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Abstract

We utilize Eliashberg theory, up to the Migdal approximation, to study
some properties of two dimensional superconductors. The mechanism of
superconductiviiy in this thesis is bosonic, either caused by phonons or by spin
fluctuations. The order parameter is an s—wave for the phonon mechanism or a
d—wave when considering spin fluctuations.

The two dimensional (2D) superconductor is modeled by a stack of
conducting sheets and coupling between the sheets is neglected for simplicity. The
electronic density of states (EDOS) of a 2D electron gas on a lattice possesses a
singular peak usually called a van Hove singularity (vHs). The presence of a vHs
near the Fermi level is shown to enhance the superconducting transition
temperature, T o for both mechanisms as well as reduce the isotope effect, A, from
its standard value of 0.5 (predicted by BCS theory).

The Eliashberg equations (EE) on the imaginary axis are handled in two
ways i) the EDOS is used directly when integrating out the energy dependence of
the EE to get analytical expressions that can be solved numerically ii) the k—sum is
handled numerically from the start and the whole 2D Brillouin zone is used. In the
first approach, infinite band models of EDOS are used, in the second only the
dispersion of the electron gas has to be specified.

Some of the properties calculated in this thesis are the critical
temperature, the isotope effect (for phonons only), the specific heat difference and
its jump at T o the thermodynamic critical field, the upper critical field and the
London penetration depth. Impurity scattering is also considered, in Born

approximation and in resonance scattering (for d—wave only).
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Experimental comparison with our results show that the isotope effect and the
specific heat jump at T c correlate very well with an s—wave order parameter, while
the low temperature dependence of the London penetration depth and some
superconducting specific heat results are best described by a d—wave order

parameter.
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Chapter 1

Introduction

Superconductivity was first discovered in mercury (Hg) by
Kammerlingh—Onnes [Kammerlingh—Onnes 1911). Below the transition (or critical)
temperature, T c (~4 K in Hg), a superconductor has zero de resistivity. It also
expels magnetic field and becomes a perfect diamagnet [Meissner 1933]. Since 1911,
many other metals (eg. Al, Pb, V, Ta, Sn, Tl, In, Mo, Ga, Bi, La and Nb) and
alloys (eg. VaSi, VaGe, Nb,yAl Nb,Sn, Pb B, (x=0.9, 0.8, 0.75, 0.7, 0.54, 0.5)
and many others) have been discovered to superconduct. The highest T o Was~23 K
for N b3Ge. Early attempts to find higher < materials were concentrated on cubic
transition alloys, especially those containing niobium Nb, as well as materials that
possess lattice instabilities. These are called "Matthias’s Rules", which were based
on the fact that superconductivity is closely linked to the electron—phonon
interaction. Further explanation is given in the next section. It took quite 2 long

time to break out of these rules and look for superconductivity somewhere else.



The break through came in 1986 when Bednorz and Miiller discovered a
30° K superconductor in a copper oxide based material (La—Ba—Cu—O) [Bednorz
and Miiller 1986]. Soon after, a host of the new superconductors the cuprates were
discovered (T ~20—40"K and chemical formulae La, M, CuO 4y M=Ba, Sr, and
Ca). These materials are usually denoted as La214, and the individual members
assigned LSCO, LBCO and LCCO according to their metallic substitution M=Sr,
Ba and Ca respectively. Application of large pressure on the LSCO system raises
T, to just above 50 K. In 1987, a substitution of La by Y (to induce internal
pressure [Pickett 1989]) resulted in a 90 K superconductor and later identified as
YBa2Cu3O7_y (to be denoted Y123 or YBCO). To date, one of the highest T,
cuprates discovered so far, is leBa,ZCa.Cu208_y (denoted T12212 or TBCCO) with
a T, of ~120 K. AL of these high temperature superconductors exhibit strange
electrical properties both in the normal and the superconducting states. The parent
compounds (x=y=0 and y=1 for Y123) are antiferromagnetic insulators, and after a
few percent doping, an insulator—metal transition takes place beyond which a
superconducting transition occurs. The superconducting transition curve in the
phase diagram is a parabola: T c increases as the doping increases until it reaches a
maximum (optimum doping) and decreases afterwards to zero at doping level of
20% to 40%. Other anomalies include their linear resistivity with temperature at
optimal doping above Tc as well as non—constant Hall angle and coefficient in the

normal state.

I. The Theory of Conventional Superconductivity
Early attempts to describe superconductivity were phenomenological and

coined "super"—conductors in analogy with (charged) superfluids. The two—fluid



model [Gorter and Casimir 1934 a,b] separates electrons in a material into
superconducting and normal fractions. This proved useful in explaining the
Meissner effect [London 1948]. Further development in second order phase
transitions led to a macroscopic quantum theory of superconductors in which the
order parameter is the superfluid density [Ginsburg and Landau 1950]. This is
called Ginzburg—-Landau theory and is still very useful in many calculations and is
used, even at present day, to explain various superconducting properties, especially
near T . Hints of the microscopic interaction that caused superconductivity in
electrons became apparent only after an experimental connection between T c and
the isotope mass M of the material was established, for example, for mercury

T *M/2. constant [Frohlich, Maxwell and Reynolds 1050). Frohlich proposed that
phonons, play a major role in superconductivity. Soon after Cooper calculated an
instability for two electrons on the Fermi surface, with opposite spin and momenta
kT, — ki), towards pair formation {Cooper 1956]. Finally, Bardeen, Cooper and
Schrieffer came up with a new microscopic theory (BCS theory) based on an
attraction between electrons which is mediated by phonons and causes electrons to
condense into a highly correlated superconducting state [Bardeen, Cooper and
Schrieffer 1957]. In BCS theory, an attractive constant potential, V, between a pair
of electrons of opposite spin and momentum causes them to pair up and form a
Cooper pair. The average size of a Cooper pair (correlation length), £ is roughly of
the order of thousands of Angstroms, while the average interelectron distance is
about 1-2 Angstroms. Obviously, there is a great deal of overlap between the pairs
in real space which, in turn, gives the wave function high rigidity, reflected in zero
de resistivity. Furthermore, this constant potential V extends, in momentum space,

to momentum states of energies wp in an inner and outer rim of the Fermi



surface, where @p is the characteristic Debye frequency associated with the lattice
specific heat. It turns out in BCS theory that the transition temperature 'I‘C is

given by

= 1
TC = 1.13 WD eXp [— WJ (11)

and that the excitation spectrum, reflected in the specific heat of the

superconducting state at low temperature, is gapped by 2A0,

Ay =2uwp exp [— NTE%]V] (1.2)

where N(E;) is the electronic density of states at the Fermi surface. It is quite
apparent that equation (1.1) leads to T /wpy~ constant, and hence, T, ml/2,
constant, since for phonons w M_l/ 2

BCS theory is a universal theory and has been highly successful in a
qualitative sense, and sometimes quantitative sense as in aluminum. Lead and
mercury, on the other hand, are poorly described by BCS theory. For materials
with small wpy it is necessary to take into account the retarded nature of the
electron—~phonon interaction. Even in the normal state, the electronic properties are
slightly modified by the electron—phonon interaction. The theory of
electron—phonon interaction in the normal state was first developed by Migdal
[Migdal 1958]. Eliashberg extended Migdal formalism to the superconducting state
{Eliashberg 1960]. The Eliashberg theory explained deviations from BCS theory for
most materials to within a few percent, excluding the recent high temperature

superconductors, making it one of the most attractive and successful theories known



at the present time [Carbotte 1990]. Eliashberg theory has two microscopic
parameters a2F(w) and g*. The spectral function a2F(w) is obtained from an
electron—phonon coupling ow) and the phonon frequency distribution F(w). The
parameter p* represents the effective Coulomb repulsion between two electrons in a
Cooper pair. Extension oy Eliashberg theory to other boson mediated interactions is
quite trivial, since phonons are bosons, and the only requirement is to make sure
that only retarded three body, interactions {e,e,ph.) are included (Migdal
approximation). Higher order interactions should be of smaller magnitude and can
be neglected. This is not so obvious for the spin fluctuation mediated
superconductivity. Furthermore, Eliashberg theory is generally formulated for
metals with large Fermi surfaces and, consequently, a constant density of states at
the Fermi level. However, for materials like high T ¢ Superconductors with narrow
bands and rapidly varying densities of states near the chemical potential, Eliashberg
theory needs to be modified. There is little theoretical literature on the variouy
properties of these materials. This is the prime motivation for the work presentad
in this thesis. In this thesis, we would like to calculate some thermodynamic
properties and compare them with recent experiments on the cuprates and,

eventually, try to draw some conclusions from our calculations.

II. Structure of High T, Materials and their Electrical Properties

Crystal structure characterization of all the cuprates have yielded that
they are made of Cu—O,, layers separated by salt (ionic) layers (i.e. La,0, in the
case of La214) and sometimes these ionic layers are threaded by Cu—O chains
(Y123). The Cu~O bond length in the Cu—O,, layers is too short to give it a

meaningful ionic character. Initially, most researchers believed that this bond is



covalent as a result of hybridization of oxygen p—orbital with a dx?—y2 —orbital of
Cu2+ ion. Band calculations, however, predict a half filled valence band for the
parent compounds (i.e. metals) while in actual fact they are insulators. Others
think the hybridization is not ‘complete and results in a Mott insulator. The third
view, and most popular, is the Hubbard model. In the Hubbard model there is one
electron on each Cu site in the Cu—O2 layer, from 3d9 shell of Cu2+ ion, and these
electrons are strongly localized. The localization is a result of an on—site Coulomb
repulsion U to any other electron that happens to hop and fill the hole on the Cult
ion. It is only when these Cu—O2 sheets are chemically doped with holes (electrons)
that electron hoping may cost no extra potential energy, they become conducting
sheets. It has been argued that this on—site repulsion U results directly in an
insulating gap at half filling (parent compounds) as well as favouring the
antiferromagnetic state by lowering its ground state energy by a factor of ~ t2/ U,
where t is the kinetic hopping energy of an electron between two Cu sites. It was
first proposed by Emery {Emery 1987] that the 3d—Cu orbitals are split into two
bands separated by the Hubbard gap U (the on—site repulsion) and the valence band
for the cuprates is c—antibonding of the oxygen 2px’ y orbitals in the Cu—0 layer.
Since the vacuum consists of Cu® ions with their 3d—electrons strongly localized,
the valence band is completely filled. The idea here is that the 3d—Cu states do not
hybridize with the oxygen orbitals, and hence, for the half filling case, the cuprates
are insulators. Band calculations with strongly localized 3d—Cu states, using linear
augmented—plane—wave (LAPW) method, indeed showed filled valence bands
[Mattheiss and Hamann 1989]. According to these calculations, the doped holes
initially depopulate the antibonding ¢ bands that point along Cu—O bond

directions, with 7 and 2p, sub—bands entering only at larger hole concentration.



The last model that we would like to mention is due to Anderson [Anderson 1987].
Anderson argues that the on—site repulsion limits the phase space available for other
electrons with opposite spin, similar to the Pauli exclusion principle of parallel spin
electrons, and, in turn, leads td different spin statistics from that of the normal
Fermi liquids. The single particle picture is not adequate to describe the excitation
spectrum or the dispersion for that matter. The ground state is a highly correlated
state and non—perturbative, and the quasi—particles are drastically different from
the usual particle—hole excitations. There are two kinds of quasi—particles in this
theory, spinons (no charge) and holons (no spin), and the spin and charge of
electrons are separated. This last theory is called the Resonating Valence Bond
(RVB) theory. The RVB theory is outside the scope of this thesis, although we
might make a comment or two about it as events unfold. Experimentally, we still
await hard and clear evidence for the existence of these two kinds of quasi—particles.
There is not enough experimental evidence to discriminate against any of the
aforementioned views.

In this thesis, we will adopt the Fermi liquid picture generally accepted
for large doping. This is consistent with Eliashberg theory in which the
quasi—particles are Fermions. The only thing left to decide is what kind of
dispersion or density of states we should use for the electrons. This is explained in
the next section.

The last structural aspect of the hole doped cuprates, which we would
like to emphasize, is the existence of apex oxygen coordination for the Cu ions in the
layers. Apex oxygen ion coordination for Cu in the hole doped cuprates turns out to
be very important and necessary for superconductivity, and maybe even for

metalicity. Recently made, the so—called infinite layer cuprates Cal_xLi xCu02



and Cay gc8rj 1,Cu0O, are both semiconductors and nonsuperconductors [Kubo and
Yamauchi 1994]. Their resistances at room temperature are two orders of
magnitude higher than the superconducting cuprates. Both of these compounds
contain only four—coordinated Cu ions (planar). To shed some light on the matter,
we will discuss the difference between 4 ,5 or 60 coordination of Cu according
to the third model (Hubbard) which utilizes the Jahn—Teller effect [for a short
review see O'Brien 1993]). The on—site repulsion of the 3d° shell of Cu®* splits the
3dx2_y2 orbital into two orbitals separated by an energy gap U The upper (lower)
orbital is a spin up (down) orbital and reverses its spin for the nearest neighbour Cu
ion. This split decreases monotonically with doping. Furthermore, the 3dzz orbital
splits into two orbitals separated by another Hubbard gap U2, this gap is zero for
zero doping and increases in magnitude as a function of doping [Kubo and Yamauchi
1994]. In the sixth or fifth coordination of Cu ions in the Cu—0,, planes, the
Jahn—Teller gaps, separating 3d X2y and 3d_, states, are much smaller than the
gap in the fourth coordination. It seems that the 3(122 orbital plays a significant role
in charge transport in the high temperature superconductors (HTSC). The upper
3d_, may hybridize or strongly overlap with the lower 3dx2—y2 as well as the
antibonding o bands of the oxygen. Band renormalization have been observed
recently in Bizsrzca.l_“xYKO8 4§82 function of doping. X-ray photoelectric
spectroscopy on this compound showed that the chemical potential shifts from
between the upper and lower Hubbard bands at half filling, to the top of the valence
band, and is associated with a considerable spectral weight shift from the higher
energy band above the Hubbard gap to that below the Hubbard gap [van
Veenendaal and Sawatzky 1994]. In conventionzl metals, the speétra.l weights of

the electronic bands are independent of filling (single particle picture).



The complexity of the electronic bands of the HTSC is still a hot subject for
research involving different kinds of electron spectroscopies. Theoretically, it is still
a challenging field and some, like Anderson, think resolving it is essential to sort out

the mechanism for the high temperature superconductors.

IOI. Dispersion and Electron Density of States Models for the Cuprates

As mentioned in the previous section, electron dispersions in the high
temperature superconductors are not well known. We still, however, get a good
approximation by using tight binding dispersions. A typical dispersion for a square

lattice is
€ = —2t{cos k a + cos kya — 2B cos k a cos cos kya]—p, (1.3)

ki is the momentum in the ith direction, u is the chemical potential, t is a kinetic
energy hopping parameter between nearest neighbours, B is the relative strength of
next nearest neighbour hopping, and a is the lattice spacing in the plane. Equation
(1.3) is only applicable to high hole (electron) doping, where the Fermi liquid
picture is plausible. We have chosen the z—axis to be perpendicular to Cu—O2
sheets and assumed equal bond distances in the x and y directions. The latter
assumptions hold extremely well for all the cuprates. Photoemission intensity
experiments [see the discussions in Schneider 1990 and Wermbter 1992] support the
applicability of tight binding approximation. The electronic density of states
(EDOS) is shown in Figure (1.1) for the dispersion in equation (1.3), dotted line is
appropriate for LSCO (B=0.16) and the long dashed line (B=0.48) is appropriate
for Y123.
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The common feature of these EDOS’s is that they all contain sharp
peaks called van Hove singularities which are characteristic of electronic bands in
two dimensions. Early formulation of BCS and Eliashberg theories considered only
a constant EDOS at the Fermi level and later on Eliashberg theory was modified to
include a Lorentzian peaked density of states [Mitrovic 1983] to explain the high
transition temperature for A15 compounds (chemical formula A3B). After the
discovery of the HTSC, many researchers modeled a van Hove singularity with a
logarithmically divergent electronic density of states and incorporated it into the
BCS theory [Dzyaloshinskit 1988; Xing 1991; Newns 1992]. Part of the work
presented here includes these model density of states with logarithmic divergencies
in the Eliashberg formalism. These model density of states are i) an undaﬁxped

logarithmic singularity

N(e) = Nb[r-s In| &2 ] (1.4)
and ii) a damped logarithmic singularity
N(¢) = N, [r——3 In| &8 (1.5)
ol (e-gZep? 1D |

where Ny is a background density of states similar to N(E,) in equations (1.1) and
(1.2), r and s control how much strength the logarithmic part has, E; is the width of
the logarithmic singularity, 4 gives the position of the peak away from the Fermi
surface, and finally, D is a Lorentzian damping for the logarithmic part. Figure
(1.2) and (1.3) show the EDQS for these two models, undamped in the upper frame
and damped in the lower frame for both figures. In Figure (1.2), E, is 500 meV and
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the upper frame shows a negative density of states for the solid line (see figure
caption for parameters} which is unphysical. Increasing E¢ to 1500 meV in Figure
(1.3), overcomes this difficulty. In the damped case (lower frames) with D~40 meV,
both density of states, E;=500 and 1500 meV, are positive definite and very
physical. The parameter D sets the actual width of the peaks as can be clearly seen
from both figures.

IV. Scope and Outline of Thesis

In Chapter 2, we present the necessary theoretical background to modify
Eliashberg formalism to take into account the EDOS variations and derive some
specific formulae needed to compute the properties presented in Chapters 3, 4, 5 and
6. In Chapter 3, we study the transition temperature, the isotope effect, the gap
ratio and the termodynamic critical field associated with phonon mediated
superconductors. In Chapter 4, we study the London penetration depth utilizing
finite bands and concentrating on d—wave superconductivity stabilized by
antiferromagnetic spin fluctuations. In Chapter 5, we study the specific heat for
both models described in Chapters 3 and 4. In Chapter 6, we study the upper
critical field for both types of order parameters, s—wave and d—wave, but utilizing

the Fermi surface approximation. Finally, we provide a short summary in Chapter

1.
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Chapter 2

Formalism

I) Introduction

In this chapter, we will list the Eliashberg equaiions as well as derive the
thermodynamic potential for an electron gas interacting with a background of
phonons (or spin fluctuations) and a dilute concentration of normal impurities.
Following this, we will derive a new formula for the London penetration depth for a
finite band superconductor applicable to Eliashberg formalism. Finally, we will
show how to treat the upper critical field so as to include a general density of

electronic states in two or three dimensions.

) The Eliashberg Equations oa the Imaginary Axis
A) Pure and Born Approximation Limits

The Eliashberg equations are a set of self consistent equations that
describe the superconducting (or normal) state, and from which several

thermodynamic properties can be calculated. The Eliashberg equations are

15



16

analytically derived from the self energy, ¥, of a particle—hole propagator, G, called
a Green’s function [Eliashberg 1960]. In quantum field theory [Mandle and Shaw
1984], the self energy %, of the propagator G, is calculated from a set of Feynman
diagrams, shown in Figure (2.1). The intera.ctioh of electrons (or holes) with bosons
(phonons or spin fluctuations) is given by the first diagram in Figure (2.1a). Migdal
has shown that in the case of phonons, the vertex corrections are of the order of
(wp/ eF)I/ 2,072 [Migdal 1958}, where wp is the Debey frequency and ¢ is the
Fermi energy. However, it is still debatable whether or not the same situation can
be extended to include spin fluctuations. In the absence of instabilities like spin (or
charge) density waves SDW (CDW), it is safe to assume that only first order
interactions are of significant importance, and higher order corrections (Figure
(2.1b)) can be neglected. The solid line in Figure (2.1a} denotes the Gor’kov
Green’s functions G(p) which is a 424 matrix [Maki 1969], and its inverse (‘;(p)_1 is

related to the self energy matrix ¥(p) by the so called Dyson equation,

P, |
G(p) " =G%p) " —%(p) (2.1)
here, Gﬁ(p)—1 is the inverse of the noninteracting Green’s function G0(p),
pE(k,iwn), with wn=1rT(2n+1), n=0, £1, £2, ..., etc., T is the temperature of the

system, and k is the momentum of the quasiparticle (the propagator). The inverse

of the noninteracting Green’s function is given by
- _1 . -
Gop) ~ =iw — €, (2.2)

where ¢, is the dispersion of {ree electrons in the band, and Bis a diagonal matrix
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formed from the tensor product of two Pauli matrices, Ei='r3: Tg and has the

following form

T
Il
prem——

OO OoO
oo O
O OO

] . (2.3)

OO
[

The inverse of the Green’s function G‘(p)_1 in the superconducting state is written

as follows

the superscript ~ indicates a self consistent renormalization of the Matsubara

frequency w, as well as the dispersion €K and &:5-2: Tq has the following form,

o

The order parameter in the superconducting state is given by the off diagonal

[l e N e an ]
o O o
[ e I e
Lo R o [ com ) )
—_—

~—

]

o

Py

component ¢(p) of £(p). The parameter ¢(p) plays the role of the energy gap in the
superconducting state. The normal to superconducting phase transition is
characterized by the onset of a non—zero value for ¢(p). Eliashberg equations
describe both the normal state (¢(p)=0) as well as the superconducting state
(#(p)#0). Tuere is still a normal state solution of the Eliashberg equations below
the transition temperature and this solution, of course, has a higher free energy.

The wiggly line in Figure (2.1a) is the boson propagator, B, inducing the interaction
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responsible for superconductivity, and the self energy i‘,b(p) from this boson

interaction {Allen and Mitrovic 1982] is given by

. o0 2 ¢ P
B n)=T D, [ andERE, 020 e s (2
Ny k',m*0 Q"+ (wpwp)

where Ny, is a background average of the electronic density of states (EDOS) near
the Fermi surface, the boson propagator is written in terms of spectral
representation o?F and p=f or the identity for phonons or spin fluctuations,

respectively. Inverting equation (2.4) to get

' G(p) =_i2)(p)+ ggg}ﬂ_qb(p)a’ (2.7)
where
D(p) = &(p) + €%(p) + ¢%(p) (2.8)

and using Dyson equation (2.1), we can write down the self energy Eb(p),

component wise as

~ _ t o w(k’,m
b (kn)=u + T Y Mkkm m) D{V‘ﬁ} (2.92)

Nb k',m
and
Wem) =27 2 Akkinm) SEm) 23

Nb k' m

— sign for spin fluctuations and,
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x(kn)=-T Z A(k,k’;n—m) & k' ,m (2.9¢)
4 ,m

1m ’
ka

where we defined x and X as

x(kn) = €(k,n) - ¢, (2.10)

o o]
Ak’ ,o-m) = [ auﬁﬂgw;nn2(2” = (2.11)
0 +w —w
m

n
Elastic impurity scattering up to a second order in the impurity
potential (Born approximation) is included by adding the contributions of Feynman
diagrams in Figure (2.1c) for normal impurities and the diagram of Figure (2.1d) for
paramagnetic impurities. Assuming potentials that are momentum independent for
this elastic process, the self energy due to impurities is given by [Allen and Mitrovic

1982,

: t Bt E N oy
EB(R) = —N— 2 ,H)ﬂ + -7'I'-N— / G(k ,Il) (212)
b k' b k
where t0 and t* are proportional to normal impurity scattering in first order and

second order, respectively, and t~ gives the strength of the paramagnetic impurity
scattering to second order. Eliashberg equations that include elastic impurity

scattering up to second order can be written as

+ -_—

. k’ b+t

kn) = w_ +1 2; Ak K’ n-m) 2{&/.m +7£%~de,(zwq
b
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’ +__ -
qb(k,n) = % % kzm A(k,k";n—-—m) k ,rmn + t_'rrN;_' Gz(n), (213b)
b 1

note that the reason of the — sign with t™ is the same as that for the — sign

associated with spin fluctuations,

~ p + —
x(k,n) =—'Tﬁ 1; A(kk’;n—m) & k E + to—t—ﬂ'*q":)—Gl(n). (2.13c)
pe M

Where we defined Gi(n), i=0, 1, 2 as follows

Gy(n) = ; %&%}, (2.142)
G,(n) = ; fy&%} (2.14b)
Gy(n) = Zk: g%g} (2.14¢)

Besides the electron—boson interactions, there is also a screened Coulomb repulsion
between two electrons in a Cooper pair. In the normal state, the repulsion exchange
between electrons modifies the bands of electrons through the Hartree and Fock
terms. As pairing takes place, on average there will be extra repulsion between two
paired electrons. This is only an off diagonal effect and only modifies the gap
equation ($(p) equation). The range of the Coulomb repulsion is of the order of the

Fermi—~Thomas length qp Which is also comparable to the Fermi momentum kF.
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It is very hard to get any quantitative measure of the Coulomb repulsion u for any
material because it is a many body problem that involves the long range Coulomb
force. The most dominant contribution to the repulsion comes from x(Ey) at the
Fermi surface. In Eliashberg theory ,u(Ef) is an adjustable parameter that can be
used to fix T, for example. It is shown [Morel and Anderson 1962] that the cutoff

can be scaled down to w, ~ several w_ . by renormalizing p(Ef) to ,u*(wc) with

Wnax being the maximum boson frequency and
#(Eq)
i) = f B (2.15)
1+;L(Ef)£n[ ]
Ye

For isotropic interactions in the absence of particle—hole asymmetry (x(r)=0), the

Eliashberg equations in the clean limit reduce to [Rainer and Bergmann 1974]

A, )i, )-ﬂz Mo, )4 )0 ()l )

—m

Aliw
x (o) (2.16a)

J 2, A2,

watA (1w )
and
w
Z(lw =1 + 2 Aljw~iw ) o (2.16b)
“n m=-o0 \/wi+A2(iwm)

where we used qbn A nzn’ w —Zn e

states by using N(e)~Nb and

and performed the sum over the momentum



2
dn
§=f_: deN(e) [ =% (2.17)

where df2, is an element of solid angle. The isotropic A(z) is given by

@)= [ > @iﬂ? dv (2.18)

0 4z

and &(x) is a step function defined by

Bx) = { 5 X208, (2.19)

In Eliashberg theory, the strength of the electron—boson coupling is related to the

spectral function of the bosons by a dimensionless parameter A
o0
a=2 f 492, (2.20)
0

The larger A is, the stronger the coupling. Conventional superconductors have A
values which may reach as large 15 2.76 [Carbotte 1990]. The quantity 1+ is the
mass enhancement factor usually inferred from the slope of the normal specific heat
at small temperatures. Another useful parameter is Tc/ W which is used to gauge

the electron—boson coupling strength. The parameter Wy, is defined by

Wy, = €xp {% J; > du a2F(w)£nw] (2.21)
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and was first introduced by Allen and Dynes [Allen and Dynes 1975]). The larger
Tc/ Wen ratio is, the stronger the coupling. Many approximate formulas fer strong
coupling corrections to BCS quantities have been derived using only the ratio

Tc/ Wp [Mitrovic, Zarate and Carbotte 1984; Marsiglio and Carbotte 1986]. Many
of our numerical results in the next chapters will be gauged by the strong coupling

parameter T / W

B) Normal Impurity Resonance Scattering Limit

" Normal impurity resonance scattering is calculated from Figure (2.2)
which includes higher order Feynman diagrams. The contribution of Figure (2.2)t0
the resonance impurity self energy ﬁr(k,n), for a given concentration 7 of scattering

centres is
Er(n) = n‘i‘(n) =7 {Vﬁ-}-Vz ; ﬁé(k’,n)ﬁ +

v 2, 3G B 6 B + ) (2.2)

Equation (2.22) is a simplified version of the T—matrix scattering equation, where
the momentum dependence of the scattering potential V is dropped reducing it to
an isotropic short range scattering potential. The solutions for T(n) in equation

(2.22) is quite simple and written as

) —iGO(n)+C(n)B—G2(n)&

T(n) = IG) (2.23)

with



25

L(n) = 0(n) +C (n) + G (n) (2.24)

and
C(n) = C + G{(n), (2.25)
=v (2.26)

Eliashberg equations then take the following form for normal impurity resonance

scattering,
, Gy
w(k,n) = wp + ’g 2 A kk’,n—m) w(k T%’ (2.27a)
bk .
G
¢kpn) =T 2 A( kk’,n—m) km 2(")

T & —1:(—; (2.27b)
b

_ , k',m) , S0
x(k,n) = —-ﬁbkz A kk n—m)]g{r,-l—} T L(a) (2.27¢)

) Thermodynamic Potential and Free Energy Difference
A) Pure and Born Approximation Limits
The thermodynamic potential Q for an electron gas interacting with a

gas of bosons up to the Migdal approximation [Migdal 1958] is given by [Luttinger
and Ward 1960):

2= -1 X fin(+ |Gy 1) + To 20) 60p), (228)
2 p

where Q2 is the contribution of Feynman diagram shown in Figure 2.3, TrO is short
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for the taking the trace of the matrix O, and |Q] is the determinat of O. The

contribution of Figure (2.3) to Q” is

Q=1 ; 5,(p) G(p), (2.29)

and using ]G_l(p)| = D2(p), we can rewrite equation (2.28) as

=-T 2 {ln D{p) + Eb(p) G(p)} (2.30)
The thermodynamic potential Q is a divergent quantity, however the free energy

difference QS—QN between the superconducting and the normal state is finite and

can be calculated quite easily from equation (2.30).

AQ = Q-0 =T ; {m %%1; + [zb(p) RN )c‘;(p)s]} (2.31)

The superscripts S and N refer to the superconducting and normal state,
respectively. It is a standard practice to compute the Bardeen—Stephan formula
AQBS for the free energy difference between the normal state and the
superconducting state and use it to compute the specific heat difference between the
two states instead of AQ. The Bardeen—Stephan formula is derived by adding and
subtracting the contribution of Feynman diagrams on Figure (2.4) to equation

(2.31). The contribution of Figure (2.4) Q, is given by

0, =T 2 108N G2 ] ; Tr ) G(e)" (232)
P
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i.e., add and subtract the left and right hand side of equation (2.32), respectively, to

the right of equation (2.31) to get
N o s A . )
80 = 2 fn 2oL 2 [3N)%0)] et 4606} 30

We have dropped the subscript b (for boson) because equation (2.33) applies equally
to the case of Born scattering by normal or magnetic impurities [Mitrovic and
Carbotte 1983], where the self energy £(p) is the total self energy f‘..b-l-ﬁB. The self
energy can be written in terms of w, ¢ and ¢ by using equations (2.1), (2.2) and

(2.4) to get the following form

(p) = i(w,—u(p)) + x(p)B - d(p) (2.34)
and, as before, p = (k;iwn).

The calculable form of Aflgg in terms of the parameters given by
Eliashberg equations (&,x,¢) is

AfQpg =T Ep: {ln g{%}g + [Mp)-Up)’) [%%g * %{%}]

(x(p)-x(@)"] [ég-)lg + E{g—}] + 8{%}3] (2.35)

We have dropped the superscript S for the superconducting state and replaced the N

by 0 to denote the normal state.



In the case of particle—hole symmetry, x(p)=x°(p)=0, and constant

background EDOS, equation (2.35) can be further reduced to

2, w0
AQBS=N(0)T§<f_:dc{ [ ¢ tex(n) ]

“+02 (n)+A{(n)

Bp(n) By (n) ]

N
+ [wk(n)—wk(n)] [52 +00%(m) ¥ e+ (1)+A5(n)

2
A(n)
2.36
TR (K (n)}> (239

where <...> denotes the average over the Fermi surface and N(0) is the EDOS at
the Fermi surface. With the aid of the equation (A.1) and (A.5) in Appendix A,

equation {2.36) can be written as

(2.37)
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and utilizing the identity w=|w| sign @ and few mathematical rearrangements, we
get

QBS=21rN(0)I§6<[5k(n)—‘/ mkﬁ(n)wk?] [1- 4(n) ]) (2.38)

W (n)+&2(n)

Equation (2.38) is the same as equation (27) in [Schachinger and Carbotte 1991] and
equation {20) in [Prohammer, Perez—Gonzalez and Carbotte 1993] for the

Bardeen—Stephan free energy expression in an anisotropic superconductor.

B) Normal Impurity Resonance Scattering Limit

There is a constraint on the thermodynamic potential Q of an iﬁtera.cting
system, namely, the self energy £(p) of the propagator G(p) is defined by requiring
that the variation of Q with respect to (p) is identically zero. The application of
the stationary condition to equation (2.28), i.e. 80/8E(p)=0, results in the proper
definition of Q/(p), i.e. ¥(p)=2 8Q'/8G(p)/T, and from which we demand that 0
has to be the contribution of the set of Feynman diagrams given in Figure (2.5).
The first diagram is the same one as in Figure (2.3), and its contribution was
evaluated earlier (equation (2.29)), however, the contribution of the rest of the

diagrams, denoted by S, can be evaluated quite easily by the following procedure.
s=TEm Z {vﬁ g Gk n) + 5 V2 (B ; G(k ,n))?
n

+3V (B 2 Gk n))° + } (2.39)
P
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Everywhere factors of the form 1/n are replaced by Ié dx xn—l, so now S can be

written as,

= TrZ ii{xvm(xv?z,ﬁc(k,n)g

+ (xR ; Bk n)2E+ ... } ; G(k ,n). (2.40)

The form inside brackets in equation (2.40) is the same one inside brackets in
equation (2.22), except now xV replaces V.
We now define T(x,n) to be identical in form to T(n), and each V in

T(n) is replaced by xV with T(1,n)=T(n). Equation (2.40) is easily rewritten as

s=11 D f;) 7y {T(x,n) ; G(k ,n)}. (2.41)

The integration over k can be performed (consult equations {2.142) to (2.14¢)) and

after taking the trace we get

2

2 20
=-—21}TZ 0 Ji{g{xVG ( Y +H{(xV)°[G ( )+G (n )+G ( )]] (2.42)

[
14+2xVG, (0)+(xV)*[G (n)+G 2 (n)]

The integration over x is trivial and we end up with

S = — 7T Z In[V2L(n)], (2.43)
n
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and L(n) is defined by equation (2.24).

The contribution Q‘ of Figure (2.5) is now given by
v =TT Y, Sorim)] 6(p) - T 2 WViL(),  (244)
P n

where we have used the expression for the total self energy of resonance scattering,
i.e. ¥(p)=E, (p)+7T(n).
The free energy difference between the superconducting and normal state

Afl is now easily calculated and is equal to

AQ = Mg + AR (2.45)
with
N N«
a0, = {2 nfl8+ F L e oo}, e

which can be reduced further, after doing the k integration and taking the trace to

A0, =7T Z{In[%%l] HGymGYm)+ o @I %) ™),  (2an)

where the superscript 0 refers to the normal state. Again for the case of constant

EDOS which is particle-hole symmetric G,(n)=0 and C(n)=C and

Gg(n) = 7N(0) sign &(n), (2.48a)



Gy(n) = wN(U)< () >= *N(0)G{(n),
J G (m)+ 25 (n)
X
Gy(n) = 7N(0) < ( )2 = TN(0)G)(n),
J B (0)+A(n)
C = =N(0)C’,

L(n) = ©N%(0) [G(n) + C*2 + G4 %))

1Y) = 2NZ(0)[1+C 7,

Qr=2nT2{£n[ 1+¢* 2 ]

130 U ler®4Gg? (n)+G5%(n)

+1G3(0)+07% [y - C,2+G62(i)+Géz(n)]}'

By eliminating ¢ from G6(n)+C’2, we can rewrite equation (2.59) into

. ;2
0, = 2°N(0) TT > {& [ — ]
n>0 C'%+CGy"(n)+Gy(n)

ot Gy(m)
+ [Ggln)-1] [1+c'2 c'2+G62(n)+Gé2(“)]

33
(2.48b)
(2.48¢)

(2.48dj
(2.48e)

(2.481)

(2.49)
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2
G5%(n
— (n) : } (2.50)
C'"+Gg“ (n)+G4 (n)
where we defined I by
I'= . (2.51)
7“N(0)

Equation (2.5) is the same as equation (21) in [Prohammer, Perez—Gonzalez and

Carbotte 1993).

IV) The London Penetration Depth

In this fourtH section, we will derive a new strong coupling formula
[Arberg, Mansor and Carbotte 1993] for the London penetration depth applicable to
finite bands as well as energy dependent electronic density of states valid for all
impurity scattering limits. The basic idea [Nam 1967] is to calculate the response

function K(q,w) for a paramagnetic current density J(q,w),

Jﬁ(q,w) = % {K;B(q,w) - Kﬂﬁ(q,o)] A¥(qw), (2.52)

the superscripts s and n refer to the superconducting and normal state, respectively,
and p stands for paramagnetic. The Greek indices specify the component of the

vector potential, A. The penetration depth A(T) is calculated from [Nam 1967],

A (T =2 d 2.53
wD=2f m (2.53)

where
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K, (aw) = K (q.0) ~ K D(q,0). (2.54)

The London penetration depth AW(T) is evaluated from equation (2.53) by using
K ,W(O’O) instead of K W(q,o) and is equal to

A (T)=K W(o,o)‘l/ 2 (2.55)
Y
The paramagnetic response function K(0,0) is given by
2 ' . ' A
K;B(0,0) = 4me” T kzn Tt {(Vkek) p G(kn)(V, ), G(k,n)} - (2.56)
’

and simplifies to

220 v, 2,y w2
K>5(0,0) = 167e? T g, vy, (p)+¢Dgl(’;;‘” (p) (2.57)

where v u= (") “ is e velocity. The final expression for K #V(O,G) to be used in
equation (2.55) is

.2 2,y ~2 02,y ~02
K = v v [E()+d (p)-w™(p) & “(p)-w "(p) , 958
i) Tg oo D*(p) D% (p) b

and again the superscript 0 refers to the normal state.
Equation (2.58) is very general and applicable to superconductors with

finite bands as well as clean or dirty superconductors including resonance impurity
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scattering. In chapter 4, we will utilize equation (2.58) to compute the London
penetration depth for a d—wave superconductor and compare it to a recent
microwave measurement of AL(T). In the constant EDOS and particle-hole
symmetry, we can utilize equation (A.7) in appendix A to show that equation (2.58)

reduces to

2y __K*(n)

n
FT [0%n) +&%m)°/2 (2:59)

2
K(0,0) = 8T e’ N(o) v

where we used <v?> = v§/3 = constant, which is the same as equation (1.11) in
[Nam 1967). It is important to note that the contribution from the normal state
part of equation (2.58) to equation (2.59) is identically zero only in the infinite band
approximation with constant EDOS. In a finite band, however, the contribution is
less than zero. In the clean limit BCS &(p)=w, for both the normal and
superconducting states, and it matters whether the integration over ¢ is done first or
the summation of the Matsubara frequencies is done first. To do the summation

over n first, we will use the following identities;

Y,
h = X 2.60
tan (%) n>0 1r2(2n+1)2+ﬂ2x2 (20)
and
tanh (f5) = 1 -2 (x) (2.61)
where
f{x) = _ﬁ_l
1+eP*

is the Fermi function and fis T~L. It can be shown quite easily that
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2_ 2
X —w

9i(x) ~ 3% tanh (6) = 5 ; e +wn] : (2.62)
n

The summation over n in equation (2.62) is unrestricted, and hence equation (2.58)

for clean a BCS superconductor becomes

BE(Ey) Bf(ck)} 259

_ 2
KW(O,O) =16re ; vuv”{ 3E, e,

which corresponds to formula (32) in [Marsiglio and Hirsch 1990].

V) The Upper Critical Field He,

The calculation of the upper critical field He,, for a strong coupling
superconductor reduces to solving the linearized version of the Eliashberg equations
in the presence of a magnetic field H. The linearized forms for @ and & are not
functions of the order parameter ¢ and only when considering the Pauli limited case
(strong magnetic field) are they functions of the magnetic field. Pauli limiting is
beyond the scope of this thesis and will not be discussed further. The order
parameter, however, is dependent on the magnetic field. The formalism adapted
here to treat the order parameter, is closely related to that of Scharnberg and
Klemm [Scharnberg and Klemm 1980] in which the pairing potential is not a delta
function (contact potential) in real space. The order parameter is given by

[Prohammer and Carbotte 1990]

¢(Rkjiw ) =—T gtn sz(k—q;wn—wm)E(R,q,iwm) r $(R,qiiw ), (2.64)
)
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where I2x(k—q; W n—wm) plays the role of the boson pairing potential previously

labeled A(k,q,n—m) and £ is given by
f(R,q,iwn) = fdwy fdwz eiq;(y—z) Go(y;iwn) x GO*(z;iwn) eiz.II(R) (2.65)

and II{R) is related to the magnetic field H through the vector potential A(R) and
is given by
I(R) = 1V + 2¢A(R), (2.66)

e is the change of the electron. The dimensionality of the system is w, in equation
(2.65), and Go(y,iw m) refers to the one particle Green’s function in the normal state

defined by
ik.y
Go(y;iwm) = 2 L (2.67)

At this stage, we will deviate from the standard procedure generally followed in
manipulating equation (2.64) to reach an eigenvalue equation for the upper critical

field He,. The new approach is as follows: first, we rewrite equation (2.65) as,

&(Rgivp) = ) [a% [d¥ 2 (2)

kkf
&7 1 _y I(R) ~ik'.z
x — —e k' e (2.68)

and we use the identity j°0° dte =271V Re z>0, to write (ck,+imm)_1=—ism
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(—lw_|+is_e )t .
j%o dte ™ mk yands =sign w_. Second, we integrate by parts with

respect to k’ to switch positions among the exponents —ik’.z and —ism Ek,t, and
ignore the surface part since it is equal to zero, see [Scharnberg and Klemm 1980,

appendix B].

: ik.y
(Rgiw_) = Z [d¥y J‘ d¥z J(y—2) _e
m ’ I

iy 0 (~|w_|+is_% ,)t)
. K2 Wy, JI(R) (—ism f dte m! m kT

(2.69)
0

Last, we operate with \Ik, on g, and do the spatial integrations followed by the

summations over k and k’, then equation (2.69) becomes,

t

—is_tV & .TI{(R) (=|w_ |+is %
)e momgt (2.70)

o's) .
- T f dte ™ 9449
Eq-lt.dm 0

)

—is
§Rgjiw ) = —

noting that we took advantage of some symmetries like % <= € q and VqE q="

v __q‘é ¢

The procedure carried out so far is independent of dimensionality w as well as
parity. The sum over q in equation (2.64) can be converted into an energy integral
Eq:j df2/Q « f N(e)de, and hence only the energy integral can be done
independent of the parity of the order parameter provided a separable model for the

pairing potential and the order parameter is used. We will not work out this
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problem in this chapter. Instead, we will treat it generally, independent of parity
and dispersion choices, for a magnetic field H along, say, the z—direction which in
two dimensions is perpendicular to the conducting plane. The vector potential is
calculated from A=1/2 H:R and applies only to continuous systems. A stack of

conducting sheets cannot be handled this way, and are outside the scope of this

thesis. For a constant field H=Hz equations (2.64) and (2.70) combire into

2 2
1,202(q)+v a)
tb(R,k;iw =+T Z ‘m 12 (k—q;n—m) f dte T (l(q) 2( )

q,me -i W

m

(—lw_|+is & )t -is_ta gt —is  ta B 1s trg(a) 5
mmat, e T e q z;R—,.q»(n,q,w ),(2.71)

x e

with a;=eH, aq=[ul(q)+iv2(q)]@, vi(q)=0/dq; € i=1,2,3 such that 1 and 2 are
labels for two orthogonal vectors in the x—y plane, u3—0 for two dimensions, and
finally B(B+) is a lowering (raising) operator for an harmonic oscillator in two
dimensions. It is natural to express the order parameter in terms of generalized
Abrikosov solutions N [Abrikoso(r 1957] and to separate its frequency and parity
dependence (implicit in q) from the spatizl varying part. The order parameter is
expanded as follows:

_ 2 k3 _ ik:_,‘R3
@(R,k;lwm) = & by A(k;lwm)@N(Rl,Rg) e , (2.72)

and for largest eigenvalue, we choose k3=0, and equation (2.71) now becomes
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is
bg Alkiiw )=+ T 2 — 0 1%x(k—gin—m)
Qo EHwy

o o2 2R (~1b|+is &)t
. f dte 7 1\d)+¥q e m qu
0

Ao zm j=N (s ta ;)L'N'['j (s, ¢ aq)j
' (qﬂ%m){u=o jamax(N-L,o) (BNHIN FORAF

e (U2 b0 } (2.73)

To get Hc,), one has to solve equation (2.73) for its highest eigenvalue. The
symmetries of the pairing potential, order parameter, and the system (i.e. crystal of
particular structure) which is usually reflected in the type of the dispersion can
reduce the number of integrals by a great number, for example in the free electron
gas model with an s—wave order parameter equation (2.73) is diagonal, since when

performing the angular integration of q, only the diagonal integrals are nonzero.

VI) Summary

We have given a derivation of the Eliashberg equations on the imaginary
axis for both the normal and superconducting states appropriate to finite bands,
equation (2.9a—). We have also included impurity scattering up to Born
approximation for both normal and magnetic impurities, equations (2.13a—). We
have considered normal impurity resonance scattering for which the Eliashberg
equations take the form presented in equations (2.26a—c). We have also presented

analytic derivation of the free energy difference between the normal and
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superconducting states for all the cases mentioned above. The free energy difference
is given by the Bardeen—Stephan formula, equation (2.35), for all the cases except
for the normal impurity resonance scattering. With resonance scattering, an extra
term is added to the Bardeen—Stephan formula and this extra term is given by
equation (2.47). We have also developed 2 rew formula for the London penetration
depth, equation (2.58), which is appropriate to finite bands and all types of
impurity scatterings considered above. We have dcrived a new formula for the
eigenvalue value problem for He, which is also very different in form from previous
treatments and is very general as well, equation (2.73). We have shown that the
free energy and penetration depth formulas reduce to the known ones appropriate
for infinite band with constant EDOS. Similar reductions for equation (2.73) are

shown in detail in Appendix B.



Chapter 3

Critical Temperature, Free Energy and the Gap

I) Introduction

After the discovery of the high temperature superconductors (HTSC)
and the determination of large anisotropy in the electric conductivity tensor, there
have been several attempts to correlate the high transition temperature T ctoan
anomalously large, two—dimensional (2D), electronic density of states (EDOS) near
the Fermi level of these- cuprates. As mentioned in Chapter 1, a 2D tight binding
conductor has a van Hove singularity (vHs) in its EDOS. This vHs diverges
logarithmically near the peak and, hence, can be approximated by a logarithmic
function. Early band structure calculations showed that the Fermi level of these
cuprates crosses antibonding p—oxygen bands and, hence, most of the electronic
properties are dominated by the oxygen character in the CuO2 layers, apart from
strong correlation effects coming from the copper ions [L. Mattheis 1987; A.J.
Freeman 1987]. Several authors utilized the vHs in the EDOS within the BCS
formalism to calculate Tc [Labbe and Bok 1987; Friedel a,b 1987; Combescat and
Labbe 1988; Labbe 1989; Markiewic and Giessen 1989; Markiewic 1990; Tsuei et al.
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1990; Newns et al. 1992; Tsuei et al. 1992]. Combescot and Labbe showed that T,
correlates with part of the EDOS ( coming from the CuO, layers ) at the Fermi
level N(0). They compared L214 (Tc=37K) with Y123 (T c=93K) and assumed that
the coupling strength, V, is the same for both of them. The CuO2 layer, one in

L214 and two in Y123, has a tight binding dispersion of the form,
g =2t (2—cosk a—cos kya) - (3.1)
with t;~05 eV, while the CuO chain in Y123 has a dispersion of the form,
g =2ty (L—coska)+2t, (3.2)

with t3 > t2~ tl.

The EDOS near the vHs in the planes is

161:1
e—4t

N
Np(e)~ z— {n
27 t1

, (3.3)
1

where N is the number of copper atoms in the plane, and for the chain the EDOS (

near the chain’s vHs ) is

(3.4)

N [ 2ts -1/2
Nc(f)”mg[ t2] -

Combescot and Labbe showed that the higher total EDOS, Nt’ for Y123 leads to
higher Tc~94K, independent of the pairing interaction V [Combescot and Labbe
1988], where N, is given by
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Ny =2 N () + N(e). (3.5)

Another group ( IBM Research Division) used a different type of dispersion with
saddle points in the energy surface for the band structure to get a logarithmic vHs.

This dispersion has the following form

k_k
= ot k!, ]kyl <k, (3.6)

This type of vHs, at kx=ky=0, does not have the nesting problems associated with
the simple tight binding dispersion, equation (3.1). The EDOS near the saddle
point can be approximated by
L2
N(e) = i@ |-D th D= oC (3.7)
() =gpfn |=5|» with D=g= :

and §is the chemical potential. Analytic calculations of T c and the isotope effect 3
gave very encouraging results. The isotope effect has a minimum at §=0 which
corresponds to a maximum in T c The shape of the T ¢ Versus hole doping curve is

Gaussian—like and is given by

T (6) = 1.36 D exp {— [a+62 [8—;72 + i_f]] 1/2} (3.8)
D
where c
s=f2+ (82 -1 (39)
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which is a constant independent of doping. These results correlate very well with
the shape of T_and # vs hole doping in the HTSC’s [Newns et al. 1992].

The density of states effect is not the only route to high T o In principle,
there is no upper limit on T c within the framework of Eliashberg theory. In the
asymptotic limit where the electron phonon coupling A is very high, T cls directly
proportional to X {Carbotte 1990]. Yet there is no reason to believe that the
HTSC’s have large ) simply because of the low density of carriers. Furthermore,
calculations within the Eliashberg formalism with a constant EDOS do not show
any agreement between theory and experiment, especially for the specific heat jump
A CV(TC), the slope of the jump at T ,, the isotope effect, and the shape of T, curve
vs doping [Akis 1991]. This scenario is unusual considering the fact that Eliashberg
theory is very accurate and well suited to conventional superconductors [Carbotte
1990]. Extension of the vHs model in the EDOS, equation (3.7), to the Eliashberg
formalism seems to be the next logical step to account for other effects such as
retardation and realistic pairing potential. It turns out that the mere inclusion of
retardation has a profound effect on both T c and the isotope effect. It was found
that T o is reduced by a factor of ~1-3 and the minimum isotope effect g gets
pushed up to a much higher value by retardation effects [Carbotte and Akis 1992;
Newns et al. 1992].

Retardation smears out the vHs in EDOS, giving a smaller and a broader
effective density of states. This point will be further clarified at the end of the next
section. In conventional BCS theory §is one half and with a vHs in the EDOS
Bin 1s about 0.2 at maximum T, [Tsuei et al. 1990]. For our particular vHs
model, ﬁmi o s about 0.35 for a reasonably weak coupling case. The minimum

experimental isotope effect is —0.1 [J. P. Franck 1994]. Inspite of this poor
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agreement, we nevertheless investigate the vHs model further and study its effects
onT c and f, as well as extend it to T<T cto study the gap ratio 2A /'I‘c, the free
energy and the thermodynamic critical field. In the next section, we will present
our model of EDOS which is appropriate for this. We will present all the formulas
used to calculate our results, including the Eliashberg equations for both the normal
and superconducting states and the free energy formula. We will present our
calculations on T c and f#in Section ITI, including normal impurity effects. Section
IV contains the gap ratio results and our results on the thermodynamic critical field.
Experimental comparison will be made in Sections IF and IV, and conclusions in

Section V.

II) The model of EDOS and the appropriate Eliashberg equations

In Eliashberg theory, the EDOS is considered to be a constant around
the Fermi energy and, because of damping effects from the Green’s functions, this
constant value N(0) is extended over the whole energy range. In normal metals, the
width of the electronic energy band is large compared to the scale of energy inducing
superconductivity, wry OF wWp. The general practice is to integrate the energy from
—00 t0 o0 in equations (2.9a—c), making use of equation (2.17) to convert the sum
over k to an energy integration. The pairing interaction A(n—m) is assumed to be
isotropic, so the angular integration is normalized to unity. We need a model for
the density of states N{¢) to be used in equation (2.17). Our choice of the EDOS
N{(e) is slightly different from equation (3.7) and has the following form:

N(e):Nb[ (—:52_—5 ‘ ] (3.10)
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We have introduced a background EDQS proportional to 1, in addition to the vHs
which is proportional to s. The width of the logarithmic divergence is scaled to Ef.
We introduce a damping function, Lorentzian with 2 width of 4D, to ensure that
N(€) 2 0V ¢ and to be able to change the width of the peaked EDOS. Recall that
Y123 has CuO chain which has a square root singularity of width less than the
width of the simple logarithmic singularity of the CuQ, planes. Equation (3.10)
models Y123 for D<<Ef and L214 for DgEf In all of cur calculations presented in
this chapter, the values asswned for the parameters in equation (3.10) are D=40
meV, E=500—800 meV, r=0.5-1.0 and in most cases, 5=1600 meV. A typical plot
of equation (3.10) was shown in the lower frame of Figure (1.2). Carrying out the

energy integration in Eliashberg equations (2.13a—b), we get

N(x__,6)

Bl

0
w =w +7T 2 A(n—m)
m=—00

]2

+ 7 (tT+7) 2R, 8) (3.11)

oo
. b <
o =T ZmHo \a-m) = O D] 22 ()

r(tT—t7) ‘n N(x_,4) (3.12)

where



normal state and Tc equation

xn =
N/ $n§+¢n2 sup e reonducting state
and
2R 2] Ly i)
. E
N(ab)=r~3 {
Y b% + (a+D)2
e B
_ b"4+a a }
b* + (a—D)
where
1 x20
0(x) =
0 x<0
and

00 2
An—m) = f dQ %Q a FU’Z)z.
0 O+ (w,—wp)

49

(3.13)

(3.14)

(3.15)

(3.16)

We have ignored the effect of the chemical potential equation, equation (2.13¢).

This is because self—onsistent calculations with this equation modify the chemical

potential, denoted by 6. The change of chemical potential implies a change in the

number of particles for a fixed volume.

Physically then, as the temperature changes the density of particles

changes. To prevent this from happening we must introduce a constraint on the

chemical potential. In practice, in a self consistent calculation the difference in

number densities between fully interacting and non—interacting particles is held
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constant and referenced to its value at zero temperature. This is more complicated
than just using equations (3.11) and (3.12) alone. We choose to ignore this effect
especially at 'I‘c and absorb its effects in §, since 4 is a variable. Furthermore, for
our particular model of N(e), the particle hole symmetry is valid for §=0 and 6> >E;
or D, so this effect is zero. The free energy difference between the superconducting
state and the normal state is easily calculated from equation (2.36). The free energy
difference for our particular model of N(¢), given by equation (3.10), has the

following form

Al = _—2:9 Zm_l {m[J R aﬁ]

n=

]
foo f"lEf— . [e2+m2+¢ﬁ
00 (e=6)%+D?

~ ~N o + X .
- an(wn “n)ty N (v Bn+¢n§,6)

+ o (30-2 ) R0 5)} , (3.17)

and the energy integration is handled numerically.

The generalization of the imaginary axis Eliashberg equations to include
a nonconstant EDOS was done previously in an attempt to explain some properties
of the A15 compounds. A Lorentzian peak, with adjustabie height and width,

superimposed on a constant background was utilized as a model for the EDOS [Lie
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and Carbotte 1978, a,b, 1980; Lie, Daams and Carbotte 1978; Mitrovic and Carbotte
a,b 1983; Picket 1980; Schachinger, Mitrovic and Carbotte 1982]. Also recently,
only the linearized (normal state) Eliashberg equations were generalized to include
an undamped vHs, equation (1.4), where it was found that strong coupling effects
and high temperature conspire to reduce the effective density of states N in the
imaginary axis equations compared to its value at zero temperature. To see this

clearly, consider ﬁ(ﬁn) for N(¢) coming from equation (1.4), which kas the form

w2 2
™ 5 wn+6
N(Un) = I—Q'EII [—'E"%'—]

(3.18)

and peaks for small values of Z'Jn. We notice here that En ~ 7T(2n+1)[1+A(n)), and
even if one chooses to take A(n)=0, the BCS case, then the smallest Bn is w0=1r’1‘
and the next higher value is w;=37T etc. . Nisa decreasing function in both T and
retardation ,i. e. the inclusion of all n up to the cut off actually reduces the effective
density of states. In other words, the peak in the density of states is blurred and
lowered in magnitude by high temperature. Retardation effects are smaller near
T=:0, and hence the EDOS effects are strongly reflected in quantities evaluated at

zero temperature like the gap A, and the thermodynamic field H c{0), as we will

show in this chapter.

III) The transition temperature T . aud the isotope effect A
In this section, we present our calculations of T c and S on two different
types of spectral densities: azF(w) of lead and a delta function at an Einstein

frequency wy. Both calculations are done numerically where we solve for the largest
E
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eigenvalue associated with the eigenvector ¢, of the normal state Eliashberg

equations, equations (3.11) and (3.12). The isotope effect 3 is given by

d T,
b=gmm (3.19)

where we vary the ion mass M by varying azF(w).

In the lower frame of Figure (3.1), we show that the isotope effect §is
minimum when the Fermi level is on the vHs, 6=0, rises to a higher va{ue than in
BCS theory (f=1/2), and finally drops to a saturated value close to the BCS value
as the chemical potential sweeps away from the centre of the vHs. A scaled lead
spectrum for azF(w) was used to calculate T . and fin Figure (3.1) with the
following EDOS parameters: D=40 meV, Ef=1500 meV, s=1600 (meV)2 and r=1.0.
The Tc curves are Gaussian shaped, centred on §=0, and superimposed on a
constant backgzround. The variation of &is achieved experimentally by chemical
doping, substitution, or even by applying hydrostatic pressure. The asymptotic
limit é—co for the T o curves comes directly from the constant background of
density of states. The widths of the Gaussian peaks in Figure (3.1) depend strongly
on the coupling strengths. The coupling strength is given by A or T c/ We where W

is called the Allen—Dyne parameter and is given by

Wy, = exp{§ j; * i %ﬂ a2F(Q)} (3.20)

with

,\=,\(0)-_—2j;)°° dnﬁgﬂl. (3.21)
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In the BCS limit both A and Tc/w£n — 0.

Our particular choice of T c/ wy, for all the calculations is T ca./ wy,» Where
T ca is the asymptotic (§—o0) limit of the transition temperature T o The solid
curve, Tca/ “&n=0'2’ shows an énhancement of T c at é=0 of 150% over the
asymptotic value, Tca'=10.5 K. Upon scaling a2F(u) by a factor of 3, A is increased
by the same factor and T ca doubles ( dashed curve, Tca‘/ wg,=0.4) and the width of
the Gaussian peak of the T ¢ curve increases. The maximum enhancement of T c is
only 53%, however. The flatness of the dashed curve ir the upper frame of Figure
(3.1) is qualitatively consistent with the universal relationship between T c and the
hole content in p—type cuprates [Zhang and Satc 1993]. Such an experimental effect
might arise, however, from pinning of the Fermi level to the vHs associated with
strong correlation effects. The isotope effect at é=o increases only slightly for
Tca/ wy, =0.4 over that for T ca/ wy,=0.2, yet the value of § at which f=1 /2 is much
higher and roughly corresponds to the width of the Gaussian peak in the T ¢ curve.
These isotope effect curves are not universal and it would be more meaningful to
plot them against T ¢ Another point is that if real materials are not pure and
contain nonmagnetic defects, such as impurities or some other type of disorder, then
the vHs effect is modified for both T c and 4. The parameters of the dotted line in
Figure (3.1) are identical to those of the solid line in the same figure but with some
normal impurities added, t¥=5 meV. The maximum enhancement of T c is only
110%, compared to 150% in the pure case (solid line). The width of the T, peak is
increased and the T, curve crosses that of the pure case at large 4. This is a sign of
EDOS smearing, where the peak in the vHs gets reduced and the background far
away from the singularity gets increased. The local minimum and maximum in the

isotope effect curve are pushed up and down respectively, and at sufficiently high
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impurity concentration both will collapse to f=1/2. The calculations presented in
Figure (3.1) are for u*=0.0 where as typically in real systems there is a finite
positive u* on the order of 0.1-0.2. This value could be even higher in the cuprates
because of less screening. In Figure (3.2), we calculate Tc and J for one point at
6=0 from the dashed curve in Figure (3.1). We notice only small effects on T, and
f upon increasing u*; the largest drop in Tc occurs in the interval 0¢u*<0.2. The
isotope effect changes slowly to reach a minimum value of 0.405 at x*=0.6. The f
dependence of Figure (3.2) is qualitatively different from the behaviour of that given
by the McMillan equation [Allen and Dynes 1975};

_ 1, _L04(14+A)(1+0.62)) 42 _
g 5[1 [A-p* (1+0.621)] 4 # ] (3.22)

which has a maximum £ for p*=0. This is not surprising since equation (3.22) is
only an approximation for Eliashberg theory with no vHs. Since the effect of u* is
very small, we will adopt a zero value for 4* in all our calculations.

We can use functional derivative techniques to achieve a better
understanding of the isotope effect. The isotope effect 8 can be calculated from the

following expression

00
ﬁ:j{; Aw)dw, (3.23)
where f(w) is the differential isotope effect given by [Rainer and Culetto 1979)

Blw) = ¢*F(w) R(w) (3.24)
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with
R(w) = ot c . 2a T (3.25)
2T 6PF(w)  2Tc W 542F(y)

In Figure (3.3), we show the functional derivative of T ¢ With respect to a-2F(w) of
lead, 6TC/ 6a2F(w), with EDOS parameters r=1.0, E{=1500 meV, D=40 meV, and
5:=800 (mev)z. If we neglect the second term in equation (3.25), we can see that
there will be a net reduction of the isotope effect for 6=0 (solid curve) because
6T/ 60:2F(w) < 0 for small w. For é=10 meV, 6T o 6a2F(w) is slightly displaced to
the left (dotted curve) and hence the isotope effect 3 should increase slightly which
is in agreement with the results presented in Figure (3.1). For §=80 meV,

6’1‘c/ 6a2F(w) develops a positive peak near small w and hence the isotope effect
exceeds the BCS value in accordance with Figure (3.1) (solid curve at §/Ef ~ 0.05.)
As §increases further (upper and lower frames of Figure (3.3)), the value of the
peak in §T / 6a2F(w) near small w gets even smaller and we expect 3 to decrease
further, approaching the appropriate strong coupling value given by the constant
background of the EDOS. In Figure (3.4), we show the evolution of §T o 6a2F(w) as
the weight s of the vHs in the EDOS is varied. As s is switched on, a negative well
in 6T/ 60:2F(w) develops near w—0. The well becomes wider and deeper as s
increases. It is clear that the reduction of §is dominated by the small—frequency
behaviour of 6T/ 6a2F(w). This may stem from a higher effectiveness for the low
frequencies in a2F(w) to increase A, and hence produce more retardation effects.
Retardation is expected to reduce the peak, smear it out and, decrease T ¢
Similarly, when 4 is outside the peak of the EDOS, retardation increases the

effective local density of states at the Fermi level and T c increases as a result.
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In Figure (3.5), we plot T . and § for an Einstein spectral function.
Density of states parameters are specified in the figure caption. The upper frame of
Figure (3.5) clearly shows that enhancement of T, is greatest for T Ca/ wy, =0.0019
(dashed line) and is of the order of 71 times Tca, while for an intermediate case
Tca'/ wp, =0.0226 (dotted line) is only 8 times Tca, despite the fact that these two
lines and the solid line have the same EDOS parameters. On the other hand, the
enhancement of T 2 for the strong coupling cases is ~ 85% for both the solid curve,
T, / wtn-O 215 and long dashed curve, T, u[n—O 135. Any isotropic mechanism
invoked to explain the high T must be associated with weak coupling strengths so
as to take full advantage of non—smeared EDOS. In the lower frame of Figure (3.5),
we plot the isotope effect against the transition temperature T c for the same set of
curves shown in the upper frame. It is clear that the isotopic effect is minimized at
maximum T c and is lowered for weaker couplings. The isotope shift increases at
higher values as we dope away from optimal doping, and even exceeds the BCS
value of 1/2 to reach a maximum which is higher for weaker coupling strengths.
The isotope shift then drops to §=1/2 again which is a direct consequence of the
constant background EDOS. The final point to notice is that the maximum of the
isotope effect is band—dependent as well. This is clearly seen from the long dashed
curve, which has higher background EDOS than the solid curve and lower T Ca/ Wep-
This would make 5T o Curves less universal than one might hope.

Next, we consider the effect of normal impurities on the transition
temperature and the isotope effect. Zinc substitution in CuO2 planes is believed to
introduce physical defects without changing the number of carriers of the Fermi
level. For small enough concentrations of zine, we can use the Born approximation

to study normal impurity substitution within the framework of Eliashberg theory.
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For a constant density of states, normal impurities do not affect T o at all.
According to the BCS theory of dirty superconductors [Anderson 1959], the pairing
is between an electron and its time reversed counterpart. For dirty
superconductors, the momentum of an electron is not a good quantum number and
cannot be used to describe Cooper pairs. Anderson argued that the elastic
scattering due to chemical and physical impurities does not affect the energy of the
electrons, and that by diagonalizing the normal state Hamiltonian including the
impurity effects, one can recast the reduced BCS Hamiltonian for pairs between ki
and —k| to pairs of time reversed electrons with constant energy. If there exist a
small initial anisotropy in V, characteristic of pure systems, then the new pairing
potential V is reduced only slightly compared to that of the clean limit. Normal
impurities kill this anisotropy and reduce T ¢ With a very steep initial slope. The
trensition temperature then saturates quickly and becomes invariant to impurity
concentration. The Eliashberg equations used in this chapter are very isotropic and,
in 2 sense, they describe time reversed pairing because the averaging over
momentum states was carried out (angular integration) to favour energy labeling
only,i.e. w. The dotted long dashed line in the upper frame of Figure (3.6),

Tc/ Wy, =0.135,isa T . curve calculated with constant EDOS and shows no variation
of T ¢ With normal impurity concentration t+, in accordance with Anderson’s theory
for dirty superconductors. Normal impurities have a profound effect on T c when
the EDOS is not constant. In Figure (3.6), we show that T, drops significantly
from its maximum value with an initial linear dependence on the impurity
concentration and later saturates to a constant value, given by the constant
background in the EDOS. The drop in T c 15 more dramatic than that due to

anisotropy effects for conventional superconductors. This linear drop of T c for small
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tT should not be confused with similar linear drops of Tc with paramagnetic
impurities, t_, shown in Figure (3.7), which are pair breaking. The reduction of T c
with t T is related to a reduction of the effective EDOS at the Fermi level.

Potential scattering is generally overlooked by experimentalists (often they just
state Anderson’s theorem) when trying to explain Zn substitution for Cu in the
CuO,, layers in HTSC. 702t is a filled 3d shell and can be an extremely good
scatterer, and when coupled with low dimensionality and perhaps weak coupling
superconductivity, it is not surprising that the superconducting temperature is
greatly reduced by small doping concentrations of zinc. In other words, there is no
reason to consider zinc to be a paramagnetic pair breaker. This in fact has some
experimental support in a 2:2:1:2 system. .Maeda et. al. 1990 found that Zn is
nonmagnetic in single phase Bi, (Srj oCa, 4) (Cu;_ M, 5)0, which has Cu sites
only in the planes and the cation M substitutes for Cu only. The same authors also
found that Zn and Ni dopings suppress T cat the same rate. Remschnig et. al. 1991
also found that Zn and Ni dopings suppress T c in the 25-K

Bi; oPby gLaj 551, CuOg phase at approximately the same rate (8K/at .%). This
leads to the conclusion that potential scattering is far more important in the hole
doped cuprates that have small coherence lengths. The 25~K Nd—Ce—Cu—0, which
is electron doped and is identical in structure to the Bi— based phases, has a much
larger coherence length in the ab plane and it was found that magnetic impurities
depress T at a faster rate than the nonmagnetic on=s [Remschnig et al. 1991}, The
lower frame of Figure (3.6) shows the isotope effect calculated for the upper frame
T, curves. The isotope curves are plotied vs transition temperature T c and show a
linear dependence near the maximum Tc’s. This is quite remarkable, since it was

shown that the isotope effect of oxygen in the Zn—doped 123 system is linear with
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T ¢ Nickel doping has a similar effect to that of Zn, but has higher 4 and more
downward curvature [Bornemann et al. 1991]. We suspect that aside from the
potential scattering, which might be much lower with Ni, there would be a Fermi
level shift associated with Ni doping.

The isotope effect § for paramagnetic impurities is shown in the lower
frame of Figure (3.7). For both the vHs scheme (long dashed curve) and constant
EDOS (dotted long dashed curve), 3 has an upward curvature and does not saturate
to a specific value for low TC. We take this as evidence against a pair breaking role
for Ni. The effect of paramagnetic impurities on T, within the vHs scenario is
shown in Figure (3.8). The long dashed curve is for an intermediate strong coupling
(wp=30 meV) and the dashed curve is for a weak coupling case (wE=60 meV). The
dotted long dashed curve has the same parameters as the long dashed curve but the
vHs peak is switched off. The three curves are almost identical when plotted in a
normalized fashion, T c is renormalized to its pure value, and t is normalized to the
critical impurity strength t; for which Tc is zero, as is clearly seen in the lower
frame of Figure (3.8). There have been some attempts to model pair breaking
effects with realistic phonon spectral densities, F{w), and constant density of states.
These claimed success in explaining the T c dependence on paramagnetic impurity
concentration [Nakamura et al. 1991]. We do not expect the inclusion of the vHs in
the EDOS to be any different except that much smaller A’s are required to obtain
the high transition temperatures. We would like to caution the reader that an
appropriate treatment of paramagnetic impurities s‘hould be included in a model
that treats antiferromagnetic spin fluctuations. All of the HTSC have peaked spin
susceptibilities at or near (+7,+x) which are pair breaking for an isotropic or

anisotropic s—wave superconductors. The paramagnetic impurity treatment
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presented in this chapter and Chapter 5 are only valid for the dilute limit
[Abrikosov and Gor’kov 1961] where spin correlations are absent. Overall,
experiments on the isotope effect §in HTSC show small pariial isotope effects near
optimal dopings. The isotope effect increases as T c is reduced by decreasing the
hole concentration. The mirimum isotope effect for oxygen in Y123 is about 0.02
and in La214 is ~ 0.16. In the overdoped La214, § stays roughly constant and does
not increase, which is quite anomalous. Negative isotope shifts are observed in some
cuprates with values as low as —0.1. Ih Bi2Sr2CaCu2_XFex08, f decreases from

0.08 to —0.1 for T ,=74.1 and 65.7 K respectively [ref. 171 in Franck 1994].

IV) The Gap Ratio and the Thermodynamic Critical Field

The energy gaps in the excitation spectrum of most conventional
superconductors are measured experimentally from infrared conductivities or
tunneling curves. The energy gap AO to the transition temperature T,isa
universal ratio in BCS. The gap ratio, defined by ZAO/ Tc’ is easily calculated from
equations (1.1) and (1.2) to be

24,
T— =35 (3.26)

Almost all conventional superconductors, except for A¢, deviate from equation
(3.26). The calculated gap ratios from Eliashberg theory, however, agree very well
with those from experiment [Carbotte 1990]. Furthermore, an approximate
equation for the gap ratio using strong coupling corrections has been derived and
fitted to experimental ratios [Mitrovic, Zarate and Carbotte 1984). This analytic

expression is a one parameter fit in terms of Tc/wtn’ and is given by
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2A0 Tc 2 Wyn
b1}

Equation (3.27) gives good results for the gap ratios of almost all conventional
superconductors. Our numerical calculations in this section will show that the gap
ratio is modified by the inclusion of a peak in the EDOS. In particular, the gap
ratio is increased over its asymptotic limit value given by equation (3.27). There
will be no attempt in this work to quantify the enhancement of 2A0 /T ¢ at 0=0 over
its asymptotic value. From the numerical solutions of equation (3.11~3.13) in the
superconducting state, we can find ¢0 and :’0’ which are used to define the gap

ratio. The gap ratio is simply defined as

2A @
0 _27,.. 70

T—=ntlin=T. (3.28)
c ¢ T-0 &

In the upper frame of Figure (3.9), we show the gap ratio plotted for three cases of
coupling strengths. The Einstein frequencies W for the curves are 20 meV, 40
meV, and 60 meV. The T ¢ curves were shown in the upper frame of Figure (3.5).
Figure (3.9) shows an overall enhancement of 2A0/ T, over its value in the absence
of the vHs. Unlike the T . Fesults, the enhancement of 2A0/T ¢ 15 not monotonic in
strong coupling. These enhancement are 40, 53 and 33% for the solid, dotted and
dashed curves, respectively. The widths of the 244/T,, curves are less than those of
the ’I‘c curves. This is can be understood in terms of effective smearing of the peak
in the EDOS. The amount of smearing in the density of states is proportional to AT

for the electron—phonon interaction. The smearing in the effective EDOS is
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smallest at T=0, resulting in a sharp peak in the energy gap as a function of
chemical potential 6. A similar effect is expected for the thermodynamic critical

field at zero temperature. The thermodynamic critical field H c is formally defined

as
2 _

and signifies the stored energy density in a magnetic field H ¢ Just capable of killing
superco‘nductivity. The lower frame of Figure (3.9) shows the thermodynamic field
at zero temperature H (0) for the same three cases shown in the upper frame of the
same figure. The values of H c(0) at =0 clearly reflect the strong coupling
dependence, similar to the 2A0 /T c behaviour. Since it is not our aim to find exact
fits to any experimental data, and because of the large parameter space available in
choosing the EDOS and azF(w), we only want to show here that the relatively
sharp peak in HC(O) as a function of electron doping is a clear indication of a van
Hove singularity in the EDOS.

In the next three figures, Figs. (3.20, 3.11, 3.12), we show the critical
field at all temperature ranges for the three curves in Figure (3.9). A useful plot is
the normalized critical field H (T)/H (0) as a function of its deviation D(t) from
the normalized critical field of the two fluid model, where t=T/T o The

temperature dependence of the two fluid models’ critical field is given by

H (1) = H,(0) (1%, (3.30)
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and 50 the deviation function is defined as

H (1)

D(t) = ~ (1-t2). (3.31)

c
c
The lower frame of Figure (3.10) shows D(t) for the strong coupling case wp=20
meV (solid line in Fig. (3.9)). The solid curve in Fig. {3.10) is for the critical field
at 6=0 meV. It shows quite unusual behaviour; the D(t) curve is negative definite
with a minimum deviation of ~ —0.08. Strong coupling superconductors have
generally positive deviation and BCS has a universal negative D(t) with minimum
deviation of » ~0.036. As we move § away from the vHs, D(t) increases towards the
strong coupling regime, positive D(t), with a maximum of 0.02-0.03, and eventually
exceeds it to about 0.055. The particular values of § are included in the figure
caption. D(t) decreases upon further change in 6 to saturate to all positive
deviation with a maximum of 0.04, not shown. For the intermediate case of wp=40
meV, the dotted curve in Figure (3.9), the lower frame of Figure (3.11) shows that
D(t) has only small negative deviation near small T for §=0 (solid curve). As§
increases, the deviation of H (t)/H (0) is pushed up to the very high strong
coupling limit and drops back again to a maximum of 0.02 (long dashed dotted
curve). The weakest case of wp=60 meV (dashed curve in Figure (3.9)) shows a
very similar effect in the lower frame of Figure (3.12). Deviation functions also
have a very strong dependence on azF(w), which is not very useful to us here and
will not be discussed further in this section.

In the previous section, we argued for the importance of normal impurity
scattering, especially for Zn. We will continue the investigation here. In Figure

(3.13), we show the dependence of HC(O) on potential scattering. The upper frame
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shows how H (0) drops with increased impurity concentration for wp=40 (dotted
curve) and wp=60 (dashed cﬁrve). The chemical potential is pinned to the vHs and
the EDOS parameters are r=0.5, s=1600, and E;=800. In the lower frame of the
same figure, we plot H c(O) vs T, and compare it to the experimental data for
YBa2(Cu1_xan)307 [Loram et al. 1990]. The actual data are the filled hexagons;
the triangles are the same data scaled up by a constant factor. We actually have
the freedom to scale our calculated curves by any factor, because Nb in equation
(3.17) can be adjusted to scale AF or the specific heat jump AC(TC) to fit
experiment. We decided to scale the AC(TC) values and hence this fixes the HC(D)
values as well. The experimental values (solid triangles) were adjusted so that the
experimental AC(T o) values best—fit the specific heat calculations, Figure (5.9).
Experimentally, the HC(O) values are calculated from the specific heat difference
between super and normal states through two consecutive integration steps, i.e.
specific heat to entropy and then to free energy differences. Needless to say, there
are still large uncertainties in these H c(0) values which, unfortunately, are not
quoted. In any case, our calculations clearly capture the trend of the experiment.
Paramagnetic impurities in this theory have quite different effects from the normal
impurities. Figure (3.14) shows the dependence of H c(0) on T, from variation of
the paramagnetic impurity concentration t~. The H C(O) curves are approximately
linear and have extremely small negative curvature. This dependence is similar to

that in regular Eliashberg theory.

V} Conclusion
We have incorporated a damped van Hove singularity into the

Eliashberg equations using the Fermi level approximation and calculated the
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the transition temperature and the isotope effect. We have found that the effect of
a peak in the EDOS is greatest on both T c and f for the weak coupling condition
and is weaker (washed out) for very strong coupling. When the Fermi level is very
close to a vHs, there is an enhancement of T o by a factor of up to 71 in the weakest
case considered in Figure (3.5) and a decrease of 8 to about 3/4 of the BCS value.
To be able to explain the data from some of the cuprates, the minimum value of 3
should be near or even slightly below zero. Within the approximations considered
in this chapter, this is not possible. We have discussed, however, the presence of
some correlations between the calculated and the experimentally measured isotope
effect for hole and impurity doping. The good agreement between our calculated

H ::(0) Vs Tc curve, obtained by varying t+-, and the experimental data for Zn doped
Y123 is striking. This might be interpreted as evidence for density of states

smearing by normal impurities.



Chapter 4
The London Penetration Depth

I) Introduction and Formalism

In this chapter, we will calculate the temperature dependence of the
London penetration depth for a planar s—wave and d—wave model superconductor
with a simple tight binding band within the CuQ, plane and also with a saddle
point singular band derived from photoemission experiments for Y123. Initial
experiments on the London penetration depth favoured BCS theory and the two
fluid model. Later, new experiments on thin films showed anamolous quadratic
temperature dependence at low T interpreted as evidence for an unconventional
pairing order parameter, namely d—wave. This provided the motivation to study
the penetration depth of d—wave superconductors. Others have suggested that large
anisotropy in the electronic dispersion might give similar temperature anomalies for
regular s—wave superconductors. Our work on d—wave superconductors showed that
the London penetration depth is quite linear in temperature at low T [Arberg,
Mansor and Carbotte 1993]. Shertly after this was experimentally confirmed by
Hardy. Hardy [1993] found that the London penetration depth of a well

80
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characterized single crystal of Y123 exhibits a linear temperature dependence in the
range of 25 — 1 K. The thin film results, however, give T2 dependence [Lee and
Lemberger 1993; Annett et al. 1991; Anlage et al. 1992; Pond et al. 1991]. These
two power laws arise naturely in the d—wave picture. The linear law is for pure
d—wave superconductor and the quadratic results from strong impurity scattering
[Gross et al. 1986; Hirschfeld et al. 1988; Prohammer and Carbotte 1991; Arberg,
Mansor and Carbotte 1993; Hirschfeld and Goldenfeld 1993]. We will show that the
linear temperature dependence can not arise from an s—wave superconductor, and
this result is independent of the type of electronic band.

Som~ experimental evidence in support of dxz_yz gap in the CuO2 layers
in the HTSC is reviewed by Annett and Goldenfeld [Annett 1992]. The key
experiments are i) NMR ‘and Kright shift [Martinalal et al. 1993; Ishida et al 1993;
and Hotta 1993] ii) some tunnelling data [Jiang 1993] and SQUID experiments
[Wallman et al 1993; and Sigrist 1992] iii) thermal conductivity [Yu et al. 1992} and
optical conductivity [Remero et al. 1992] iv) microwave scattering rate [Bonn et al.
1992; and Nass et al. 1991] v) low temperature dependence of the London
penetration depth [Hardy et al. 1993] vi) spin susceptibility [Mason et al. 1993 and
angular resolved photoemission [Wells et al. 1992 and Shen et al. 1993].

In the following calculations, no Fermi surface approximation is introduced and a
complete integration over the Brillouin zone is carried out at a fixed chemical
potential y. Impurity scattering in the Born and unitary limit are considered. A
large amount of Born scattering is needed to change the low temperature
dependence from a T to T2 law, in the d—wave case, while unitary scattering shows
this effect at the lowest concentration considered. The zero temperature

penetration depth AL(O) increases with impurity scattering while the transition
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temperature decreases in d—wave. These results are in qualitative agreement with
heavy Fermion models, where it was shown that the temperature dependence of the
London limit penetration depth of a cubic d—wave superconductor [Prohammer and
Carbotte 1991] and p~wave one {Einzel et al. 1986] exhibit large deviations from a
conventional s—wave BCS superconductor. Also the linear dependence of the
penetration depth at low temperature for the pure case goes over to a quadratic
dependence when su:ic 'nt impurity scattering is added [Hirschfeld et al. 1988,
1986; and Pethick and Pines 1986].

In this chapter, we model the superconductivity in CuO2 planes with a
square Brillouin zone and one of the following electronic dispersions i) a tight

binding of the form
e, = —2t[cos k_a + cos kya—2B cos k,a cos kya] —u (4.1)

where t is the nearest neighbour hopping integral, k the momentum in the plane, a
is the lattice parameter, and g is the chemical potential ii) or a saddle shaped band
inferred from photoemission data [Liu et al. 1992; Deussau et al. 1993] with the
following analytical form {Abrikosov et al. 1993

1 2 2 T
kP-a. (k _-m/a)‘]—u k. <k <=
& = gm (Ex~2 1 (ky=/2)’] Yoo ¥ (4.2)
1 2 .2 ,2
Ko +k°k%] - ¢k <k
?m[y0+x yb 0¢kys Yo

and 0<a151 and for a1:0.01 this form is particular to Y123.
The vHs of equation (4.2) is a square root singularity if a, is very small,

In Figure (4.1), we show the EDOS for the Abrikosov model, equation (4.2), for four



83

1 L L] l LML L L] I LI B B | I LI L L

0.8

0.6

EDOS

0.4

0.2

lllllllllllllllllll
lllllllllllllllllll

0 L1l .1 1 I Ll 1 1 l Lt 1 1 I | I T S |

-200 -100 0 100 200
E (meV)

1 LIL DL l LU I LOL I L l LI B B |

0.8

0.6

EDOS

04

0.2

lll'llllllllll'llll
lllllllllllllllllll

-
b

Oilnrlllruliltilnl'u

-200 -100 0 100 200
E (meV)

Figure 4.1: EDOS for the Abrikosov model, equation (4.2); the upper frame is for
a,=1.0 (solid curve) and a 1=0.5 (dotted curve), the lower frame is for a,=0.05

(dotted curve) and a;=0. 01 (solid curve) and k = /2a for all the curves
Yo :



84

values of a, in the upper frame 2,=1.0 (solid curve) and a,=0.5 (dotted curve) and
in the lower frame a,=0.05 (dotted curve) and a;=0.01 (solid curve) where we fix

ky to be 7/2a. Among the possible order parameter symmetries for the square
0

lattice are s—wave, extended s—wave, d—~wave and even higher harmonics in
momentum space [Wenger and Oslund 1993; Yip and Garg 1993; Sigrist and Rice
1987; Hasegawa and Fukuyama 1987; and Volovik and Gor'kov 1985}. We will only
use d—wave and s—wave symmetries in this work. The momentum dependence for
the d—wave gap parameter is nk=[cos k a —cos kya] [Emery 1987; Hirschfeld et al.
1986; Millis et al. 1990; Monthoux et al. 1991; Pines 1991; Scalapino ard Bulut
1991; Schultz 1981; and Zhou and Schultz 1992]. For the pairing potential in the
d-wave case, we use a separable model to project out the part responsible for
pairing [Prohammer 1990a, 1991; Rieck et al. 1990; Millis 1992; and Norman 1988].

The generalized gap equation in Matsubara representation for the pairing
energy ¢ak(n) and the normalized frequencies w{n) at any k point in the first

Brillouin zone take the form

¢y (n) = gnT ; A(n—m) <nk,4’k1(m)>' My (4.3)
and
w(n) = w, + 7T 2 A(n~m) <@, (m)> (4.4)
m

where the notation < > = 4% ¥, and
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¢k(n)
$, (n) = 4.5
(") 5¥(n)+ 5+ ¢ (n) (43)
and
0, (n) = = w(n) (4.6)

w"{n)+ e2k+¢i(n)

Impurity scattering can be included here most easily by adding the following extra

terms to equation (4.4);

i) for Born scattering of strength ¢t
nt <@y (n)>,

i) for resonant scattering of strength I'

I
T—— < (n)>,

L(n)
and

L(n) = €% + <0y (n)>2 + <@(n)>2.

We have explicitly ignored the particle—hole asymmetry. The parameter C is
related to phase shifts and is zero for unitary scattering and infinite for Born
scattering.

Finally, the expression for the penetration depth tensor ’\ij(T) with ij

Cartesian components, was derived in chapter two and is given by
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2, .2 ~2 2 ~02
2 8 rel : e+ ¢y (n)-w(n) Y (n)
/\ij(T) oAl [T ;n ki "kj {[£i+¢i(n)—&2(n)]2 Ei+%02(n)]2” (1)

e is the electron charge, c is the speed of light, A is the area of the plane ard ¢’ is
the lattice constant in the z—direction. Given a specific dispersion, we can evaluate
the velocity vector and by integrating (4.7) numerically, we can evaluate the inverse

square of the London penetration depth.

) The Zero Temperature Limit
We will first consider the BCS clean limit of the penetration depth, in

which case we can rewrite equation (4.7) as

2 Z H(E,) i(e)
-2 Sre k k
22T = V. V. [ - ] 4.8
1j(T) At kMK O, dey (48)

¢ (0
with E, =/ EE!+A and A, = k( ) Wa.

The first term in equation (4.8) vanishes at T—0 and —0f/ Je becomes a delta

function at the chemical potential g

2
-2 8
Aij(ﬂ) = ;Ezg‘ Zﬂ ki Vkj 6(51{—#) (4.9)

For simple tight binding (B=0}, and coordinate transformation of the form

0k, kygwr/a to cos (k a)=e~(1—|¢|) cos f and cos (kya) =¢+ (1— |e|) cos ¢
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with —1<e<1 and 0<f<w, we can write

-
A = B [1— ] 14 (4.10)
= e ¢“N it ) 4?)

where we used £,=A/(2r)*[d%k, and finally defined I(x) by

7[2 2,

d0cosz 0jsin29+x cos“d

. (4.11)
cos20+x sin20

I(x) = J;

where we can show that I{(0)=1/2 and I(1)= =/4. Later we will provide a plot of
A72(1) from equation (4.10) normalized by AZ>(0). The absolute value of A7(0) ~
2¢ /ot » 10° 82 with ¢/ in & and T in meV and o=1/132.74, in particular for T=50
meV and ¢’~5.58 , we get A(0)~17094.

Equation (4.9) resembles that of the electronic density of states. Hence,
we can construct a histogram for discrete values of 4 and evaluate equation (4.9)
numerically. The results are shown in Figure (4.2) for two types of electronic
bands, tight binding in the upper {frame and the Abrikosov band in the lower frame.
Different curves in the upper frame are for different values of next nearest hopping
integral B, see equaticn 4.1. The lower frame displays A;i(o) (dotted curve),
A;?r(o) (dashed curve). We should emphasis that the scale of the individual curves
is arbitrary due to the numerical technique used to evaluate it. We also would like
to mention that the solid curve in the upper frame of Figure (4.2) matches exactly
the solid curve in the lower frame of Figure (4.3) which was evaluated from
equations (4.10) and (4.11). OQur exact calculations of )\Ez(,u) at zero temperature

from equation (4.7), shown in Figure (4.3), exhibit the same shapes as shown in
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Figure (4.2) independent of the order parameter symmetry and transition
temperature. There is, however, a slight flattening of the curve due to the
renormalization of the absolute value of AL(u) by strong coupling effects which is
more prenounced near the vHs. Equation (4.7) is not well suited for showing this
efiect explicitly. Instead we can use the Fermi surface approximation and constant
EDOS (infinite band) to examine the effects of strong coupling on Ap,(0). For such

an approximation, we can write AL(T) as

A (iw) ~1/2
4 n
/\L(T) [ T N 0) e HZ lw [w _;_.A (1 )]3/2] (412)

If we use Z(iw ) ~ 1+, we can see right away that Ap,(0) is proportional to y IT+X
implying that the shortest penetration depth is that for BCS. The expectation is
that A (mass enhancement) varies with x and is largest on the vHs near 4=0, which
makes the AEz(,u,) curves flatter near u=0. In Figure (4.3), we show results of the
exact calculation of the zero penetration depth squared as a function of chemical
potential for d~wave (upper frame) and s—wave (lower frame). The spectral density
used for these calculations is an Einstein spectrum centered at wE=30 meV with a
cut off of 1200 meV. The hopping integral T is 50 meV so the band width is 400
meV. For the d—wave case, we set g=A=1.0 and B=0.0 (solid triangles; T2=129.5k
at 4=0.0), B=0.16 (open circles; To=127.6 K at y=—20 meV), B=0.32 (crosses;
T9=122 K at u=—40 meV), B=0.48 (solid squares; TO=114.6 K at =—75 meV).
We have normalized all the values by ,\i‘z(o) at B=0.0 at p=0.0, which is about ~
14342 & and is 8.4 times larger thar the BCS value. This is much larger than the

observed values for HTSC’s and is consequence of large ). Such large values of
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)\L(O) can be :educed considerably by choosing higher values of the hopping
integral, sacrificing numerical accuracy, and lower values of X and larger values for
wp. The solid triangles in the lower frame of Figure (4.3) are for an s—wave
superconductor with B=0.0, g=1.0, A=1.6 and the rest of the parameters the same
as in the upper frame. The optimal value of T.is90.8 K and AL(O) is larger by
about 12% when compared to its counter part in the upper frame. This is in
agreement with our simple analysis of AL(O) x  1+A, where the expected increase
is about 14%.

In Figure (4.4), we plot the normalized zero temperature penetration
depth tensors for xx (upper frame) and yy (lower frame) of the Abrikosov band with
a;=0.01 and (h2/ma2)=10 meV. The sclid curve is d—wave with T2=84.8 K at
p=—40 meV and the dotted curve is s—wave with T2=54.8 K at u=—40 meV. For
both curves W is 60 meV, the cut off is 1200 meV, A is 1.0, and gis 1.0. The value
of A, (0) for the s—wave case is only 0.45% larger than the d—wave case. The
dashed curve is for an s~wave case with wp=30 meV and cut off of 1200 meV.
Axx(o) is larger in this case by about 41% compared with the previous s—wave .
The rest of the parameters are 1=6.0, T2=99.4 K at y=-30 meV. The three curves
shown have almost identical shapes even though they have different coupling
strengths and Tg’s and are independent of gap symmetry. We make the assertion
that the zero temperature penetration depth is largely a normal state property
which can be affected in magnitude by coupling strength, but its shape as a function
of chemical potential can be obtained from the dispersion relations directly. The
shortest zero temperature penetration depth is that for a BCS superconductor and
depends only on the normal state dispersion. Strong coupling effects increase the

penetration depth in magnitude.
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II) The Finite Temperature Behaviour

To examine the low temperature behaviour of A j(T) near zero
temperature, we have to figure out the contribution of the first term in equation
(4.8). We will show that such a term is exponentially small for an s—wave
superconductor and linear in temperature for the d—wave case. By using the same
transformations used to arrive at equations (4.10) and (4.11), we can write the first

term of equation (4.8) as

+8y ek2+Ak§]2
o ek2 +Ak§]2

2
8re E e
__...E - [_..ﬁ ] vkivkj,

Ve
[1+e

i) if the gap is isotropic with no zeros then the minimum of J EkE'I'AkE is |A], so the
largest contribution is from the Fermi surface (ek=0) and where we have VigVkj
being regular and nonzero. So, such a term is of the order of exp(—|A|/T) for small
T. ii) if the gap is d—wave then it has a zero on the Fermi surface which will
contribute the most and, after some tedious algebra, we can show that its

contribution at small T is

32¢2T © ® eV &1V

[1+e {7ty

2 ]

which is equal to —lﬁezi/ c’c2h2ﬁA fn2, which is clearly linear in T. So for simple

tight binding and d—wave, we have
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Armed with these low temperature limits for the penetration depth for both d— and
s—wave, we now examine the whole temperature range up to T c numerically.

In Figure (4.5), we show A(T) as a function of t for both d—wave (upper
frame) and s—wave (lower frame) for a tight binding dispersion with t=50 meV,
wp=30 meV and cut off of 120 meV, A=0.7 and for the d—wave case g=0.82 . The
optimal doping transition teriperatures are 90.1 K and 61.4 for the d—wave and
s—wave respectively, i.e. chemical potential p=0.0. For both frames, the chemical
potential is incremented by 20 meV for each curve where T, decreases and )\L(O)
increases both in a monotonic fashion. The ratios of T c to Tg in the upper frame
are 0.95, 0.78, 0.53 and 0.25, and in the lower frame are 0.96, 0.88, 0.80 and 0.70.
We notice no appreciable change in the shape of /\Ez(T), furthermore, the slope of
(’\L(O)/’\L(T))z with respect to the reduced temperature is roughly constant and
independent of 4 for p<t (hopping integral). For d—wave, this might seem, at first
sight, to be in contradiction with equation (4.13) but, in fact, it is not. It turns out
that 2A /Tc increases monotonically with g in such a way that it compensates for
the decrease of (1-x)I(x) term with x=|u/4t| present in equation (4.13). For the
S—wave Curves, AL(T) is only 3% larger than its zero temperature value at reduced
temperature of 0.5, and the drop of AL(T) with T is consistent with an exponential
(flat) drop expected for an s—wave superconductor. For BCS, )\L(T)/AL(O)=1.03
occurs at a reduced temperature of about 0.38, and the slope of A%(T)/ AE(O) at t=1
is » —2. The lower frame, however, shows a slope of —4 for the solid curve, which is

the same as the slope predicted by the two fluid model. These curves do not deviate
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strongly from those obtained with moderate strong coupling in ordinary Eliashberg
theory with constant EDOS. Strong coupling effects initially increase the slope near
T, for both d—wave and s—wave and then decrease it considerably for high coupling
strengths. We have tried many parameter variations in the hope of increasing the
magnitude of the slope of ,\E(T) / ,\E(O) near T, for the d—wave case, ~ ~1.33, to
match it with experimental data, ~ =3 to —4 for Y123, but met with no success.
Next, we turn our attention to the Abrikosov model with a saddle point
singularity at g~ —45 meV and band width of ~390 meV, as shown in the solid line
of the lower frame of Figure (4.1). We calculate A (T) and Ayy(T) for a d—wave
superconductor with wp, set to 60 meV (cut off of 1200 meV) and coupling constants
g=A=1.0. Because of the asymmetry of the band, we study both the under doped
and over doped cases. Optimal doping (long dashed curve in Figure (4.6)) for these
parameters, A and EDOS, is at ~ p= —40 meV with T2=84.9 K. In Figure (4.6) we
show the normalized penetration depth tensors for under doped cases with p= —70,
~55 and —50 meV (solid, dotted and dashed curves respectively) and the over doped
cases with = —25 and —10 meV (dotted dashed and dotted long dashed curves
respectively). All the curves exhibit linear behaviour at low temperature. One
curve, however, exhibits a flat slope namely the one for u= —50 meV. This value of
p lies exactly on the vertical line of the saddle singularity in Figure (4.1). We think
that there is a competition between the linear drop of AL(T) due to a decrease in
superfluid fraction and the linear increase in A1 (T) due to an increase in the
effective mass coming from the proximity of the Fermi level to the flat portion of
the band. This assertion can be further substantiated on close examination of
A4 (T) for an s—wave superconductor with the same EDOS parameters. The

parameters used to calculate Figure (4.7) are the same as those used for Figure (4.6)
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except that the order parameter in this case is s—wave. The curves are for u values
of 80 (solid), —70 (dotted), —60 (dashed), —50 (long dashed) and —40 meV (dotted
dashed curve). Except for the long dashed curve, all the curves exhibit the flat
saturation below t~0.25 which is clearly different from the tight binding results
shown earlier in Figure (4.5), where it occurs below t~0.4. Optimal doping for this
s—wave case is at y= —40 meV with T2=54.8 K. The long dashed curve in the
upper frame of Figure (4.7) is different and drops with a decrease in t near small ¢.
This corresponds to an increase of A (T) as the temperature is lowered. This effect
is only pronounced near the flat portion of the band (g=—45 meV). In Figure (4.8),
we show typical curves for Aii(T) for the over doped cases. The curves are for u
values of —20 (sclid), —10 (dotted), 0 (dashed}, 10 (long dashed), and 20 meV
(dotted dashed curve). All of Ayy(T) curves exhibit saturation at the same reduced
temperature, t~0.3, as is also the case for the A xx(T) curves. The two tensors are

very much alike in their temperature dependencies.

IV Impurity Effects and Experiment Comparisen

In this section, we will study the effect of impurity scattering on the
London penetration depth of a d—wave superconductor. The calculations are for a
superconductor with a simple tight binding dispersion and chemical potential of
£=0.0 meV. We should point out at this stage that the d—wave order parameter is
not a fully consistent solution when the Abrikosov dispersion is used or, for that
matter, for any orthorhombic 2D bands. This does not appreciably modify the clean
limit results, showed in Figure (4.6}, and leaves the linear law unchanged. Because
of this complication, we will only use a tight binding dispersion (tetragonal

symmetry). With tight binding dispersion, the full d—wave order parameter is self
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Figure 4.9: Effect of paramagnetic impurity scattering (Born approximation) on
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consistent even in the dirty limit.

In the upper frame of Figure (4.9), we calculate the effect of normal (or
paramagnetic ) impurities on a d—wave superconductor with wp=30 meV, cut off of
1200 meV, hopping integral of 50 meV, g=183 and A=0.001. Normal impurity
doping causes a reduction in T c proporiional to the impurity concentration. The
solid curve is for the pure limit with T9=90.4 K and 4=0.0 meV and is held
constant for all other curves. The ratios of T to Tg are 0.95 (dotted), 0.90
(dashed), 0.85 (long dashed), and .80 (dotted dashed curve). The overall shape
and temperature dependence does not change in any appreciable fashion and stays
the same as that of the pure limit. The linear law is very stable for Born scattering
and only for a huge reduction in T o of order of 56%, would there be significant
deviations towards a quadratic law at low T {Arberg, Mansor and Carbotte 1993].
Next to reducing T c» the most important effect of Born scattering is to decrease
linearly the inverse square of the value of the zero temperature penetration depth
with changing impurity concentration.

A similar increase in /\%(T) is observed when paramagnetic impurities
are introduced in an s—wave superconductor. The lower frame of Figure (4.9) shows
results for the only s—wave case considered in this section. The parameters are the
same as used in the upper frame except that g=1.0 and A=0.7. The curves are for
’I‘C/Tg equal to 0.90 (dotted), 0.80 {dashed), 0.68 (long dashed) and the solid curve
is the optimal clean limit with ‘1‘2:61.4 K. We note that besides the linear decrease
in T, and linear increase of A%(T) with t~, there is a reduction of the slope of
,\Ez(T) at T, and a reduction of the reduced temperature at which /\Iz(T) becomes
flat, from t~0.4 for the pure case to t~0.25 for a 32% reduction in T,

Unitary scattering has a very different effect on AL(T) than does Born
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scattering. The upper frame of Figure (4.10) has the same parameters as used in the
upper frame of Figure (4.9). In this case, we plot A—Z(T) normalized to AE2(0)
versus the reduced temperature for varying the concentration of resonant scattering
centres, I'. There are two solid curves in this figure. The upper one is 1-—1;2 and is
for comparison. The lower one is the pure limit. The percent reductions in T , are
6.4% (dotted), 12.7% (dashed), 19.0% (long dashed) and 25.2% (dotted dashed
curve). The top frame is for 2 case close to BCS in the sense that ﬁn is very close to
w, even though there are retardation effects in the pairing potential. Except for the
dotted curve, all other curves obey 1——t2 law near small t. There is also a systematic
increase of the slope of ,\Ez(’l‘) normalized to AE2(0) at T . As T increases, in each

case the entire curve moves closer to the 1—1'.2 curve. This l—t2

law, however, is
never obeyed exactly over the entire temperature range.

If we consider a stronger coupling case with the same parameters but
with g=0.82 and A=0.7 and almost the same transition temperature, T2~90.1 K,
lower frame of Figure (4.10), we notice that the [AE(O)/A%(T)] curves are pushed
past the 1-t2 law (upper solid curve) as T' increases and, of course, T, decreases.
The curves in increasing order of percent reduction of T c (increase in T') are 10.6%
for the dotted, 20.8% for the dashed, 30.7% for the long dashed, and 40.7% for the
dotted dashed curve. The lower solid curve is the pure limit and is bent more
toward the l—t2 curve than the previous weaker coupling case, shown in the upper
frame.

The reduction of T c with impurity concentration I is linear for small '
but the decrease of Af(o) with I is less than linear and much higher than for Born

scattering with a similar reduction of Tc' This is shown in the next figure. In

Figure (4.11), we show AE2(0) normalized to the clean limit Xf?([)), denoted as
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X[2(0), and plotted against 1-T /T¢. The upper frame is for Born scattering aad
the lower frame is for unitary scattering. The open circles are for the BCS type case
with g=183 and A==0.001 and the solid circles are for the case of g=0.82 and A=0.7.
It is quite apparent that resonant scattering is more effective in increasing AL(O)
for small concentrations of impurities I' than for large concentration. In a recent
preprint by Ulm et al., it is shown that the increase of Ap (0) for thin films of Y123
is much higher than the predicted values of d—wave shown in Figure (4.11). We
will list here some typical percent reductions of Tc and corresponding values of
A%O(O)/,\i(o); 1.8% and 0.25; 3.2% and 0.26; 31% and 0.15; 53% and 0.02; 54% and
0.026; 12% and 0.23; 32% and 0.033. Beside the scatter in these values, they lie
much lower than our calculated values. These experimental values are not corrected
for the contribution of grain boundaries which the authors believe to be small.

Our last figure, Figure (4.12), shows the famous London penetration
depth results for a very clean untwined Y123 single crystal with T of 93.5K
measured by Hardy et al. [Hardy 1993, 1994]. The open circles are for the yy
direction and the solid circles are for the xx direction. We would like to mention
that the measured data are denser than shown in this graph for the two ends near
Tc and T=0. Because the experirriental data show linear dependence on T near T,
and T=0, we took the liberty of omiting some of the points to make the graphs seem
less crowded. One important feature of the data is the large value of the slope near
t=1, —4 for xx—direction and —3.3 for yy direction, which is larger than that for
BCS, namely -2, and is attributed to 2D fluctuations. The zero temperature
London penetration depths were measured by Basov [Basov et al. 1994] to be
A, (0)=1600 A and Ayy(0)=1000 A. This large anisotropy suggests that a

substantial portion of the superconducting condensate is on the chains. We have
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not modeled the chains in the tight binding dispersion and hence Axx(T)=;\yy(T).
The dashed curve in Figure (4.12) is the same as the solid curve in the lower frame
of Figure (4.10). This tight binding curve compares well with the data. Apart from
the obvious linear dependence at low T, the data points are slightly higher than this
d—wave curve. One possible way of pushing this slope up is to change the dispersion
(solid and dotted curves in Figure (4.12) ). Another possibility is to have an
anisotropic d—wave gap, this anisotropy might be derived from the presence of the
chains that lead directly to anisotropy in the zero temperature limit of the
penetration depth. This will affect the slopes of the gap along the node lines near
the Fermi surface leading naturally to modified slopes for the penetration depth
near T=0. We actually did not prove this, but quite generally, the linear drop of
the inverse square of the penetration depth is related to the amount of phase space
of the nodes on the Fermi surface. Band anisotropy, by itself, is also sufficient to
introduce an anisotropy in the low temperature slope as shown by the solid, Axx(T),
and dotted, Ayy(‘l‘), curves in Figure (4.12). The solid and dotted curves are for the
Abrikosov model at y= —40 meV shown earlier in Figure (4.6) as long dashed

curves.

V) Conclusion

We have shown that the London penetration depth at zero temperature
is a strong function of the type of electron dispersion as well as the effective mass
renormalization. That is to say, it is a normal state property and independent of
the symmetry of the order parameter. On the other hand, the slope of Azz(T) near
T=0 is a strong function of the symmetry of the order parameter, exponential

decrease for s—wave and linear for d—wave, as well as the band type. In tight



109

binding d—wave, this slope is insensitive to filling for 0¢||<t (hopping integral),
while for the Abrikosov model, it is sensitive to filling. We have noticed a strong
temperature dependence of the effective mass only near the saddle point singularity
in the Abrikosov model which is reflected strongly in the temperature dependence of
A1 (T) for both types of order parameters. Our calculated values of Ap (0) as a
function of impurity doping are much smaller than the thin films experimental
results, but the low temperature dependence of A; (T) can be reconciled with the
resonance impurity scattering scheme and a d~wave order parameter.

Finally, if we consider that the true mean field transition temperature is
probably higher than the measured one due to fluctuations, the magnitude of the
slope of AEz(T) will be reduced near small T and increased near T, resulting in
better agreement with the data at low T and near T c Furthermore, anisotropy in
the dispersion and anisotropy in the d—wave gap itself, with perhaps some small
extended s—wave, [cos k.a + cos kya.], part mixed in it, will certainly result in slight

modifications of both the slope of ’\i-?(T) and its zero temperature value, A;;(0).



Chapter §
The Specific Heat

I) Introduction

In this chapter, we will examine the effect of a nonconstant EDOS on the
specific heat difference AC between the normal and superconductor states. To
start, we will review the specific heat of a normal metal and a superconductor. We
will examine the effect of including a logarithmic singularity in the EDOS on the
electronic specific heat of both states. W= will also derive the low temperature
asymptotic limit of the superconducting specific heat for a clean BCS
superconductor with s— and d—wave order parameters. In the next section, we will
provide a brief review of experimental results on the specific heat of quasi two
dimensional superconductors and on the HTSC’s outlining, in particular, some of
the difficulties and controversy in interpretation of the experimental results. Our
numerical results for AC(T) will be presented in Sections III and IV. Section III
deals with an s—wave superconductor with the infinite band model, introduced
earlier in Chapter 3. Section IV considers d—wave superconductors with only a

tight binding dispersion. We will also make comparisons with results for an s—wave

110



111

superconductor within the same finite band model. Some of our calculations of the
specific heat jump, AC(TC), will be compared to experimental results on Y123.

In our formalism, we can only calculate the specific heat difference
between the superconducting and normal states and not each individually. This
specific heat difference, AC=c__—c o ¢an be calculated from the following

es e
thermodynamic relation

where ASQ is the free energy difference between the superconducting and normal
states derived earlier in Chapter 2 and given by equations (2.35) or (2.45) and (2.46)
in case of resonant scattering. Later, we will demonstrate that when the Fermi level
is pinned to the logarithmic singularity in the EDOS, the entropy of the normal
state at low temperature is anomalous. This anomaly will be reflected in the
numerical results for AC/T for both types of order parameters, d and s—wave.
In the normal state, the electronic contribution to the specific heat, Cop
for a constant EDOS varies linearly with temperature, i.e. c en='ynT. The
proportionality constant -, is equal to 21r2N(0) /3 [Ashcroft and Mermin 1976}. The
contribution of the phonons to the specific heat is B3T3 at low temperature, this is
also true in the superconducting state. The proportionality constant B, is related
to the Debye temperature of the material. When the electzon—phonon interaction is
included, v , 1s amplified by a factor of order (141) where ) is called the mass
enhancement factor for the electrons. This mass enhancement is attributed to the

drag of the carriers caused by lattice vibrations. Other contributors to the specific

heat at low temperature are magnetic impurities with a Schottky term CS ch and in
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the presence of a magnetic field a hyperfine term proportional to T2, At higher
temperatures, anharmonic effects for the phonons contribute terms with T2 and T°
temperature dependencies. Bulk measurements of the specific heat can also be
complicated by contributions from impurity phases and phase transitions.

The disection of the various contributions to the specific heat in the
normal state is only reasonable if the chemical potential is near a smooth part of the
EDOS. Large variations of the EDOS on a small energy scale near the chemical
potential may result in non—trivial modifications of the temperature dependence of
Yo To get a flavour for this, consider the case where the chemical potential is
pinned to a simple vHs for which the EDOS diverges logarithmically, as say —{n| €].
The excess specific heat, ™, coming from this extra piece in the EDOS, can be

computed for a free electron gas from

o

f de(—fn|e| )(€)e,

o

ex _ gut* _

C = =

T

3

where f(¢) is the Fermi function. ¢ is easily evaluated and found to be equal to
—{7r2 {3 TéaT—¢’T) and c’=2j‘8x2£nx e’/ (1+ex)2dx, spin degeneracy is neglected.
It is clear that the temperature derivative of the excess entropy, cex/ T, approaches
o0 as To0T i a plot of ¢/T vs T should give a constant value with a logarithmic
upturn for small T. This upturn is very different from that attributed to the
Schottky anomaly. The electron—phonon interaction does not eliminate this upturn
but rather enhances it. The presence of small but finite concentrations of impurities

or physical defects will certainly supress such an upturn and regularize 7, .
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In the superconducting state for an s—wave superconductor, the
electronic specific keat, C, vanishes exponentially at low temperature. It is simple

{0 show that in this case [Rickayzen 1965,

e~ 20874, N & [ge] e [ ).

This is expected because the excitation spectrum is gapped by A for an s—wave

superconductor. With a simple vHs in the EDOS and filling §=0, one can show that

e 407,100 8 (o] ¥ [rsn (B b 27 ] ew g
where y=0.577 ..., Euler’s constant. ¢, is still exponentially damped for an s—wave
superconductor even with the vHs in the EDOS.

For d—wave superconductors with simple tight binding dispersion (next
neighbour hopping B=0), ¢, is not exponentially gapped. With the same
transformations presented earlier in Chapter 4 to derive the low temperature limit
of the London penetration depth, we can show that Cos for a d—wave superconductor

can be written as
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Evaluation of the integral yields

3 m2
ka

w o (-4

where ((z) is the Zeta function, {{3)~1.202057. The quadratic dependence of Cog O

Ces ™ g’ ¢3)

T has a simple physical explanation. Everywhere in the Brillonin zone where the
gap is lage, Cog 15 still exponentially damped, but where the gap is zero on the
Fermi surface, there exists a normal fluid component, caused by thermal excitations,
that increase ¢, by a factor of 1{T)T. Recall that the superconducting density
fraction, 1—{A(T)/ ’\L(O)]2’ decreases linearly with temperature for a d—wave
supercorductor, and hence the normal fluid component increases linearly with
temperature, i.e. /{T)xT. So the overall contribution of the thermally excited
electrons around the zeros of the gap is quadratic. Born scattering leaves this
dependence unaffected. Resonant scattering, however, changes this dependence to a
linear one. The reason for this dependence is the creation of a finite normal fluid
density at zero temperature.

At Tc’ Cog has a finite jump, AC(TC), and its ratio to Cop at T isa
universal number in BCS theory and is equal to 1.43. This ratio is modified in

Eliashberg theory and a correction due to strong coupling leads to [Marsiglio and

Carbotte 1986]

ﬂg’j L [14s0 2] (0]
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In ordinary Eliashberg theory, ¢, (T) can easily be calculated from N(0) and
a2F(w), but with energy dependence in the EDOS, ¢, (T ) is more complicated and
is not easily calculated. Several schemes can be devised to calculate 7 (T) in this
case. i) We can calculate 7n(T) for a roninteracting electron gas and then calculate
the excess contribution from the interactions, or ii) calculate the difference AC for
an s—wave superconductor with extremely large gap. At low T, the superconducting
specific heat is exponentially small and hence AC(T)~ —¢_(T). The first method is
more difficult and is only applicable to pure supercorductors. The second is less
difficult but is not applicable with resonant impurity scattering. For this latter
method, we will provide two examples. For a finite band with =50 meV and B=0,
we calculate AC(T) for an s—wave superconductor with T =600 K, wp=200 meV
and A=1.0. We are certain that AC(T) is mainly — Cen(T) at low T, ie. up to 0.1
T.. In Figure (5.1), we plot —AC(T)/T vs T. The curves are for different values of
chemical potential 4. In the upper frame, g is set to 0.0 (solid), 1.0 (dotted), 2.0
(dashed), 3.0 (long dashed), 4.0 (dotted dashed) and 5.0 meV (dotted long dashed).
In the lower frame, 4 is set to 8.0 (solid), 12 (dotted), 20 (dashed), 40 (long dashed),
100 (dotted dashed) and 200 meV (dotted long dashed). For p=0.0 ard 1.0 meV,
T,(T) has an upward curvature and anomalous negative stope at low T (solid and
dotted curves in the upper frame). For p=0.0, “,'n(T) does not appear to saturate at
low temperature. This upturn is expected in the case of a noninteracting electron
gas where T ~{n T. As pincreases, a maximum develops at T higher than zero
and shifts to higher T values as x increases. For a very large g, away from the vHs,
the expected maximum in v, (T) falls at T~0.1 wp, and 7,(0) is a true local
minimum [Grimvall 1981]. In Figure (5.2), we show the same calculations for the

same parameters as in Figure (5.1) but with z=0.0 meV, the chemical potential 4 is
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Figure 5.1: The lirear coefficient of the normal specific heat Tp VS- T for 2D tight

binding metal (t=50 meV and B=0). The curves are for different values of 4. In
the upper frame, p=0.0 (solid?, 1.0, 2.0, 3.0, 4.0 and 5.0 meV (dotted large dashed).
In the lower frame, p=8.0 (solid), 12, 20, 40, 100 and 200 meV (dotted long dashed).
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Figure 5.2: Similar to Fig. (5.1) but z=0.0 meV and normal impurity concentration
t¥ is varied. In the upper frame, t¥=0.0 (solid), 0.1, 0.2, 0.4 and 0.7 meV (dotted
dashed). In the lower irame, tt=1.0 (solid), 2.0, 30.0 and 4.0 meV (long dashed).
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Similar results for AC and X, have been observed for most HTSC’s
except for fully oxygenated Y123. As an example, AC(T c) / 7n'1‘ c for
La, Sr CuO,is0.73,1.14 and 0.88 for x=0.13, 0.115 (optimal doping) and 0.18
respectively [Loram et al. 1989]. The experimentally observed value of
AC(Tc) / 7nTc for Y123 near optimal doping, on the other hand, is 2.37 for both
polycrystals [Loram 1990] and pure single crystal [Liang et al. 1992]. For the single
crystal, we have assumed Y, tobe~ 1.6 mJ /gat.k2 adopted from [Loram 1990}
Even higher ratio values, ~ 2.5 — 2.75, are measured by Loram from the raw data
that includes the critical fluctuations [Loram 1993]. This extra heat capacity for
Y123 is definitely associated with the CuO chains. In Figure (5.3), we show some
results for AC(T)/T vs T, for some of the HTSC’s [Mirza et al. 1990]. It is worth
noting AC(T c)/'I‘ ¢ decreases abruptly when CuO chains in Y123 are destroyed by
the substitution of Cu ions by trivalent ions into the chains. This is shown in the
upper frame of Figure (5.3) by the open circles which are for
YBa2(Cu1—xC°x)307—6' Increasing x from 0 to 1.5% results in an increase of T,
from 92.5 to 94 K and a decrease of ACTC from 3.4 t0 1.8 mJ/gat‘/KQ. It is

believed that Co dopes in the chains preferentially and hence destroys the order in
the CuO chains and reduces their superconducting weight. At present, we do not
have an explanation for the increase of T . For higher Co concentration, AC/T c
levels off and saturates to a constant value. Tt is not clear if Co is a pair breaker in
the usual Abrikosov Gor’kov formalism or with higher order strength [Shiba 1968,
1973; Nagi 1983]). Another system shown in the lower frame of Figure (5.3) is
Yl_xCaxSrzcuzTéo_5Pb0.507. At optimal doping, /_\C/Tc is about 1.6 mJ/gaLl-c2
and is significantly smaller than that for Y123. This is attributed to the absence of

CuO chains from this compound.
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pinned to the vHs. The different curves are calculated for different normal impurity
concentrations. In the upper frame, ¢t is set to 0.0 (solid), 0.1 (dotted), 0.2
(dashed), 0.4 (long dashed) and 0.7 meV (dotted dashed). In the lower frame, t™ is
set to 1.0 (solid), 2.0 (dotted), 3.0 (dashed) and 4.0 meV (long dashed). In this
case, 7n(T) gets smaller with an increase in ¢t clearly indicating the EDOS is
smeared an¢ reduced by impurities. We also notice that « (T) does not develop a

local minimum at T=0.

H) Experimental Results

In this section, we give a brief review of the experimental results on the
specific heat of the HTSC, We will first outline some similarities between old
quasi—two—dimensional superconductors and some of the cuprate superconductors,
then discuss some specific heat measurements, some difficulties associated with their
measurements, and the appropriate interpretation of the results.

One of the earliest quasi two—dimensional superconductors is
TaS2(N05H5)O.5. It is composed of 6A thick metallic Ta$, sheets with strong
covalent bonds separated by 12A thick ordered pyridine molecules. The transition
temperature is 3.5 K while the nonintercalated parent, TaSz, has a Tc equal to 0.7
K [Gamble et al. 1970]. The specific heat jump is broad, due to fluctuations, and
reaches its maximum value at 0.4 K below the onset of the transition. The ratio
AC(’I‘C)/'rn Tonset is about 0.8 & 0.1, which is roughly half the BCS value, {Di
Salvo et al. 1971]. Apart from the deviation of AC/ 1, T, from the BCS value, all
other properties are in accord with Fermi liquid theory. The solc exception is the

presence of an anomalous diamagnetic susceptibility X, extending much higher than

even 10 T, for a magnetic field . to the TaS, layers {Geballe 1971).
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Figure 5.3: Experimental data of AC(T)/T, vs T, for YBa(Cu; _ Zn_),0,(®),
YBa(Cul_xCox):;O?_ﬁ(o), Y,_,Ca SroCuyTh) (Pby O, (nunderdoped, =
overdoped) and La,_ Sr CuO, (A underdoped, A overdoped). The source of the
data is Mirza et al. 1990.
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Another trend evident in the lower frame of Figure (5.3) is that AC/T, |
is higher for the overdoped samples than for the underdoped ones. The underdoped
samples usually have broader AC(TC) peaks implying higher fluctuations. A similar
effect was also observed in underdoped Y123 by [Wiihl et al. 1991]. Diamagnetic
fluctuations in underdoped Y123 at oxygen concentration of 6.65 were also seen in
x uptoa high temperature of order 6 T c [Nakazawa and Ishikawa 1989).

. Unfortunately most experimentalists look for Gaussian or critical fluctuations near
T c only and ignore diamagnetic fluctuations at higher temperatures [Loram 1992;
Inderhees 1988, 1991; Ghiron 1992, 1993; Ernst 1993]. We feel that experimental
values of AC/ Tc may be under estimated for most HTSC’s that consisf.' of only
CuO, planes and perhaps over estimated in the case of Y123.

Some of the other problems associated with specific heat measurements
in these cuprates are the large and broad phonon contribution to the total specific
heat and at low temperature contributions from impurities and impurity phases.
The task of separating the electronic contribution to the superconducting specific
heat is also complicated by the existence of a linear contribution at low T. For
example, several measurements of the specific heat of L214, doped by Sr, [Mason et
al.] and Y123 [Phillips 1987, 1990; Fisher 1988] show contradictory results regarding
the existence of the linear term. The specific heat data show no intrinsic linear
term for Y123 while there is such a term in L214 with a strength equal to about 20%
of the normal state linear term, 7 ” More recent measurements on Y123 by Phillips
show an intrinsic linear term in the superconducting specific heat which is
attributed to a normal fraction associated with the CuO chains {Phillips et al. 1994].
A similar linear term is also observed in Hardy’s high quality single crystals of Y123

in addition to the quadratic term characteristic of d—wave superconductivity {Moler
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et al. 1994]. Very recent experiments also on La,_ Jcer(l'ul_yzn 1',O 4 by Momono
show no intrinsic linear term in the superconducting state for y=0 [Momono et al.
1994], which contradicts the Mason result. A linear term develops for y>0.0 and
increases monotonically with y until it saturates teyond a critical concentration of
In,y,, at which point superconductivity ceases to exist. Relations between

T c/Tc(y=0) and 7./ 7s(y=yc) follow a single curve regardless of x. This is

interpreted as qualitative evidence of resonance impurity scattering (by Zn

impurities) in a d—wave superconductor.

IT) The Infinite Band Numerical Results (s—wave)

In this section we will present numerical results for the specific heat
difference, AC(T} of an s—wave superconductor with a vHs in the EDOS which was
described earlier in Chapter 3. We will begin with a very strong coupling case and
then consider weaker coupling. Effects of normal and paramagnetic impurities on
AC(T) are also considered. At the end of the section, we will compare some
experimental results to our calculations.

For all the calculations in this section, we fix the EDOS parameters, of
equation (3.10), to be r=0.5, s=1600 (meV)?, D=40 meV and E=800 meV. For
these choices, the width and height of the peak in the EDOS correspond to those
believed to model Y123. We will ignore the effect of 4* by setting p*=0.0. The
main control parameter for these calculations is the optimal transition temperature
Tg obtained by varying the coupling constant A and the frequency, wp, of the boson
mediating electron pairing. Realistic values of wg arein the range of 20—80 meV for

a phonon mechanism.

In Figure (5.4), we present AC(T)/AC(TC) versus the reduced



123

temperature, t, for a supercdnductor with T2=92.7k, wE=20 meV and rA=2.0. The
curves are for different filling factors namely §=0.0 (incomplete solid), 20 (dotted),
40 (dashed), 60 {long dashed), 80 (dotted dashed) and 100 meV (dotted long
dashed). There are considerable deviations for all the curves from the BCS curve,
shown by the full solid curve in the same figure. Strong coupling effects for constant
EDOS increase the normalized slope of the jump, defined as

R=TC[dAC(T)/dT]T=Tc/AC(Tc), and the crossover reduced temperature, t,

defined by T at which AC(T)=0. The magnitude of AC(T)/AC(T,) is also reduced
at low T in comparison to that of BCS, as to conserve the entropy difference
(entropy sum rule). The dotted long dashed curve in Figure (5.4) is very close to a
strong coupling curve with constant EDOS. This is expected because the chemical
potential (6=100 meV) is far enough from the vHs. As the filling decreases from
§=100 to 0.0 meV, both R and t, decrease to values that are less than the BCS
values. For é=0.0 meV (incomplete solid curve) t; is about 0.43 while for the BC3
(solid) curve, to is about 0.514. There is also an increase in the magnitude of
AC(T)/AC(T c) at low T and for 6=0.0 (incomplete solid curve) there is an
anomalous kink caused by the coincidence of the chemical potential and the centre
of the vHs in the EDOS. It is this anomaly that reflects the expected T é&n T in the
normal state specific heat which exists only when the chemical potential is at the
vHs.

In Figure (5.5), we present AC(T) for the same parameters as in Figure
(5.4) but for larger filling factors, 2150 meV. In the upper frame, we show
AC(T)/AC(T ¢) Vs t, and in the lower frame, we show the same curves but
normalized by the reduced temperature. The curves are for fillings of =150

(dotted), 200 (dashed), 300 (long dashed), 400 (dotted dashed) and 500 meV (dotted
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Figure 5.4: The specific heat difference normalized by the jump vs. reduced
temperature for a strong coupling superconductor, wp=20 meV. The curves are for

different chemical potentials, 6=0.0 (incomplete solid), 20 (dotted), 40 (dashed), 60

(long dashed), 80 (dotted dashed) and 100 meV (dotted long dashed). The complete
solid curve in BCS.
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Figure 5.5: AC(T)/ AC(TC) vs. t (upper frame) for the same superconductor in Fig.

5.4) but with higher § values. The curves are for =150 (dotted), 200 (dashed), 300
long dashed), 400 (dotted dashed) and 500 meV (dotted long dashed). The BCS
curve is given by the solid curve. The same curves scaled by t are plotted in the
lower frame.
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long dashed). The solid curve is the BCS curve. Beyond a filling of 150 meV, ther
is only a slight reduction of R and tgas d increases. The maximum value of tg is
0.65 at §=150 meV (dotted curve) and is only 5% larger than the corresponding

strong coupling value given by the approximate formula [Akis 1991]
2
tg = 0.514 [1411.5 (To/wy ) fn (wy /3.2T )],

where T, was set to 50 K. All the curves in the upper frame Figure (5.5) are almost
identical for ¢ larger than 150 meV except for a slight push to the left. At low t, the
differences are smaller in the upper frame than in the lower frame due to
enhancement of scale in the lower frame. For BCS (solid curve in the lower frame)
AC(T)/T is flat near T=0 indicating a constant 7, 2nd an exponentially small .
As T increases, larger t, Yy I8 expected to remain constant in BCS but 7, starts to
increase beyond t~0.511 the value of T~ T is zero and for t larger than 0.514 the
difference (75—7n) becomes positive, i.e. 1> Ty Upon including the electron-
phonon interaction for an Einstein phonon model, T initially increases with
temperature from its zero temperature value, reaches a maximum arround 0.1 Wg
and then decreases again to approach the unrenormalized Sommerfeld constant for
T—oo [Grimvall 1981]. This effect is seen in the downward curvature of
AC(T)/AC(TC) at small t in the upper frame of Figure (5.5) and in the small
negative slopes in the lower frame of the same figure.

In the upper frame of Figure (5.6), we plot AC(T)/AC(T,) of Figure
(5.4) normalized by the reduced temperature against t. At §=0.0 meV (solid
curve), the maximum value of 7, 18 at t=0 and shows no saturation. The maximum

in 7, is shifted to higher reduced temperature values as §increases. This is
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Figure 5.6: AC(T)/ AC(TC)/t vs. t; the upper frame is for the same set of curves
shown in Fig. (5.4); the lower frame is for the weaker coupling, wp=40 meV. The

curves in the lower frame are for 6=0.0 (upper solid at t=0.2), 10 (dotted), 20
dashed), 40 (long dashed), 60 (dotted dashed) and 80 meV (dotted long dashed).
he BCS curve is shown by the lower solid curve at t=0.35 in both frames.
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reflected in the shift of the minimum of AC(T)/AC(TC)/t to higher t values with
the increase in 4. In the lower frame of the same figure we present similar
calculations but, for a weaker coupling case. The coupling parameters are tA=0.4,
wE=40 meV and T2=93.9 K. Qualitatively, the results are similar to those in the
upper frame but with smaller deviations. The curves are for filling factors, 6, of 0.0
(upper solid at t=0.2), 10 (dotted), 20 (dashed), 40 (long dashed), 60 {dotted
dashed) and 80 meV (dotted long dashed). Again the lower solid curve at t=0.2 is
the BCS case. For this particular case, R and ty are also both minimum at §=0.0
and increase as § increases until é=60 meV. For §=80 meV, R and tq get reduced,
but unlike the strong coupling case, the relative reduction is slightly larger. For
much weaker coupling cases, R and ty initially start, at §=0, at values intermediate
between the strong and the weak limits in normal Eliashberg theory, then increase
as §increases to reach maximum values (comparable to the two previous cases) and
decrease again, past the §=0 values, to the characteristic weak coupling values. The
maximum R and tO never exceed those established for regular Eliashberg theory,
namely R™**=5.0 and ¢ **=0.66 [Akis 1991]. It was originally hoped that the
inclusion of a vHs in EDOS might increase the upper limits of possible values of R
and to: This would be important because initial experiments on Y123 have given R
values slightly above 5.0 [Junod 1988; Loram 1988]. Even a larger value of R has
been reported by Schilling, Ott and Hulliger for Bi 1620, 451'208.20113)10 [Schilling
et al. 1989]. We now believe that these values may be exaggerated because the
contribution of fluctuations is not taken into account. The specific heat jump ratio
toT o however, may have less uncertainties and we will utilize it to compare theory
to experiment. We now turn to a consideration of this quantity.

In Figure (5.7), we show typical curves of AC(TC) versus 8 (chemical
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Figure 5.7: Upper frame; AC(T c) vs. &f Ef for three different coupling strengths,
wp=20 (solid), 40 (dotted) and 60 meV (dashed). Lower frame; AC(T c)/T Vs T,

for the same three curves shown in the upper frame. The long dashed curve is BCS
calculation with constant EDOS. The data points are for oxygen doped Y123 (see
text for sources).
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potential) for different coupling strengths but with roughly the same T o These
specific heat jump curves have shapes similar to their corresponding T ¢ curves, see
upper frame of Figure (3.5). The widths at half maximum, however, for AC(T c)
versus & curves are smaller than those for T L 6 curves. In the upper frame of
Figure (5.7), we show AC(T o) vs &/ Eg for three different superconductors with wg
set to 20 (solid), 40 (dotted) and 60 meV (dashed) respectively. The absolute
values of AC(TC) at 6=0 are not monotonic in coupling strength. This is actually
similar to regular Eliashberg theory where AC(T o) increases with coupling strength
to a maximum, then decreases again [Carbotte 1990]. In the lower frame, we show
the same data. as in the upper frame but plotted differently, AC(T c) /T L Tc' In
the lower frame, the curves have very similar shapes and roughly overlap over a
large interval of T c values. The points shown in the same frame are experimental
results for Y123 in which the oxygen concentration in the CuQ chains was varied to
achieve the variation in T c The data sources are Dumling et al. 1991 (hexagons),
Junod et al. 1989 (a triangle), Inderhees et al. 1991 (a star) and Wiihl et al. 1991
(squares). The qualitative agreement between the theory and experiment is quite
impressive and is better than the results of BCS theory with a simple logarithmic
singularity [Tsuei 1992]. It is worthwhile to note also that if BCS theory is used,
varying only N(0) in a constant EDQOS scenario, one cannot explain the data. Such
a calculation is shown by the long dashed curve in the lower frame of Figure (5.7)
with wy=65 meV and V=0.2.

In the next three figures, we will briefly examine the effect of impurity
scattering on the specific heat in the presence of a vHs in the EDOS. The most
interesting cases are for weak coupling. Normal impurity scattering in s—wave

superconductors has no pair breaking effects and the superconducting specific heat is
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still exponentially activated. The effect of normal impurity scattering is to reduce
and smear out the peak in the EDOS, which results in a decrease in T ,, AC(TC) and
To(T)-

In Figure (5.8), we show AC(T,)/T normalized by the same ratio at T
evaluated for zero impurity concentration versus T normalized by the clean limit
Tg, tt=0.0 meV, for a superconductor with wE=60 meV and T2=91.4 K. These
curves are with §=0.0 meV and normal impurity concentration of 0.0 (solid), 2.0
(dotted), 4.0 (dashed), 6.0 (long dashed), 8.0 (dotted dashed) and 10 meV (dotted
long dashed). At tT=2.0 meV (dotted curve), 7. n(T) is roughly constant for small
T and is reduced considerably in comparison to the clean limit case (solid curve).
As t* increases, both AC(T,) and 7, (T) get reduced but at 2 decreasing rate. For
high enough values of t+, both quantities saturate to a lower limit. For AC(T c)’
the saturation behaviour is shown in the upper frame of Figure (5.9), this is similar
to that of T, shown in the upper frame of Figure (3.6). The two curves in Figure
(5.9) are for two coupling strengths, wp= 40 meV with T2=94 K (solid curve) and
wp=60 meV with T2=91 K (dashed curve). In the lower frame of Figure (5.9), we
plot the same curves as in the upper frame but as AC(T c) /T . versus T . These
curves are similar to those obtained by varying the chemical potential. The

implication here again is that AC(T ) vs ¢+

+

curves have smaller widths than T o VS
t" curves. The experimental data (hexagons) are for Zn doped Y123 [Loram et al.
1990}. The asterisks are the same data but scaled up by a constant factor. These
two curves and the experimental data correspond to the case presented earlier in
Chapter 3 in the lower frame of Figure (3.13). The qualitative correspondence
between theory and experiment is good. For the case of constant EDOS, normal

impurities drop out of the problem and leave AC(T )/T  unchanged. The large
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Figure 5.8: Variation of the specific heat difference with normal impurities.
AC(T)/T normalized by AC(TE)/TO, where Tg is T, for zero impurity

concentration, plotted against T/Tg. The impurity concentrations for these curves

are 0.0 (solid), 2.0 (dotted), 4.0 (dashed), 6.0 (long dashed), 8.0 (dotted dashed) and
10 meV (dotted long dashed).



133

variation found in Figure (5.9) finds a natural explanation in the van Hove model
although other explanations might be possible.

For paramagnetic impurity scattering (pair breaking}, the specific heat
difference deviates only slightly from the conventional behaviour in ordinary
Eliashberg theory. This deviation is only near T . Ordinarily, AC(T,) [T, is
monotonic decreasing function of t~ and is almost a straight line. If the chemical
potential is on or very close to a peak in the EDOS, then T c drops faster than usual
because the EDOS is being smeared in addition to the usual pair breaking effect.
Hence, the ratio of AC(TC)/T . initially increases slightly as T . decreases then
starts to decrease in similar fashion to that in the absence of a vHs. This is
illustrated in the lower frame of Figure (5.10), where we plot AC(T )/T
normalized to the clean limit value versus T c/ Tg. The parameter of these
calculations are r=1.0, E= 500 mev, w,=30 meV and A=1.2. The curves are for
different chemical potentials, 6=0.0 (solid), 35 (dotted), 50 (dashed), 80 (long
dashed) and 200 meV (dotted dashed). These curves are quite different from
AC(T)/T, curves shown in Figures (5.7) and (5.9). Pair breaking is more effective
in reducing T, than reducing AC(T,). In the upper frame of Figure (5.10), we show
AC(T)/T vs T/T for $=0.0 meV and the curves are for t"=0.0 (solid), 0.2
(dotted), 0.4 (dashed), 0.6 (long dashed), 0.8 (dotted dashed) and 1.0 meV (dotted
long dashed) respectively. At low T, these curves are not very different from those
with normal impurities, except in this case the impurity concentrations are much

lower.
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wp=40 (solid) and 60 meV (dashed). Lower frame; AC(T )/T, vs T, for the same

two curves shown in the upper frame. The hexagons are experimental data for Zn
doped Y123 (see text for asterisks and source of data).
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Figure 5.10: Effect of paramagnetic impurities on AC(T). Upper frame: similar to

Fig. (5.8) and the curves are for t~ =0.0 (solid), 0.2 (dotted), 0.4 (dashed), 0.6 (long
dashed), 0.8 (dotted dashed) and 1.0 meV (dotted long dashed). & is set to zero.

Lower frame: AC(T_)/T_ normalized by its value at t"=6=0.0 meV vs. T,/ Tg, Tg
is the optimal clean limit T ¢ The chemical potentials for the various curves are

g—:OEOdSsolid), 35 (dotted), 50 (dashed), 80 (long dashed) and 200 meV (dotted
ashed).
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IV) The Finite Band Numerical Results

In this section, we will present results for AC(T c) using the tight
binding model introduced earlier in Chapter 4. Both cases of s—wave and d—wave
superconductors will be studied and compared, however for impurity scattering only
the d—wave case will be emphasized. For simplicity, we will set B to be zero, no
next nearest neighbour hopping. We will begin with results for T, and AC(T C)/T c
calculated for different hole doping levels, i.e. the chemical potential, g, is being
varied. Next, we will present AC(T) in the whole temperature range for both
d—wave and s—wave superconductors. Third, we will study AC(T) for d—wave in
the presence of impurities and compare to experimental results. The formalism
needed for this section was described earlier in Chapter 4, for the Eliashberg
equations, and in Chapter 2, for the free energy formula.

In the upper frame of Figure (5.11), we show the transition temperature
plotted against the chemical potential for two d—wave superconductors (solid and
dotted curves) and two d—wave superconductors (dashed and long dashed curves).
For all of these curves, we set t=50 meV, wp=30 meV and the cut off equal to 2100
meV. For the s—wave order parameter, TC exhibits a broad maximum around
£#=0.0 meV. The width of this maximum is larger for higher values of coupling
strength A, A=0.7 for the long dashed curve and 1.6 for the dashed curve. This is
similar to the results of Chapter 3 in which the T ¢ versus 6 curves were much
narrower due to the narrower EDOS. For the d—wave cases, the widths of the
maximum of the T ¢ versus p curve is higher for the stronger coupling case (solid
curve, A=0.7) than for the weaker coupling case (dotted curve, A=0.001). The
effect of coupling strength on the width of the maximum of T, vs j curves is similar

for d—wave and s—wave.
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Figure 5.11: Upper frame; T, vs. s/ T (see text for parameters) for d—wave (solid
and dotted) and s—wave (dashed and long dashed). Lower frame; AC(T c)/ T,
normalized to its value at z=0.0 meV for the same curves shown in the upper frame.
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The d—wave curves are much narrower than the s—wave curves. This
efiect has a simple explanation. For a separable model, the linearized gap equation

(equation (4.3)) can be written as

. 2
"
$,=87T, L Mn—m) ¢ 2 ST T
m k wo+e

and the most important contribution of the summation over k comes from on and
around the Fermi surface. So as uis varied, the effective value of nﬁ on the Fermi
surface changes, i.e. its average changes with gz. The function nﬁ is peaked for
k=(0,+7/a) and (+7/a,0) and is zero for k=(0,0) and (¢7/a,tx/a). At half filling,
#=0.0 meV, the Fermi surface includes the maximum points of ni. This makes the
effective pairing potential a maximum at y=0.0 meV. As yis swept away from
zero, the average of 17]2‘ on the Fermi surface is reduced. The effective pairing
potential then decreases as p increases (decreases) from zero. This leads to further
decrease in T o compared with s—wave case, where nﬁ is replaced by a constant over

the whole Brillouin zone.

In the lower frame of Figure (5.11), we show the ratio AC(TC)/TC
normalized to its value at x=0.0 meV plotted against T c for the same set of curves
as in the upper frame. For s—wave, AC(T c)/Tc curves are similar to that obtained
in the previous section (Infinite Band Model) and can nicely describe the
experimental data for the oxygen doped Y123. For d—wave, however, this ratio,
AC(T c) /T o deviates considerably from that of the s—wave. The experimental data
on Y123 and LSCO, presented on triangles in the lower frame of Figure (5.3},

cannot be explained with these d—wave results. This is not to suggest that
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d-wave is inconsistent with the data. The discrepancy between the experimental
data and theory might be artificial because of assuming a separable model. Ina
separable model, T c drops very fast with x and hence gives a larger AC(T c)/T c
ratio.

In figure (5.12), we show AC(T)/AC(TE), Tg is T, for =0, for an
s—wave (upper frame) and a d—wave (lower frame) superconductor plotted against
T/Tg. These calculations are for two of the four curves shown in the previous
figure, the long dashed curve (s—wave) and the solid curve (d—wave). The specific
heat jump for 4=0.0 meV, AC(TE), for the s—wave is 54% larger than that of the
d-wave. At optimal doping, AC(T) (unnormalized) at low T for the s—wave is only
slightly larger (in absolute magnitude) than that of the d—wave evaluated at the
same absolute temperature. This is because the normal state specific heats are
equal for both of them. Note that the superconducting specific heat for d—wave is
only slightly larger than that for the s—wave, which is exponentially activated at
low temperature. The equality of the normal state specific heat follows from the
equality in the EDOS parameters and equal coupling strength, A, in the omega
channel. The curves in the upper frame are for z=0.0 (solid), 20 (dotted), 40
(dashed), 60 (long dashed) and 80 meV (dotted dashed). The curves in the lower
frame are for z=0.0 (solid), 30 (dotted), 40 (dashed), 50 (long dashed) and €60 meV
(dotted dashed). The larger negative scale in the lower frame is a consequence of
smaller AC(TE) for the d—wave case. Away from the vHs, the low temperature part
of AC(T)/T is quite flat and strong coupling corrections to 7, 2T€ apparent for the
s—wave superconductor (upper frame). For the d—wave superconductor (lower
frame} and away from =0, AC(T)/T curves have a linear slope below 0.15 T, as

expected for d—wave. At p=0.0 meV (solid curve), 'yn(T) has very large
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Figure 5.12: AC(T) normalized by AC(T o) at £=0.0 meV vs. T normalized by T c

at ¢=0.0 meV. The curves in the upper frame (s—wave) are for 4=0.0 (solid), 20
dotted), 40 (dashed), 60 (long dashed) and 80 meV Edotted dashed). In the lower

ame (d-wave), the curves are for y=0.0 (solid), 30 (dotted), 40 (dashed), 50 (long
dashed) and 60 meV (dotted dashed).
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temperature variation that masks the linear increase in ¢ o S/T.

In Figure (5.13), we show AC(T) for a d—wave superconductor with
T c=30k plotted against absolute temperature (solid curve) and calculated with the
following parameters, wp=70 meV, A=1.0, cutoff =1050 meV, {=50 meV and 4=0.0
meV. The normal state specific heat (dotted curve) is calculated in the same way
as in Figures (5.1) and (5.2). The dashed curve is the resultant superconducting
specific heat of this 30 K d—wave superconductor. All the curves in the upper frame
are normalized by the normal state specific heat at 30 K, cn(30). The lower frame
of Figure (5.13) shows AC(T)/T normalized by ¢,(80). Itis clear that thelow T
superconducting specific heat of this d—wave superconductor (dashed curve) is
actually quadratic in temperature below 5 degrees and almost quadratic above that
but with a different coefficient.

Next, we will consider the effect of impurity scattering on the specific
heat of d—~wave superconductors. Near T o both Born and resonance scattering have
almost the same effect, both T c and AC(TC) drop linearly with increasing impurity
concentration. For the same reduction of T c from the pure limit, AC(T c) is
reduced a bit more in resonance scattering than in Born scattering. In Figure
(5.14), we plot AC(TC) /T c normalized to its clean limit value versus T, obtained
by increasing the impurity concentration of Born impurities (solid curve) or
resonance scatters (dashed curve), for a d—wave superconductor with =50 meV,
A=0.7, g=0.82, wp=30 meV and a cutoff of 2100 meV. The hexagons are the
experimental data for Zn doped Y123 {Loram et al. 1990]. The linear drop of T,
and AC(TC) is independent of both 4 and the sharpness of the vHs in the EDOS.
The implication of this is that these experimental data can not be explaired by a

simple d—wave picture with short range s—wave resonance scattering.
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Figure 5.13: AC(T) (solid), C,(T) (dotted) and C,(T) (dashed) vs. T for a d—wave

superconductor (4=0.0 meV). The lower frame is for the same curves in the upper
frame but divided by T.
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The thermodynamic critical field data, on the other hand, are much better
described by this simple d—wave picture, lower frame of Figure (5.14).

As for the low temperature dependence of the London penetration depth
described in Chapter 4, Born and resonant scattering have quite different effect on
the low temperature dependence of the superconducting specific heat. Born
scattering leaves the low temperature dependence unchanged (quadratic in T), while
the smallest concentration of resonance impurities scattering changes the quadratic
dependence to a linear one. In Figure (5.15), we show AC(T)/T normalized to its
pure limit value for different impurity concentration t* (in the Born limit). In the
upper frame, the percent reductions in T ¢ are 0% (solid), 4.5% (dotted), 9.1%
(dashed) and 14% (long dashed curve). All the AC(T)/T curves in the upper frame
extrapolate linearly to almost the same intercept at T=0. In the lower frame, we
increase t¥ to get higher percent reductions of T o» namely 18% (solid), 29%
(dotted), 34% (dashed) and 40% (long dashed curve). The remaining parameters for
these calculations are t=50 meV, py= —50 meV, A=g=1.0, wg=90 meV, cutoff is
1350 meV and T, for tT=01s 220 K. We now notice that AC(T)/T extrapolates to
2 higher value at T=0 evidence of density of states filling at high enough reductions
in Tc' Notice that the reduction Tn is expected to be very small because y is far
from the vHs (negligible smearing).

In Figure (5.16), we show the effect of resonance scattering on AC(T) for
the same d—wave superconductor presented in Figure (5.15). In the upper frame,
the percent reductions in T for the AC(T)/T curves are 0% (solid), 6.6% (dotted),
13% (dashed), 20% (long dashed) and 26% (dotted dashed curve). In the lower
frame, the percent reductions in T ¢ for AC(T)/T curves are 32% (solid), 39%

(dotted), 46% (dashed) and 53% (long d.ched curve). Immediately, with very
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Figure 5.15: AC(T)/T normalized by AC(T?)/T0 vs. T/T{ for a d-wave
superconductor with Born scattering. The curves in the upper frame are for t+=0.0
(solid), 1.0 (dotted), 2.0 (dashed) and 3.0 meV (long dashed). The curves in the

lower frame are for tT=4.0 (solid), 5.0 (dotted), 6.0 (dashed) and 7.0 meV (long
dashed).
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small reductions in Tc’ the quadratic dependence is replaced by a linear behaviour
and AC(T)/T extrapolates to a higher value than for I'=0 indicative of an
enhancement of the low energy states in the superconducting states. This filling up
of density of states is monotonic with the concentration of resonance scatterers, T,
and resembles the experimental results for Zn doped LSCO described at the end of

the experimental sections in this chapter.

IV) Condlusions

In regular metals and constant EDOS, 'yn(T) has a local minimum at
T=0 and a maximum at T~0.1 HD, where OD is the Debye temperature. With a
logarithmic singularity in the EDOS, the maximum in 7 n(’I‘) shifts to T=0. 'yn(T)
then becomes monotonic decreasing function of T. Our calculations do not establish
unambiguously whether this peak is finite or not at T=0. In the absence of the
electron—phonon interaction, we showed that Ta® —in T and hence does not saturate
at T=0. As the chemical potential moves away from the centre of the vHs, this
peak shifts gradually to higher temperatures. Normal impurity doping, on the other
hand, leaves the position of the peak at T=0 (unchanged). The magnitude of 7 (T)
gets reduced with impurity concentration ard for high enough concentration 'yn(O) is
finite and regular. In the infinite band model, 4 (T) saturates to a constant value
in the limit t+—»oo, With finite bands 7n(T) does not saturate to a constant value.

The experimental data of AC(T }/T, for oxygen doped Y123 could be
explained by a vHs model as is shown by Figure (5.7). This is true irrespective of
the coupling strength. This same ratio for Zn doped Y123 was also found to be
reasonably accounted for by the vHs model (Figure (5.9)). This is taken as evidence

for the existence of a sharp density of states at the Fermi level. The calculations for
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a d—wave superconductor with a finite band and seperable pairing potential did not
agree with the experimental data for both types of dopings. This is not interpreted
as evidence against the d—wave mechanism for two reasons. First, changing zin a
d—wave seperable model results in hole doping and also modifies the pairing
potential. Second, Tc in this simple model is very sensitive to impurity
concentration.

The low temperature behaviour of AC(T) in d—wave compares well with
experiments by Moler [Moler et al. 1994] and Momono [Momono et al. 1994],
particularly the development of a linear superconducting specific heat with the

addition of Zn impurities (resonant scattering).



Chapter 6
Upper Critical Field He,,

I) Introduction

The Werthamer—Helfand—Hohenberg (WHH) theory [Helfand 1966] has
been very successful in describing the temperature dependence of the upper critical
field Hc2(T) for most conventional supercorductors. Hc, is the magnetic field
beyond which superconductivity ceases to exist. Some recent measurements of
ch(T) for various HTSC, however, show an anomalous upward curvature that is
not consistent with the WHH theory [ Osofsky et. al. 1993 and Mackenzie et. al.
1993 ). Schossmann and Schachinger (SS) have extended the WHH theory to
include the full electron—phonon interaction [Schossmann 1986]. It is found in this
new S8 theory that for a larger ratio of T o/ @, the Heo(T) curve shows an upward
curvature [Marsiglio and Carbotte 1987]. According to this model the reduced

critical field heo(T) is defined as

148
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He, (T)
9
THe, (T); (6.1)
TC‘ dT 'T

c

hc2(T) =

The normalized upper critical field h02 is a dimensionless quantity and is widely
used in literature. For an isotropic s—wave gap the maximum hc2(0) is slightly less
than 1.5. These new experimentS show values of hcy(0) in excess of 1.6 in the
HTSC. This is in disagreement with the maximum possible value in the SS theory.

There has been some early attempts to use lower dimensionality
arguments and the WHH formalism to carry out calculations of ch(T) [Rieck 1991;
Prohammer 1990b; Pint 1990]. These calculations do not show any anomalous
upturn in Hc2(T) curves. Other attempts make use of spin fluctuation mechanisms
within the SS model with anisotropic order parameters, for example, p—~wave
[Scharnberg 1980]) and d—wave [Prohammer 1990a). These calculations also do not
show any different behaviour of the Heo(T) curves from the reguiar s—wave SS
model. The inclusion of thermal fluctuations, however, does result in an upward
curvature of Heo(T) near T, [Reick et al. 1989]. This might be important if 2D
fluctuations extend to a large temperature range below T c

Our approach to the He,(T) problem is to introduce in the formalism
the energy dependence of the EDOS. The particular model that we will apply for
N(e) is that of a simple logarithmic van Hove singularity. We have followed the SS
formalism closely and modified it to include the nonconstant EDOS in Section V of
Chapter 2. In this chapter, we will calculate Heo(T) for two types of order
parameters, s—wave and d—wave. Next we will present the appropriate form of the

equations necessary to carry out the numerical calculations for ch(T). In Section
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I we will show our results and then compare them with experiment in Section IV.
Section V contains asymptotic limits on hc2(0) and in Section VI we give a brief

summary.

O) Formalism

In the absence of Pauli limiting the Eliashberg equation for the omega
channel was given by equation (2.13a) and the order parameter equation was given
by equation (2.73). Equation (2.13a) can be put in a form similar to equation (3.11)
where the model for the electronic density of states N(¢) is taken to be a simple
undamped van Hove singularity given by equation (1.4). Its particular N(ﬁn) is
given by equation (3.18). This choice of N(¢) is conveniert because it is the
simplest choice and it has no poles in the upper and lower half of the complex
e~plane. The presence of poles would only complicate the mathematics.
Furthermore, in all our calculations we will choose a large value of Eg such that we
will stay within the physical regime, i.e. N>0 ¥ 5n up to the cut off frequency. The
last point to mention here about the omega equation is that only the linearized form
is used to calculate Hc2.

We now turn our attention to the gap equation, equation (2.73).
Because we are using the infinite band model for these calculations, we have to
make some approximations and adjustments to this equation. First of all, we will
change the sum over q to an energy and an angular integration (consult equation
(2.17)). The energy integration can be performed most easily and as a result the
gap A, pairing interaction sz, and the Fermi velocities Vi will all be pinned to the
Fermi level. Our eigenvalue equations are described in some detail in Appendix B

for both the d—wave and s—wave case. For the s—wave case, the equation for the



152

largest eigenvalue with nonconstant density of states is

. Aiw)
A(iw,)=7T 2 [A(m—m)-*Hw~|w_ |)] T )X"'l(lw e (6.2)
where
52 ~ 32
N(_) = %m[s—g;“i&)] (6.3)
f

w=w +7T Z Mn—m) sgn & N(@_) + 1r(t++tjﬁ(5n), (6.4)
m
and in 2D (see (B.18))
X(iwg) = = [ " dg 9 H(B_q), (6.5)

with a=a, /2 v%, a;=eH, v is the Fermi velocity and

g =-Le (6.6)
o ||
and
H(x) = —X—. (6.7)
14x

In 3D, H(x) is replaced by F(x) while keeping the same arguments and
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F(x)=ta.n"1x.

For the d—wave case, (see Appendix B} we have,

Aliw,) = & [, )+ cq(m)+{(e; ()—q(m))2+4 )2, (6.8)

and

c;(n} = 7gT ; Mn-m) Afiw ) N(?Jm) X, (i), (6.9)

for i=1,2,3 and for X, in 2D we have

@ 2
>c1(iwm)=J—fE J e (B0, (6.10)
o 2
Xolivg) = -J%-Jg} [ dae Lo(a%) H(Ba), (6.11)
@ 2
Xyliv) = ;_; '/;) dq e 3 LY(24%) H(F_a). (6.12)

The case of 3D simply amounts to replacing H(f mq) by G(ﬁmq) in every

X; where G(x) is now given by
G(x) = 51 {3(X"1—x_3) + [3-2x 2+3x Jtan } (6.13)

IT) Numerical results
In this section we present numerical solutions for I-Ic2 and he,,. The

method of solution involves increasing a to a value such that Az(iwo) equals zero.
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This critical value ., corresponds to our desired value of the upper critical field

through the relation

2ac

He =—x, (6.14)
2 eVF

and is obtained from the largest eigenvalue of the linearized gap equation. In all of
our calculations in this chapter, we use a lead spectrum for azF(w) for which

wtn=4.83 meV and wma.x'_'n meV, p*=0.0, wc=30 ax’ and vF=106m/s.

wm
We will first present results for a constant EDOS and compare the 3D to
the 2D case. Figure (6.1) shows the results for two different coupling strengths,
T=011 Wy, in the upper frame and Tc=0'39 wy in the lower frame. The long
dashed curves are for an s—wave order parameter in 3D. For all the coupling
strengths in 3D we have found that s—wave in 3D gives larger values of hc2(0) than
the d—wave case. For two dimensions, the dotted curves are for s—wave and the
solid curves are for a d—wave order parameter. The d—wave curves are always
higher than the s—wave curves in two dimensions. For these two coupling strengths,
the d—wave hcz(t) curves in 3D are still higher than the d~wave curves in 2D. As
the coupling strength increases, the hc2(t) curves push up to higher values at t=0
and develop an upward curvature in the intermediate region below T c In Figure
(6.2) we show the influence of coupling strength on the d—wave case (upper frame)
with constant EDOS in 2D, some s—wave curves are shown in the lower frame. The
curves in terms of T/ wy, are for 0.11 (lower solid), 0.21 (dotted), 0.28 (short
dashed), and 0.39 (long dashed). The values of he,(0) do not increase indefinitely.
The maximum value of hcy(0) for 2D d—wave is about 1.3. For larger T o Y
hc2(0) will drop gradually to some asymptotic value. The upper solid curve in the

upper frame of Figure (6.2) is for T o/ W =4-10. Similar results have been
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Figure 6.1: Reduced upper critical field versus reduced temperature for two different
coupling strengths T =0.11 Wy (upper frame) and T =039 wy (lower frame). The EDOS

is constant and the curves are for 2D s—wave (dotted) and d—wave (solid) and 3D s—wave
(long dashed) and d—wave (dashed curve).
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Figure 6.2: Reduced upper critical field versus reduced temperature for constant EDOS
d—wave (upper frame) and s—wave (llower frame). The coupling strength is varied and the

curves are for T, / wp, equal to 0.11

ower solid, 0.21 dotted, 0.28 dashed, 0.39 long dashed

for both frames and 0.56 dotted dashed, 0.99 dotted long dashed, and 4.1 for the upper

solid curve.
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calculated before for the s—wave case in 3D where it was found that the maximum in
he,(0) is about 1.5 for a lead spectrum [Marsiglio and Carbotte 1987].

We are interested in the effect of 2 van Hove singularity in the EDOS on he,(t).
In Figure (6.3), we show he,(t) calculations for both d~wave and s—wave (lower frame) as
the van Hove singularity is switched on. The density of states parameters are shown in the
figure caption. The curves are for T, /wy, equal to 0.18 (solid), 0.33 (doited), 0.40
(dashed), 0.46 (long dashed), 0.51 (dotted dashed), and 0.64 (dotted long dashed). The
solid curves are for a constant EDOS. We notice a large gain in hc2(0) coming directly
from the peak in the EDOS. For comparable T c/ Won ™ 0.4, we see that the long dashed
curve in Figure (6.2) has he,(0) ~ 0.93 and the dashed curve in Figure (6.3) has heo(0) ~
1.3 for the d—wave case. With even a higher s value of about 11, which correspond to
T =1.03 wy,, we can push hc, (0} up to 3.9. This value of hc,(0) does not increase
indefinately with s. Higher values of s increase the coupling strength. This in effect
produces more smearing of the vHs in the EDOS and its role becomes less important. So in
the limit of large s or A, he,(0) drops to a smaller value charactaristic of the strong
coupling limit with a constant EDOS, hey(0) = 0.57 [Carbotte 1990].

Figure (6.4) shows a plot of He,(0) versus T . (fower frame). The variation in
Tc is accomplished by increasing s from 0.0 to 11.0. The upper frame is a log—log plot of
He,(0) vs T o from which we can infer that Hc2(0) is proportional to TT with m26. In the
clean limit ( with the two square well :nodel considered in section V of this chapter), the
zero temperature value of He,(T) for a 2D s—wave superconductor with constant EDOS is

given by

Hey(0) = 277 ¢ T14+2(0)) T2/ (ev), (6.15)
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where 7 is Fuler’s constant. At first sight, we may only expect to see a Ti law for Hc2(0)
but Figure (6.4) shows a higher exponent of about 6. In the asymptotic limit of large ),
however, we have T, ~ /(0] and hence He,)(0) becomes proportional to Tg . By increasing
s dramatically we are actually going to large A’s so that the result of a T™ law with m
equal to approximately 6 is justified.

The enhancement of he,(0) is also sensitive to the position of the chemical
potential from the center of the peak in the EDOS. This effect is illustrated in Figure (6.5)
and Figure (6.6), in which the chemical potential §is moved away from the centre of the
vHs. In Figure (6.5), we plot hcy(t) versus t (upper frame) and Hey(T) versus T (lower
frame) with s = 1.0 and T =0.512 wp,. It can be seen from Figure (6.5) that he,(0) drops
dramatically from 1.6 at §=0.0 to 1.07 at §=40 meV while, on the other hand, Tc decreases
only slightly from 28.7K to 27.9K. Far away from the peak in the EDOS,that is,for §>90
meV, the rate of change of hc,(0) with & is much smaller. Figure (6.6) presents results for
the same sort of calculations except with s=11. This is a much stronger coupling case as
Tg=1.03 wy - In the lower frame, we see no significant change in T 38 6 is varied from 0
to 150 meV. We notice also that the relative reduction in he,(0) for small §in the strong
coupling case (solid to dashed curve in Figure (6.6)) is much less than that for the weaker
coupling case (solid to dotted dashed curve in Figure (6.5)). A plausible explanation is
that for small A there is less smearing of the vHs and hence, hcz(O) is sensitive to small
changes in 6. The reason for the increase of he,(0) in the presence of a peak in the EDOS
is that retardation effects decrease as the temperature is lowered and the weight of N
contributing to the gap equation is higher. This results in a large o(0) value. At the same
time, the mass enhancement factor increases as a function of decreasing temperature which
makes retardation 2 bit stronger. Lowering the temperature and increasing A work in

opposite directions to increase and decrease the effective integrated N respectively.
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Figure 6.5: Upper frame shows hc2(t) vs t for different § values with s=1, r=1 and
Ei=1500. The curves are for § equal to 0 upper solid, 10 dotted, 20 dashed, 40 long
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curve. The lower frame is for Heo(T) vs T for the same curves.
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The net increase of hcy(t) comes from the fact that the temperature contribution
in increasing N is more dominant.

The corresponding increase of A(T) with decreasing temperature is
shown in Figure (6.7). The upper frame is for the same case presented in Figure
(6.5). The curves are for § equal to 0 (solid), 10 (dotted), 20 (dashed), 40 (long
dashed), 60 (dotted dashed), and 90 meV (dotted long dashed). The variation of
M(0) with §is very similar to that of hcy(0) with 6. Small changes in § reduce A(0)
appreciably relative to its value at T c Similar conclusions hold for the strong
coupling case corresponding to the resulis presented in Figure (6.6). The curves in
the lower frame of Figure (6.7) are for § equal to 0.0 (solid), 60 (dotted), 100
(dashed), 150 (long dashed), 200 (dotted dashed), and 400 meV (dotted long
dashed). Near §=0, A(0) varies slowly with é contrary to the case in the upper
frame. One might infer erroneously from equation (6.15) that the temperature
dependence of He,, may depend on that of ), i. e. Heg(t) is proportinal to [1+A(t)]2.
Although A(t) and hey(t) behave similarly, we would like to stress that they are
both caused by the same effect. As a matter of fact, in constant EDOS there is
anticorrelation between hcy(t) and A(t) above zero temperature. In regular
Eliashberg theory, A(t) and 7_(t) behave similarly. So A(t) exhibit a local
minimum at =0, while hcy(t) has 2 maximum at t=0 followed by a region of
upward curvature. Another interesting point to make here is that hcy(0) and A0)
are both smooth functions and nonsingular as T—0, unlike ¥(T) described earlier in
Chapter 5 which simply did not saturate for the case when the chemical potential is

pinned to the vHs.
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Next, we present our results on impurity scattering. Figures (6.8) and
(6.9) show results for the effect of impurity doping in the d—wave case. The solid
curve in Figure (6.8) corresponds to the upper solid curve in Figure (6.5) while the
solid curve in Figure (6.9) corresponds to the solid curve in Figure (6.6). For both
figures we pin the Fermi level to the vHs, at §=0, and increase the impurity
concentration. In the d—wave case, both normal and paramagnetic impurities have
the same effect on T o As the impurity concentration increases T c decreases at the
same rate for both types of impurities. The impurity concentrations, in order of
increasing concentration (decreasing T c), are 0.0, 0.1, 0.2, 0.4, and 0.6 meV for
Figure (6.8) and 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.6 meV for Figure (6.9). We
notice in both figures that He,(0) decreases with decreasing T . and the relative
decrease of He,(0) is more dramatic than the relative decrease in T o This is shown
more clearly in the upper frames of both figures, where hc2(t) is reduced
substantially from the solid curve, especially at t=0. We attribute this reduction to
the smearing of the density of states. Also notice that this reduction in hcz(O) with
impurities is not as dramatic as that resulting from the chemical potential change (
Figures (6.5) and (6.6)) if the change in T ¢ is used as a gauge. Very similar effects
are observed for paramagnetic impurity scattering for s—wave superconductors. In
Figure (6.10), we show the s—wave case corresponding to the d—wave one shown in
Figure (6.8). Paramagnetic impurity scattering is pair breaking and results in a
reduction of both T, and Hey(0).

Normal impurity scattering (t+) in the s—-wave case is quite different as
can be seen from Figure (6.11). Within the vHs scenario, there can be a decrease or
an increase in T . depending on the position of the chemical potential relative to the

peak in the EDOS. For the case where the Fermi level is pinned to the vHs,
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increasing . always results in monotonic decrease in TC to a lower bound given by
an average background EDOS. The transition temperature is reduced in this case
due to smearing of the density of states while He,(0) increases as can be seen in the
lower frame of Figure (6.11). A similar increase in the slope of He,(T) at T, also
results. The net over all effect on he,(t), however, is to reduce the he,(t) curves
especially at t=0. In the dirty limit and constant EDOS, we can show that both
Hc2(0) and its slope at T ¢ are proportional to the normal impurity concentration

+

t ', and for 2D we have

He,(0) = §—ng ¢+ (6.16)

and

dHc
] — 22 ﬂi’}l ¢, (6.17)

eVr.

These two expressions result in the universal number h02(0)=0.69. This is true even

with a nonconstant EDOS.

IV) Experimental comparison

Most of experimental data on HTSC for He,(T) is near T, and does not
extend to lower temperatures. Measurements of He,y(T) are done by
dc—magnetization, ac—susceptibilities or magnetoresistance. The HTSC samples are
either single crystals or magnetically aligned polycrystals. Typical slopes for Y123
are 0.46—0.71 (T/K) at 88.7K [Worthington et al. 1987], 1.9 (T/K) at 92.5K [Welp
et al. 1989}, 2.01 (T/K) at 92.9K [Zhang et al. 1994]. The variation of T, in these

pure samples of Y123 could be due to a number of reasons among them oxygen
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deficiency or impurities. Most of the He,(T) data are not well controlled in terms
of oxygen or impurity content. This makes meaningful comparison with theory a
very hard task. Furthermore, in our formalism, we can only calculate @, and one
has to make a good guess for Vg. to be able to extract Hc2(T) from a. Ina simple
model one might expect that V P correlates with inverse of the density of states, so
that a chemical potential change or even impurity doping will in principle change
Vp- Controlled experiments for Y123 with Zn doping could be very useful, given a
good model for Vg, in discriminating between s—wave or highly anisotropic s—wave
and d—wave. Our calculations show the siope of a, w.I.t. TatT . Tises
substantially with normal impurity doping, while in d~wave there is a very slow
change with impurity doping.

In the lower frame of Figure (6.12), we show Hcy(T) versus T for 2
BigSr,Cu0, overdoped thin film sample (squares) [Osofsky 1993] and for a
T4 Ba,CuOg overdoped single crystal (triangles) [Mackenzie 1993]. These two
materials are highly two—dimensional and the data are extracted from resistivity
curves. Our calculations show rounding near small T and these experimental curves
do not show any sign of saturation near T=0. A similar curve is obtained for
Sm1_85(3e0.1 5CuO dmy single crystal (overdoped) [Andrade et al 1991; Dalichaouch
et al. 1990]. Many authors caution that these resistivity measurements actually
represent the irreversibility lice. Fluctuation analysis of the raw data of SmCeCuO
resulted in an Hc2(T) curve that is consistent with the WHH theory [Han et al
1992]. The upper frame of Figure (6.12) shows heo(t) data for the 3D cubic
Ba, K BiO; with x=0.35 (optimum doping) single crystal [Affronte et al. 1994].
This data is also measured from resistive curves. Three dimensional fluctuation

corrections to the data may still be important. The data shows a saturation near
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t~0.05 in contrast to the 221 systems (lower frame). It is not hard to find a

suitable fit for the data by invoking a nonconstant EDOS model applicable in 3D.

V) Asymptotic limits in 2D
A) Clean limit

In this section, we would like to find analytic formulas for Hc2(T) at
zero temperature and its derivative (slope) with respect to temperature near the
transition temperature for a BCS s—wave superconductor with constant EDOS. We
will first find an expression for the slope near T . by expanding x(ium) in the gap
equation (6.1) in terms of small powers of & and then taking the temperature

derivative of & The clean limit implies no impurity concentration, i.e. tT=t"=0.

We approximate the pairing interaction ( the double well model ) by
Mn-m) = A 0 (w—|w|) 0 (w—lwg|).

The gap equation then gets reduced to

1=ﬂ‘(A—ﬁ*)2 1!

|~
wm

o)

“m
and the omega channel is replaced by

Wy = wp (1+24).

The summations are easy to evaluate and at T c
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2
@/(T) = - (1A T,

where

1
N = Z ———— ¥ 1.05.
n20 (2n+1)

In the limit of T—0, we have
1 p®
7T 2 = dw,
=3[

$O we can write the gap equation as

We perform the w—integration and expand it in w, /v to get

2w, (1+2)

2 —£nq].

o 2
ERy

m
We can use f fn xe”™ dx = —y and at T, 14+2[(A=p*)=tn (e7wc/7rTC) to finally
0

get at T=0

Ja=re "2 (142 T,.
The normalized upper critical field then is
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heo(0) = N e 7 = 0.59.

In the 3D s—wave case hcy(0)=0.73.
B) Dirty Limit
In two dimensions we can write x(iw ) for all T as

b

T [1'
[(1+A)w +mt™ | t

x(iw ) =
while for three dimensions

x(iw) = L [1 -1 3%1] .

|(1+))w +at ™|

Since the two equations differ only in a scale for o{T), then the 2D solution of @ and
its slope at T . 15 the same as for the 3D case but multiplied by a scaling factor of
2/3. Then it is obvious that the ration of a’/a is the same for both dimensionalities
in the dirty limit. For 3D this ratio is hc2(0) ~ 0.69 and hence it is the same ratio
for 2D. For completeness, we mention the solutions of o{0) and a‘(1) for the 3D

case [Carbotte 1990]
of0) = 2 (141 4T T,

o'(T,) =—24 (1+2) t7.
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VI) Summary

We have found that the hey(t) is larger in 3D than in 2D. In 2D we
have also found that hey(t) for the d~wave order parameter is larger than the
s—wave. Quite generally, the vHs in EDOS acts to enhance hcz(t) in a fashion
similar to strong coupling effects. For d—wave and a simple vHs in the EDOS, the
maximum of hc,(0) is about 4.0. This is larger than the maximum value of 1.3
attainable from strong coupling effects in constant EDOS. Furthermore hc2(t) has
an upward curvature near T c that is absent in a constant EDOS model.

Born impurity scattering in d~wave and paramagnetic impurity
scattering in s—wave are quite similar; in both cases T cand Hc2(0) are reduced.
The temperature dependence of he,(t) is also changed and hc,(0) is reduced because
the slope of ch near Tc slowly increases with impurity concentration. Normal
impurity scattering in s~wave is quite different from the previous two cases. Both
Hc,(0) and the slope of Heo(T) at T, increase rapidly with normal impurity

-entration. Despite this, hc2(0) decreases because of smearing of the vHs in the
EDOS.

In the limits of very large normal impurity concentration or very strong

coupling, he,(t) is not affected by large peaks in the EDOS. We also showed that

dimensionality has no effect on the limiting value of hcg(0) in the limit of large tt.



Chapter 7
Summary

In Chapter 2, we have presented a derivation of the Eliashberg
equations, the free energy formula, the London penetration depth and the eigenvalue
equation for the upper critical field, all appropriate to a general electronic band.

In Chapter 3, we gave an analytic expression for the Eliashberg
equations specific to an infinite band EDOS with a damped logarithmic singularity.
From these equations, we calculated the transition temperature, Tc’ and the isotope
effect, B, and their dependences on chemical potential and on normal and
paramagnetic impurity concentrations. We show that the enhancement of Tc due
to a peak in the EDOS can be an order of magnitude larger than the corresponding
T, in the absence of such a peak. We also show that the isotope effect is reduced
by, at maximum, only 15% from its BCS value of 0.5. This reduction falls short of
the quoted experimental values for most HTSC’s. The Bardeen Stephan free energy
difference formula appropriately generalized to include the damped vHs was also
given in Chapter 3. From this expression, we have calculated numerically the
thermodynramic critical field at zero temperature, HC(O). We find good agreement
between the calculated H .(0) and its variation with normal impurity concentration
and the experimental data on Zn doped Y123. The agreement is also good for the

specific heat jump calculations and experimental results for the same system, as
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shown in Chapter 5. In the same chapter, Chapter 5, good agreement between the
experimental specific heat jumps for oxygen doped Y123 aad the calculated specific
heat jumps modeled with a chemical potential change in the damped vHs model is
found. Although the above calculations were for an s—wave superconductor, we
believe that the agreement between theory and experiment reflects the presence of a
peak in the EDOS although it is not indicative of the mechanism itself or of the
symmetry of the order parameter. The Zn doped data may be consistent with
highly anisotropic s—wave or highly anisotropic d—wave order parameters but not
with very isotropic d—wave.

" Chapter 4, we have shown that, for a pure isotropic s—wave
superconductor, the London penetration depth at low temperature is not consistent
with recent experiments on Y123. The d-wave picture is more appropriate but still
has some problems in explaining the observed insensitivity of T c value to small
variations in the impurity concentration. This is reflected indirectly in the
discrepancy found between /\-1:2(0) vs T curves and the corresponding experimental
data for thin films. This is also deduced from the AC(T JIT, versus T
calculations for a d—wave order parameter given in Chapter 5. The theoretical
curves for AC(T c) /T ¢ Vs T have a downward curvature because T, drops faster
than AC(T c) with impurity concentrations for an isotropic d—wave superconductor,
a property that does not agree with present data.

In Chapter 5, we showed that the renormalized Sommerfeld constant,
7n(T), exhibits large deviations at the vHs from the standard behaviour found in
the case of 2 constant EDOS. In regular metals, 7,(T) has a local minimum at T=0
and a maximum at T ~ 0.1 OD, where 0D is the Debye temperature. Fora

logarithmic singularity, this peak shifts to T=0 and 'yn(T) becomes a monotonicly
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decreasing function of T. Our calculations of T do not establish unambiguously
whether this peak is finite or not at T=0. In the absence of the electron—phonon
interaction, we showed that T ™ —¢n T and at T=0 the peak in g does not
saturate. We have also shown that Tq 3t low T is reduced by normal impurity
scattering because of density of states smearing.

In the superconducting state, the electronic specific heat, Cq at low
temperature is ex, .. *ntially activated for an s—wave order parameter while i is
quadratic with T for a d—wave order parameter. Born scattering and resonant
scattering are quite dissimilar in their effects at low temperature for a d—wave
superconductor. Born scattering leaves the temperature dependence of Cg quadratic
in temperature, however at Tc both types of scatterings are almost identical in their
effects on T, and AC(T ).

In Chapter 6, we have shown that the upper critical field at zero
temperature, hcz(O), is greatly enhanced by the presence of a simple vHs in the
EDOS. The temperature dependence of the hey(t) curves is slightly different from
that obtained previously in the very strong coupling limit of the constant density of
states case. Near T, heo(t) has an upward curvature while with a constant EDOS
hcy(t) is a straight line. The temperature dependence of hc2(t) is almost identical
for both d--wave and s—wave order parameter and hcy(0) is slightly larger for a
d—wave superconductor in 2D. We attribute the upper curvature in hcz(t) near T c
and the enhancement of he,y(0} for both s—wave and d-wave to an effective increase
in the density of states caused by a decrease in retardation effects.

In conclusion, the r.odified Eliashberg theory presented here was found
to be able to account for some of the observed properties of the HTSC’s within a

Fermi liquid framework. Some extra refinements to this mean £.7d theory may be
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necessary. For example, near T o fluctuations may contribute important corrections
to various properties like AC(T c) and Hcy. Our work supports a d—wave picture
(spin fluctuations) with perhaps a nonisotropic d—wave order parameter for
YBa20u3O7 and also the existence of a sharp structure in the underlying electronic

density of states.



Appendix A
Analytic Integrals

I) Some Integrals of interest, some of which are used in this thesis:

[ degty= T (A1)
—o € +a 2
? de —2—-—-E =0 (A.2)
f—m € +a.§
" gelnletl _ = 2, 2
de = gpay & (744 (A.3)
f—m e“+a a ( )

® o efn] 6] -1 6
de £ = —7 tan (A.4)
—m e“+a [a]
® 2,20
J et [ = on {lal b)) (A3)
o € +C

fmdew'ﬂ%m(lﬂﬂci) (A.6)

€+

@ 62+a2—c2 - a_2 A
f de(f +a2+c?)§_ m (A7)

m 2 92
J e fr:fz)?j_c% = 127 b +(Jal+[c])?) (A8)
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fm in|e-§] 1 T

*
de =
(- 6)2|c2 E2|32 2la] [c]|

[(|a[+|c|)£n[|c| /%8746 el
F(lal+le])?

. (Ia|+lcl)1?n[’ga¥]“‘s ‘a“_lﬁr ] (A.9)

524 al-lc])?
. inle-§| e T
de = *
j:m (e 6)2+c?z a2 ZIC]

[ (fn|c|+£ny 6§+a.2 c|+|a.| tan 1]%-
8+ (el +]a])?

8én|c|—ta/ 62 +a )+(|a|—|c|)tan“l—l%|-
+ ) 7
&+ ( |al—]|¢l)

(A.10

H) Full derivation of (A.9) and summary of steps leading to (A.10).

To evaluate {A.9), we use the residue method to evaluate the following

integrand,

n(z—6) 1 .

dz (A.11)

’(ﬁ (z-—éﬁ)2+c2 2°+a’.

