Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6453
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCarbotte, J.P.en_US
dc.contributor.authorMansor, Mohameden_US
dc.date.accessioned2014-06-18T16:35:27Z-
dc.date.available2014-06-18T16:35:27Z-
dc.date.created2010-06-19en_US
dc.date.issued1994-09en_US
dc.identifier.otheropendissertations/1766en_US
dc.identifier.other3135en_US
dc.identifier.other1363971en_US
dc.identifier.urihttp://hdl.handle.net/11375/6453-
dc.description.abstract<p>We utilize Eliashberg theory, up to the Migdal approximation, to study some properties of two dimensional superconductors. The mechanism of superconductiviiy in this thesis is bosonic, either caused by phonons or by spin fluctuations. The order parameter is an s-wave for the phonon mechanism or a d-wave when considering spin fluctuations.</p> <p>The two dimensional (2D) superconductor is modeled by a stack of conducting sheets and coupling between the sheets is neglected for simplicity. The electronic density of states (EDOS) of a 2D electron gas on a lattice possesses a singular peak usually called a van Hove singularity (vHs). The presence of a vHs near the Fermi level is shown to enhance the superconducting transition temperature, Tc, for both mechanisms as well as reduce the isotope effect, β, from its standard value of 0.5 (predicted by BCS theory).</p> <p>The Eliashberg equations (EE) on the imaginary axis are handled in two ways i) the EDOS is used directly when integrating out the energy dependence of the EE to get analytical expressions that can be solved numerically ii) the k-sum is handled numerically from the start and the whole 2D Brillouin zone is used. In the first approach, infinite band models of EDOS are used, in the second only the dispersion of the electron gas has to be specified.</p> <p>Some of the properties calculated in this thesis are the critical temperature, the isotope effect (for phonons only), the specific heat difference and its jump at Tc, the thermodynamic critical field, the upper critical field and the London penetration depth. Impurity scattering is also considered, in Born approximation and in resonance scattering (for d-wave only). Experimental comparison with our results show that the isotope effect and the specific heat jump at Tc correlate very well with an s-wave order parameter, while the low temperature dependence of the London penetration depth and some superconducting specific heat results are best described by a d-wave order parameter.</p>en_US
dc.subjectPhysicsen_US
dc.subjectPhysicsen_US
dc.titleSome Properties of S and D--Wave 2 Dimensional Superconductorsen_US
dc.typethesisen_US
dc.contributor.departmentPhysicsen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.7 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue