provides some jusiification for the use of
the autoregressive parameters as features for time series classification. The equivalence
between autoregressive and spectral analysis has been discussed by several researchers
[van den Bos, 1971; Ulrych and Bishop, 1975; Jaynes, 1982]. The implicaton here is
that the autoregressive model of (5.1) contains all measurable spectral information
which is also present in the lattice filter reflection coefficients, the importance of which
will be seen in the next section. In fact, there is a one-to-one correspondence between
both sets of parameters [Haykin and Kesler, 1979].

What, then, are the most likely features of radar clutter which may lead to
successful classification? As pointed out in Chapter 3, given that classification is to be
accomplished on a single-scan basis, the most importan: features relate to the shape and
variability of the Doppler spectrum as it reflects the internal motion of the clutter.
Spatial distribution and the relative size of the scatterers can best be identified on a
scan-to-scan basis using image processing and syntactic recognition techniques,
although aspects of the relative distribution within one resolution cell can be estimated

and included as a feature. No other features are assumed to be available.
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The overall Doppler frequency itself is not unique to any one clutter type
and depends much on the relative direction of travel of the clutter with respect to the
radar. In addition, aliasing due to sampling at the pulse repetition frequency (PRF) will
effectively generate uniform probability densities for the aliased center frequencies of
most moving clutter types.

Signal strength can clearly only be a feature if the radar is calibrated, which
is generally not the case for surveillance radars. Many factors affect the strength of the
echo, including target position within the beam pattern and multipath propagation.
Realistically, neither of these effects can be quantiried since they are markedly affected
by anomalous propagation. Target glint and the distribution of clutter scatterers within
one resolution cell can be considered random variables and are the source of significant

scintillation.

5.2 Selection of Separable Features

Previous work [Stehwien, 1983] established the utility of Burg's reflection
coefficients, arising from the maximum entropy method (MEM) of spectral analysis
[Burg, 1967], for the exiraction of spectral features. The coefficients arise out of the
lattice implementation of the prediction error filter (PEF), which attempts to minimize
the prediction error power at each stage [Burg, 1968; see also Markel and Gray, 1976;
Haykin and Kesler, 1979]. This minimization results in a whitening filter, and as such
the reflection coefficients represent the incremental "predictable” information extracted
from the time series at each stage. Burg dealt only with real valued coefficients
derived from real valued data, the complex form of the algorithm is given in [Haykin
and Kesler, 1976]:
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L2y fmDptm-1)

P, = (5.7

N
T2 i

n=m+1

where fflm) and b'(l'") are, respectively, the forward and backward prediction errors of

the prediction error filter of order m. They are computed using the lattice filter

m) _ Am-1) {m-1)
ffs - ffs * Py bn-l .8)
i = plmh 4 p* g (5.9)

The first stage of the lattice uses the data values themselves as input

£ = b0 & (5.10)

n n

This, then, forms the basis of the feature extractor. Note that the prediction error filter

coefficients are related to the reflection coefficients via the recursive relation
K™ = f D p gD i=1,2,....m (5.11)

m m-i

which is also known as Levinson’'s recursion. Note also that
(m) _ (m) _
hy ' =1 and hm =p (5.12)

The equivalence between MEM and autoregressive modeling has been established by
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van den Bos [1971] and leads to the following relationship between the PEF
coefficients and the M™-order AR model parameters of (5.1}

R (5.13)
The last coefficient of an autoregressive model is also known as the partial
autocorrelation coefficient (PARCOR) [Box and Jenkins, 1976]. Hence, by relations
(5.12) and (5.13), the reflection coefficients are equal to the negative of the partial

autocorrelation coefficients

p, = -1"

m

(5.14)

This useful equivalence establishes many of the properties of the reflection coefficients.
Stability of the prediction error filter requires, for instance, that the magnitude of P,
must be less than unity. This is also the condition for stationarity of the AR model,
which is ensured by Burg's estimate of (5.7). Another property of interest is the true

value of P, when the time series X represents samples of a complex sinusoid of

amplitude A in white noise with power W

X = A exp(jng) + w (5.15)

where ¢ is the frequency of the sinusoid normalized to the sampling frequency fs. As

shown in Appendix D, this value is

exp(jmé) (5.16)
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where ny is the signalto-noise ratio AZW, Result (5.16) has two important
consequences. The first is that frequency translation of a time series simply rotates the
resulting reflection coefficients without affecting their magnitudes and relative phase
angles, If the assumption, that the measured signal is closely related to the sinusoid-in-
noise model, is correct, the center frequency may be taken from the phase angle of P
Even if the model is not valid, the phase angle reflects a weighied average of all

frequency components present (see also Appendix D)

Pr= Xq,.py, (5.17)
where

2
Ak-i-W

ewg) and g, = (5.18)

I + nok R(O)

A £ and ¢k represent the magnitude and frequency of the complex sinusoids present, and
iy, .—.Ail W. This "average" frequency can then be removed from the coefficients by

rotation, allowing the comparison of various spectra to be based on their shape alone

=3
|

= arg(-py) (5.19)
P, exp(-ime) (5.20)

=]
N

The second important consequence of (5.16) is the relationship of P, with the signal-to-
noise ratio ng. It shows that the reflection coefficients are nor independent of the signal
strength unless the clutter process itself can be considered pure autoregressive and thus
not affected by the scale of measurement. If this were true, the spectral equivalence of

AR modeling requires that the spectral shape and the dynamic range remain unaffected
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by signal strength changes. The residuals of the PEF must then be interpreted as a
driving function of the process in (5.1) with power W’, and not as the measurement
noise of (5.15) with power W. The implication of the AR interpretation is that, with
negligible measurement noise, power must be present at all frequencies in the spectrum
for the model to be stuble and positive definite. In reality, it is unlikely that the clutter
echoes exhibit such a broad spectrum, unless aliasing is severe. Hence any power that
does show up at the minima in the spectrum must be due to the white measurement
noise, and the interpretation of the residuals as a pure driving function is indeed not
valid. Further, if the absolute amount of measurement noise is fixed, the shape of the
- ectrum and its dynamic range must change as the signal strength changes. This is
also evident from Equation (5.21), which relates the prediction error power W' to the

mean signal power P [Burg, 1968]

m

i=

m
W= = Py (elpy ) = Poll -py[) (5.21)

This relatonship shows that in the pure AR interpretation, where the model is
independent of the scale of measurement, the prediction error power W’ changes with
the signal strength, and thus cannot possibly represent the measurement noise power W,
Instead, if spectral energy is not present at all frequencies then W’ must equal W for
sufficiently large m, regardless of the value of Py Hence the dynamic range and the
best fitting AR model will also change with signal strength, complicating the use of Y,
orp_as features for the classifier.

The dependence of p, on signal strength suggests that the signal power
itself should be determined, if for no other reason than to bring the comparisons to an

equal basis. The relative power is simply
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* 1 N
Py = R = E[xnxn] - lenxn (5.22)

If the measurement noise W is known, then the signal-to-noise ratio can be simply

determined. Since Py = P + W, where P = A2, the relative power of the sinusoid

mo = fp = P-1 (5.23)

Recall that Kashyap's feature extractor uscs W’ directly (Equation 5.5). Also recall
that the value calculated using Equation (5.21) will be equal to the measurement noise
power only if the autoregressive model order is sufficiently large. The difference
between W’ and W is thus a measure of the "goodness of fit" of the model to the data.
Since W is known relative to Py, it is clear that this "fit" information is completely
contained in the right hand side of (5.21). Hence the use of Py in the feature extractor
is equivalent to the use of W’.

The signal power Py is an average value computed over the entire
measurement window. The size of this window is limited by the length of time the
beam of the radar spends on any one scatterer. In a scanning radar this time is
determined by the antenna rotation rate, the pulse repetition frequency (PRF), and the
antenna beamwidth. The echoes from the scatterer are amplitude modulated by the
azimuth beamshape itself, which can usually be approximated by a Gaussian function.
Single scatterers such as aircraft targets will thus generate, to a first approximation,
Gaussian amplitude modulated complex sinusoids. Echoes from multiple, widely
distributed scatterers will not exhibit such modulation as the density of scatterers,
which the radar sees, will remain relatively constant. This distinction may not become

apparent in spectral analysis, and a measure of amplitude distribution should thus be
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explicily computed. The normalized variance of the individual sample amplitudes

§ = |x| is such a measure

E(s§? Py -3 32
Pvar = = = 1 — —— (5-24)
E(s)? P, P,

A feature to aid separation of distributed clutter and point targets is thus introduced.
Unfortunately, this feature does not yield complete information regarding the nature of
the signal variability within the observation window. Comparing the power levels in
the center of the window (PI) with those outside the center (P 0) will yield a feature

which can distinguish between convex and concave signal shapes

fifo ¥ [fi_l] (5.25)

d
A R TR

where NPU:N[P1+N0PO and N=NI+NO' the number of samples in each

comoutation. The ratio N/NO is simply a constart and can be ignored when the number

of samples is fixed. A computationally simpler feature is thus

!
P =-L_1 (5.26)
d
7~ b,

This completes the separable feature set which may be extracted from the radar data.

To summarize, these features are

¢ mean Doppler frequency
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Py mean signal power relative to the known measurement noise W
p, ~ heterodyned reflection coefficients: zero mean Doppler frequency
var normalized variance of the amplitude distribution in measurement window

P df normalized power difference for window center and edges

At this point it would be possible to train the classifier and to attempt to classify. This
was in fact done with a subset of these features [Stehwien, 1984]. While a first glance
the results look good, there is no assurance that they can be successfully extrapolated to
more complete, and varied, data sets. In fact, the suspicion is that the success was
more a result of the limited size of the data sets, that is local phenomena were found
and tested against themselves. This problem of testing on the training data has lead
many researchers to report overly optimistic results [Foley, 1972; Nagy, 1983]. Some
considerable thought must therefore be given to avoid this difficulty, It is instructive,
therefore, to examine the statistics of these features before -iesigning a workable

classification (class assignment) strategy.

L3 Feature Statistics

Fundamentally, there are two causes for variations in the feature vector,
given that it has been taken from the same class: measurement error and estimation
errors, and the intrinsic characteristics of the features themselves. Once a measurement
has been taken and the features computed, it is difficult to separate these causes and
any examination of the statistics will necessarily have to consider their combined
effect. Some general comments regarding the nature and dominance of each effect
may, however, be made. The variance of low order features, which includes all those

directly computed such as signal power and Doppler frequency, will be dominated by
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intrinsic characteristics, and measurement and estimation errors are expected to be
relatively small. High-crder information contained in indirectly derived features such
as the high-order reflection coefficients is, on the other hand, increasingly obscured by
measurement and estimation errors. The reason is that, in their derivation, these
features are subjected to all errors already contained in those from which they are
derived.

In this section the combined statistics of the proposed feature set are thus
examined. For the most pant, if independence or at most linear dependence between
features is assumed, looking at each feature separately will suffice. There is a potential
danger in this: the parametric classifier of Chapter 4 is based on independent, normally
distributed features. Residual dependence, or deviation from multivariate normality,
can significantly affect performance if the classes of interest are not linearly separable,
or exhibit significant overlap. Linear dependence between features is effectively
removed in the orthonormal whitening transformation inherent in the computation of
the Mahalanobis distance. Nonlinear dependence, however, cannot be removed this
way. Hence, looking at the marginal statistics alone may only hide nonlinear
dependencies which must be removed before classification can succeed. Multivariate
statistics are, however, much more difficult to examine, especially if the number of
dimensions is large. Many tests for multivariate normality have been proposed, but
most are somewhat unsatisfying in that only a few aspects of normality are tested.

Again, ad hoc rules must necessarily be used.

5.3.1 Margingl N 5
The first feature of interest is the Doppler frequency ¢ as computed from

(5.19). If the clutter or target travel vectors are bivariate normal with zero mean
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(which is reasonable if the direction relative to the radar is random), then the absolute
Doppler frequency or range rate will be a marginal normal variate. Unfortunately,
aliasing destroys this normality by folding over frequencies which exceed one half the
sampling rate fs. In fact, it can be shown that, if the sampling frequency is less than or
equal to the standard deviation of ¢, then the resulting distribution will be uniform
between the limits ifslz. Approximate uniformity will still be observed if the
sampling frequency is outside one but within two standard deviations. With the
exception of ground clutter, it may therefore be prudent to assume a uniform
distribution for all moving clutter unless aliasing is not a factor.

This, of course, prevents the Doppler frequency from acting as a useful
feature except for the identification of ground clutter. Should it then be included in the
classifier at all? The answer is not clear at this stage. It may v-ell be that ground
clutter may identfiable using Doppler frequency alone, in which case preselection
before classification (or multistage classification) may well be in order. In other words
ground clutter is eliminated immediately, as is done in moving target indicator (MTI)
and moving target detector (MTD) algorithms. Only clutter which "breaks through"
these filters is then classified. There is a penalty, of course, in the rejection of zero
Doppler moving targets. This leads to blind speeds and the loss of tangentially moving
targets in MTI systems.

Inclusion of the Doppler frequency in the classifier insiead of preselection
will prevent this problem, but presents another difficulty. Traditional radar target
detection is a two-class problem where targets of interest must be separated from
unwanted clutter, To maintain control over “false alarms" or detection errors, a
Neyman-Pearson test is usually employed. Tre detection threshold is set such that the

probability of false alarm P, is a fixed value, and the probability of nor detecting the

FA



89

target (1-P,) is accordingly minimized [Fukunage, 1972; Young and Calvert, 1974).
This technique is also known as constant false alarm rate (CFAR) processing. The
Bayes rule differs from the Neyman-Pearson rule in that neither error probability is
fixed and both are jointly minimized. It is common to set constant false alarm rates at
103 to 105, whereas error probabilities for the Bayes classifier are usually not better
than_ 102 (one percent). Large amounts of ground clutter misclassified as moving
targets can thus cause a much larger false alarm rate than radar operators are used to.
Depending on which class is selected by the classifier, this may be a highly undesirable
situation and should be avoided. This problem is explored further in Chapter 6.

The signal power for most clutter classes has often been found to be
approximately log-normally distributed [Long, 1975). Siuce the measurement in (5.21)
is linear in power, a conversion to decibels, or rome scaled version thereof, is

appropriate. If the measurement noise is known, Py raay be transformed to decibels

relative to W

Uy = 10 log(PyW) (5.27)

Uy will then replace P, as a feature.

The asymptotic statistics of the reflection coefficients, which are due to
measurement and estimation errors, have been examined by a number of authors. Kay
and Makhoul [1983] derive asymptotic probability densities for real valued coefficients
as the number of data samples N, used in the estimation of f)m, becomes infinite, They

show that

var(f)m) = #(l-p;‘;) for maM (5.28)

where M is the order of the underlying autoregressive process. The variances and
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covariances of f)m for m< M are also given but are highly dependent on the model
order and coefficient values themselves, The trend remains, however, and low order
coefficients whose values are close to 1 have a very low variance. Note, of course, that
p,, is zero for m > M and the variance of their estimates thus remains steady at 1/N.
Another interesting result from Kay and Makhoul's work is that they find fJM to be
uncorrelated with all me of orders m <M, which suggests that an AR order selection
procedure might test for zero covariances. Of course, a test for model order using
confidence limits based on the 1/N variance around the zero mean has long been used
in time series analysis [Box and Jenkins, 1976]. Unfortunately, Box and Jenkins do not
say how large N must be relative to M for this test t~ be valid, and Kay and Makhoul
use sample sizes between 100 and 1000 in the experimental verification of their results.
Experimental observations with smaller sample sizes suggest, however, that the
variances are more closely related to 1/(N—m), especially as m approaches N. Durrani
and Arslanian [1983] derive exact probability densities for noise-alone and sinusoid-in-
noise cases without the requirement for N — oo, Their results show that the behavior
of the reflection coefficients begins to deviate from normal as they move away from
zero. The experimentally observed dependence on the quantity £ = N-m is also shown
in the following derivation. Durrani and Arslanian give the probability density function

of the estimated real valued reflection coefficient, whose expected value is zero, as

. L(£+1)/2]
p@) = ————

- 1-p2)\EDR 5.29
W T (1-p7) (5.29)

To show that this density approximates the normal density when ¢ becomes large,

compare the two following infinite series expansions



(1237 = 1-gx% + q(g-1x*2! - q(g-1)(g-2)x5/3! + ...

exp(-qx?) = 1 - qx2 + q&x4721 - x5/3t + ...

Also note the identity of the following limit

lim

Z = o0

I'(z+a)
= 2
I'(z)

Then, setting the following equivalencies

x=;:’)m, qg=(£-2)/2 and z={¢/2, a=1R

Equation (5.29) can be rewritten as, for large ¢

1 m

-3 ]
2 1/t-2)

Po,) = ——ewl
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(5.30)
(5.31)

(5.32)

(3.33)

Exccpt for a scale factor, the functional form of this probability density is normal with

a variance of o® = 1/(¢-2) = 1/(N-m-2). The exact expression for the variance of (5.29),

without the requirement of large £ can be found as follows

1
var,) = | 62006, dp,,
<1

Cl(e+1)/2)

var(p ) = —— J p2(1-p2)(ED12 4

(5.34)

(5.35)
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The bounds on the integral arise from the requirement that ImeI <1 for a positive
definite spectrumn and stable AR model. The integral can be recognized as the Beta
function

[3/2]T7¢/2)

1
52(1-p)\D2 45 = BGB/2,812) = —— (5.36)
[ pha-pi O dp, - 5 Fl(e3)2]

Therefore, using the functional relation I'(x+1) = xI"(x), Equation (5.35) becomes

C[(&1)/2)T73/2) 2 T'(3/2)

var(g = =
b T ETwenE 7 @D

= 1/(&1) (5.37)

The variance o2 = 1/(N-m+1) can thus be seen to be a function of both N and m as was
experimentally observed. The above analysis deals, strictly speaking, only with real
valued reflection coefficients, although the statistics of complex valued coefficients are
not expected to differ greatly. To some extent, it justifies the use the reflection
coefficients directly in the parametric MAP classifier. But most important, it links the
classifier performance with the number of samples used to estimate the feature vector.
The importance of variance reduction was pointed out in Section 4.2, and this link
establishes the way it must be done, at least for those features which are affected by
large estimation errors.

As the expected values of the coefficients become increasingly non-zero
and approach their bound at unity, the normality requirement becomes more difficult to
satisfy, especially since the variance due to estimation errors decreases (Equation 5.28)
and that due to intrinsic characteristics begins to dominate. The log-normal
characteristic of the clutter amplitude and its relationship with the signal-to-noise ratio

allows p, to be transformed into an approximately normal distributed feature. Recall
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that the feature set uses the rotated coefficients p,;I from (5.20). The effect of the

rotation on p, is to set its phase angle to , leaving only the magnitude

Ry

p} = - (5.38)

l+no

The feature based on p, is then the derived signal-to-noise ratio, expressed in decibels

4y = 10 log(ng) = 10 log[-l—— (5.39)

It is very unlikely that the magnitude of the complex. ;» will ever be zero, even in the
noise only case when it follows a Rayleigh distribution, and the above transformation
should therefore not present any computational difficulties. It is interesting to compare

this transformation to those proposed by Markel and Gray [1976], and one used by
Agnel [1985]

1 + k.
|

1 - k&
i

8 = log[ (5.40)

where the k‘. are the real valued reflection coefficients arising from real valued data.
The additdon of 1 in the numerator assures a positive quantity inside the logarithm.
This addition is not required in (5.39) since only positive magnitudes are involved.
Such a transformation cannot, however, be applied to complex coefficients.

From Kay and Makhoul's work [Kay and Makhoul, 1983] it is also clear
that a linear transformation will not likely be able to remove the correlations between

the coefficients of the different lattice stages, even if these are due only to known



94

measurement and estimation errors. Nonlinear or heuristic techniques (or both) may

therefore be required for successful classification.

5,32 Multivariate Normali

Assuring marginal normality does not, by any means, guarantce
multivariate normality. In fact, nonlinear dependencies can easily be completely
hidden to univariate tests for normality. Various graphical and significance tests for
assessing deviations from multivariate normality have been proposed. General
probability plotting methods for univariate statistics are described in [Wilk and
Gnanadesikan, 1968], and include quantile and percentage probability plots. Plotting
the squared Mahalanobis distance D% against the expected order statistics from the Zf,
distribution has been suggested in [Cox and Small, 1978]. Andrews [1972] plots the
multivariate data directly using a function fx(a)) which is effectively the real part of the
complex polynomial Hx(z) evaluated along the unit circle z = exp(~jw), setting the
complex coefficients h; equal to the data (that is, h‘. =X, + X, ). The similarity of
this approach with the plotting of the power spectrum is evident, although each plot
will necessarily emphasize different characteristics of the data. While it inay be
interesting to examine the complete and transformed feature set this way, this technique
is not likely to provide new insights into the classification problem and the multivariate
nature of the data, beyond what may be obtained from the spectra themselves,

Cox and Small suggest that scatter diagrams will always be required for
interpretation of the data, and this may be a useful starting point. Such diagrams will
reveal bivariate dependencies, and any observed curvature is an indication of non-
normal behavior. Cox and 3mall also discuss several significance tests for detection of

such nonlinearities. Young's test based on the x2 distribution [Young, 1978] can also
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be used to assess multivariate normality, although the use of only one global statistic
calls for caution: while rejection of the null hypothesis (that the probability density is
normal) means that non-normal behavior has been detected, acceptance does not
necessarily mean that the density is normmal. References to a variety of other
significance tests can be found in [Fukunaga and Flick, 1986].

Any test for multivariate normality must,. unless its purpose is solely an
exercise in mathematics, consider the reason for its application. Often complete
normality is not required, and some deviation is quite toicrable. A test for local
normality using a window function around the region of interest has been proposed by
[Fukunaga and Flick, 1986]. This test does requirc a priori knowledge of the mean
vector and covariance matrix and therefore has limited applicability. If good estimates
for these parameters cannot be obtained, the results may be invalid.

Once non-normal behavior has been "discovered", there remains the
question of what to do next. If nonparametric, or distribution free classifiers can be
used then perhaps this is the road one should take. Unfortunately, the volumes of data
encountered in radar make this approach difficult to implement and the data must
somehow be molded to become acceptable for use with the parametric classifier.
Several authors have suggested nonlinear power transformations on each of the
marginal variates and have claimed reasonable success with various (limited) data sets
[Draper' and Cox, 1969; Andrews, 1971]. In fact, except for the logarithm,
Equation (5.39) is a special case of such a transformation. Application of these
transformations to the other features may be useful, although significant correlations
between variates are not likely removable with this tz=chnique.

The degree to which deviations from normality can be tolerated in the

classificatior problem is not easy to define. Clearly, the most desirable behavior is
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close clustering around a well defined mean for each class of interest. If the clusters
are completely separable, the precise nature of the feature distribution is not important
since no misclassifications will result. In the case of overlapping classes, the degree of
overlap is to be minimized; hence, short tails in the distribution are desirable, again
regardless of the nature of the distribution. If the overlap is severe, then the positioning
of the mean becomes important to allow overall minimization of the error rate. In this
case the emphasis moves to the center of the distribution where the majority of feature
samples are found. The goodness of the mean and covariance estimates are a function
of the functional form of the density and therefore sensitive to any deviation from
normality. The tails are now less important, although they still play a role in achieved
error rate and the estimation of the means and covariances. In the case of particularly
long tails it is possible to censor outliers before the estimation, although the results then
become a function of the censoring procedure itself. As will be seen later, the clutter
classes are not well defined and far from separable. In fact, the features turn out to be
non-normal to such a degree that rather ad hoc solutions are required o achieve
tolerable error rate. Part of the solution lies in the definition of the classes themselves,

rather than on simply assuring normality.

3.4_Dimensionality

One question remains to be answered regarding the feature set proposed in
Section 5.2: how many of the reflection coefficients p’;l are required to achieve
sufficient separability between classes to make classification practical? The obvious
answer might be as many as possible within the computational constraints provided by
technology. While it is generally true that adding additional independent features will

increase separability, there is a very real problem with adding arbitrarily many features,
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even if there are no computational constraints. This problem has been recognized in
the literature (Hughes, 1968; Duda and Hart, 1973], and can generally be attributed to a
lack of sufficient data for the estimation of the class prototypes. Young's result
[Young, 1978], as reflected in Equations (4.59) to (4.61), yields a clue to the amount of
data required or, conversely, how many dimensions can be tolerated given the number
of available training samples ¥ and a maximum allowable error 8. This does not,
however, solve the problem entirely.

Increasing the number of features frequently increases the inmtrinsic
dimensionality, or complexity of the data. The notion that this increase leads
automatically to a refinement of the available information is cautioned against by van
Campenhout who shows that, inless the statistical models are comparable, predicting a
decrease in the Bayes risk with increasing complexity is not justified [van Campenhout,
1978]. Such an increase in complexity is expected to occur when adding higher-order
reflection coefficients, but it is not clear whether this new information is a help or
hindrance. The following heuristic argument should provide insight into the problem.

The transformation from the radar measurements (in the form of time
series) to the reflection coeificients is highly nonlinear and concentraies the dominant
information in the low-order coefficients. While this is 2 highly desirable property
from the point of view of reducing the dimensionality, it also displays nonlinear
behavior towards measurement errors and interfering noise. As pointed out in
Section 5.3, high-order coefficients contain the generally weaker, higher-order
information and are estimated using fewer samples. Hence their variance is greater and
their individual separability is quite low. They are also based on the residuals of the
earlier stages, and therefore tend to be more susceptible to measurement noise and

quadrature errors (see Appendix E for an examination of the effects of quadrature



98

errors on the spectrum and the reflection coefficients). Depending on the relative
strength of these errors, residual and helpful information may be completely obscured
to the point of reducing classifier performance. At which filter order this problem
becomes significant will undoubtedly depend on the data itself, the number of samples
used in the coefficient calculation, and the size of the measurement errors.

Another consideration in the choice of the number of coefficients to use is
problem specific, that is the number of classes to be defined. It has already been stated
that the clutter processes represent a continuum in the feature space, and that the class
boundaries are not likely to be described with great accuracy. The definition of a few
large and coarsely defined classes will most certainly require only a few features for
acceptable classification, whereas the successful identification of many refined classes
might well require more. Clearly, a large dimensionality allows more regions of
“equal” size to be defined, which may be necessary if the feature set for any one class
is not a hyperellipsoidal cluster (using the multivariate normal assumption), but rather
come complex shape stringing its way through the feature space. In such a case a
contiguous set of small hyperellipsoidal regions can be defined along the irregular
cluster, with each region belonging to the same class. The classifier will then proceed
in two steps, first to identify the region within which the sample feature falls using the
Bayes discriminant (4.16, 4.17), and second to identify the class to which the region
belongs. Even in such a scenario, the intrinsic dimensionality of the irregular cluster

must be considered when choosing the number of features to use.

5.5 Signal-to-Noise Rati
The dependence of the spectrum nd hence the reflection coefficients on the

signal strength has already been pointed out. In light of the ab‘ove discussions on
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multivariate normality and dimensionality, it is worthwhile to reexamine this
dependence and possible solutions to it. There is sufficient evidence that the early
classification results [Stehwien, 1984] were in fact dominated by this dependence. The
reason for the apparently successful identification was that most of the observed
measurements stayed within a fairly narrow range of SNRs, which was different for
every class and determined by the way the measurements were taken. Application to
new data, which was measured differently, caused massive failure of the classifier. The
fact that SNR information was included in the features was clear, however, that it
should have such a significant impact on classifier performance was not appreciated.

Signal strength is, in fact, only a function of the measurement itself and
contains litle useful information about the clutter source. Only absolute radar cross-
section (RCS) measurements may be viewed as a feature, but these are generally not
derivable from surveillance radar data. Except for perhaps an upper limit on received
signal strength for certain clutter types (for example, rain: see Appendix B), the SNR
information in the feature set has proved to be detrimental, rather than helpful. The
following discussion should serve to illustrate the problem.

As long as any clutter type can take on any signal strength, every class
cluster in feature space will wind its way from the common low SNR noise cluster to
its own high SNR signal cluster. Consequently, separability is also expected to be a
function of SNR, which is clearly a reasonable conclusion. If these clusters are nothing
more than elongated hyperellipsoids, then the parametric Bayes classifier should
provide the optimum decision rule and all that would be required is to train it with
sufficient data from all SNR ranges. This would prevent the class prototypes from
representing only "local” phenomena. Recall the earlier discussion (Section 5.2) on the

validity of the AR representation for the clutter data. A similar argument may be made
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in reference to the modeling results on the signal itself, rather than only the dynamic
range. Specifically, the shape of the spectrum of a non-fluctuating point target, which
is scanned by a Gaussian shaped beam, is also Gaussian. Such a shape cannot easily be
represented by an all pole spectrum, and techniques such as the MEM try to do the best
they can by appropriately placing the spectral poles close to the true spectrum. As the
dynamic range of the spectrum increases, spectral peaks become narrower and more are
required for adequate representation. Hence the order of the best fitting AR model
increases as the SNR increases. The fact that the first reflection coefficient is a linear
combination of all observed frequency components (see Appendix D), implies that not
only does the AR order increase with SNR, but the low-order coefficients also change.
Hence the feature cluster cannot be considered a simple hyperellipsoid. This
recognition suggests that the two step classification approach proposed in Section 5.4
may be appropriate.

A possible approach to the SNR problem has now emerged. It is clear that
unless the nonlinear dependence of the reflection coefficients on SNR can be removed
(it appears unlikely that this can be done without significant loss of other information),
classification must occur with due consideration to the SNR. Several classifiers are
constructed, one per SNR range. Both training samples and new measurements are
directed to the appropriate classifier and the decision outputs recombined. Clearly,
hardware constraints and the availability of training data will determine exactly how

many classes and classifiers can be defined.

2.6 Summary
In this chapter so-called optimal features for time series were examined and

found to be unsuitable, since much of ihe information contained in the data does not
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contribute to separability. Linear methods may not be able to remove such
information, and heuristic arguments and experimental experience were applied to the
selection of practical features for the radar clutter classifier, These features were found
to be the mean Doppler frequency, the mean signal-to-noise ratio, the reflection
coefficients derived from the heterodyned time series, and two measures of the
distribution of signal power inside the measurement window.

Both marginal and multivariate statistics of these features were examined
next. The probability densities of the low order features were determined to be
dominated by the intrinsic characteristics of the clutter itself: uniform for the Doppler
frequency and lognormal for the signal-tc-noise ratio. The asymptotic densities of
zero-mean reflection coefficients were shown to be approximately normal, but nonzero
coefficients, who are influenced considerably by the intrinsic clutter characteristics,
could not be characterized in simple terms. Multivariate statistics are not expected to
be normal, and nonzero covariances have been noted amongst the various reflection
coefficients. The problem of testing for multivariate normality and how to achieve it in
order to allow the use of the parametric classifier was also discussed.

The problem of dimensionality is closely related to classifier performance,
and the desire to increase it simply to improve performance, and without examining the
additional information (or lack thereof), was cautioned against. Finally, the role of the
signal4tonoise ratio in the feature extractor was explored. The expected strong and
highly nonlinear correlation of most features with the SNR, and the difficulties
involved in removing these correlations, will most likely require ad hoc solutions such

as the construction of one classifier per SNR range.



Chapter 6
EXPERIMENTAL RESULTS

This chapter presents the results of experimental application of the theory
discussed in the previous three chapters. The description follows a logical progression
starting with the process of collecting and preprocessing the data, transforming it into
the required feature set, training the classifier, and finaily, testing the classifier with the
data, Any meaningful analysis and experimental verification requires large volumes of
data, and considerable effort was spent obtaining them. For the most part, this effort
was successful, and considerable confidence can be placed in the results presented in
the following sections. On the other hand, dealing with such enormous data volumes
places some restrictions on what can be tried within the scope of a limited time
research project. As a result, some possibly worthwhile algorithms were not tried and
the emphasis was placed on achieving the best results with the greatest simplicity. An
unfortunate side effect of this approach is that there may well be other techniques
available (or become available as research progresses) which would achieve
comparable or perhaps even better results. As stated previously, in this thesis no claim
is made regarding optimality, but rather that the concept of statistical classification of
radar clutter is possible and practical. As with any new algorithm, only a trial
implementation will allow a thorough assessment of its utility. In this research an
attempt was made to emulate such an implementation.

The radar systems, and the data derived from them, are described first,

Both radars were operational systems, and the restrictions this placed on the type of
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data collected are also discussed. Section 6.1 then concludes with a summary of the
preprocessing and feature extraction algorithms., Section 6.2 deals with the classifier
training strategy, which is crucial to successful classification. The work in this thesis is
based on the assumption that is it possible to apply supervised leaming techniques,
which require a priori knowledge about the nature of the clutter to allow sample
labelling. With this knowledge, the statistics of the labelled samples can be examined
and the feature space divided into classes using some very practical considerations. At
this point classifier performance can be predicted. Experimental error rates are
compared with these predictions in Section 6.3, Qualitative, but very illustrative results
are presented as well in the form of classified PP images, and a solution to the
problem of ground clutter, which can lead to intolerable false alarm rates if not handled
correctly, is also proposed. The final section then draws some conclusions from these

results and cautions against their misinterpretation.

1.D ion Extraction
Approximately 260 minutes (20 gigasamples) of radar data were collected
from two L-band air traffic control radars. Some understanding of the radar is essential
to prepare the data for classification. Preparation itself includes selection from the
indexed tape library, correction of tape errors, and compensation for alignment errors in

the radar demodulator. Once such preprocessing is complete, feature extraction can

take place.
6.1.1 The Radar Sysiem

The choice of radar to use for this research was based on several

requirements, and it had to be representative of the new generation of ATC radars
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being installed. A coherent digital MTI or MTD radar was preferred to allow high
integrity data capture and recording. Difficulties with maintaining coherence using a
two-channel analog video recorder made digital recording an absolute requirement.
The choice of operating frequency of the radar was less important, and past analyses
have been made with both L and S-band radars [Kesler, 1978].

The site of the radar was perhaps the most important consideration. Since
one of the main motivations for the original research was bird clutter identification, the
radar had to be situated below major bird migration flyways. In cooperation with the
Department of National Defence (DND), the Moose Jaw TRACS-ASR was made
available for the research during the migration season in the spring of 1985. CFB
Moose Jaw is Canada’s jet training base and is plagued by heavy bird migration both
during the spring and the fall. For safety reasons, the policy of the base is to shut down
night flying during the migration season. Since litde itinerant traffic passes through
Moose Jaw, the radar was normally not required for traffic control during hours of
darkness. It could therefore be relatively freely configured to the research parameters,
which made it an ideal choice. An identical radar at CFB Trenton was also made
available during the fall of 1984 for early trials and testing and debugging of the
recording equipment. This radar was, however, dedicated to air traffic control on a 24-
hour basis and its parameters (PRF, beam gating, and STC) could not be adjusted as
freely.

The TRACS-ASR is a derivative of the Westinghouse ARSR-3 long-range
air route surveillance radar. It was specially modified to meet DND requirements for a
terminal radar as part of their ATC modernization program. The two-channel radar
transmits an uncompressed 2 s pulse with a peak power of 1.5 MW at a repetition

frequency of about 650 Hz. Both channels can operate simultaneously, each on a
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different frequency and polarization. This enhances the detection capability of the
radar by providing frequency and polarization diversity. Unfortunately, only one
channel was operative at the time of recording and use could not be made of this
feature. The use of polarization as a discriminant thus remains untried, but should not
be overlooked in future classifier designs. It was fortuitous, however, that the operating
channel in Moose Jaw was horizontally polarized, since bird reflectivity has been
reported to be as much as 4 dB greater than for vertical polarization [Vaughn, 1985].
(Information on polarization modulation of target echoes may also be found in
[Skolnik, 1970], and some data about the effects of polarization on weather clutter has
been compiled by Nathanson [1969] and Hendry and McCormick [1971]. Macikunas
and Haykin [1989] have examined the use of polarization as a radar discriminant for
several applications.)

The radar uses a dual-feed antenna (high beam is receive only), which
forms a fan shaped beam with a modified cosecant-squared elevation pattern and a
narrow 1.5° azimuth beam width. The scan rate of 12 rpm results in approximately
14 hits per beamwidth which, when processed coherently, can provide up to 10 dB of
integration gain above single hit detection. The TRACS signal processor is fully
digital, and features MTI for both / and @ channels, log-CFAR noncoherent pulse-to-
pulse integration, and adaptive threshold detection to maintain control over the dynamic
range. Staggered PRFs are used to kill MTI blind speeds and tear up second-time-
around echoes. Detected targets are correlated with SSR transponder returns and sent
to the main computer system for target tracking, display, and logging. The radar
operator sees a fully synthesized display complete with target identification and track
history, as well as weather contours. Wide band log video is also available as an

overlay and is usually fed from the weather channel. More detail on the radars is
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provided in Appendices A and B.

In Chapter 3 it was seen that the data of interest are the coherently
demodulated in-phase (/) and quadrature (Q) channels. Both are available from the
analog-to-digital converters to a precision of 9 bits plus sign. The digital data are linear
in amplitude and the 9-bit mantissa thus results in a 46 dB dynamic range.
Conventional spectral analysis requires not only linear data, but also fixed intervals
between samples. The radar has four choices of fixed PRFs, and two of these were
used.

The coherent demodulation process in the radar receivers is subject to
alignment errors, as is the analog-to-digital conversion. Unequal gains in each of the
channels and the lack of true orthogonality must be compensated for if the errors are
sufficiently large. Given a signal with amplitude S and phase ¢, the comrect in-phase

and quadrature components are defined as

I =Scosp, Q = Ssing 6.1)

The correction which must be applied to the measured values /* and Q' are thus

I=k!I’ and Q=£k(Q +kD 6.2)
where
=g k= s k= sind 6.3)

The quantities k, and & are the gain ratio between the / and Q channels and the
quadrature error (deviation from orthogonality), respectively. A complete discussion on

these errors and how to find the required correction factors is given in Appendix E.



107

Before this correction can be applied, any offset due to A/D misadjustment must be
removed. /* and Q° are known to be zero-mean parameters and the sample mean of
thermal noise data is thus a good (low variance) estimate of this offset. Thermal noise
data, which has the lowest variance of any data available from the radar and is white
relative to the PRF, can be found in abundance in the region above 80 nmi where the
radar is still receiving, but where few targets and even less clutter would be found.
From this region the thermal noise powers W; and WQ can also be estimated. They are
required for both the procedure to find the above correction factors (sce Appendix E)
and the computation of the SNR based feature U,

A final preprocessing consideration is the integrity of the data on tape. All
data were stored on 1" high-density tape using an Ampex AHBR-1728 (airborne high
bit-rate, 28 track) 24-channel digital recording system. High recording rates (up to
4 Mbits/s for each channel) are achieved using an analog recording scheme with
proprietary encoding to limit bit errors. Bit densities used were 26.67 and
23.33 kbits/inch, and all 24 bits (10 each for 7 and @, 4 for control) were written twice
to detect the presence of errors. Isolated bit and burst errors were in fact encountered,
and some error correction was necessary before processing the data. Simulated PPI
displays reveal such errors quite readily and, since they tended to be confined to a
single track on the tape, some form of interactively directed median filtering was able
to find and correct them. Small errors, which are within the dynamic range of the local
data itself, can safely be ignored with the assumption that their effects are negligible

when compared to the large volumes of correct data,
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6.1.2 Data Library

The complete library consists of 15 indexed tapes, each containing 15 to
18 minutes (approximately 200 scans) of continuous radar data. Each scan is numbered
and retrievable singly or as a sequence of consecutive scans. Notes made while
recording refer to the tape in general and the scan number in particular. As a result,
individually identified targets and clutter areas can be found quickly and recovered.
Supporting data includes the time and date of the recordings, the relevant radar
parameters, locations of clutter and aircraft targets, video tapes of the PPI display, time
exposure photographs, a daily record of the meteorological conditions including surface
and upper wind forecasts and hourly weather reports, and bird migration predictions.
In some cases comparisons were made with bird migration predictions and findings
from CFB Cold Lake which is situated 300 nautical miles north-west of Moose Jaw (at
a true bearing of 326.5°), and under the same general migration path.

Bird clutter, regardless of any expectations of heavy migration, proved to
be the most elusive of all the clutter types, or perhaps only appeared so at first.
However, since it was impossible to positively identify bird and bird flock echoes,
recordings were made whenever bird clutter was suspected, or unusual clutter was
observed. Later analysis showed that most of the suspected clutter was indeed caused
by birds (see Appendix C), and consequently 10 of the 12 tapes recorded in Moose Jaw
contain at least some bird clutter. Seven of these are considered "bird tapes" with bird
clutter as a main component of the radar data. Two contain "heavy” bird clutter with
the number of completed video counts (MTI-detected targets within one scan)
exceeding 700. Weather clutter is present on 8 tapes, and three of these were
specifically recorded to capture periods of heavy precipitation, including thunderstorms.

Not surprisingly, some aircraft targets are present on virtually every tape,
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but only two were recorded during peak flying hours. One recording made at Trenton
during a late afternoon peak air traffic period captured many aircraft travelling the
Ottawa-Toronto-Montreal routes and some within New York State. Compared to
clutter, however, aircraft targets are very sparse and therefore cannot be characterized
with the same reliability and confidence. The same is generelly true for ground based
vehicular traffic, including cars and trucks. Most of this type of clutter was found on
one tape recorded in Moose Jaw when a slight atmospheric inversion made a significant
stretch (more than 20 miles) of the Trans-Canada Highway visible to the radar. While
expressway traffic near Trenton also appeared on time exposure photographs, it was
much more spotty due to the hilly terrain, and locating a sufficient number of vehicle
echoes was not possible.

Ground clutter is obviously present on all tapes, however, the atmospheric
inversions experienced quite frequently and regularly in Saskatchewan can increase the
maximum range of the extent of ground clutter to over 80 nautical miles. This proved
to be a significant problem for the radar, since the available STC curves were not
designed for these ranges and the sometimes extremely powerful clutter returns.
Occasional MTI breakthroughs were noted, although it was not clear whether these
were caused by dynamic range overload, vehicular tra fic, or some other inversion
related phenomenon. Two tapes were recorded during such conditions.

One Moose Jaw tape was recorded during the daytime, at the end of a
regularly scheduled radar preventive maintenance period. This tape contains several
radar parameter variations and injected reference targets. It also contains jet training
activity and localized bird clutter. More detail on the recorded data and the daa library
may be found in [Stehwien, January 1986).

Subsets of these tapes were transferred, after data selection and
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preprocessing, to 9-track magnetic tape. Selection was made by range/azimuth gating
while retrieving data from the tapes, and after examining whole scans for areas of
interest using simulated PPI displays. These subsets form the basis of the experimental

data used to train and test the classifier.

513 F E ion. Algorit

The basis for the feature vector are, as discussed in Chapter 5, the complex
reflection coefficients arising from the lattice implementation of the prediction error
filter (PEF). They are computed using Burg's formula [Burg, 1968; Haykin and Kesler,

1979], which is restated here for convenience

2 2 f(m—l)b*(m 1y

pm = n=m+l (6-4)
>:[|f‘"*"|2 5™

n=m+l

where f{’") and b(”’) are, respectively, the forward and backward prediction errors from

the m™ stage of the lattice PEF

L= A0, plmD (65)
b,(,M) _ (m-l) P f{m—l) (6.6)

These lattice equations are initialized with the data values themselves

A2 5@ 6.7)

n n n
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Recall that the data values X, must first be error corrected and quadrature compensated
as discussed in Section 6.1.1, The feature extractor need go no further than
Equation (6.4), but should one wish to compute the spectrum, the PEF coefficients
themselves must be computed. An efficient, although not necessarily the most

numerically stable procedure to compute these is Levinson's recursion {Haykin and

Kesler, 1979]

K™ = WmDp gD i=1,2,...,m (6.8)
Which is initialized with
(m) _ (m) _
BM=1 and  wMop (6.9)

Finally, the m™-order maximum entropy power spectral density function is given by

) P 1
S = n for |f] € — (6.10)

m
B l h) hEm)exp (=2mifAr |2 2Ar
i=0

where B is the bandwidth of the complex process and the sampling interval At is set to
its Myquist rate 1/B. For the radar case At is fixed at the pulse repetition interval (PRI),
and the bandwidth B is therefore limited by the PRF (B = fs). Any frequency present
outside B will be folded into the spectrum. The reference power level Pm is the

residual error power from the m®-order PEF, computed from
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P = Ponn1 (l—|pm|2) = Poigl(l-lp‘l ) (6.11)

which is initialized from

N

Po = RO) = % Zxx, (6.12)
n=

The units of P, are then those of the data, squared. It is usually more convenient to
express P as a power ratio relative to the background noise level W, which may be
estimated from a sector containing only thermal noise. Thus, by implication, the
relative error power Pm/W becomes 2 measure of the goodness of autoregressive fit (see
also Section 5.2), and should always remain greater than 1. Since the error powers
computed per (6.11) can only become smaller as the number of stages increases, a
value below 1 should raise suspicion regarding the validity of the model, and be cause
to immediately terminate the growth of the lattice.

The importance of a low variance in the feature samples has been pointed
out in Chapter 4. In Chapter S the variance of the zero mean reflectica coefficients
was shown to be proportional to the quantity 1/(N-m+1), where N is the number of
independent samples used for the estimate. A rule of thumb for the largest filter order
to be used can be constructed from the Bhattacharyya bound (Equation 4.32). The
covariance matrix for a classifier using only the highest-order reflection coefficient -
the real and imaginary parts are each considered to be one independent feature with one
half of the total variance - is diagonal with elements ¢%2. Equation (4.34) thus

becomes

— 2
B‘.j = l#,-ﬁjl /400 (6.13)
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In Appendix D the upper limit on the magnitude of the m® reflection coefficient is
derived to be 1/m, if the underlying signal is a complex sinusoid in white noise. If the
variance of is to be taken as (1-1/m?)/(N-m+1), which combines the result of
Equation (5.37) with the dependence on the magnitude shown in Equation (5.28), and

the mean distance between two classes as 1/m, then Equation (6.13) can be evaluated to
be
N-m+1
§E T——— (6.14)
Y 4(m?-1)

A convenient upper limit on the error rate is 18%, which corresponds to a

Bhattacharyya distance of 1. Placing this as a lower limit on Bif then puts the

following upper limit on m

g Lt \/1316(N+5) - %\/mg (6.15)

While this rule of thumb must be used with caution because of the assumptions and
simplifications used in its derivation, it does illustrate the problem of a low number of
samples rather nicely. If N is restricted to Ng, the number of hits per beamwidth which
is less than 15 for the TRACS radar, then only a second-order filter may be used if a
low error rate is to be maintained. Similarly, 63 samples are needed for a fourth-order
filter, and 100 for a fifth-order filter. For even longer filters the number of samples
rises rather dramatically. Removing the restriction for the maximum magnitude of Py
which would be the case when high-order information is present in the spectrum,
obviously improves the situation but the wend remains. It is therefore imperative to

include as many samples as possible in the estimation procedure.
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The danger in increasing N arbitrarily, however, is the inclusion of clutter
from outside the resolution cell of interest. While this may be useful in cases of
widespread and homogeneous clutter, composite spectra would result in all other cases.
This must clearly be avoided for successful classification. A reasonable scenario is to
take samples in both range and azimuth out to some leve!l of attenuation as determined
by the receiver bandwidth and the azimuthal beamwidth, Within the 3 dB (one-way)
width, the radar resolution cell includes up to 15 samples in azimuth and 3 in range for
a total of 45. Not all of these can be considered independent, however, and it may be
appropriate to expand the extent in azimuth somewhat,

Ihcluding several "parallel" time series raises the question of how to
combine them to form a single coefficient estimate. Haykin er al. [1982] propose the
use of the multisegiment Burg formula - first described by Moorcroft [1978], who
applied it to UHF radar data to obtain radio-auroral spectra - for the analysis of radar
clutter. This formula accomplishes the stage by stage minimization of the average
prediction error power of all lattice filters using the same reflection coefficient.
Averaging the error powers is equivalent to separately averaging the numerator and

denominator of the Burg formula

K N
23 & ny
=1 n=m+ i
p_ = (6.16)
S TG PN bimD
k=1 n=m+l1 " ok n-lk

where fflm’)c and b"(:"ﬂ)c are, respectively, the forward and backward prediction errors from

the m™ stage of the K™ lattice PEF,
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my _ Am-1) (m-1)
ffs.k ff:,k Py by 1k (6.17)

m

(m) _ ,(m-1) * (m-1)
by = b I

n,k = n—l.k+pm (6.18)

Note the common use of the same reflection coefficient. Each of the X lattice filters is

initialized with data values from the ku' time series
0) _ ,(0) _
f’(l.k = b)) = %, (6.19)

The value of K thus might be set to 3 to include the three parallel time series, one per
range sample cell. An alternate solution is to include 3 x 15 = 45 time series, each
centered around one sample within the 3 dB resolution cell. The series are then clearly
overlapping in azimuth and thus a form of data weighting is introduced. The length of
the scries determine the form of the weighting and the number of samples accessed
outside the resolution cell. A length of 15 leads to an initial triangular weighting with
the emphasis linearly decreasing from a maximum at the center of the resolution cell 1o
a minimum at the 10 dB (one-way) point, using a total of 29 samples in azimuth. The
benefits of such data weighting are a reduced impact of scatterers from adjacent cells,
while maintaining a relatively large sample count. Another benefit is the ability to
pretest the individual time series based on their respective p, and 1o prevent their
inclusion in (6.16) if it is clear that they belong to a different cell. This test is more
thoroughly explained in Section 6.2.

Similar data weighting is applied to the computation of P,

1 K
Py = NE ?‘ z_'.x x (6.20)
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This prevents the power from being unduly reduced by edge and beamshape effects. In
fact it can be shown that, in the case of a Gaussian amplitude shape for both range and
azimuth similar to that found in the TRACS radar data, P is 4.6 dB below what would
be expected if the peak amplitude were extended uniformly over all samples. This is
less of a reduction than would be experienced with uniform weighting of the same
number of samples (6.3 dB).

This form of the multisegment Burg formula was used throughout the
research and the cffective number of independent samples used was experimentaily
determined (by application to pure thermal noise data) to be approximately 61. This
numker is reasonable since it is greater than 45 which should arise from use of only
those samples inside the resolution cell and 87, which would result from weighting all
3 x 29 samples equally. A fourth-order flter may thus be used with a clear conscience.
Slightly higher order filters may still be used; however, care must be taken to ensure a
real increase in class separability can stll be obtained.

Once computed, the reflection coefficients must be normalized to the center

frequency by a rotation according to

P, = P, exp(-jm¢) (6.21)

where

¢ = arg(-py) (6.22)

Rotating p; by its own argument simply leaves the magnitude pj=-|p,|. The
relationship of the magnitude r with the SNR n, (as shown in Appendix D),
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o
r=lpl - (6.23)
1 + By
leads to the normality transformation
r
uy = 10 loglng) = 10 Iog[ ] . (6.24)
1 -r

The need for such a transformation has been discussed in Chapter 5, and its precise
form arises from the knowledge that the probability densities of most clutter amplitudes
of interest are approximately log-normal [Barton, 1975; Long, 1975]. Of course, the
same applies to the signal strength feature P, conveniently expressed in decibels

relative to the thermal noise floor W

Uy = 10 log(Py/W) (6.25)

A similar transformation may be appropriate for the second- or third-order coefficients
as well; however, these remain complex valued and have less of a clear relationship
with a normally distributed variate. For now, at least, they will be used directly.

Two additional features remain, that is the normalized variance of the
sample amplitudes, P‘W , and the relative difference in sample amplitudes between the

center and the edges of the resolution cell, P Their basic definitions are given in

dif *
Chapter 5 (Equations 5.24 and 5.26). For the multisegment architecture of the feature

extractor they are computed as
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52 P, 625
P =1-— and P o —_ (6.26)
var P’ dif PO
where
5=- X5 and P, = = X§ 27)
Kk:l k I Kk:l k

Only the centers of each of the X time series are used and S is defined as

5, = |x (6.28)

(N+1)ﬂ.k|
P is thus the normalized variance of the amplitudes inside the 3 dB resolution cell
without the application of any data weighting, and P dif is related to the difference
between the unweighted average power inside the resolution cell and that outside of it,
insofar that it is included in Py For the Gaussian shaped ideal target centered inside
the window, P, is nominally 0.75 dB above Pj and P dif takes on a value of 0.19. The
variance of the sample amplitudes is also a fixed fraction for Gaussian shapes for which
Pvar is then expected to be 0.13. Values of zero for both features indicate evenly
distributed clutter, whereas negaiive values for P dif

cases of destructive interference of multiple clutter returns inside the resolution cell.

can occur along clutter edges or in

This completes the feature set. It now remains to define a set of classes, to

train the classifier, and to evaluate its performance.

2 Training S
Proper training is imperative for acceptable classifier performance. In fact
a poor choice of classes, or inadequate knowledge about the underlying structure of the

class statistics will invariably lead to incorrect or even misleading results. The strategy
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thus employed is one of supervised learning, and to refine the class structure based on
the knowledge gained during this process. This knowledge includes the identity of the
clutter source, some expected characteristics of the Doppler spectra, and the statistics of
the feature set. To some degree, consideration must be given to the consequences of

misclassification, and the confidence with which the decisions have been made.

6.2.1 A Priori Knowledge

Supervised learning requires that the identity of the clutter data be known,
It also includes inspecton, selection, and labelling of the desired sectors before
processing. In most cases, performing these tasks was not difficult. Specific weather
clutter types were easy to identify and simply required inspection to ensure that no
unrelated clutter or targets were present. Much the same was true for aircraft, although
isolating them was quite tedious due to their high speed (scan-to-scan displacement)
and low density. Ground clutter was available in abundance but was also more
susceptible to contaminadon by all kinds of unrelated clutter. It was thus important to
select recordings made during environmental conditions which were not conducive to
either precipitation or bird activity. It had to be restricted to areas with little air traffic,
and where vehicular traffic was not generally visible. On the other hand, radar echoes
caused by ground based vehicles are, by definition, contaminated by ground cluvter and
present a special problem. Most interesting was the identification of bird clutter which,
once the data were analyzed, turned out to be plentiful. Their low cross-sections also
presented a training challenge.

To maximize the confidence of the identifications, the radar data had to be
faithfully reconstructed and inspected. It was simply not acceptable to select data at

random from the massive data volumes on the tapes. To this end a completely
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interactive data management and display program was written, Notes made during the
recording sessions guided the choice of tape to use and the approximate location on the
tape as identified by the scan number. Several full scans, or a sequence of smaller
windows from many consecutive scans could be retrieved and viewed using a simulated
PPI display. Quick access to Doppler information was also available by using a
bipolar, two-color display for either of the in-phase or quadrature channels. Bit error
correction occurred at this stage, as did the computation of quadrature error
compensation factors. Homogeneous clutter areas were then selected and separated
into labelled data sets.

Ground truth of the data was also required, especially for aircraft, vehicles,
and bird clutter. True north alignment and exact zero mile offsets were found using
precisely surveyed permanent echoes. Digitized video maps were overlaid to assist in
the identification of ground clutter features such as powerlines and buildings, and help
prevent tower echoes from being misidentified as aircraft. Maps of airways, airspace
boundaries and airports served to find en-route aircraft, while maps of highways located
and provided the necessary proof for car and truck echoes. Somewhat less successful
was the use of maps of lakes to find concentrations of water fowl activity. They did,
however, provide further identification of ground features such as sloped terrain,
valleys, and shorelines. The north alignment allowed determination of the direction of
travel of the clutter and thus was a significant contributor to the evidence for bird
clutter. Noncoherently integrated maps were useful for the location of bird clutter and
aircraft. Tracks left by the clurter allowed precise positioning of the data windows and
minimized the introduction of unrelated clutter.

Much of the a priori knowledge regarding the identity of the clutter came

from simply being present when the recordings were made. The ability to cleanly
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separate clutter sectors can thus take full advantage of this knowledge in the labelling
process. There are cases, however, where labelling is possible but clean separation is
not. It may also be the case that some targets had been missed inside the sectors of
interest, and these would contaminate the class prototype if not removed. Knowledge
about the expected Doppler spectrum can help reject many of the contaminating feature
sets. For most clutter types only one main peak is expected at the mean Doppler
frequency. Two peaks will really only occur when two clutter sources moving at
different speeds are present within the same resolution cell. Such cases are relatively
rare and hence no classes w2re defined for them. They must therefore be rejected
except, perhaps, for the case of two peaks being legitimately caused by windshear in
areas of rain. Fortunately, as discussed in Chapter 5 and shown in Appendix D, the
magnitude of p, moves away from unity as the second peak strengthens and thus can be
used in a validity test for the time series of interest. The phase of p, is also affected by
the second peak and a limit can be placed on its variation within the set of K time
series to be combined. Such a test also prevents clutter edges and transitions from

unduly influencing the clutter prototypes. Algorithmically,

23p, 3 fmbytnD

k=1 % n=mel A-1.k
P = — ; 1 (6.29)
ZBk E[|f(m-')]2 |b(m-)|2]
k=1 n=m+] ok
and
Iiﬁ j§:ﬁ % * 6.30
Py N = x X (6.30)
0 1 k=1 K=y MKTRK

The selection coefficient ﬁk is defined as
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=

e (6.31)

1, if [¢, -¢,| S A¢/2 and r.-r. S Ar
0, otherwise

The phase and magnitude of the Py computed using Equation (6.4) and belonging to

each of the £ time series, are defined as

¢, = arg(-py) . r. = Pyl | (6.32)

and qbc is the phase of the reflection coefficient with the largest magnitude r.= ma.x(rk).
The limits Ar and A¢ can be made as tight as required. To maintain a reasonable limit
on the variances of the multisegment coefficients to be included in the class prototypes,
the number of rejected time series must be kept low before the entire feature set is

discarded. Thus

2B 2 K-N_, (6.33)

where K - Nrej is the minimum allowable number of time series. In fact, the choice of
ij was guided by another very practical consideration. During the computation of the
feature sets used for training and testing, the window of X time series was moved by
only one sample for each set. This was done to maximize the effentive number of
independent sets available for the prototype estimates. While a certain amount of
dependence clearly remained and was acceptable, duplication was to be avoided. This
could only be assured by restricting qu. to be less than the smallest window dimension,
that is 2 for the 3 x 15 size.

The test on p, reduces the probability of inclusion of unrelated clutter into

the class prototype by outright rejection of data. There are cases, however, where it
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may be more appropriate to remove such clutter from the data before applying feature
extraction. To avoid distortion of the Doppler characteristics of the remaining clutter
this must be done coherently. It also requires a priori knowledge about the amplitude
and phase of the clutter to be removed. Such knowledge can usually only be obtained
for completely stationary clutter which maintains its phase and amplitude exactly from
scan to scan. A long term coherent clutter map can then be constructed. For every

range + and azimuth @ of scan #, this may be done recursively

Gr.tp(n) = Z.Gr'(p(n-l) + (l—l)xr.‘p(n) (6.34)

where A is an exponential "forgetting” factor. The goodness of the mean estimate
Gr' (p(") can be assessed by the amount of measurement noise remaining (the variance
of the mean). Asymptotically, Equation (6.34) reduces this noise by a factor of
(1+A)/(1-A). The same reduction can be obtained using fewer scans with a uniformly

weighted average

N
T x, ,n) (6.35)

n=1

=i~

G,._(p(n) =

where the reduction factor is given by 1/N. The mean estimates are then removed from

the data

x;,' go(") = xr.(p(") "Gr, {(n) (6.36)

o
Ideally, use of these maps will only remove ground clutter and leave all other clutter
intact. Neither should they add any noise which could distort the clutter spectra.
Therefore, due to a limitation in the number of available scans, Equation (6.35) was

used almost exclusively and, with 64 scans integrated, no more than -18 dB of noise
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would be added. A strong target present in only one scan would remain in the map
36 dB below its prime strength and would then be added into the data to be processed.
This would really only cause problems with prime target strengths greater than 38 dB
since no data with less than 2dB SNR was processed. Such target strengths are
unlikely for moving clutter, and for aircraft this level represents a peak amplitude of
more than 43 dB, that is close to the saturation level of 46 to 49 dB.

In practice, these maps achieved only a 10 to 20 dB reduction in the
average ground clutter levels. The reason is simply that this process is really a Doppler
filter with a deep but very narrow null at a frequency of 0 Hz. Thus any clutter which
moved only slightly over the period of N scans would pass through. At L-band, a 180°
phase shift represents motion of about 5 to 6 cm which may be found in all but the
most rigid objects. Scintillation is also induced by shifts in target position and aspect
and widens the spectrum sufficiently to allow energy to pass through the filter, even if
no phase shifts are present. Therefore any wind induced motion in towers, tall
buildings, trees and other vegetation will prevent such clutter from being removed
completely from the data. A tradeoff thus exists in the number of scans to use: the
integration of more scans induces less distortion in (and due to) moving clutter but also
achieves less of a reduction in ground clutter levels because of the narrowing Doppler
null. Nevertheless, the maps were found to be useful for removing a significant portion
of ground clutter during the processing of car and truck echoes. But bird and weather
clutter, which were generally much weaker and thus more susceptible to interference
from residual map clutter, were more successfully characterized when choosing only

areas which were completely clear of ground clutter.
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522 F Statisti

The statistics of the labelled sets of feature vectors are the basis of the class
assignments and classifier performance predictions. Various tools are available and
have been discussed at some length in Section 5.3. The classes examined in this
section are aircraft, moving ground-based vehicles consisting mostly of cars and trucks,
non-moving ground clutter, bird clutter, and weather clutter including rain, rain with an
obvious windshear component, and thunderstorms. In some cases thermal noise data is
included for comparison. Synthetic aircraft targets were used as a reference class.
These targets were generated to emulate the radar characteristics as closely as possibis,
including the differential quadrature errors and noise characteristics. The underlying
signal is a complex sinusoid with random frequency and starting phase, amplitude
modulated in both range and azimuth with a Gaussian weighting function of the same
width as seen in actual observed point targets. Peak amplitudes ranged from 0 dB to
46 dB, just below the saturation level of the 10 bit data word. The peak position inside
the resolution cell was also randomized. The result is a set of idealized non-fluctuating
point targets with no additional amplitude or frequency modulation. Such a target
would be most representative of large jet aircraft in level flight, which have no part of
their engine's moving parts exposed to the radar energy.

Scatter plots of 100 randomly selected feature sets of each of the various
classes are shown in Figure 6.1 (6.1a to 6.1h). The frequency heterodyned complex
reflection coefficients arising from a 9™ order lattice PEF are plotied inside the unit
circle to illustrate their bounded nature and to provide a sense of scale. The real part is
taken as the abscissa. The SNR related features Uy and u; are scaled such that 40 dB
equals unity, and plotted with the Py derived feature U, as the abscissa and the p,

derived feature i, as the ordinate. The shape parameters P . and Pvar are also plotted

dif
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unscaled as the abscissa and ordinate respectively.

From these plots the similarity between the synthetic targets and aircraft is
immediately apparent, thus validating the model used for the targets. These plots also
show that most of the differentiating information appears to be contained in p; to p,,
with somewhat less in ps and P dif and P,_. The last reflection coefficient pg clearly
appears to contain little information. The fact that its variance is not noticeably greater
than that of the lower order coefficients does show, however, that sufficient samples
appear to have been used in its computation.

Another characteristic which can be clearly seen is the fact that most of the
information in a reflection coefficient is contained in its real part. This is due to the
symmetry of the spectrum. Complete symmetry will result in zero imaginary
components, as is the case for real valued data. Symmetry arising from real valued
signals in complex valued noise will generally result in nonzero imaginary components,
but with a mean of zero. Any significant asymmetry in the spectum will therefore
manifest itself as a mean shift off the real axis. This may be found in clutter from cars,
trucks, and birds, whose spectra can contain more than one peak. Windshear in rain
systems can also contribute to a secondary peak and a nonzero mean for the imaginary
component of at least p,, as may be seen in Figure 6.1h,

To put these scatter plots into perspective, corresponding spectra are plotted
in Figures 6.2 and 6.3. Seven 9" order spectra were randomly selected from those sets
in each class with a signal strength of Uy =20+ 0.5 dB. For Figure 6.2, no frequency
heterodyning was applied. The characteristics of each type of targe. and clutter and the
distribution of their Doppler frequency (converted to knots) are apparent in Figure 6.2a.

Secondary peaks can be seen in the aircraft spectra; these are likely caused by engines

or propellers. The secondary peaks at zero Doppler in the car and truck spectra are due
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Figure 6.2 Sample 9"-order MEM clurier specira

No frequency heterodyning was applied to these spectra.
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5™ order spectra of the same data as used in Figure 6.2a.
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Comparison between clutter types requires frequency heterodyning.
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The data used were the same as in Figure 6.3a.
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The data used were the same as in Figure 6.3a.

139



density (dBng)

spectral

50

o

w
o

F atreraft

Figure 6.3d

clutter doppler (knots)

C v an der MEM clurt 1

The data used were the same as in Figure 6.3a.

-50 0

140



141

to residual ground clutter. Conversely, moving clutter is absent in the ground clutter
class. The presence of multiple moving scatterers and the extra width of bird clutter
compared to rain is evident. The storm class represents thunderstorm cells at a distance
of 30 to 70 nautical miles from the radar, with each cell having a diameter from 1 to 5
miles. A plot of rain clutter spectra containing asymmetries due to windshear is not
included in this comparison but may be found in Chapter 3 (Figure 3.6). It was
observed previously that apparently little information remains in the reflection
coefficients above order 5, and Figure 6.2b shows the 5% order spectra of the same
data. The loss of high-order detail is quite noticeable, although ths general
characteristics are still evident. From this observation alone it is not clear whether a
5" order feature extractor will be sufficient.

A better comparison of the various classes is only possible with frequency
heterodyned spectra. Figure 6.3a shows another set of 5™ order spectra, but after
heterodyning. The similarities amongst the classes are now the most obvious
characteristic, any remaining difference is rather subtle. This implies that higher-order
information would be required to bring out these differences, and this 1s indeed the case
as shown in Figure 6.3b. Even in these high-order spectra there is no noticeable
difference between rain and thunderstorms, although that should not be too surprising.
Figures 6.3c and 6.3d show the detrimental effects of reducing the order below 5,
which make the spectra practically indistinguishable.

Frequency polygons representing the marginal probability densities are
shown in Figure 6.4. All features within the labelled sets were used in their
computation. Deviations from normal behavior are clearly obvious in many cases. The
statistics of receiver noise, which consists mostly of thermal noise, serve as a reference

and provide experimental verification that the basic distribution of the reflection
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coefficients is normal, and that of the Doppler frequency is uniform. Another
reference, derived from the synthetically generated targets, shows the nature of the
deviations from the normal density under well-controlled conditions. It should be noted
here that the mosty triangular distribution of the SNR based feature U, and the
multimodal distribution of ¢ are due solely to the way the targets were generated, and
have little to do with the nature of the feature exwactor,

In some cases, particularly with aircraft, cars and trucks, and ground clutter
classes, the assumption of normal behavior for the reflection coefficients is clearly
suspect. The normality transformation for |p,| into the feature u, appears to work
quite well, but it also clear that such a transformation would not work as well for the
bimodally distributed higher-order coefficients, although the marginal densities alone
do not provide sufficient information to establish the reason for this.

Figure 6.5 shows the marginal densities after applying the orthonormal
transformation discussed later in Section 6.3.1 (part of Equation 6.40). The number of
features remains unchanged, but the physical meaning of the resulting features is lost.
It is interesting to note the degree to which this ransformation succeeds in producing
marginal normal behavior. Some notable exceptions are the low-order features of the
point target classes, that is the synthetic and actual aircraft targets, cars and trucks, and
ground clutter. Again, there is insufficient information present in the marginal densitics
to assess the reason for this.

To examine the multivariate statistics, the first step was to look at the
dependencies between features. A complete matrix of scatter diagrams, each plotting
one feature against any and all others, would require d(d-1)/2 individual plots, or 190 if
cach of the 20 features shown in Figure 6.1 is to be examined. For presentation

purposes, in the sequence of plots shown in Figures 6.6 to 6.8 only six features are
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\

P1 synthetic largets

Re(py)

Im(p)

Re(ps)

Im(ps)

Po P1 Re(py) Im(p2) Re(p3)

Figure 6.6a  Partial matri

The matrix explores the correlations amongst the first three reflection
coefficients and uie signal swength Py. The strongest correlations appear to be between
the real parts of the coefficients, with very little between the imaginary parts.
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P1 rain with windshear

Re(p,) li_ e
Im(py) Il!
Re(ps) w

Im(ps)

Figure 6.6b ' ix of

Note the greater variability of the clusters compared to Figure 6.6a.
The asymmetry in the spectrum leads to mors correlation between the imaginary parts
and the signal swrength P,




161

P1 synthetic targets

Re(p,)

Re(ps)

]
/
LA A
AN N

Po P Re(p,) Re(ps) Re(p,)

Figure 6.7a Matrix of scatter plots for synthetic targets
The matrix explores the correlations amongst the real parts of the first

five reflection coefficients and the signal strength Po. Note the considerable amount of
information remaining in the coefficients p4 and ps.
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P1 aircraft

Re(py) |’

Re(ps)

Re(py)

Figure 6.7b Matri lots for ai

Note the similarity to the synthetic targets in Figure 6.7a. The greater
variability stems from the internal motion of the aircraft, which was not modeled in the
synthetic targets.
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P cars, itrucks

Re(py)|!

Py P Re(p,) Re(p3) Re(p,)
Figure 6.7c  Marrix of scayer plots for cars and trucks

Larger Jeviations from the ideal target model are apparent in this class
of targets, as is a significantly greater variability.
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P1 ground clutier

Py P Re(py) Re(ps) Re(ps)

Figure 6.7d

Of the clutter classes, ground clutter displays the greatest sirnilarity
with targets,
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bird clutter

Re(pa) [

Re(ps)

Re(p,)

Figure 6.7¢

P Re(p,) Re(ps) Re(p,)
Matrix of scatier plots for bird clutter

The small amount of information remaining in the high-order

coefficients ps and ps indicate a2 much lower AR model order is sufficient for birds.
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/

P1 rain clutter

Re(p2)

Re(ps)

Re(ps)

-
/-
i
"

Re(ps) ' 1

Pg P1 Re(p,) Re(p,)
Figure 6.7f Marix of scauer plots for min clutter

Rain clutter appears similar to bird clutter but has less variability, The
residual information remaining in p4 and ps is thus much more obvious.
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N

P rain with windshear

Re(p2) ii )

Re(p;) #
*

Re(p.)

Re(ps)

Po P Re(py) Re(p3) Re(ps)

Figure 6.7g ix_of

The difference between this class and simple rain lies mainly in the
imaginary component not shown here (see Figure 6.6b), but note the lower values for
P
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Re(p,) 3 synthetic targets

Re(p3)|

/
Re(p4) ﬂ_

Re(ps) 4'
ﬁ,

Re(ps) %f# }

P Re(pz) Re(ps) Re(p,) Re(ps)

Figure 6.8a Matrix of scatter plots without Py for synthetic targets
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Re(p,)
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examined at one time.

In Figure 6.6, the low-order features up to and including p; are plotted.
Some strong dependencies amongst the real parts of the coefficients and the SNR
related features are immediately apparent. The imaginary parts seem to play less of a
role, even in the case of an asymmetrical spectrum such as rain with a windshear-
induced secondary peak (Figure 6.6b). While they clearly contribute invaluable
information tcward the identification (or rejection) of spectra with two peaks, the
dependencies in the real parts are probably the most important discriminants between
classes and should be examined more closely.

Figure 6.7 thus shows the matrix including only the real parts of the
reflection cosfficients up to and including %(p;). The nonlinear (hence non-normal)
behavior is now very evident and it is almost possible to "sec" the cluster of points
winding its way through the muiudimensional featurc space as the signal strength is
increased. Both differences and similarities between the classes can now be detected.
What is also obvious in these plots is that the fifth-order reflection coefficient contains
much more information than was apparent from Figure 6.1. This suggests that high-
order information may still be useful in class discrimination, especially in separating
point targets (aircraft, cars and trucks, and ground clutter) from the more distributed
clutter types (bird and weather clutter). This observation is reinforced in Figure 6.8,
where the feature Uy is dropped and %(pg) is added. Clearly, even g contains residual
information.

The relationship between the signal strength and the coefficient pattern is
now well recognized. This fact is emphasized by the plot of spectra from the same
clutter classes, but with different signal strengths, in Figure 6.9. It is clear that, as the

SNR is increased, more spectral poles move toward the peak to assist in Titting the
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Gaussian beamshape. The 10 dB spectra appear to be of a very low order with at most
two coincident poles forming a well defined peak at a single location. At 20 and
30 dB, most peaks have split into two in an attempt to spread the energy and satisfy the
spectral width requirements. The smaller amount of ripple at the 0 dB noise floor
indicates the presence of fewer remaining poles. At 40 dB most of the five poles are
concentrated at the peak. The absence of frequency and amplitude modulation, other
than beamshaping, allows the poles to arrange themselves to almost perfectly fit the
shape of the true spectrum for the synthetic target and ground clutter classes. The
presence of two peaks in the aircraft spectra indicates that the spectral shape is not
exactly Gaussian, which may be expected from such complex targets.

A more quantitative presentation of the relationship of the reflection
coefficients with the signal strength is given in Figure 6.10. All sample feature vectors
were separated into 1 dB bins according to U, and averaged. The averages of the real
and imaginary parts of the reflection coefficients were then plotted against the average
values for Uy in each bin. For the reference class of synthetic targets there is no clear
filter order for which all information will have been extracted, even at low signal
levels. The pure symmetry of the spectra is evident from the absence of information in
the imaginary parts: estimation errors due to the low number of samples contribute to
the deviation from zero at both the low and high ends of the plots. The same general
observations hold for aircraft and ground clutter classes and, presumably, the class for
cars and trucks, although there was an insufficient number of samples available to
produce such a plot for it.

The difference in the high-order coefficients of the bird and weather clutter
classes is now dramatically visible. Bird clutter appears to have little meaningful

information in the real part past p;, although the increase in the values of the imaginary
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parts indicates the greater likelihood for asymmetrical spectra. Weather clutter, which
includes both rain and storm systems, has a less defined cutoff point in the order,
although p; to pg do not appear very meaningful. It is interesting to note the effects of
the secondary peak due to windshear. The difference in the real parts of the reflection
coefficients is slight, whereas it is significant in the imaginary parts, particularly for p;
and p;. This establishes the importance of retaining the imaginary parts in the feature
vector.

The dependencies discovered to this point lead to the inescapable
conclusion that the features, if taken over the entire range of signal strengths, do not
exhibit multivariate normal behavior. Before proceeding to solving this problem, it is
instructive to take a look at the probability densities of the resulting squared
Mahalanobis distances Df, assuming a class has been defined for the entire labelled
feature set. For reference, the probability plot - in fact quantile or Q-Q plots in keeping
with the definition offered by Wilk and Gnanadesikan [1968] - of thermal noise, which
is likely to behave as near to multivariate normal as can be expected, is shown in
Figure 6.11a. The Mahalanobis distance is computed from a 13-dimensional feature
set, which includes ¢, Uy, ug, P2, P32, pg. 5, P dif® and P_ . The actual frequency ¢ has
been replaced with a uniformly distributed random value between the normalized
Doppler frequency limits of +0.5. The ordered squared Mahalanobis distances are
plotted against the y%, variates expected given the same cumulative probability. If the
D? are in fact x3; distributed, then a straight line should result. (The actual distribution
is in fact F AN [dN+1)(N-1))/[N(N-d)], where d is the length of the feature vector and N
is the number of vectors used for the prototype estimate [Young, 1978). This
distribution converges toward x{zj in the limit as N — ee. For lacge values of N, the

difference may be ignored; see Section 4.4.) This line is shown dotted, and the actual
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plot is seen to deviate only slightly until D% becomes large. The deviation in the tail of
the distribution is shown more clearly in the lower plot, where the actual cumulative
distribution is compared with that of the ¥3, variates. For thermal noise, the deviation
is mostly due to the uniform distribution of the feature ¢ and is not major; hence the
approximate x%, distribution can be considered confirmed. For the point-target classes
(Figures 6.11b to 6.11e), however, it is major and not only in the tail. The deviation of
the lower values indicates a closer clustering of the feature set to its mean values than
would be expected for a multivariate normal variate. This is, in principle, helpful to
the classifier in that separability will be enhanced for that percentage of feature
samples. On the other hand, a larger percentage is also found in the tail of the
distribution, increasing the expected probability of error given the same class
separation, particularly if that probability is expected to be less than 10%. The strength
of the tail also indicates that increasing separability through variance reduction will not
lower the probability of error as rapidly as indicated by the performance predictors
discussed in Chapter 4. Using rejection techniques to control the error rates under
these conditions may lead to an unacceptably large number of rejections. As seen in
Figures 6.11g and 6.11h, this problem is much less acute in the distributed clutter
classes including rain and thunderstorm. These all appear to follow the ¥2 distribution

very well.

2,3 The Class Pr
The question to be addressed is, then: how can class prototypes be defined
in order to mitigate the above mentioned problems? Short of finding some nonlinear
transformation which entirely removes the dependence of the reflection coefficients on

the signal strength, comparisons amongst classes must proceed only for equal values of
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Uy That, of course, requires a prototype definition for every possible value of Uy, an
unworkable solution. It is possible, however, to define prototypes for a range of signal
strengths, with the ranges defined such that the nonlinear behavior within them is
limited and manageable using the multivariate normal assumption.

A definition of this kind is necessarily somewhat arbitrary since nature
rarely provides logical breakpoints for such efforts, This case is no exception, and
Figure 6.10 merely emphasizes this point. Ultimately, the capacity for the number of
classifiers which can be reasonably constructed and the requirement for a large number
of training samples must be traded off against the strength of the residual nonlinearities.
While a global minimization of error rates would lead to a theoreticully optimum
tradeoff, this minimization is cumbersome to carry out and quite likely impossible to
achieve with the limited data volumes in research data bases. It is not at all clear what,
if any, improvement would result from such minimization. The ranges used in this
thesis work are therefore not likely those which would be used in a realtime
implementation. They did, nevertheless, lead to quite acceptable results. The range

breakpoints for U were chosen as follows:

As is apparent from Figure 6.4, most of the data sets fell into ranges B to D, with E and
F mosty appearing for point-target classes and some of the bird clutter. The latter
became available only when turning the radar's STC off. Unfortunately, this was not
done for the weather clutter data, and its strongest data sets turned out to fall around 23

to 25 dB. Range A was defined effectively only to allow the identification of weak
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moving clutter, since little discriminating information was expected at such low levels.

Figure 6.12 shows the scatter-plot matrices for the synthetic target classes.
Little nonilinear behavior is evident at low signal strengths, and residual curvatures
appear only for ranges E and F. The curvatures are, however, very slight and should be
manageable,  Since little distributed clutter will be found in these ranges,
discrimination will only be required between the various point target classes which is
desirable, but less important for the purpose of clutter classification. Certainly,
reducing the width of these ranges may improve the classifier performance, but
considerably more data than was available here would then be necessary for reliable
prototype estimation,

The validity of this partiticning was also tested on aircraft and ground
clutter, which demonstrated the most nonlinear behavior according to Figure 6.10.
Both of them, aircraft in Figure 6.13 and ground clutter in Figure 6.14, show slight
residual curvatures for ranges E and F, and virtually none for range B, C, and D. No
scatter plots were generated for the other classes since, as is already evident from
Figure 6.10, there will be even less residual nonlinear behavior for them.

Probability plots of the squared Mahalanobis distance for the class
definitions are shown in Figure 6.15. The deviation from the ¥2 distribution is much
less than that of Figure 6.11, especially for ranges A, B, and C (U, less than 17 dB).
Residual nonlinearities present in the high-SNR classes suggest that the width of the
SNR ranges could be reduced further, although some of them are undoubtedly due to
the inclusion of the now mostly uniformly distributed feature U;. The characteristics of
the rain-with-windshear class are notable for their incredibly close adherence to the %2
distnbution, especially in range C. It is unlikely, however, that this is due to exact

multivariate normal behavior, since at least two features are uniformly distributed. It
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more likely that the residual non-normal behavior has been masked. This fact points to
the caution which must be applied to the use of this type of plot as a test for

multivariate normality.

§.2.4 Expected Classifier Performance

Several predictors of performance have been discussed in Chapter 4. It is
convenient to concentrate on one of these for comparison and the analysis of trends.
The Bhattacharyya distance is a useful measure, and its relationship with the upper and
lower error bounds is given by Equation (4.42), and plotted in Figure 4.1. An enlarged
section is shown for convenience in Figure 6.16.

One final unanswered question concerns the number of features to include
in the class prototypes, keeping in mind the cost versus performance tradeoff.
Figure 6.17 shows the increase in class separability of several selected class pairs as
measured by the Bhattacharyya distance. While the distance keeps increasing as more
reflection coefficients are added, there appears to be no clearly defined stopping point.
It may be possible, however, to stop once a given performance is reached. A
Bhattacharyya distance of 3 corresponds to an upper error bound of about 2.5%, and
may serve as such a point. Unfortunately, some class pairs never reach this level of
separability, which leaves the question unanswered. The performance shown in
Figure 6.17a assumes that the features P dif and PW were not used. Figures 6.17b and
6.17c show the impact of these two features to be rather significant, especially when
attempting to distinguish between "point target” classes such a aircraft, cars and trucks,
and of course synthetic targets, and distributed-target classes including any type of

weather and bird clutter.

Classification experiments, which will be discussed more completely in the
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next section, tend to develop class error rates rather than pairwise rates. While there
exist no theoretically satisfying class error rate predictors, an approximate onc may Le
established using Equation (4.44). The individual pairwise error rates arising from the
divergence calculation - Equations (4.24) and (4.26) - are summed to arrive at an
approximate class error rate. As discussed in Chapter 4 this is, strictly speaking, not
theoretically correct, but it does provide an indication of where the classifier is likely to
perform. Figure 6.18 shows these rates for three different classes, and a comparison to
the experimental rates of the bird clutter class. Again, the impact of using the features
P dif and Pvar is clear. It seems particularly strong for lower orders and causes a
leveling of the error rates once the number of features has reached 10. It should be
noted here that, for the cases shown in Figures 6.17 and 6.18, class widths of 4 dB were
used, centered around Uy = 20 dB, and U, was retained as a feature. As a result, the
separabilities were influenced by the difference in the mean values of U, for each class
and cannot be considered the final results. For these, neither the Doppler frequency 0]
nor Uy were used in the classifier; they were used only for pretesting, as outlined in
Section 6.2.1. In view of Figures 6.17 and 6.18, the final features were Ugr P2r P3s Py
ps, P i’ and P . Since the reflection coefficients are complex, the number of
features is thus 11.

Pairwise performance expectations of this size of feature set, given the SNR
ranges A to F, are plotted in Figure 6.19. The trend towards increasing separability
with rising signal strength is clearly evident, although some clutter types remain
difficult to distinguish from related types, even at large signal levels. This points to an
inherent overlap in the Doppler characteristics which cannot likely be eliminated using

the type of single scan processing contemplated in this thesis.
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53_Classification Exveri
The final test of any classifier is to test it against truly representative data
with which it is expected to perform under operational conditions. This was done to
the extent possible in a research environment. Quantitative results were obtained by
testing against labelled samples, being careful to use data other than those used to train
the classifier, whenever possible. This was done primarily by excluding samples from
the class prototype estimates and then to test against them, In many cases, these came
from different tapes or from different areas within one tape. In others, the prototype
was formed from, say, every tenth sample in a labelled data set, but was tested against
all of them. The results were not found to be substantially different, providing
confidence that the prototypes were in fact representative of what they should be,
Qualitative, but very convincing results were obtained by the classification
of complete and partial radar scans and the presentation of the classification decisions
in the form of composite color overlays. Such color images can, unfortunately, not be
reproduced in this thesis and individual black and white images are shown. These
results demonstrate both the power and the limitatons of the classifier for an
operational environment. One of these limitations is the problem of underlying ground

clutter, which must be treated separately to maintain control over the false alarm rate.

53.1 Classification Algorid

The parametric Bayes classification algorithm was used throughout the
classification experiments. Some simplifications were made, but its derivation follows
the theory outlined in Section 4.1. Given the feature vector x, a discriminant function
g;(x) is computed for every defined class prototype Ko }.‘.‘.. The feature vector x is

assigned to the class ¢; whenever
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g(x) < gx) alli#j (6.37)

The discriminant function used was a computationally simpler, but equivalent

expression to the quadratic form of Equaticn (4.16):
g = (x-p‘.)‘z;l(x-pl.) +in| 2] (6.38)

Using the Cholesky decomposition, the inverse of the covariance matrix E‘. can be

written as the product of two lower triangular matrices,

1 _ gf
2; = LL, (6.39)
and the discriminant function reduces to the evaluation of the inner product or squared

norm of the transformed {eature vector
g;.(x) = ||L‘.(x—,ui)||2 -2 In|Ll.| (6.40)

Multiplication of this lower triangular matrix L‘. with the zero-mean vector X-jt, may be
viewed as a Gram-Schmidt orthogonalization procedure [Wozencraft and Jacobs, 1965],
and hence meets the requirements set out for equation (4.18). Note also that for a
triangular matrix, the determinant of L‘. is simply the product of its diagonal elements.
During the classification experiments, of course, only the matrix muldplication and
squared norm need to be evaluated: the matrix L, and the quantity 2 In|Ll.| arise from

the training procedure.



238

6.3.2 Experimental Error Rates

The number of possible classification and testing scenarios is extremely
large and cannot possibly be fully explored in this thesis. Hence, only a representative
sample of results is presented. One of the difficulties is the division of classes into
subclasses. For example, a weather clutter class may be subdivided into rain (little
wind or turbulence) and storms (thunderstorms, systems with considerable turbulence),
and perhaps even rain with a detectable windshear component. Clearly, there will be
significant overlap between those classes, but misclassification amongst them is not
serious. In terms of the ability to discriminate between major classes, such as bird
clutter, weather clutter, and point targets (aircraft, cars and trucks), it is difficult to
predict which scenario is preferable. If each subclass provides a "tight" prototype, then
the combined decision boundaries might be expected to conform to the true cluster
shape more closely aad result in a better overall performance. On the other hand, the
greater number of classes also provide more opportunities for errors to occur, and the
classifier may become biased toward that major class for which the greatest number of
subclasses has been defined. A greater number of classes also requires more training
samples to maintain the quality of each of the estimates. Subdividing a fixed number
of training samples amongst more class prototypes will reduce the quality of each,

Table 6.1 presents classification results using samples from SNR range D.
Six classes were defined and tested against over 100,000 labelled samples. In the case
of only a small number of samples being available (such as for the car and truck class),
all samples were used for both training and testing and the results must therefore be
examined with caution. This type of testing the training samples has been shown to be
always optimistic [Foley, 1972], and researchers in pattern recognition have long

suggested the use of the so-called /eave-one-out method of error rate estimation [see
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labelled samples: birds thundersiorms rain aircraft cars, trucks tlargets total
prototype name (58,281) (6,766) (19,168) (5685}  (2,483) (10,385) | (102,768)

rejected 37 0.0 0.1 5.1 3.1 0.1 12.2
birds 68.3 2.9 4.6 0.5 5.4 0.1 81.7
thunderstorms 9.9 75.6 27.1 5.5 7.8 0.7 126.6
rain 6.6 12,5 64.0 0.2 1.6 0.1 84.9
aircraft 4.2 4.5 1.7 26.7 14,7 2.5 54.5
cars and trucks 6.0 1.0 1.6 4.6 47.1 2.1 62.4

synthetic targets 1.3 3.5 0.9 57.3 203 944 177.7

total 1000 1000 1000 1000 1000 100.0 600.0
labelled samples: | birds  weather targets total

prototype name | (58,281) (25934) (8,168) | (92.383)

rejected 3.7 0.1 4.5 83

birds 68.3 42 2.0 74.4

weather 16.5 %0.3 6.8 113.6

targets 11.6 54 86.7 103.7

total 100.0 1000 1000 300.0

Table 6.1 Experimental é<class classification results

The tables shows the percentage of labelled samples (columns)
assigned to each class (rows). The sum of the row percentages is a measure of the bias
toward that class at the expense of another. The individual class assignments are listed
in the upper table. The results of combining these assignments (as outlined by the
dashed lines, and excluding those for synthetic targets) into major classes is shown in
the bottom table. The mean classification accuracy is then 81.8%, the standard
deviation of the biases is 16.6%. All data has been taken from SNR range D.
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Kanal, 1974]. This method requires as many classifiers to be trained as there are
samples to be tested and is, for obvious reasons, not practical for the large volumes of
radar data. In addition, Glick [1978) pointed out that the leave-one-out method, while
being an unbiased estimator, has a rather large variance, Despite the optimistic results,
testing the training data is useful when the number of samples is large. Testing a
separate test data set, which was not used for classifier training, provides pessimistic
results and can be used when the sample set is large enough to allow such subdivision
without sacrificing the quality of the class prototype. Foley [1972] showed that both
methods converge for large sample sizes, and for ratios of sample size to
dimensionality of greater than 10 the difference is small. Ratios used for these
experiments exceeded this value by a large margin. The relatively small number of
samples available for the target classes (approximately 700 aircraft and 200 to 300 cars
and trucks resulting in 21384 and 7447 feature vectors, respectively) has been partially
compensated for by the inclusion of the synthetic target class (53999 feature vectors
arising from approximately 2700 targets), and the assignment to erroneously classified
samples to related classes enhances the confidence that the prototypes, as developed,
are substantially correct. A perhaps better measure of the quality of the prototypes is to
combine the classifier decisions into major class~~  This results in an average
percentage of correct classification of almost 82%, wiuca should be considered quite
satisfactory for a single scan, single resolution cell decision. Similar results for the B
and C signal strength ranges yield averages of 72% and 77% respectively,

Another measure of the quality of the prototypes is the bias toward one
class at the expense of another. If no one class is favored by the classifier, then every
class is expected to receive an equal number of assignments, assuming of course that

cach labelled sample set also contains an equal number of samples. Cf course, the
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samples must be distributed according to the multivariate normal density with which
the prototype was constructed, the a priori probabilities of each class occurring must be
equal. Summing the percentage of assignments from all sample sets into a given class
gives such a measure for that class, and would take on an equal value for each class if
the classifier is unbiased (this value would be 100% only if no rejection occurred). To
obtain a measure for the entire classifier, one might compute the standard deviation of
all bias measures, which is desired to be as small as possible.

The results in Table 6.1 show a slight bias toward the weather class at the
expense of the bird class. The bias toward synthetic targets in the upper table is of less
concern since it stems mostly from the similar classes of aircraft and cars and trucks.
The source of this bias is not easy to identify, since it is related to how the actual
sample statistics deviate from the multivariate normal density and the relative
"location” of the prototype in the feature space. While such a bias is undesirable, it is
not clear what should be done about it. The final classifier design, which will be based
on a complete risk analysis, must take such biases into account when considering the
costs of misclassification. Minimizing the total cost with respect to the experimental
performance will introduce its own biases to counteract the ones «rrently present.
Accordingly, no further action toward eliminating these biases was taken in this
research.

In selecting an optimum, or apparently optimum, classification scheme,
several measures are computed. Two have already been mentioned: the average
classification accuracy for the major classes, and the standard deviation of the biases.
A third measure may be the percentage of samples rejected. A good set of class
prototypes is one which correctly classifies most samples with few rejections and shows

minimum bias toward z2ny one o Rejections arise {rom the test described in
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Chapter 4, Equation (4.50). For the results presented in this chapter, the level of
significance T” was set at 1%, and the threshold T computed according to the specific
combination of classes. Table 6.2 compares several possible combinations of
prototypes in 3-, 4, 5-, and 6-<lass scenarios. Note that the 6-class case is that shown
in Table 6.1. The performance figures in the table show that the classifier is relatively
insensitive to the number of classes, as long as certain combinations are used. For
instance, using the rain and storm classes separately leads to worse results than keeping
them combined, unless the point target classes have already been separated as in the 6-
class scenario. It is somewhat surpnising to see a worse performance when including
the synthetic target class. There is, principally, no reason for this to be the case since
all point targets are expected to have similar prototypes with only slightly larger
variances than are found in the synthetic target class. The suspicion is therefore that
the higher error rates are mainly due to the use of the same data for both prototype
generation and testing, and that the number of samples for aircraft and cars and trucks
was particularly low. As a result, the prototypes are likely to be biased toward the

specific characteristics found in the samples, rather than being representative of the

class as a whole.

The Problem with lyster
As is evident from the results presented in Section 6.3.1, there is still a
relanvely high number of misclassifications occurring. Radar operators are accustomed
to operating with false zlarm rates form 107 to 107, depending on the type of radar
used and its environment. These rates may be fixed in detection algorithms using the
Neymar Pearson test, and arbitrarily low error rates are then achieved at the expense of

the probabilities of detection. As a result, the rate of not detecting the presence of a
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class combination B C D E Oias % rejected
B TR AC 72.6 77.1 82.1 893 11.6 9.7
B TR ACS 720 769 81.0 87.0 7.1 12.9
B TR A 65.6 75.8 80.3 B88.8 7.0 11.1
B TR § 65.5 729 769 819 20.6 14.6
B TR A C 72.6 77.1 82.1 894 14.9 8.4
B T R ACS 717 769 80.2 14.5 129
B T R AC 720 775 79.0 21.5 9.7
B T R § 64.6 72,1 755 26.8 14.5
B TR C S 72.4 770 821 894 15.3 8.4
B T R A C 724 775 804 18.6 8.4
B T R A C § 722 774 218 16.6 8.4
B bird clutter class only

T thunderstorm class only

R rain clutter class only

TR combined rain and thunderstorms (weather class)

A aircraft class only

C cars and trucks only

S synthetic targets only

AC combined aircraft and cars and trucks (observed target class)

ACS combined aircraft, cars and trucks, and synthetic targets (point target class)

Table 6.2

vari

Average classifier performance (in percent) is given according to SNR

ranges. The performance measure is com
(except synthetic targets) were always te
was included in the class combination.

computed for the D range.

puted as explained in table 6.1. All samples
sted, including those for which no prototype
The bias and rejection measures are those
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target (which is also an error rate) may be extremely high unless some type of clutter
filtering is used. In the Bayes test, no error rate is fixed: all are jointly minimized.
The consequence of this joint minimization is that no error rate is extremely high or
low; all tend toward the same value, which itself is a function of the class
separabilities. Typical rates (for misclassifications between major classes) range from
35 down to 2 percent: anything above that is not very usable, and rates below two
percent require very separable classes. Since this rate is still high compared to radar
operator expectations, the classifier cannot act as a primary detector as long as the zero-
one loss function is used. Invoking real risks to reduce the error rate or rates which are
considered false alarms (for example the rate at which a clutter class is misidentified as
a target) necessarily biases the classifier and reduces its performance in the MAP sense.

While the widespread presence of any clutter type contributes falsz alarms,
ground clutter is always present and presents a special problem. It is stronger than
most other kinds of clutter, it is widespread, and it is similar to targets once frequency
heterodyning is applied. The latter fact suggests that the Doppler frequency ¢ be added
as a feature to increase the separability. Experiments using such a feature vector show
that, indeed. ground can ihen be correctly identified with a probability of 96% to 99%
(see Tables 6.3 and 6.4). As can be seen in Table 6.4, the target class vall receive
about 1.2% to 1.4% due to its similarity. This rate remains because the frequency for
both ground and target classes must necessarily be centered at zero. The only
difference is thus its variance, which is large for all classes except ground. Hence
targets are not completely separable from ground clutter.

One coluton is, of course, the application of risks as already discussed.
Other approaches include the reduction of the amount of ground clutter entering the

classifier, or to remove it completely. Reducton techniques using clutter maps such as
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labelled sammples: | ground birds thunderstorms  rain aircraft cars, trucks targets
prototype nar.ie (45,298) (58,281) (6,766) (19,168) (5,685)  (2,483) (10,385)
rejected 0.2 39 0.0 0.2 5.0 6.9 0.1
ground 96.4 L5 0.8 04 5.1 0.0 0.6
birds 1.2 71.6 3.6 59 03 10.6 0.1
weather 1.0 13.6 76.5 90.1 43 7.4 4.9
synthetic targets 1.2 9.3 10.1 3.5 85.3 75.2 04.4
total 1000 1000 1000 1000 1000 1000 1000
labelled samples: | ground birds  weather targetls total

prototype name (45,298) (58,231) (25.934) (8,168) | (137.681)

rejected 0.2 39 0.1 5.6 9.8
ground 96.4 1.5 2.8 3.5 104.3
birds 1.2 71.6 53 34 81.5
weather 1.0 13.6 86.5 53 106.5

synthetic targets 1.2 9.3 52 82.2 97.9

total 100.0 100.0 100.0 100.0 300.0
Table 6.3 Expenmental 5-class classification results including ground clutter

The tables shows the percentage of labelled samples {columns)
assigned to each class (rows). The feature set for this case includes the dorpler
frequency ¢, which has been randomized for all class prototypes except ground. The
weather class prototype has been derived from a combinaton of both rain and
thunderstorm clutter samples. The mean classification accuracy is then 84.2%, the
standard deviation of the biases is 9.8%. All data has been taken from SNR range D.
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given by Equations (6.34) to (6.36) have already been discussed in this chapter and are
only marginally effective in this regard. They should still be used, however, to enhance
classification of moving clutter on top of ground. Conventional MTI filters have been
shown to be very effective in removing ground clutter; however, they also remove a
considerable amount of slow moving clutter and any moving at its blind speeds.
Narrowing the filter may be possible, although a minimum width is necessary due to
the finite width of the clutter specrum. Unfortunately, these filters change the
spectrum of all clutter types and may therefore reduce classifier performance.

An alternate solution is to pretest the samples according to their Doppler

frequency alone. This method has the benefit of being capable of removing vinually

lutter les clagsi X overall performance
correct targels  birds  weather rejected average O, % rejected
range A 08.6 1.4* - - 0.0 95.1 6.3 1.2
range B 97.1 14 0.8 0.7 0.1 779 17.2 2.2
range C 97.1 1.2 0.8 0.8 0.2 807 125 6.0
range D 96.4 1.2 1.2 1.0 0.2 84.2 9.8 9.8
range E 96.9 1.3 1.0 0.2 0.5 89.8 5.7 9.6
range F 974 1.4 0.3 - 0.9 88.6 8.6 9.2

* For Range A only one moving clutter prototype was defined inciuding all available
clutter and target samples.

Table 6.4 Experimental performance of ground clutter classification

Classifier perforrnance (in percent) is given according to SNR ranges.
The feature set includes the doppler frequency ¢. Note the consistent percentage of
samples assigned as synthetic targets. The performance measures in the right hand
columns are computed as explained in table 6.1.
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all ground clutter dominated sampies while not affecting the classification of the other
classes. It still introduces blind speeds, however, but since the test is only based on the
center frequency and not the width of the clutter, the blind speed ranges may be made
extremely narrow without sacrificing any of its ground clutter rejection capability. This
frequency test is effectively a two-class classifier or detector, and either of the Bayes or
Neyman-Pearson tests can be applied to it. For example, if a false alarm rate of 1076 is
desired, then the threshold must be placed at +4.76 ¢ around the center frequency. The
standard deviation of the ground clutter center frequency was determined to be
0.00678 fs ; hence, the threshold must be placed at 0.0323 f, or 212Hz for
f,=657.8 Hz. 'This corresponds to a velocity of about 4.7 knots (0.99 knots per
standard deviation) and is much narrower than most MTI filters; only 6.5% of all
aircraft echoes would be rejected if their Doppler frequency distribution is uniform. If
a somewhat higher false alarm rate is acceptable, the rejection band can be made even
tighter. Care must be taken, however, to consider the cause of apparent Doppler
frequencies greater than those normally expected from ground clutter. Receiver
saturation, rapid phase changes due to the changing clutter geometry as the beam scans
by, and wind induced motion can all contribute to an increased false alarm rate, and
some adjustment of the threshold according to operational experience is likely to be

required.

4 ification Im
Using the same class prototypes as discussed in the previous section,
complete scans of radar data were classified and simulated PPl images were color
coded with the results. For the purposes of black and white presentation, individual

classification results were displayed separately and photographed. Such presentation
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necessarily limits the amount of information which could be displayed. For instance,
the confidence limits discussed in Section 4.3 (Equation 4.47) were computed and
decisions with a posteriori probabilities of less than 75% indicated as desaturated
colors. Features rejected for classification and labelled "unknown" were completely
desaturated, hence displayed in white. Such desaturation cannot, unfortunately, be
displayed on black and white images, and was not included in the images described in
this section. Nevertheless, the images do show vividly how the classification algorithm
can be successfully applied.

All images except Figure 6.24 were taken from the data recorded at CFB
Moose Jaw. Figure 6.20 shows the effects of classification in the presence of
significant amounts of ground clutter, made visible by an atmospheric inversion which
is found quite frequently in the Saskatchewan prairies. In addition to the terrain echoes
and the line of hills south-west of Moose Jaw, a very prominent feature are electric
ransmission lines. The range rings superimposed on the image are spaced ai 20
nautical miles. Other superimposed video map features include a network of major
highways, outlines of the cities of Moose Jaw and Regina, three lakes, and several
permanent echoes originating from tall communications towers. Rejection of noise and
zero-Doppler ground returns results in the processed display in figure 6.20b. Note the
patch of weather cluiter 75 miles north-west of Moose Jaw (between 320° and 330°),
which is barely visible on the unprocessed display. All other clutter returns are a
combination of aircraft, birds and unknown clutter. Separation of the aircraft echoes
results in the display shown in Figure 6.20c. Considering the amount of clutter present
in the unprocessed data, this is an acceptatle level of false alarms and scan-to-scan
processing would have no difficulties isolating the aircraft amongst them.

The problem of not rejecting zero-Doppler clutter, and including ground
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Figure 6.20a (top) Moose Jaw PP display of unprocessed radar data
Figure 6.20b i i i i w 1
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Figure 6.20c (top) Processed display showing aircraft targsts only
Figure 6.20d ispl wi w
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Figure 6.20¢ (top) 15pl movin wi ler rej

Figure 6.20f ispl ircraft only without zerc-Doppler rejection
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clutter as a class, is demonstrated in Figures 6.20d to 6.20f, Most of the ground clutter
is correctly identified as can be seen in Figure 6.20d. The amount of clutter classified
as "moving" is quite large (Figure 6.20¢), and even after separating the aircraft targets
(Figure 6.20f), the false alarm level is excessively high. For this reason, zero-Doppler
rejection preceded all subsequent classification scenarios.

Figure 6.21a shows 6 scans of a 10-mile section of the Trans-Canada
Highway west of Moose Jaw. The scans are separated in time by 50 seconds. The
variability of the ground clutter is evident, as is the transmission line paralleling the
highway. Applying the classifier clearly shows the presence of moving vehicles.
While not obvious in the image, many of these echoes were in fact classified as
synthetic targets with more confidence than cars and trucks. Crossover into clutter
classes occurred less frequently, and only a few birds (beside the highway) were
classified as targets. In fact, the data set from which this image was taken comes from
a "heavy" bird clutter tape and contains a large number of bird echoes.

Bird clutter is dominant in Figures 6.22 and 6.23. Figure 6.22a shows a
scan of data from another heavy bird clutter tape. This time a 25-mile range scale was
employed and the video map of highways superimposed for reference. The range rings
are spaced at 5 miles. The fact that bird clutter is present becomes evident only once
the data is processed. The targets discovered in Figure 6.22b belong mostly to the
"weak moving" class due to the small radar cross-section of birds, although 10 to 15%
were in fact classified as birds. To strengthen th= bird returns, STC was turned off for
the image in Figure 6.23a. The presence of bird clutter is now clearly obvious, and
saturation even occurs at short ranges. Nevertheless, many of these targets now fall
into the bird clutter classes as shown in Figure 6.23b. The lack of bird targets in the

center is mainly due to saturation and the lack of a good class prototype for bird clutter



Figure 6.21a (top) Unprocessed displays of a 10-mile section of highway

Figure 6.21b Processed display showing vehicle traffic (cars and mucks)




Figure 6.22a (top)
Figure 6.22b
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Figure 6.23a (1op) nproces i ini ngd bird clutter (o ST

Figure 6.23b Processed display showing bird ¢lutter only
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Figure 6.23c (top) Processed display showing bird and “unknown” cluter
Figure 6€.23d
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in SNR-range F. Most of this short range clutter was in fact classified as "unknown",
except when rejected due to zero Doppler frequency. The combined bird and
"unknown” clutter classes are displayed in Figure 6.23c. Note the absence of clutier
where ground clutter dominates. Such a large amount of clutter is also expected to
result in @ great number of misclassifications, even if the percentage is small. Clutter
identified as rain and thunderstorms is shown in Figure 6.23d, although the density is
much lower than that of Figure 6.23b. Note the presence of "MTI wedges" in all of the
processed images. These occur when the birds move tangentially to the radar, and the
direction of movement of the migrating birds can thus be established as north-westerly.
The range rings in these images are spaced at 20 miles.

Areas of widespread rain clutter, recorded at CFB Trenton, are shown in
Figure 6.24a. The range rings are spaced at 10 miles, and the break in clutter intensity
just inside the 20-mile ring is due to beam switching from high to low. Operational
restrictions prevented the use of a single beam only. The video map shows airways
north of Trenton, highways, and ground based permanent echoes. High-intensity areas
in Figure 6.24b are those classified as weather clutter, and low intensity areas are
“weak moving” clutter which could not be identified further. Note, once again. the
break in :he clutter north-west of Trenton which is due to the zero-Doppler rejection
filter. Note also the absence of the two targets in the north-east, which are clearly
evident in Figure 6.24a. Although not shown, both were classified correctly as aircraft.

Lne final sequence of images shows the classification of area (as opposed
to frontal) thunderstorms, recorded at CFB Moose Jaw in the late afternoon. The range
limits of these two scan sections are 30 to 70 miles, with 10 mile range rings. The scan
numbers shown at the bottom indicate that the difference in time is just over 3 minutes

(38 scans or 188 seconds). The high-intensity areas in Figure 6.25b were correctly
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classified as thunderstorms, whereas the lower-intensity areas indicate rain clutter,

Arcas misclassified as bird clutter are shown in Figure 6.25¢.

64 Summary

In this chapter, the feasibility of classifying clutter based on a feature set
derived from parameters of the Doppler spectrum was examined experimentally. Radar
data were specifically recorded for this purpose at two different airports using L-band
air traffic control radar systems. This allowed a rather exhaustive study of the feature
statistics, both marginal and multivariate, of a vardety of target and clutter types.
Differences between them became clear and class prototypes were consiructed and
tested. Several classification strategies were evaluated. Statistical experiments showed
that correct classification of 70 1o 90% is possible, with a mean classification accuracy
of 82%. Simulated PPI images of classified radar data provided visual verification of
the utility of the classifier,

The classification strategy that appears to have the most promise for real-

time implementation is the following:

1, The first reflection coefficient is computed using to Equations (6.4) to (6.7)
for every time series. The Doppler frequency is computed and tested for
proximily to zero. Rejection occurs according to the considerations

discussed in Section 6.3.3.

!J

The multisegment reflection coefficients for all remaining time series are
calculated using Equations (6.29) to (6.32). Equation (6.33) is used to set a
rejection threshold to prevent the feature statistics from becoming too

different from those used in the tightly controlled training samples. It also
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serves to reject noise dominated time series which would otherwise have to

be classified,

Compute the feature set Uy, ug, p3 3. P4 ps, P A and P~ using
Equations (6.21) to (6.28).

Use the SNR based feature Uy to seiect a set of classifiers within one of the
ranges Ao F.

Compute the discriminant functions for each class using the remaining
features as vector x and test for a minimum according to Equations (6.37)
to (6.40).

Assign the feature vector to the "unknown clutter" class if the smallest
discriminant exceeds e threshold T as per Equation (4.50)

Finally, evaluate the confidence in the decision by calculating the

a posteriori probability of x originating from the selected class using

Equation (4.47),



Chapter 7
TOWARDS REAL-TIME IMPLEMENTATION

The results presented in Chapter 6 show that radar clutter classification
based on data from a single resolution celi is indeed possible. Refinements to the
algonithm will undoubtedly improve the quality of the decisions both in terms of
decision confidence and the experimental probabilities of correct classification. The
major benefit of such a classifier — the provision of immediate identification of clutter
sources to radar operators — can, however, only be obtained tiio. - . its real-time
implementation and use alongside existing ATC radars.

Use of the classifier places several operational constraints on the radar.
Fixed PRF is absolutely required (see Chapter 3), as is minimum STC and linear
polarization.  Unfortunately, such a radar configuration tends to adversely affect
existing detection algorithms due their to limited dynamic range and CFAR
capabilities, and the design of \he MTI itself. As a resuit it may be necessary to run the
classifier for only one out of, say, ten scans. MTDs are somewhat less susceptible to
this type of configuration (in fact, they require a fixed PRF themselves) and may be
able to coexist better with the classifier. In addition, the detection properties of the
classifier can also be exploited to some advantage.

In this chapter, the computational requirements for implementation of the
classifier are discussed. No recommendations are made regarding the preferred
architecture since the continuing and rapid improvements in technology, which will

drive the selection of the architectures, are difficult to foresee. Instead, the discussion

263
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focuses, in Section 7.1, on the complexities of the algorithms and its computational
load. The data processing rate requirements are discussed in Section 7.2. The last
section shows that floating-puint urithmetic is not required except for the prototype
estimators, which need not be computed in real time. The required word lengths are

calculated based on the dynamic range of the data.

7.1.C ional Requi

The number of operations executed before arriving at a classification
decision is determincd not only by the number of calculations required according to the
formulas provided in Chapter 6, but also on the efficiency of the hardware and software
used to implement them. The amount of overhead resulting from compiler
inefficiencies, memory speed and availability, and the inherent limitations of the
instruction set, can easily exceed 75% of the total execution time. Overhead is defined
as those operations not directly required for the calculations, for example loop control,
memory access, and management and storage of intermediate results. With special-
purpuse architectures and efficient software it is possible, however, to carry out most of
the overhead functions in parallel with the main operations and thus add very little time
to that required by the calculations themselves. The next two sections thus deal only

with the basic calculations.

11 E r
The main component of the feature extractor is the multisegment Burg
formula together with the lattice PEF as defined by Equations (6.16), (6.17), and (6.18).
The number of multiplications and additions, both complex and real, are shown in

Tables 7.1 and 7.2. The expressions shown are for the general case. The values for X,
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Burg complex complex real real real
order multiply add multiply add divide
1 K(N=-1) K(N-1)1 4K(N=-1)+2 4K(N-1)-1 1
2 K(N-2) K(N-2)-1 4K(N-2)+2 4K(N-2)-1 1

K(N-3) K(N-3)-1 4K (N=-3)+2 4K(N=-3)-1 1

total ’-"i"i(mv-m-l) K-?_ﬂ(?N—M—I)-M UMON-M-1)42M | 2KMON-M-D)-M | M

TRACS 2700 2695 10810 10795 5

Table 7.1 Iculations requi ] i Bur ]

The number of segments X, the segment (time series) length N, and the
number of lattice stages M for the TRACS-ASR are 45, 15, and 5, respectively.

lattice | complex complex real real real
stage multiply add multiply add divide
1 - - - - -
2 2K(N-1) 2K (N-1) - - .
3 2K(N-2) 2K(N-2) - - .

total | K(M-1)2N-M) | K(M-1)2N-M) - . .

TRACS 4500 | 4500 - - -

Table 7.2 i i m "M_order lattice il
The TRACS parameters are the same as in table 7.1.
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N, and M used for the results in Chapter 6 are 45, 15, and 5 respectively, and yield the
number of operations listed for the TRACS. No provision has been made for the case
of rejected data as discussed in Section 6.2.1 (Equations 6.29 and 6.30). Clearly, the
application of such tests will increase the amount of computativahal overhead somewhat
but, because radar data usually include large quantities of thermal noise samples, this
increase is usually more than offset by the substantial reduction in the number of
remaining basic calculations.

The reflection coefficients must be transformed into the feature set required
by the classifier. Table 7.3 shows the number of operations required for this process.
The feature U, is defined by Equations (6.20) and (6.23), uy by (6.24), p"n by (6.21),
and P dif and Pvar by (6.26) and (6.27). Beside the basic operations, several functions
are also required for these transformations, whose complexities depend somewhat on
the implementation. Frequently a combination of convergent series and lock-up tables
are used which execute quite rapidly to a given level of precision. The number of such
operations required is small, however, and the total computational load can be seen to
be dominated by the Burg formula and the lattice filter equations.

The results presented in Chapter 6 were obtained using a Floating Point
Systems AP-120B array processor. This 6 MHz computer has one floating-point
multiplier and one adder, both of which can run in parallel with a combined maximum
throughput rate of 12 Mflops (million floating-point operations per second). The time
required to compute one feature vector is thus determined by the number of
multiplications or aclditions, whichever is greater. A Sm-ordcr latice based feature
extractor with the number of operations shown in Table 7.4 (41,086 real multiplications
and 41,088 real additions) thus requires 41,088/6,000,000 = 6.85 ms to execute. A

complete and full resolution radar image extending 80 nmi in range with 3340 sweeps
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complex real real real square arc- sign
feature | multiply multiply add divide | root log | tangent | change

¢ : : . S R I I U I

Uy - 2KN+1 2KN i - 1 - -

g - 2 2 1 1 1 - -

P 2(M-1} - - 2 - - - 1

Py - 2% 2K 2 - - - -

P - 1 K 2 K - - -

var

total 2(M-1) KN+ | 2ZK(N+1)4K+2 8 K+l 2 1 1

TRACS 8 1444 1487 8 46 2 1 1
Table 7.3 Calculations required for the reflection coefficient transformations

The feature set transformations are defined in chapter 6. The TRACS
parameters are the same as in table 7.1,

multiplications TRACS additions TRACS
Burg formula 4KM(2N-M-1+2M 21610 4KM(AN-M-1)-3M 21585
lattice filter 4K(M-1)(2N-M) 18000 AK(M-1)(2N-M) 18000
teature set BM-11+2K(N+1)+d 1476 2(M- 2K N+ D+K42 1503
total 16K MN-BKM2—6KN+2K +10M—4 41086 16KMN-BKM26KN+3K+M—4 41088
Table 7.4 T i frealv ion

excluded. The TRACS parameters are the same as in table 7.1.

The equivalent number of real valued operations for the special
functions (divide, square root, logarithm, arc-tangent, and sign change) have been
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(1280 samples each) thus requires a minimum of 8 hours and 8 minutes to be converted
into feature vectors. The additional operations required by the special functions and
overhead can easily increase this time to over 10 hours. Execution times of this

magnitude have been observed on clutter filled radar scans where data rejection was

low.

1.2 Classifier

The discriminant function computations given in Equation (6.40) involve no
more than the multiplication of a wriangular matrix with the difference between two
vectors, and the evaluation of the squared norm of the resultant vector. The number of
multiplications is thus equal to the number of additions of which d(d+3)/2 are required,
where d is the number of dimensions in the feature vector. When P is excluded as a
feature — it is used to preselect the bank of classifiers — but the Doppler fregoency ¢ is
included, then 4 =2(M+1) and .he total ramber of multplications and additions
becomes (M+1)(2M+5). The discriminant function has to be evaluated for every -lass
and followed by a test for the minimum. Even for ten classes, which is high if
nreselection is used, this number is still very small compared to the feature extactor
and thus does not significantly increase the total execution time. For the full scan
example given in Section 7.1.1, discriminant computation would add only 64 seconds

for every class tested.

7.2 Real-Time Processing Speed Requirements
Operating the classifier in real time is essential if it is 1o bz useful for ATC
applications. The image resolution at which classification is to proceed is a major

detrrminant toward the rate requirements, and it may well be necessary to implement
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low-resolution systems in order to achieve permissible throughput rates. As may be
seen in this section, high-resolution processing will mostly likely require extensively
parallel and pipelined architectures.

Air traffic control radars generally use L or S-band frequencies with pulse
widths ranging form 6 us down to 0.5 us [Brookner, 1977). Data sampling rates are
determined by the pulse width alone and thus can range from 4 to 64 samples per
nautical mile. The TRACS-ASR, which was used exclusively in this research, is rather
typical with its 16 samples per mile. While there is no reason to limit the classifier to
these pulse widths and data rates, it is unlikely that shorter pulses will be used in air
traffic surveillance radars in the near future. The following calculations will therefore
be representative.

Using the TRACS-ASR again as an example, the maximum data rate is the
1.2946 MHz sampling rate. Approximately two thirds of these samples are taken inside
the instrumented range of 80 nmi. The other third, taken from beyond this range, may
be used to compute thermal noise levels and zero voltage offsets, but they contribute
nothing to the classifier and need not enter the computation. Assuming that all
80 miles are to be classified, then the remaining average data rate is approximately
863 kHz or 842 kHz, depending on the PRF in use. The computational throughput rate
must clearly equal this, unless the resolution is reduced. Based on the values in
Table 7.4, the combined rate for the Burg formula and the lattice filter is then
68.35 Gflops, considerably above the processing speeds achieved to date. Introducing
parallel structures, such as one computer for each of the K segments (K = 45) reduces
the rate to 1.519 Gflops for each. Lowering the resolution to the 3 dB points in both
range and azimuth, that is computing one feature vector for every second range sample

and every seventh sweep, reduces the requirements for each computer even further,
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down to 108.5 Mflops. It is important to remember, however, that these rates are
maximums assuming that every cell is processed and no data is rejected. A reduction
factor of two to ten can be expected under normal circumsiances since clutter is rarely
present in 100% of the data.

A further reduction of the required throughput rates may be realized by
recognizing that instantaneous updates may not be necessary. Since clutter changes
relatively slowly, it may be possible to only process, say, one scan per minute. For the
TRACS-ASR this would contribute an additional processing speed reduction tactor of
12. This then leaves a 9.041 Mflops rate for each of the 45 lattice filters and Burg
processors. It should now be clear that, depending on the available coraputing power,
various scenarios exist (including ones not mentioned here) which allow realtime
implementation of the feature extractor.

Similar rates are needed by the classifier itself, although the number of
parallel processors is much smaller. A classifier for the high resolution case requires
77.68 Mflops per class to operate in realime, 5.548 Mflops per class for the low
resolution case, and 462.4 kflops per class when only one scan in 12 is classified.
These rates must of course be adjusted by the efficiency with which the discriminant
function tests are executed and, as before, by data rejection rates and the required
overhead. It is obvious, however, that these requirements are rather light compared to

those of the feature extractor.

ini isi Fix in
Special-purpose high-speed signal processing applications are frequently
implemented using integer and fixed-point arithmetic. Floating-point multipliers and

adders are considerably more complex and require more computing resources. It is
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therefore logical to ask what the required minimum precision is before performance
will deteriorate excessively, If the use of fixed-point arithmetic is possible then
considerably higher processing speeds will generally become available.

Word length requirements are determined by two factors: dynamic range of

the data to represented, and maximum allowable numerical or quantization error. Both

are addressed in this section.

7.3.1 Feature Extractor

The Doppler information present in the data is extracted by the latiice filter
on a stage-by-stage basis until the residuals are effectively white. At this point no more
extraction is possible and all higher order stages will simply pass the residuals
unchanged. Assuming that sufficienc data is available to ensure accurate reflection
coefficient estimates, the final residuals are then representative samples of the
measurement noise with power W. This implies that the dynamic range of the each
filter stage (Equations 6.17 and 6.18) need not exceed the dynamic range of the data
itself, except for the additional range required for numerically accurate representation
of the reflection coefficients themselves. An upper bound on the magnitude of the

reflection coefficients can be determined as follows. For exactly determined reflection

coefficients

Py Hltl— p.1H =W (1.1)

m=

The coefficient magnitudes cannot exceed one, therefore

M
Py I(1—|p |2 W (7.2)

m=1
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where equality holds only for a perfect M®-order autoregressive fit to the data. Since

Py = (g + D)W (ng is the signal-to-noise ratio), a composite bound may be written as

M 1
ma-lp |9 2 (1.3)
m=1 np +
If only one coefficient P, takes on a nonzero value, then
ng 1/2
lg;| = [ ] (7.4)
no + 1

Clearly this bound is conservative since, in most cases, more than one coefficient will
be nonzero and Equation (7.3), if evaluated for specific values of p_, will provide a
tighter bound for the remaining values. In Appendix D, an upper bound for |p,]| is
given as

no

lp,| (1.5)

n0+1

with equality occurring only in the single-complex-sinusoid-in-noise case.
Nevertheless, for the purposes of determining dynamic range requirements,
Equation (7.4) is useful and increases the word length requirements by only one bit
over that of Equation (7.5).

The magnitude bound of Equation (7.4) can then be used to establish the
minimum word length requirements based on the largest signal-to-noise ratio expected
from the data. The TRACS-ASR word length of 9 bits plus sign leads to a dynamic
range of 46 to 49 dB (see Appendix B). To fully represent a value for n, of 65535
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(48 dB) requires a minimum of 17 bits for |p,| and 16 bits for |py| as shown in
Table 7.5. This minimum word length does not necessarily represent the signal
strength with sufficient fidelity, however, to permit accurate feature extraction. The

SNRs in Tabie 7.5 are computed from Equation 7.4 as follows

|pi|2 20_ 1

ng = ———, |pl =
1 - |P‘-|2 l 2q

(7.6)

where g is the word length. To determine the quantization step sizes, the SNR for a

specific bit representation of |pi| can be written as

p.|? 29 - n
1Pl .o 1pl, = (7.7
2 i'n

no(N) =

Step sizes expressed in decibels correspond to ratios of ng(n) for the desired values of n

which, when ¢ is large, may be found to approximate

no(ny) n (7.8)
"o(n‘)) ny .

This equation shows that the first quantization step size (ny = 1, np = ny + 1) is 3 dB, to0
large to maintain fidelity. To achieve a maximum step size of 0.1 dB for an SNR of
48 dB, n, must equal 43 which requires another 6 bits in addition to the basic
requirements of 17. The resulting 23 bit mantissa corresponds to the standard single-

precision floating-point word length of most 32-bit computing architectures.
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word size 2911 maximum n (dB)

q bits (all ones) 19| A
8 255 21.05 24.07
9 511 24.07 27.08

10 1,023 27.09 30.10
11 2,047 30.10 ' 33.11
12 4,095 33.11 36.12
13 8,191 36.12 39.13
14 16,383 39.13 42.14
15 32,767 42.14 45.15
16 65,535 45.15 48.16
17 131,071 48.16 51.18
18 262,143 51.18 54.19
19 524,287 54.19 57.20
20 1,048,575 57.20 60.21
21 2,097,151 60.21 63.22
22 4,194,303 63.22 66.23
23 8,388,607 66.23 69.24
24 16,777,215 69.24 72.25
25 33,554,431 72.25 75.26
26 67,108,863 75.26 78.27
27 134,217,727 78.27 81.28
28 268,435,455 81.28 84.29
29 536,870911 84.29 87.30
30 1,073,741,823 87.30 50.31
31 2,147,483,647 90.31 93.32
32 4,294,967,295 93.32 96.33

Table 7.5 Maximum signal—to-—noise ratios for given word lengths

The signal-to-noise ratios result from assuming equality in equations
(7.4) and (7.5) and using the largest reflection coefficient representable (all ones) by
the word length shown.
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Maximum word-length requirements may be found by examination of the
Burg formula itself. From Equation (6.17) the number of magnitude accumulations can
be seen to be K(N-1) in both the numerator and the denominator for the first reflection
coefficient. Setting K and N equal to 45 and 15, respectively, allows for a maximum
growth of 10 bits over the word length of the squared magnitudes of the data values.
Since squaring doubles the length of the mantissa, a 9-bit data word length thus leads to
a maximum of 28 bits. In the strictest sense, the word length of subsequent stages
would grow exponentially if the residuals are to be computed to the fullest possible
precision. The size of the estimation error makes such growth rather pointless,
however, and the 28-bit mantissa length can safely be maintained for the high-order
coefficients. In fact, the AP-120B atray processor used in this research has a 27-bit
mantissa plus sign which lead to quite acceptable results.

The tradeoff in choosing between the minimum and maximum word lengths
is simply cost versus the preservation of significance in the data. Here, the term
"significance" takes on a meaning slightly different from that conventionally used in
mathematics. What is most important is the performance of the classifier, and the
actual computed values are only of consequence in how they affect the probability of
correct classification; they need not be accurate per se. Thus :*< statistical distribution
of the values is of greater consequence and, ideally, all values will occur with equal
frequency in order not to degrade the powers of discrimination in the feature,
Maintaining significance is therefore synonymous with maintaining accurate
classification, which in turns requires small quantization step sizes in order to limit the
number of occurrences of each possible value. Without transformation, the first
reflection coefficient has exactly the wrong characteristics: it tends to be clustered close

to magnitude 1 where, in terms of the equivalent signal strength, quantization step size
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increases rapidly as unity is approached. The normality transformations discussed in
Chapter 5 help in this regard, but it is just as important not to loose the significance
before it is applied. Markel and Gray [1976] examine several possible transformations
to equalize the distributions, and of these some are very similar to the one presented in
this thesis. Their aim, however, is the coding and transmission of the predictor
coefficients, not the calculation itself which may proceed at greater levels of precision.

So far only the mantissa requirements have been addressed. Considerations
for exponent size are somewhat different and deal more with varying scaling
requirements, Floating-point representation normalizes the mantissa so that all bits are
always available to preserve significunce. Hence if such normalization is not required,
or if the significance is not present to begin with, then little is gained through its use.
Two observations may be made in reference to the Burg formula and the lattice PEF.
First, significant reflection coefficient magnitudes are those close to unity, and
normalization does not take place unless values fall below 0.5. Any loss of
significance occurring as the coefficient approaches unity thus cannot be avoided by
conventional normalization (that is the elimination of leading zeros). Second, the filter
operates by subtracting data values of similar magnitude whose significance lies only in
those bits already available before normalizadon. Normalizing the data values thus
only serves to minimize numerical errors, but these are generally well below the
measurement errors and estimation uncertainties, even without normalization. It may
therefore be concluded that floatng-point representation is not essential, although it
does, undeniably, improve the numerical performance of the feature extractor
somewhat,.

Using fixedpoint arithmetic does, however, place stringent scaling

requirements on the hardware designer. Overflow and underflow are rare in floating-
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point arithmetic with long exponent words, but they are more likely to occur when the
exponent is absent. Knowledge of the largest and smallest meaningful values is
imperative and must be included in the word length considerations.

The loss of precision associated with increasing signal strength, as the
reflection coefficients approach unity, may be avoided in the case of the feawre iy if

| 4] is not calculated directly. Recall that

= 4] —_— ’ r = = .
Uy 8 L, P RO)
thus
R(1)
ug = 10 Iog[ | | ]
R©O) - |R(1)|
= 10 log|R(1)| - 10 logl R(0) - |R(D] ] (7.10)

Precision is now limited to that with which R(0) and |R(1)| can be determined. The
quantity [ R(0) - |R(1)| ] is always greater than or equal to the measurement noise
power W, hence the subtraction operation does not introduce an additional loss of
significance. Note that this does not avoid the computation of g, completely, since it is
still required for the computaton of the high-order coefficients and frequency
heterodyning (the features pn'q).

Some experimental work regarding the minimum number of bits required to
represent the reflection coefficients may be found in [Markel and Gray, 1976].
Although the authors deai only with real valued speech signals, some insight may be
gained from studying their approach. They do not relate their results to SNR since they

work purely with autoregressive models, but they do examine the sensitivity of the
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information in the coefficients to the number of bits used to represent them.

1.2.2 Classifier

The precision requirements for the classifier are somewhat easier to define.
The multiplication of the feature vector by a predetermined triangular transformation
matrix leads to another vector whose squared norm (sum of squares) is then computed.
The result is the squared Mahalanobis distance which is approximately x:*; distributed,
with mean d and standard deviaton yZd. For d = 12, over 99% of the values will be
found between O and 27 which implies that the dynamic range of the result is quite
small and independent of the data. Added to this squared distance is the logarithm of
the determinant of the autocovariance mawrix. This value is a function of the
underlying distribution of the feature set and is therefore also indep:ndent of the
dynamic range of the data. It can, however, take on values within a somewhat greater
range than those of the Mahalanobis distance. Word length requirements are therefore
strictly a function of the quantization limits imposed by the inherent discrimination
powers of the feature vector itself.

The matrix multiplication is essentially a feature vector transformation to
zero mean and unit variance. The bounds of unity on the reflection coefficient
magnitudes are thus removed and minimum word lengths should increase by at least
one or two bits to accommodate this transformation and requantization. The next step
is squaring and this does, strictly speaking, double the word length requirements. But
since this is the last operation other than the summing of the squares, and no square
root is subsequently taken, such doubling is not necessary. The important
considerations now are the statistical distribution of the data and the final quantization

step sizes which must be small enough to maintain the powers of discrimination. For
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example, the maximum density of the xﬁ density with d = 12 is approximately 0.082,
which implies that if only one out of, say, 10,000 data samples is allowed to yield the
same squared Mahalanobis distance, then the quantization step size must not exceed
1/820. A 10 bit fraction will meet this requirement. Another 7 bits plus sign are
necessary to represent the integer portion, defining a combined word length of 17 bits
plus sign. Again, as for the feature extractor, staadard single-precision floating-point
arithmetic should work acceptably. Fixed-point arithmetic should also work well since
the significant dynamic range of the result is not large. It may be necessary, however,
to lengthen the word sizes for the matrix multiplication, since the individual products
before summation may in fact exceed the range of the result considerably.

Fixed-point arithmetic will not likely work well for the prototype estimator
and the matrix inversion algorithm. In fact, since the formation of the autocovariance
matrix requires squaring, and the subsequent Cholesky decomposition computes the
square root, double-precision floating-point arithmetic is indicated, especially if large
numbers of labeled samples are to be included in the estimate. Fortunately, the
estimation need not proceed in real time, and the use of double precision should not be
a problem, The final triangular matrix which represents the prototype is then adjusted

to the precision used by the classifier.

7.4 _Summary

The calculations carried out in this chapter clearly show that, given
sufficient computing resources, the feature extractor and classifier can be implemented
for realtime operation. Several tradeoffs may be made to limit required throughput
rates to specific values. Using the TRACS-ASR with its 850 kHz average data rate, a

net rate (not including computational overhead) of 70 Gflops is required for full
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resolution classification for every scan. Significant rate reductions may be achieved
using a combination of lowering of resclution and the computation of only one scan per
minute. Reductions of two orders of magnitude were discussed in this Chapter, but
further reductions are possible using parallel structures.

Fixed-point arithmetic can usually be executed faster than floating point,
and is possible for both feature extractor and classifier if certain minimum word length
requirements are met. These requirements depend largely on the dynamic range of the
data. In general, floating-point mantissa lengths of 23 bits (standard single precision)
should work acceptably, although fixed-point word lengths of 16 bits will be barely
sufficient for the TRACS dynamic range of almost SU dB. 32-bit fixed-point arithmetic

should, however, work well with proper binary point placement.



Chapter 8
CONCLUSIONS AND CONTRIBUTIONS

The resecarch described in this thesis clearly shows that single-scan
classification of radar clutter into broad classes such as birds, weather, and targets is
indeed possible, and can be achieved with a mean classification accuracy of
approximately 80% using features derived from the Doppler spectrum. Classification
into subclasses such as rain and thunderstorms, or aircraft and ground-based vehicles is
also possible, albeit with a lower success rate. It is important to note here, that these
rates are likely fairly conservative, and improvements using additional features (not
necessarily arising from the Doppler spectrum) should be possible. This thesis
describes many of the considerations and tests which must be applied to all such
features before they can be accepted as discriminants.

After an introduction to the classification problem in Chapters 1 and 2, the
physical characteristics of the clutter and how they affect the Doppler spectrum were
described. The theory of how statistical classification must proceed is summarized in
Chapter 4, and in Chapter 5 the considerations behind feature selection and extraction
were discussed. The selection of separable features is the key to successful
classification, as is the knowledge of the statistics of these features. Improper matching
of these statistics to those assumed in the derivation of the classifier can lead to poor
and even misleading classification decisions.

Many classifiers have been proposed, but few have found wide spread

application in practice. Without extensive testing on real data, this work would have
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been little more than an academic exercise. An important mandate for this research
was to develop a comprehensive radar data base, analyze the data, and with it evaluate
the classifier. The results of this work were detailed in Chapter 6. In the final chapter,
the proposed algorithm was analyzed in terms of its computational and numerical
requirements.

There are several contributions offered by this thesis. First, the data base
collected is, perhaps, one of the most extensive and comprehensive of its type. The
recordings are totally digital and thus offer the full radar dynamic range to the
researcher, which was not possible previously using analog video recorders. Additional
benefits of the digital recordings are the retention of full coherence, noise levels, scan
indexing, timing and precise position information (range and bearing). As a result, the
confidence in ground truth and clutter labelling can be very high indeed. The volume
of data offered and its variety of clutter types allowed unprecedented levels of classifier
testing.

The second contribution is undoubtedly the in-depth research into the
characteristics and statistics, both marginal and multivariate, of the clutter features. A
significant portion of this thesis is devoted to this analysis, along with attempts to
match the actually encountered, highly non-normal and nonlinear statistics to the
requirements of the parametric Bayes classifier. Tiwory from several disciplines was
brought together for this purpose. Even if the solution is not optimal, and no claim is
made to that effect, it appears practcal and certainly points the way for future
endeavors in this field. Again, due to the large volume of data analyzed, confidence in
the results is high.

Finally, the classification experiments carried out were extensive in their

depth and breadth and, again due to the large volume of data available, confidence in
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the results is high, Considerable care was taken to ensure the comectness of the class
labels. Approximately one hundred color-coded images were generated to verify the
success of the classifier with real data and in terms of a potential form of presentation
to the operator. Unfortunately, only a small number of black and white sample images
could be reproduced in this thesis.

This thesis also offers several minor contributions. These are the results of
analyses performed in support of the research itself. They are discussed in the
appendices and include the expected value of the complex reflection coefficients and
their sensitivity to quadrature errors. A method for finding correction factors to
compensate for these errors has also been developed. This method turned out to be
essential for data preprocessing, before proceeding to feature extraction and
classification. Another contribution is the relatively detailed study of the range
performance of the TRACS-ASR. This knowledge was important to establish the

expected clutter levels and to assist with the identification of the clutter sources

themselves.



Appendix A
TRACS—ASR SPECIFICATIONS

The radar data used throughout this research was recorded from two of the
new L-band air traffic control area surveiliance radars (ASR) which form part of the
Terminal Radar and Control Systems (TRACS) installed by the Department of National
Defence (DND) at six Canadian Forces Bases. These two radars, which are derivatives
of the Westinghouse ARSR-3, were located at CFB Trenton and CFB Moose Jaw.
Other TRACS components are a secondary surveillance radar (SSR), a digital target
extractor and correlator, a computer control system and an instrument flight rule control
center (IFRCC) with fully synthesized digital displays at the controller stations. The
system was designed to modemize air traffic control at Canada's busiest military
airports and terminal areas. Since it was not meant for en route surveillance, which is
handled by the Ministry of Transport, the original 200 nautical mile range of the
ARSR-3 was reduced to 80 nautical miles, with a corresponding increase in the PRF
range from 310 — 365 Hz to 650 — 675 Hz, an increase in antenna scan rate from 5 to
12 rpm, and a decrease in peak power from 5 to 1.5 MW,

The radar system is fully redundant, with each channel operating on a
different frequency and polarization. Frequency and polarization diversity can thus be
achieved during diplex operation. Circular polarization improves detection in rain, and
the combination of both left and right hand polarized RF signals provides a weather
channel. Target reports are correlated with SSR returns and sent independently to the

central computer (a Data General Nova System), where they are combined and
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displayed on the controller's display. Unfortunately, only one channel was operational

at the time of the recordings and it was not possible to take advantage of the diversity

feature. The following characteristics of the radar therefore refer only to the channel

from which the data was taken.

Site:
Transmitter

frequency of operation (L-band)
wavelength

transmitter output power
transtitter type

pulse width

PRF (if fixed), selectable

Antenna

polarization (if linear)

polarization (if circular)

antenna feed

gain (low beam)

gain (high beam)

scan rate (nominal)

azimuth beamwidth (one-way, 3 dB)
hits per beamwidth (approximate)

azimuth sidelobes

Moose Jaw Trenton
1343.784 MHz 1307.538 MHz
22.306 cm 22924 cm
1.5 MW min

tunable klystron
2 us
657.8, 6743 Hz

horizontal vertical
right hand left hand
dual beam, switchable
33 dB min
31 dB min
12 t0 12.1 rpm
1.5°
13510 14
22 dB min



elevation beamwidth (one-way, 3 dB)
clevation beampattern

height above ground (electrical center)

Receiver

STC (programmable) maximum attenuation
receiver noise figure (low beam)

receiver noise figure (high beam)
bandwidth

dynamic range

video output

Radar Video Data Parameters

radar visible range

instrumented range

A/D resolution

digital video dynamic range*
sampling frequency

range sampling interval and accuracy
azimuth sampling interval

azimuth accuracy

»
see Section B.2

4°
modified csc?
22 m (73 ft)

63 dB
4'dB max
3.5 dB max
500 kHz
80 dB min

coherent / and Q

up to 120 nmi
80 nmi

10 bits (9 + sign)

46.3 dB 49.6 dB

1294.6 kHz
1/16 nmi (116 m)
0.088°
within 0.264°
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MTI

MTI improvement factor
integrated cancellation ratio
LOG CFAR (post MTI)
pulse-to-pulse integrator

detector

287

4 pulse / and Q
50 dB
18 dB
8 sample (1.3 nmi)
single pole feedback
adaptive threshold



Appendix B
TRACS-ASR DETECTION PERFORMANCE

B.1 Range Performance
The detection performance of a radar can be computed by the application of

the radar equation

Pz C’: G o A? Ff F2
Dr= d r r (B.1)
@4m)3 kT LR D,

where D is the margin of the received signal above what is required for detection,
expressed as a signal-to-noise ratio. The required SNR for detection is given by D,
For the TRACS-ASR, the parameters used in (B.1) are as follows (see also
Appendix A)

P: pulse power to antenna 1.5 MW
T  pulse width 2 us
G, antenna transmit gain 33dB
G, antenna receive gain (low beam) 33dB
¢ radar cross-section as required
A wavelength (Moose Jaw) 22.306 cm
F . pattern and propagation factor, transmit as required
Fr pattern and propagation factor, receive as required
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k  Boltzmann's constant 1.38 x 102 J/K
Ts system noise temperature 707 K
L transmit feedline and atmospheric losses 1.1 dB + 0.02 dB/nmi
R target range (slant range) as required

The required detection margin Dy varies with the number of hits per beamwidth, the
detection requirements, and the type of detection scheme used by the radar signal
processor. For instance, to detect a non-fluctuating target using a single pulse with a
probability (P,) of 0.5 and a false alarm probability (P A) of 107, a signal-to-noise
ratic of 11.2 dB is required. The TRACS radar uses two coherent digital MTI
processors (one each for the / and QO channels), then recombines the two channels and
forms the logarithm. A CFAR processor (8 range sample mean estimator) equalizes the
signal levels before pulse to-pulse integration. The integrator uses a 7/8 feedback
constant, which is close to optimum for the 14 hits per beamwidth expected. Such a
non-coherent integration log-CFAR detection scheme achieves a processing gain of just
under 6 dB, and thus only 5.3 dB are required for the same detection parameters. The
recorded data was, however, not restricted to using this suboptimal detector and fully
coherent processing could be applied. A fast fourier transform (FFT) with data
weighting matched to the beamshape is in fact an bpﬁmum coherent integrator and
meets the above detection requirements on 1.7 dB SNR targets (integration gain of
9.5 dB). Increasing the allowable false alarm probability to 10 reduces the required
SNR to just under 0 dB. A thorough discussion on radar detection performance may be
found in [Blake, 1980].

In light of the above discussion, Dy is set to 0 dB 1 the plot of detection
margin D_ versus range R (Figure B.1). In this plot the propagation factors are also set
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to 1, which corresponds to the case of the target always being positioned at the center
of the beam. Multipath effects over rough terrain are quite difficult to model and are
ignored. The margin is referenced to a 1 m? target, and the margins for other target
sizes can be found by shifting the base line up to the levels shown on the right hand
scale of the plot. The approximate RCS ranges for birds and aircraft are indicated.
The effects of applying sensitivity rime control (STC) is shown as well. The radar
allows the selection of two preprogrammed curves, and another curve is available for
manual entry should the need arise. The specific curves shown are those in use at CFB
Moose Jaw. It should be noted that the different polarizations operational at the two
radar sites has some effect on bird detectability. Vaughn [1985] noted that some
reflectivity measurements using horizontal polarization were as much as 4 dB stronger
than those using vertical polarization.

The radar clearly has the capability to detect bird clutter, even with STC
turned on, although small birds and bird flocks with radar cross-sections of less than
50 cm? will likely be missed. The "anti-bird" curve (labelled STC 2 severe) is clearly
positioned to eliminate most but the strongest bird clutter. The dip around 24 nautical
miies it notable: it arises from the site adaptation process which attempts to evenly
distribute the false alarm rate over e entire survoillance area. The radar is primarily
used for terminal control, and the Moose Jaw Military Terminal Control Area (MTCA)
extends mostly over an area south of the base where several hills are located. The
rather strong ground clutter returns originating from these hills are partially controlled
with the extra attenuation.

Figure B.1 represents the best that can be expected from the radar.
Unfortunately targets are rarely found exactly in the center of the beam, and the beam

pattern factors F . and Fr must be applied for a more realistic picture. Figure B.2 has
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been computed using the modified csc? pattern, a 4/3 carth radius assumption, and an
altitude of 6000 ft above sea level (asl). This level corresponds to approximately
4200 ft above ground (agl) at Moose Jaw, and represents a mean migration altitude for
birds. The sharp signal drop at 79 nmi is due to the radar horizon, and the cone of
silence is evident inside the 5 mile range of the radar. Note that at that altitude the
minimum slant range is 4200 ft, or 0.7 nmi, and the plot can therefore not reach zero
miles. The beam center (F‘=0dB) is assumed to be at an eclevation angle of 2°,
although the exact value is not known (it is adjustable). The bird detection capability is
not materially reduced from its maximum (as in Figure B.1) for this case, although the
minimum range is increased somewhat. Note that when STC is turned off very small
targets with cross-sections of less than 1 m? become detectable inside the 20 mile
range.

To obtain a better appreciation of the range/altitude performance of ine
radar, the contour plot in Figure B.3 shows the regions where small radar iargets are
most detectable. The lines represent the contours where Dy =D =0dB with STC 1
selected. Lines of constant elevation based on the 4/3 earth radius assumpucn are
superimposed. Due to the height of the radar above ground, the horizon is slightly
below 0° elevation. It should be stressed here again, that this contour plot represents
the ideal condition without multipath considerations. Favorite bird migration altitudes
are between 1000 ft and 10,000 ft above ground, although higher and lower altitudes
have been observed. Frequently, however, unfavorable winds at higher altitude will
keep migration low and long-range detection will not be possible. Minimum detection
altitudes also rise snuth of Moose Jaw due to the presence of hills with peak elevations
of 2600 to 2900 ft above sea level. These hills raise the horizon to clevation angles of

0.2 to 0.3°, and some of the closer hills even raise the angles to as much as 0.7°. From
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Figure B.3 it can be seen that this limits the visibility of a target at 6000 ft asl to about
35 to 40 miles.

It is also interesting to note the expucted levels for rain clutter. Rain is
fairly evenly distributed within the radar resolution cell and therefore no longer
decreases in strength according to R%. The volume of the cell increases with range
proportional to R? as the beam widens in both azimuth and elevation. The resulting R?
law means that the STC curve is not matched to it and, if used, will actually cause an
increase ir the observed clutter strength with range untl! it is no longer effective. This
phenomenon is shown in Figure B.4. The maximum clutter strength is thus expected to
be found at about 47 miles. The expected signal levels for several different
precipitation rates is plotted in Figure B.5. The top curve represents a fairly heavy rain
(16 mm/hr) and it is unlikely that much stronger clutter will commonly be observed
unless STC is turned off.

B2 i imi

The thermal noise floor places a limit on the small target detection
performance. The 10-bit A/D word size places an upper limit on the signal strength
which, when exceeded, will distort the signal and destroy the spectral information
required for successful classification. The maximum dynamic range of a 10-bit A/D
sampling linear bipolar data is 54 dB, assuming that the 0 dB level represents a signal
voltage A equal to one quantizaton step. In the presence of a random signal the
quantization noise has an average power given by A%6, and is 7.8 dB down from this
level. To maintain small signal fidelity, however, quantization noise must not
dominate. In fact, for the 10 dB processing gain to be available the noise at the

integrator must be completely decorrelated (white). Quantization noise itself only
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displays this characteristic when the signal to be digitized is random, and thus the
thermal noise must be considerably stronger. The radar in Moose Jaw is adjusted such
that the thermal to quantization noise ratio is 14.4dB (12.1 dB in Trenton: the
difference lies mainly in the noisier Q channel). Of course, this lowers the dynamic
range to 46,3 dB (49.6 dB in Trenton) and overload becomes more likely. When
STC 1 is selected, RCS values of 100 to 200 m? will saturate the A/D inside 50 miles.
To increase the SNR of bird clutter and to improve the detectability of
small targets, STC must be turned off. Unfortunately, this also increases the danger of
A/D overload significantly. In fact, as very small targets such as insects become

visible birds could potentially exceed the available dynamic range. Table B.1 shows

RANGE 100 cm? 500 ¢cm? 2800 cm? SNR: 46 dB
45 nmi 6 dB 13 dB 21 dB 93 m?
20 nmi 21 dB 28 dB 35 dB 3.2 m?
15 nmi 26 dB 33 dB 40 dB 1.0 m?2
12 nmi 30 dB 37 dB 44 dB 4100 cm?
10 nmi 33 dB 40 dB 48 dB 1900 cm?

8 nmi 37 dB 44 dB 52 dB 790 cm?

7 nmi 39 dB 46 dB 54 dB 460 ¢cm?

6 nmi 42 dB 49 dB 57 dB 250 cm?

5 nmi 45 dB 52 dB 60 dB 120 cm?

4 nmi 49 dB 56 dB 64 dB 48 cm?

3 nmi 54 dB 61 dB 69 dB 15 cm?
Table B.1 Typi i noi i i ith STC of;

The last column shows the maximum radar cross-section tolerable by
the 46 dB dynamic range of the 10-bit A/D converter.
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typical SNR values for three bird clutter sizes (most clutter is expected to range from
10 to 500 cm? [Vaughn, 1985; Rabinowitz et al., 1985], although some studies [Barry
et al., 1973] have reported bird flock cross-sections of up to 2 m?, with a mean of

2800 cm?), as well as the maximum tolerable RCS for clutter situated in the center of

the beam when STC is tumned off.



Appendix C
EVIDENCE FOR BIRD CLUTTER

It was found extremely difficult to positively identify "bird clutter” as
having actually been caused by migrating birds. No direct visual sightings of any flock
was made that could be correlated with a target on the PPI of the radar. This difficulty
was compounded by the cone of silence above the radar, which caused any target
tracking inbound to disappear from the radar at about 3 to 6 miles. Positive
identification of bird echoes during radar studies has certainly never been easy [Barry
et al., 1973; Blokpoel, 1974], and repeated attempts to sight the flocks at the estimated
time of overflight failed. A part of the problem may well have been the small size of
the birds against the night sky, another the lack of night vision glasses.

There is, however, a considerable amount of other evidence available.
With respect to the radar echoes, speed and direction of travel (40 to 80 knots, north-
west) coincided with what may be reasonably expected from migrating birds. The
characteristic fluctuations in return strength were always present making it in fact
rather difficult to track any one flock for long distances. Since most large geese had
already passed through the area by the time of the trip, only smaller birds such as
ducks, coots, sandpipers, and passerines would have made up the majority of these
flocks. Consequently, few single bird echoes would likely be detected, and no targets
were specifically identified as such at the time of recording.

The strength of the returns together with their apparent flight alttudes also

pointed to the clutter being caused by birds. Time exposure photographs taken
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following the recording sessions showed large numbers of racks of targets travelling in
the north-west direction (Figure C.1). The cone of silence is very apparent, as is the
notch in the STC curve at 24 miles. The number of targets detected in these ranges
relative to the number elsewhere (less than one half or even one third) indicates that the
RCS of most targets was probably between 50 and 200 cm?. This coincides well with
the expected radar cross-sections for migrating birds and bird flocks of 10 to 500 cm?
[Vaughn, 1985; Rabinowitz et al., 1985].

Flight altitudes depend largely on the weather, particularly wind and cloud
cover, but are expected to be mostly below 10,000 ft agl [Richardson, 1971, 1972;
Blokpoel, 1974; Blokpoel and Burton, 1975; Blokpoel, 1976]. Although south-east
winds were sometimes forecast for high altitudes, such favorable winds were mostly
found only at the lower altitudes. The prevailing winds in Moose Jaw are westerlies,
and south-east winds at ground level frequently turn to become westerly at high
altitudes. Hence the largest concentration of birds were expected to fly within the first
few thousand feet above the ground. The photographs show a rather high density of
clutter inside 20 miles, and suggest that the flight altitudes were indeed below
8000 ft agl (see Figure B.3). The poor visibility of the targets to the west, where a
marked radar shadow blocks low altitude targets, leads to the additional conclusion that
the great majority of birds must have been travelling below 3000 ft agl and in large
flocks (200 cm?) at most times. On the other hand, the high densities present beyond
30 nmi require flight altitudes of at least 1000 to 4000 ft agl devending on target size
(unless anomalous propagation conditions exist). Indeed, some strong targets were seen
out to 50 miles to the south, where high terrair produces a rather pronounced radar
shadow. This implies that some flocks, at least, were travelling as high as 6000 to

8000 ft agl. In those cases, however, direction of travel tended to differ from those at
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Figure C.1

The top photograph was taken from unprocessed video, the bottom
from MTI video. Time exposure was 5 minutes. Range rings are spaced at 10 nmi.
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lower altitudes because of the wind shift. At 55 to 60 miles most targets were found to
disappear, with only the largest flocks (200 cm? and larger) visible beyond 65 miles.

Compelling evidence for the "bird clutter” is also the fact that it was never
seen on unfavorable nights. Yet it was always visible on favorable nights, except when
obscured by strong inversion related clutter. This clutter was at times so strong that
considerable sidelobe "ringing" was generated which looked very similar to bird clutter.
The time exposure photographs did, however, subsequently show the presence of bird
target tracks even under those conditions.

Analysis of data from the tapes also pointed towards bird clutter.
Performing scan-to-scan integration over one to five minute segments (up to 64 scans)
showed the same tracks seen on the time exposure photographs. From these, precise
directions of travel could be determined. Signal-to-noise ratios ranged from virtually
undiscernible to 15 dB when STC was turned on (curve 1). Clutter strengths of up to
35 dB where found when turned off. Doppler frequencies ranged from zero to up to
400 Hz, corresponding to an upper speed of travel of about 85 knots. Airspeeds are
generally not this high [Blokpoel, 1974; Richardson, 1974, 1979], but groundspeeds of
this magnitude are possible during periods of favorable winds [Bamry et al., 1973;
Muehe er al., 1974]. The average direction of travel was also discernible as the bearing
from the radar where the minimum Doppler frequency occurred (most negative, that is
the birds are flying away from the radar). This was generally around 325° true, and
coincided well with what was expected. It is interesting to note that CFB Cold Lake
(another TRACS site) is located 300 nmi to the north-west (at a bearing of 326.5° true)
and in the same general direction as the birds were found to travel (In fact, the
direction of travel evident from Figure C.2 is 326°!). Perhaps none of these arguments

constitute a "proof” of the observed clutter being caused by birds, but it surely is strong
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evidence. An aiternate explanation for its source is certainly not immediately apparent.

Non-radar evidence of migration activity came from several sources. A
number of telephone conversations were held with biologists at the Canadian Wildlife
Service office in Saskatoon. The CWS$ does not actively monitor the spring migration
(unlike the fall migration, due to hunting activity), but information was obtained on the
most likely species to have migrated at that time, including their flyways and staging
areas. DND itself does, however, monitor and predict bird migration activity at CFB
Cold Lake using a longrange high power L-band radar (not the TRACS-ASR).
Predictions are made using a technique devised by the CWS [Blokpoel, 1973; Blokpoel
and Gauthier, 1975], and is based on such factors as date, forecast upper wind
directions, air temperatures, cloud cover and precipitation. Migration activity is
confirmed with polaroid photographs of the PPI taken hourly and exposed for ten
minutes. Experience with prediction success rates is then taken into account to refine
new predictions. Periodic comparisons between the Cold Lake predictions and those
made for Moose Jaw showed very similar conditions, which was not unexpected due to
their relative proximity. Even though there are staging arcas between these two air
bases, some species of birds fly continuously for as long as 8 to 10 hours and could
pass over both locations the same night. Polaroid photographs taken on two
particularly heavy clutter nights for Moose Jaw confirmed the presence of birds at Cold
Lake as well.

Finally, the presence of newly arrived birds was confirmed after a strong
migration night, when numerous ducks and many other bird species were spotted in
virtually every slough and pothole in the area south of Moose Jaw. While the ducks
would not likely have migrated further, the large number of swans (approximately
1000) sighted on Old Wives Lake, a bird sanctuary and staging arca about 25 miles
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south-west of Moose Jaw, would have moved on and may well be part of the recorded

bird clutter.



Appendix D
VALUE OF THE REFLECTION COEFFICIENTS FOR A SINUSOID IN NOISE

In this appendix an expression is derived for the value of the reflection

coefficients

-2 z f(m‘l)b*(m-l)

- n=m+1

P, = ®.1)
Z[If(m-I)Iz lb(m‘l)lzl

n=m+l

as N -— oo, where N is the number of data samples used in the estimates.
Mathematically, this in not an expecration of the value of f)m, but rather the "true”
value computed using the expectations or true values of the autocorrelation coefficients.

It can be shown [Kay and Makhoul, 1983] that, as N becomes large, f)m does converge

on the true value as

E['fim‘l)lz + |b(m"1)|2]

p = ©.2)

Hence, with respect to this true value, ﬁm is consistent but not necessarily unbiased.

Let the time series x,, Tepresent samples of a complex sinusoid in noise
x, = Aexplng) +w, (D.3)
where ¢ is the frequency of the sinusoid normalized to the sampling frequency f. The
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algebra of substituting this expression into (D.2) and the lattice equations (5.8), (5.9),
(5.10) will quickly become cumbersome, hence the following analysis vl proceed in
two steps. First, ¢is set to zero such that x’ = A + w"l, where w;‘ is an independent
measurement noise sequence distributed according to #{w:0,W). Second, the entire time
series is heterodyned by the frequency ¢. This step involves multiplying the time series
X, by the complex sinusoid (with unity magnitude) expn¢). The autocorrelation

function R'(m) of x"z is defined as

[ - toa ¥ - 2 1o ¥
R(m) = E[xnxn—m] = A +E[wnwn-m] D.4)
hence
RO = A2+W and R'(m) = A%, m>1 (D.5)

For simplicity of notation no distinction will be made between the estimated and
theoretical values of the reflection coefficients. They are related to the autocorrelaton

values as [Box and Jenkins, 1976; Haykin and Kesler, 1979]

m—1
_i\:Ohf.'"“)R(m-i)
i=

P = ~mod (D.6)
Zh‘:(""”R(i)
i=0
Using (D.5)
A2m3:1h'.(’"‘”
L
p, = -—0 ©.7)
W o+ A2 T it
i=0 !

where 4™ = 1. Using Levinson's recursion
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* (m—-l)

K = " Vep bl i=1,2,...,m ©.8)
the summation terms may be written as
}:EJ B izoh'("' o 2 p HmD) D.9)
i= =

The hfm) are the coefficients of the mM-order prediction error filter (PEF). Since, for
real valued time series, the PEF coefficients (which are equal to the negative of the

autoregressive model parameters) are also real valued, and h"n(m'l) = 0, one can write

m m _ m-1 (m-1) m
Eh' = {1+ p,;‘) Zorz‘ = T1(1+ p;.) (D.10)
= I=

i=1

Resubstituting in (D.7)

-1
nol'[ (1+ p))
oy = - (©.11)
1 +ny 1'1(1 +p)
i=1

where ng is the signal-to-noise ratio AYW. Noting that (using D.11}

m-2

pm—l
ny I1 (l+p) = - — (D.12)
i=1 1 + pr;x—l

the following recursive relation is obtained
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p t
' m-‘l (D.13)
m |
L~ Py
This recursion is initialized from (D.11)
foy
pi = - (D.14)
1 + no
whic : then leads to
Ry
Ppy =~ ——— (©.15)
1 + m no

The next step is to hcterodyne the time series using exp(ng). When setting

X = xr'lexp(imp), the autoregressive model, which is equivalent to (D.3) as M — oo

x, = iz_',lyi X W (D.16)
can be rewritten as
M
x'exp(ng) = LY, x'_exp((n-i)p) + w’ exp(ing) @.17)
i=1
with
Y, = - K" = yepio) = - KM exp(io) ©.18)
The autocorrelation function becomes
R(m) = E[xx ] = Alexp(mg)+ Elw w._] (D.19)

hence



RO) = A2+ W and R(m) = Alexp(im¢), m21

From (D.18) and (©.6)

m=1 (m=1) ) )
2" Dexp GigRm

Pm = ~m=1

P w* D exp(-i9)RG)
i=

Using (D.20)

m—1
2 r(m-l)
A Zhi

p = -—= exp(jmg)

-1
W A2 pr*mD
i=0 !

Comparing (D.22) with (D.7) and (D.15) gives the final result as

n
P, = P expimd) = -

exp(jm@)
1 + m no
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(D.20)

®.21)

(D.22)

(D.23)

Figure D.1 shows a set of MEM specua based on this result. It is instructive to

evaluate p, for the case of multiple complex sinusoids in noise, each having a different

frequency. The resulting time series is defined as
K
x, = .~’c=zlAk exp(ing) + w,

and the autocorrelation values become

(D.24)
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K
R(m) = Elxx ] = kzlAg expm,) + Elw w1,

thus

K K
R@O) = 2A§+ W and R(m) = ZA% exp(jm(pk). m>1
k=1 k=1

The initial condition: for the lattice filter are fﬁo) = bﬁo) =X, From (D.2)

*
o - -2 E[xnxn—ll ) R(1)
L= = -
Eflx |2+ {x ;|4 R(Q)
Substituting (D.26)
X
kzlAi exp(j9,)
L= - = X
ZA,ZC +W
k=1
This can be written as
K
p] = k-]_qk plk
where
n A2+ W
py = -—r—exp(p) wd g = =
1+ no, R©O)
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(D.25)

(D.26)

D.27)

(D.28)

(D.29)

(D.30)

A, and ¢, represent the magnitude and frequency of the complex sinusoids present, and

ng, = Af/W. This weighted average shows that p, is dominated by the strongest signal.

Note that in the case of two sinusoids and R(0) >> W, p,lies on the line in the

p-plane joining the two complex coefficients p); and p;,. In the case of three or more

sinusoids, p, lies within the region bounded by the lines joining the coefficients p,,.
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This implies that the magnitude of p, is always less than that for the strongest sinusoid
in the group, that is |p| S |p, | for all k. Consequently, the SNR value computed
using R(0) and the known measurement noise W, then substituted in (D.23), is only an
upper bound for the true magnitude of p; which obviously can be much less.
Conversely, the signal-to-noise ratio arising from (D.23) given the estimate p, per (D.1)

is always less than, or equal to, the true SNR.



Appendix E
REFLECTION COEFFICIENT SENSITIVITY TO QUADRATURE ERRORS

Several errors can occur during the sampling of coherent quadrature data.
Alignment errors in the in-phase and quadrature channels can result in uncqual voltage
gains, a phase difference other than the required 90°, and different noise levels. The
first two factors can significantly alter the spectrum of the data and, consequently, the
reflection coefficients themselves. In this appendix the effects of these errors on the
spectrum are derived first. The sensitivity of the first reflection coefficient to changes
in gain and phase errors is computed and some heuristic arguments are presented
regarding the sensitivity of higher-order coefficients. Finally an algorithm to find the

needed correction factors without calibration signals is described.

E.1 Eff f Gai n

Given the signal phasor X with magnitude S and phase angle ¢, the true in-
phase and quadrature components are given by (see Figure E.1)

I = Scosp, Q = Ssind (E.1)

Defining the voltage gain ratio between the channels as ke. the gain error as e, and the

Q channel phase error as &, the apparent in-phase and quadrature components become
I =kel=(1+e)1 (E.2)
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Figure E.1 Quadrature error geometry

The error free / and Q components are derived from vector x and phase
an;lc ¢. Quadrature phase error § and gain error e lead to the measured values /* and
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Q' = Ssin(¢-8) = S sing cosd - § cosd sind
Q' = Qcosd -1 sind (E.3)

The required correction factors can immediately be seen to be

I=kll’; kl=

-

E.4)

[ 4

Q =k (Q +k I} kl"&%ﬁ; ky = sind (E.5)

A technique for finding the values ke and & is given later in this appendix. To find the
effect of these two errors on the spectrum, the apparent received signal V' must be
broken down into its various frequency components. The true signal V is assumed to
be a single complex sinusoid representing a Doppler target with amplitude A,

frequency @, and arbitrary phase y

V = Acos(wit+y) + jAsin(@t+y) (E.6)
V' = keAcos(aJHw) + JAsin(wt+y-8) (E.7)

In exponential notation
v - %. [ke JOI+Y) kec-j(mum N ej(wm;r-a) _ c-j(wrw-a)]

vV = ‘% [(kew'js)cj(mr+m + (ke—eja)c_j(mwm] (E.8)

The relative power in the positive frequency component is found to be (left hand term

of Equation E.8)
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. _ ﬂz 2
Pp =701+ 2keco.s'8+ 3 (E.9)
and in the negative frequency component (right hand term of Equation E.8)
Pt = 11~ 2k cosb+ k3] (E.10)
n - 4t T e )

From these equations it is clear that some of the power from the true target or positive
frequency component is transferred into the negative frequency component ("mirror
image” or false target). Using Equations (E.9) and (E.10), a false-terget-level ratio can
be defined (see also Sinsky and Wang, 1974)]

PI
FT(dB) = 10 log = = 10 zog[
P!

1 + k% - 2k cosd
£ ¢ E.11)

1 + k% + 2k cosd
€ 4
Figure E.2 shows false-target levels for some typical error ranges found in the TRACS-

ASR system. Referring back to Equations (E.9) and (E.10), note that the total power

does not remain constant (P = A2);
P =P +P =8 11.8Y (E.12)
T p n =~ 2 e )
The noise power W’ changes by a similar amount, leaving the total signal-to-noise ratio

constant. The shift of power to the false target thus causes a net reduction in the true

target SNR. This reduction can be expressed as a loss in SNR

LSN(dB) = 10 log (P,/W") - 10 log (PIW) (E.13)
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Note that the total noise power is given by W’ = % [1+ 42, thus

(E.14)

1 + &2 + Zkecasﬁ
LSN(B) = 10 log £

2 +k§)

This loss is plotted in Figure E.3 for several typical error values.

E2 Reflection Coefficient Sensitivi
The first-order reflection coefficient computed using the Burg formula is
given as
N *
-Zn_%xn Xp-1 RN
pl = — = = (E-ls)

N
RD
DIEACEREANE

where x_ is the ot complex data sample and N is the number of samples in the data set.
Denoting the error in x," resulting from the gain and phase misalignments as ax, the

apparent reflection coefficient becomes

N * *
'zn:):z[xn*‘“nl [x, *2%, ] RN + ARN
pi = N — =
2 9 RD + ARD
n=22[|xn+axn[ + |xn_]+Axn_1| ]
RN _ 2 NE * * »
, - n=2[unxn—l+xnﬁxn—l+mndxn-l ]
P = (E.16)

N
RD + 22[ ax |2+|ax | 22R(x A ax_ax )]
n=
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Expressing x and Jc;l in terms of their / and Q components (E.2 and E.3)

=
1}

! ib' = = 1 - [
a,+ an X, +8X, an(l +e)+ J(anO.S'a ansmﬁ)

[an +4b ]+ [aﬂe + j(bn(cosé-l)-an (E.17D

The error terms of Equation (E.16) can then be rewritten as

ARN

i

N
- 2n=22[anan_l(k§—l+sin2& -bb \sin?6-(ab +a b sindcoss+

+ j(an_lbn—anbn_l)(kecosa-l)] (E.18)

:

N
2,12 2 2,12 2_h2 in2
ni[(an-mn_l)(ke—l) + (anmn_l—bn-bn_l)sm 6 -
- (anbn+an_lbn_1)sin25] (E.19)
These terms are clearly data dependent and cannot be evaluated for any general case.

Further insights may be gained, however, by assuming the signal tv be a complex

sinusoid in white noise

a, = Acos(ng) + W bn = Asin(ng) +an (E.20)

where ¢ = wAr, the phase difference between adjacent samples. The summation signs

are then replaced with expectation operators

E[an]
Elab |

A+ W, Elb ] = %A2+WQ E21)
EQAZsin(2ng)] = 0 (E.22)
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Elag |1 = icosp (E.23)
Eb b || = sA%osp=Elaa ] (E.24)
Elab ) = -2A%sing (E.25)
Ela,_b] = 7A%ing=-Flaa ] (E.26)

Equations (E.18) and (E.19) thus become (recall P = A%)

ARN = - P [(2-1)cosp + 2(k cosS-1)sing] (E27)
ARD = W [(ng+1-dg)(k2-1) - 2dysin?] E.28)
where
P W, -W
!
we W, b s ey,

are defined as the signal-to-noise ratio and the channel differential noise factor

respectively. Similarly the expected values for the true reflection coefficient can be

evaluated

RN = -2 E[(anan_1+bnbn_l) + j(bnan_lmnbn_l)] = -2 P {cosd + jsing] (E.29)
RD = E[ai + bﬁ + ai_l + bi_l] = 2[P+W] (E.30)

hence
ny [(k§+1)cos¢ + j(2keco.s‘8)sin¢]

(ng+1) (k§+l) + do(cos26-k3)

(E.31)

Note that if the differential noise factor is zero, that is the noise in both channels is

equal, then
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ng 2k€
pl = - [cos¢>+ J—= cos6 sin¢] E.32)
n0+l k¢22+1

which shows that only the imaginary part is affected by gain and phase errors; in fact
since both |2k e/(k§+1)| and |cos8| are always less than one, pj is driven away from
the unit circle toward the real axis. Most of the information of interest is contained in

the magnitude and phase which are simply, from Equation (E.31)

nox/ [(k2+1)cos¢l? + [(2k cosd)sing)?
r= Ipi | = ¢ £ (E-33)
(ng+1) (k2+1) + dy(cos28-k2)

2k

¢' = arg(p)) = tan'l[k2 ;cosﬁ tamp] (E.34)
+
€

Note also that the phase angle of p; is independent of dj and ng. Since the term in the
brackets is always less than or equal to fan¢, with equakity occurring only when no
errors are present, any error will drive the angle away from +n/2 and towards O (O or
tr if the four quadrant arctangent is used). This is illustrated in Figure E.4. Figure E.5
shows the sensitivity of the magnitude expressed in terms of the apparent SNR. From
Equation (E.32) the magnitude r of the error free p, is seen t0 be ny/(ny+1), hence this

apparent SNR is defined as

uy = E.35)

The sensitivity of r to gain and phase errors can be found by differentiating

Equaton (E.33). To simplify this task define
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Figure E.4 Sffects of gain and phase errors on the apparent phasc of o

Plot of the deviation of the apparent phase angle ¢' from its true value
(¢ = 80°) as a function of gain error (top: & = 0°) and phase error (bottom: e = 0).
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ng
(n0+l)(k3+l) + do(cos28-k3)

V = J (42 1)cos)? + [(2k cos)singl?
thus

r=Uv, or = UdV+VolU

and

aF:

[

ar' ok (k3+ Deos2¢r (2cosB)sin%p  Ung+1-dy)
[ 4 V2 - no

: Ksinty Ud
g—g— = 2r'5sin2d [ £ k

ny
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(E.36)

(E.37)

(E.38)

(E.39)

(E.40)

The sensitivity to variations in the phase error is seen to be very low around values of

8 = 0 regardless of any gain errors or differential noise values. The requirements for

low sensitivity with respect to the gain error are somewhat tighter as is evident from

Figure E.5. Atke=1and6=0

Ry
U= and V=2
2("0 + 1)
hence ' =r and
L do
or' _ .
[ no + 1

In terms of the apparent SNR u, (Equation E.35) or' = (1-r)2 du; and

(E.41)
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duy = ngdydk, or OSNR(dB) = 4.34 dy 3k, (B.42)

Clearly a low sensitivity requires that the differential noise factor be zero. It is
interesting to note that if dy is not zero, the magnitude of py is not at its maximum
when the gain and phase errors are zero (see Figure E.6). A higher apparent SNR will
occur when the errors suppress the noisier channel to achieve a reduction in noise
power W’ which is greater than the increase in the false-target level. This phenomenon
has an implication when trying to determine the correction factors as described in the
next scction.’

The effects of these errors on the higher-order coefficients can be analyzed
in a similar manner, but the computations become extremely long and tedious. The
following heuristic arguments may provide some insights. It can be shown that the

expected value of the reflection coefficient P, for the single-complex-sinusoid-in-noise

case is given by

n

p = - exp(ime) E.43)

mnﬁ-l-l

which provides an upper magnitude limit of 1/m for large signal-to-noise ratos. It is
clear, however, that for m complex sinusoids p_ must be located much closer to the
unit circle in order for all m spectral peaks to be resolved [Stehwien, 1983]. Since the
phase errors can be modeled as the addition of a second sinusoid, p, will move close to
the unit circle, especially for large SNRs. It is more difficult to assess the change in
the phase angle of p,, but it needs to move considerably in order to correctly position
the second spectral peak. Experimental observations, albeit for a pulse modulated

sinusoid, suggest that change magnitudes greater than 7/2 are possible for typical error
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values. Because the true location of even higher-order coefficients is more and more
obscured, as little error as possible must remain before attempting to characterize and
classify the data, Any residual error will, however, place an upper limit on the order
for which vsetul information remains accessible. Unless this limit can be found, very

high-ord:r coefficients must be used with caution.

The plots in Figures E.4 and E.5 imply that if the signal is known a priori
to be a single complex sinusoid in noise, then a method for finding the correction
factors k;, k;, and ky is to simply look for a maximum in ' or ¢' relative to the
unknown errors ¢ and 8. A Doppler-shified test signal would serve this purpose nicely —
it allows direct and precise phase and gain measurements — but may not always be
available. Actual targets, however, will be modulated not only with the azimuth beam
pattern, but also with any internal target motion and scintillation. In practice they can
still be used since such modulation will not by itself contribute to apparent false
targets. Care must be taken, however, to ensure that the target Doppler will be
completely within one side of the spectrum, that is no d.c. value or aliasing should be
present. A frequency such that ¢ = +7/2 is ideal. From Figure E.S it is also clear that
as high an SNR as possible should be used to take advantage of the very sharp peak in
1. The presence of differential noise requires an adjustment of ke after finding the
maximum magnitude (¢' is independent of d;: see Equation E.34). From

Equation (E.39) the maximum of r' for § = 0 is found at

ng + 1 + dy(l + cor¢)
ng + 1 - dy(l + cot?)

oo
"

(E.44)
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At a phase angle equal to #/2 this reduces to

n0+1+dn

o'l
1

(E.45)

ng + 1 - d

For large ngy the peak in r occurs, as expected from Figure E.5, very close to ke =1 or
e =0. Hence steps 2 to 5 below are not required if ny >> dy(1+co¢), such that k=1
within the required precision. With this knowledge the procedure for finding the

correction factors can now be summarized:

1. Find values for k; and & which maximize r or u;, using Equations (E.4),
(E.5), and (E.15). Conventional gradient or search techniques may be used.
Minimizing |+n/2 - ¢'| is not as effective since the peak is quite flat (see
Figure E.4),

2. Initialize km to 1.

3. Set k, =k k., and compute d; = (WQ - Wl)/(WQ + W) where W, = W;lkz.
WQ and W; are the measured relative noise powers.

4, Apply the updated correction factors to the data (Equation E.5) and
recompute p,, corg = R(pA3(p,), and ny= |p,|/(1-|p,|).

5. Update km using Equation (E.44) and go back to step 3 until convergence is

achieved.

Figure E.7 shows sample spectra before and after applying the correction factors
obtained with this procedure on aircraft targets extracted from the recorded

TRACS—ASR data. The factors varied somewhat from target to target and tape to tape,
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but they were well within the regions of low sensitivity. All classification results

presented in this thesis were based on the application of these factors to the data.
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