Equation (A.9) is just the real part of (A.11), and the contour is defined by the

following figure:
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Figure (A.1)

where we assume 620 and {n z has a branch for ¥ z such that x<0 and y=0, z=x+iy.
I'| and T, contribute zero to (A.11) and by the residue theorem, the

total contribution, r, of (A.11) is equal to

P O W 1

+ pTaT ﬂﬂlﬂgﬁg} (A.12)

(ija]-6)"+c

We are only interested in Re r only to get Re (A.11).
We can expand (A.12) in real and imaginary terms by using the

following expansions:
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f (ija}~6) =ty 2246 + i [g+i tan_l-aé] (A.13)
tn(ifc|) = falc| +i3 (A.14)

but before inserting equation (A.13) and (A.14) into (A.12), we can rewrite (A.12)

as

r=. M {[5—i(la|+101)]ﬁl(ilC!)*fn(ila|"5)[6+i(|a|+|<3|)]
“lallel 4+ Jal+]c|)?
[l —la i =011 5Ll ~la et el) | (A.15)
& +(|c|-|al)
The final result is

e {(|a|+|c|)&1[|c|‘/6§+a2]+6tan_ng]-

ST Fr(lal+c)?
[y 6°+a -1 4

+(|c|-—lalﬁn[£—é:]_6tan Tal J (A.16)

2 +(a-[c|)

Evaluating Re (A.11) and changing the dummy variable x to ¢ and equating Re
(A.11) to (A.16) we get (A.9) identically. To evaluate (A.10), we use the follwing

integrand

In(z—§) zdz AT
5‘;; [(z-6)°+c?)[2°+2) (A1)
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with the same contour shown in Fig. (A.1) and by using only the real part of (A.17)

and the real part of the residue Iy

. =9m {(5+ilc|£n(i|c|) 1
2 11 (gije])Peal

. +‘1§_ fn(ia|-$§) } (A.18)

(ila]-8)“+c

which is rearranged in similar fashion done previously for equation (A.12), but more

tedious this time, we can arrive at equation (A.10).

IM) Evaluation of N(a,)

The definition of N used in our Eliashberg equations is given by

. ®
N(x) =% [ de N(e) ooy (A.19)
—0 € +=x
For
N(e) =1 ——3 m L
(e=8)°+D*  Bf

we can scale ¢, § and D by E¢ and use equation (A.1). For the first part we get

ﬁ(x):r—-—x—sgfm de’ Ll | = (A20)
TE;" "o (e'=6")"+D’¢ e “+x’

with every
y’:y/Ef. (A.21)
Using equation (A.9) for the second part, we get



—— 5
&:r____ssx'. 7 |(x’+D")&[D’y x' “+& 7| +8'tan” %
7I'Ef X 5l2+(x:+D;)2

(D'—x')zn[’g?é—]*ﬁ tan™ ]

6!2+(x1_D1)2

§
N=r: _Ef)" [(X’+D’)fn[D’~/ X245 §]+6’tan_1§

6’2+(x ‘ +D’)2

wonl e d )

6’ 2+(:~:"—-D’)2

which, eventually, we write as

jx§+6?]
-1 6
Ef +6 ta.n ]_C.

[D
N(x,0) = 1 - 5 [wa)zn D

2 2

x“+§ -1 §

(D—x)fn[ D"J“s tan Sc_]
52+(x-D)2
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(A.22)

(A.23)

(A.24)



Appendix B

The Eigenvalue Equation for He,

I) The D—Wave Eigenvalue Equation

A) The Energy Integration

To perform the energy integration, we will use a contour integration
identical to that used in Appendix A, see Figure A.1. For >0, we will close in
the upper half of the complex e—plane, and for Ezm<0, we close the contour in the
lower half plane. Because of the exponential damping in equation (2.73),
eift(Sgnmm), the contribution from the large semicircle is identically zero. If we
choose N(¢) as r — s £n{(e—6) {Eq), then N(e) does not contain any poles in the lower

and upper half planes of the e—plane. When performing the contour integration, we

only pick out one residue form the pole ?—iwm=0. The residue is

~ lm -
arisg & 20l s ]

where ¢ represents everything else in equation (2.73) and is pinned to the Fermi
surface. Because we used nfe—6) in N(e) instead of ¢n|e—6], we shall keep only the

real part of En(iwm—é). This is very similar to the procedure carried out in

Appendix A. The real part of fn(iw —0) is tn %m2+62. Hence, the contributing
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part of the residue is

-2|w |t
. m oy
2mis ce Ny N(w

and N is given by equation (3.18) in this case. So equation (2.73) becomes:
W' .da
. 2 —_
by Alkpiiw ) = 27T Ny, %14 f 'ZJ ; "x(kp—gpin m)

2 2 ~
oyt IV*FI /2 =2|w [t

: N ) J;) dt e Aggiw) {}-

The curly bracket is given by:

. :
(Hsapt) -ism.'e.Ft)J
{(s=N+))T T (N-j)

| =N

s-N-+j (

o 00
)
N=0

j=max (N—s,0)

5 ()12 bN}

where s =sign &, ap=vo;(vp, Hivpy), and a;=eH.
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We will use Fermi surface harmonics to expand the pairing potential 12 x and the

gap in the following forms:

Ix(kp—apin—m) = ﬁ; A(n—m)(1-g m7,),
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z)(iwn) = z)(iwn) + a‘;l(iwn)qk,
Alkjiw ) = Bgliw,) + AQw ),

We also choose <m>=0and <q§>=1. The self consistent solution is A0=331=0,
and "dr(iwn) is given by the normal state olution of equation (3.11) where N(xm,é) is

replaced by N(& n) given by equation (3.18). The gap equation is then written as

W
by Afiw,) = 27gT ‘r%,, Mo—m) Afiw ) N(Z'Jm) *

22 ~
o 922 2|0 |t

dQ © -
2
Tl_g 7 dte e x{}.
J 0o 9 fo
We dropped the subscript F for short. The following table defines some of the

quantities in the previous equation and those in { } for D~dimensions.

Table B.1
D QO qu v, a - T
2 27 d¢ VR alv.l_ei“15 V2 cos 2¢
3 4r sinfdddg  vgsind ayv €' ig—g sin2fcos2¢

B) The ¢ Integration
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The curly brackets, {}, contain a factor of e —¢(s=N) apq r]q contains

cos22¢ in both cases D=2 or 3. We can perform the ¢ integration by using

1 im
ETrf dq&el ¢=6m,0

and can then perform the N summation to get the following

7 gteon] |- 2y

=0 12 3

s+4 .
4)!s! 1/2 2
+ 2 j=4 ((ﬁ-zi)? ?(s+£—331 Bs 14

. 1|1/2' +2
+ 23—0 (?J+4)? f(s-4—%r bs—4}

with x = alt2v2.
4

The sums can be converted into associated Lagurre polynomials [Arfken

1985, eq. 13.41 p. 725] to get eventually
by Aliw,) Igz 1%1 A(n-m)A(iw ) f @é—oﬁlf(ﬂ

[ Tl 10,
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- 4x) b
i [(5+4)(S+3)(S+2)(s+1)]l/2 Ls( )

s+4

2
[s(s—1)(s—2)(s—3

7 Lg_4(x) bs—-4}

with

( ) 2 in D=2
(o) =1 ..
I sintg in D=3

This is the same equation as found in [Prohammer and Carbotte 1993] for the

d—wave case except for the extra factor of N’(ﬁm).
C) The Largest d—Wave Eigenvalue Equation

In our treatment of the d~wave, we will consider the coupling between
only two basis functions belonging to the coefficient by and by. For such a case, the

gap equation can be written as
() ’ bO ] [ cl(n) c2(n) ] [ b, J
n b4 c2(n) c3(n) by

and the largest eigenvalue is

Aliw,) = ﬂ)—;i(n_) + 2 (e ()—q(n)) P +cd(n)) /2 (B.1)
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The general expression for ci(n), 1=1,2,3, is

¢;{n) = gT :E: A(n—m)A(iwm)ﬁ(mm)Xi(iwm) (B.2)

where

2.2 ~
. dQ 0 m _all2t v —2|fdn!t
X (iw) = f —‘([—'-Q)-O f( 6) J; dt e te ,

2.2 o~
—a, f2t°v" 2|w |t
N a1 EX) ® 9. 9,2 ~ /2t n
Xo(iw )= 122 1(6) dt [a,t*v e e ,
oliwy) 2J1rf T, f:) A

2.2 ~
—a 2 t°Y] e—2|wn|t

Xq(iw,) = f @%ﬁlf(ﬂ) J;m dt Lg [a1t2v3] e

If we define an ordering operator of the following form

an, dy_ nd"
Oy = 5 (B.3)
then
. 2 d .
Xy iw,) = 2—-,/;02 [—2&1 a"—l] X, (i) (B.4)
and
Xyt ) = LY (O [‘2“1 a%-l.] ) Xy (iw,)- (B.5)

So we only have to handle X, in any form we wish and then simply use (B.4) and

(B.5) to find analytic expression for X, and X, respectively.

D) The X, Equation in 2D
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In 2D, X, (iw,) is given by

2 2 ~
o =0 [2t%L0 2w |t
. 1 F
X (w ) = 2J;) dte e o (B.6)
From this point on,we will let a=q, /2 v%\.
We can use an identity of the form
S (000 = 20" [ ¢¥qFy(q) Fy(—q) (B.7)

where F is the Fourier transform of {, to rewrite Xlin a new form. If we take
t2 t2

—a(t]+t5)

2
f,(t)=e then Fl(q)=(41ra)_1 NI f,(t)=e " Jat and so

Fz(Q)=[27r2‘/ 4'&'.;n§+q§]_1 and we get for X, the expression

2
® /4 N
Xy(y) = [ do (£ H(a/213, ) (B3)
wherc
H(x) = —X—. (B.9)
14+x

E) The X, Equation in 3D
We take the same f; expression as in D to get Fl(q)=(41ra)_16(q3)exp
[—(Q%+q§)/ 4a] and for Fo(q) we have

n

3 00 2w |t _.
F2(q)=—-——3(21) L %1(1—%)29. ngTiget (B.10)
T
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where £3=c050 and the integrand is not spherically symmetric and hence, can not
’

use qest=qt 53. We can rotate the coordinate system to new one which has t3

parallel to q, i.e., qet’=qt’ cos#’. The coordinate transformation from t to t’ is

shown in Figure (B.1).

q
Nt
tJ o
) t3
8
F3 A Ay
t\ 2] t‘):t?v
Iy
t

Figure (B.1)

We can set £2=ié because of cylindrical symmetry and then 53 is given
tg=t3cos —tjsin 4. (B.11)

Clearly, F,(q) contains &(qq) which implied §=1/2, so we can set £3=—Ei and the

new expression for Fo(q) is

3, -2|w_|t’
1 15 a2, 2,02
Fy(q) = o 5= 3 (1=sin0"cos”¢" ) !

Y '
, it cosd
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which results in

~2 ~4
15 1{[3 ,“n “n],. -1 ~
F,(q) = —{[ —4 — + 24 ]tan (q/2|w_])
2 ap(en? A2 2T T R "
A
+3 12 -;3—]
The final expression for Xl in 3D is
2
® —q“/4 o
Xytiv) = [ da [S2—]6(a/213, ) (8.12)
with
G(x) = ég‘-{3(x_1—x_3)+[3—2x_2+3x_4]tan-l(x)} (B.13)

F) The X4 and X, Equations

If we define T0 as

1
then we can show by repeated differentiation that

A d " 0
Tn =0" (—y a‘i) T0= (—Y)ng;'ﬁ‘ TO = n! Ln (%) TO(Z:Y)

forn =0,1,2,3,4.



Similar formula for Lg(x) exist [Arfken eq. 13.31], which reads

d" . n—
n!Lg(x) =e* ey (x"e™X).

We also can show that

n_c_in__ nd"
1

n on
dc:z1 da

and hence, equation (B.4) simply becomes

e—q2/4a[

Xylin ) = L fo“’dq —— (20 L3(q%/40)] H(a/2|Z,|)

&

We can also show (a bit tedious) that:

22y
Lg (—2yg§) Tylzy) = Lg(y—z) Ty(zy)

50
‘ ® ‘e—q2/4a 0, 2 N
Xg(iwy) = j(; dq =—5— [Ly(a*/20)|H(a/21 i)
In 3-D, one just replaces H by G.

) The S~Wave Eigenvalue Equation

The largest eigenvalue for the s—wave case is for

196

(B.14)

(B.15)
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‘_1
Afiw ) = 2T %, Ma-m)A(iw JR( )X, )

+ 7 () AGw N )X (w,) (B.16)

where we have introduced elastic impurity scattering in the standard way and

2 ~
. dQ 0 @ _atl —2|wn|t
X(iw ) =2 dt e e , (B.17)
)=2 [ fel

which follows directly from the fact that ni =1 and the previous curly bracket is
also equal to one.
If we define A& as

Aliw

) = Blie) (=t )N )X (w, ),

then we can rewrite (B.16) as

A(iw ) = T :E., A(mem) & Giw YN G )X i) - 7 ()7L (B.18)

Irn 2D, X can be written as

X(iw ) = fo dq =—— H(q/2|w,_|) (B.19)

and in 3D,
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) 4
X(uy) = da g Fla/2le, ) (B.20)

with
F(x) = tan " x. (B.21)



Bibliography

Abrikosov, A.A., Sov. Phys. JETP 5, 1174 (1957).
Abrikosov, A.A., J.C. Campuzarro and K. Gofron, Physica C214, 73 (1993).

Abrikosov, A.A., L.P. Gor’kov and L.E. Dzyaloshinski, Methods of Quantum Field
Theory in Statistical Physics, (Dover, New York, 1963).

Affronte, M. et al., Phys. Rev. B49, 3502 (1994).

Akis, R., Ph.D. thesis, McMaster University (unpublished 1981).

Akis, R. and J.P. Carbotte, Physics C159, 395 (1989).

Akis, R., F. Marsiglio and J.P. Carbotte, Phys. Rev. B39, 2722 (1989).
Aleksashin, B.A. et al., Physica C 153—155, 339 (1988).

Allen, P.B. and R.C. Dynes, Phys. Rev. B12, 905 (1975).

Allen, P.B. and B. Mitrovic, Solid Siate Physics 37, 1 (1982).
Anderson, P.W., Science 235, 1196 (1987).

Anderson, P.W., J. Phys. Chem. Solids 11, 36 (1959).

Andrade, M.C. et al., Physica C 184, 378 (1991).

Anlage, S.M. and D.H. Wu, J. Supercon. 5, 295 (1992).

Annett, J. and N. Goldenfeld, J. Low Temp. Phys. 81, 197 (1992)
Annett, J., N. Goldenfeld and S.R. Renn, Phys. Rev. B43, 2778 (1991).
Annett, J., N. Goldenfeld and S.R. Renn, in (PPHTS II 1990) p. 571.

Arberg, P., M. Mansor and J.P. Carbotte, Solid State Commun. 86, 671 (1993);
J. Phys. Chem. Solids 54, 1461 (1993).

Ashcroft, N.-W. and N.D. Mermin, Solid State Physics, (Holt, Rinehart and
Winston, Philadelphia, 1976).

Bardeen, J., L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).

199



200

Basov, D.N., T. Timusk, W.N. Hardy et al. (preprint 1994).
Bednorz, J.G. and K.A. Miller, Z. Phys. B64, 189 (1986).
Bonn, D.A. et al., Phys. Rev. Lett. 68, 2390 (1992).
Bornemann, H.J. et al., Physica C 185-189, 1359 (1991).

Bulaevskii, L.N. and O.V. Dolgov, Physica C 153155, 241 (1988); Soiid State
Commun. 67, 63 (1988).

Carbotte, J.P., a) Rev. Mod. Phys. 62, 1027 (1980); b) in (PHTS 1990) p. 1435.
Carbotte, J.P. and R. Akis, Solid State Commun. 82, 613 (1992).
Carbotte, J.P. and E. Nicol, Physica C 185189, 162 (1991).
Combescot, R and J. Labbe, Phys. Rev. B38, 262 (1988).

Coombes, J.M. and J.P. Carbotte, J. Low Temp. Phys. 63, 431 (1986).
Cooper, L.N., Phys. Rev. 104, 1189 (1956).

Crow, J.E. and N. Ong in (HTS 1990) p. 203.

Dalichaouch, Y. et al., Phys. Rev. Lett. 64, 599 (1990).

Daumling, M., Physica C 183, 293 (1991).

Dessau, D.S. et al., Phys. Rev. Lett. 71, 2781 (1993).

Dzyaloshinskii, I.E., Sov. Phys. JETP 66, 848 (1988).

Einzel, D. et al., Phys. Rev. Lett. 56, 2513 (1986).

EEliasg;berg, G.M., a) Sov. Phys. JETP 11, 696 (1960); b) Sov. Phys. JETP 12, 1000
1960).

Emery V.J., Phys. Rev. Lett. 58, 2794 (1987).

Ernst, P. et al., Ann. Physik 2, 120 (1993).

Fisher, R.A., J.E. Gordon and N.E. Phillips, J. Supercon. 1, 231 (1988).

Franck, J.P., in (PPHTS IV 1994) to be published.

Freeman, A.J., Phys. Rev. Lett. 58, 1035 (1987).

Friedel, J., a) J. Phys. (Paris) 48, 1787 (1987); b) J. Phys. (Paris) 49, 1435 (1987).



201

Frohlich, H., Phys. Rev. 79, 845 (1950).

(Ghjron, K., M.B. Salamon, M.A. Hubbard and B.W. Veal, Phys. Rev. B48, 16188
1993).

Ghiron, K. et al., Phys. Rev. B46, 5837 (1992).

Ginsburg, V.L. and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
Gopalan, S., O. Gunnarson and O.K. Anderson, Phys. Rev. B46, 11798 (1992).
Gor’kov, L.P., Sov. Phys. JETP 7, 505 (1958).

Gorter, C.J. and H.B.G. Casimir, a) Phys. Z. 35, 963 (1934); b) Z. Techn. Phys. 15,
539 (1934).

Grimvall, G., The Electron—Phonon Interaction in Metals, (North—Holland, New
York, 1981).

Gross, F. et al., Z. Phys. B. Cond. Matt. 64, 175 (1986).

Han, S.H. &t al., Phys. Rev. B46, 14290 (1992).

Hardy, W.N. et al., Phys. Rev. Lett. 70, 3999 (1993).

Hardy, W.N. et al. (preprint submitted to Phys. Rev. Lett. 1994).

Hasegawa, Y. and H. Fukuvama, J. Phys. Soc. Jpn. 56, 2619 (1987).

Helfand, E. and N.R. Werthamer, Phys. Rev. Lett. 13, 686 (1964).

Helfand, E., N.R. Werthamer and P.C. Hohenberg, Phys. Rev. 147, 295 (1966).
Heym, J., J. Low Temp. Phys. 89, 869 (1992).

High Temperature Superconductivity (HTS 1990), edited by J.W. Lynn
(Springer—Verlag, New York, 1990).

Hirschfeld, P. and N. Goldenfeld, Phys. Rev. B48, 4219 (1993).

Hirschfeld, P., W.0. Puttikka and D.J. Scalapino, Phys. Rev. Lett. 71, 3705 (1993).
Hirschfeld, P., D. Vollhardt and P. Woelile, Solid State Commun. 59, 111 (1986).
Hirschield, P., P. Woelfle and D. Einzel, Phys. Rev. B37, 183 (1988).

Hotta, T., J. Phys. Soc. Jpn. 62, 274 (1993).

Huang, X. and K. Mzaki, Phys. Rev. B39, 6459 (1989).



202

Inderhees, S.E. et al., Phys. Rev. Lett. 60, 1178 & 2445 (1988).
Inderhees, S.E. et al., Phys. Rev. Lett. 66, 232 (1991).

%shida, K. et al., a) Physica C 185—189, 115 (1991); b) J. Phys. Soc. Jpn. 62, 2803
1993).

Jiang, C. and J.P. Carbotte, Phys. Rev. B45, 10670 (1992).

Jiang, C. and J.P. Carbotte, Physica C 210, 325 (1993).

Jiang C., J.P. Carbotte and R.C. Dynes, Phys. Rev. B47, 5235 (1993).
Junod, A. in (PPHTS II 1990) p. 13.

Junod, A. et al., Physica C 152, 495 (1988).

Junod, A. et al., Physica C 162—164, 482 (1989).

Kamimura, H. et al., Comments Cond. Mat. Phys. 15, 303 (1992).
Keller, H. et al., Physica C 185—189, 1089 (1991).

Keller, J., K. Scharnberg and H. Monien, Physica C 152, 302 (1988).
Kim, H., G. Preosti and P. Muzikar, Phys. Rev. B49, 3544 (1994).
Kubo, K. and H. Yamanchi, Phys. Rev. B49, 1289 (1994).

Labbe, J., Phys. Scr. T29, 82 (1989).

Labbe, J. and J. Bok, Europhys. Lett. 3, 1225 (1987).

Leavens, C.R. and J.P. Carbotte, J. Low Temp. Phys. 14, 195 (1974).
Leavens, C.R. and J.P. Carbotte, Ferroelectrics 16, 295 (1977).

Lee, J.Y. and T.R. Lemberger, Appl. Phys. Lett. 62, 2419 (1993).
Lenck, St. and J.P. Carbotte, Phys. Rev. B46, 14859 (1992).

Levin, K. et al., Phys. Rev. B48, 653 (1993).

Liang. R. et al., Physica. C 195, 51 (1992).

Lie, 5.G. and J.P. Carbotte, Solid State Commun. 26, 511 (1978).

Lie, 5.G. and J.P. Carbotte, a) Solid State Commun. 34, 599 (1980); b) Solid State
Commun. 35, 127 (1980).



203

}ie, S).G., J.M. Daams and J.P. Carbotte, J. Phys. (Paris) Collog. 39, C6 — 469
1978).
\

London, F., Phys. Rev. 74, 562 (1948).

Loram, J. and K.A. Mirza, Physica C 153155, 1020 (1988).

Loram, ‘J.W., K.A. Mirza and P.A. Freeman, Physica C 171, 243 (1990).
Loram, J.W. et al., Philosophical Magazine B 65, 1405 (1992).

Loram, J.W. et al., Phys. Rev. Lett. 71, 1740 (1993).

Lui, R. et al., Phys. Rev. B46, 11056 (1992).

Luttinger, J.M. and J.C. Ward, Phys. Rev. 118, 1417 (1960).
Mackenzie, A.P., Phys. Rev. Lett. 71, 1238 (1993).

Maeda, A. et al., Phys. Rev. B41, 4112 (1990).

Mahan, G.D., Many—Particle Physics, 2nd edition, (Plenum, New York, 1990).
Maki, K. in (§1969) p. 1035.

Mandle, F. and G. Shaw, Quantum Field Theory, (John Wiley and Sons,
Chichester, 1984).

Mansor, M. and J.P. Carbotte, Phys. Rev. B47, 9029 (1993).
Markiewic, R.S., J. Phys. Cond. Mat. 2, 665 (1990).

Markiewic, R.S. and B.C. Giessen, Physica C 160, 497 (1989).
Marsiglio, F., Ph.D. thesis, McMaster University (unpublished 1988).
Marsiglio, F. and J.P. Carbotte, Phys. Rev. B33, 6141 (1986).
Marsiglio, F. and J.P. Carbotte, Phys. Rev. B36, 3633 (1987).
Marsiglio, F. and J.P. Carbotte, Phys. Rev. B41, 8765 (1990).
Marsiglio, F. and J.E Hirsch, Phys. Rev. B41, 6435 (1990).

Marsiglio, F., M. Schossmann, E. Schachinger and J.P. Carbotte, Phys. Rev. B35,
3226 (1987).

Martindale, J.A. et al., Phys. Rev. B47, 9155 (1993).
Mason, T. et al., Phys. Rev. Lett. 71, 919 (1993).



204

Matheiss L.F. and D.R. Hamann, Phys. Rev. B40, 2217 (1989).
Mattheis, L., Phys. Rev. Lett. 58, 1028 (1987).

Maxwell, E., Phys. Rev. 78, 477 (1950).

McMillan, W L., Phys. Rev. 167, 331 (1968).

Meissner, W. and R. Ochsenfeld, Naturwiss. 21, 787 {1933).
Migdal, A.B., Sov. Phys. JETP 7, 996 (1958).

Millis, A.J., Phys. Rev. B45, 13047 (1992).

Millis, A.J., H. Monien and D. Pines, Phys. Rev. B42, 167 (1990).

Mirza, K.A. and J.W. Loram in Electronic Properties of High—T c Superconductors

and Related Compounds, edited by: H. Kuzmany, M. Mehring and J. Fink
(Springer—Verlag Berlin, Heidelberg, 1990), p.93.

Mitrivic, B. (private notes).

Mirtrovic, B. and J.P. Carbotte, a) Can. J. Phys. 61, 758 (1983); b) Can. J. Phys.
61, 784 (1983), c) Can. J. Phys. 61, 872 (1983).

Mitrovic B., H.G. Zarate and J.P. Carbotte, Phys. Rev. B29, 184 (1984).
Moler, K.A. et al. (submitted to Phys. Rev. Lett. 1994).

Momono, N. et al. to be published in proceedings of M2S—HTSC IV Grenoble,
Physica C (1994).

Monien, H. and D. Pines, Phys. Rev. B41, 6297 (1990).
Monthoux, P. and D. Pines, Phys'. Rev. Lett. 69, 961 (1992).

Monthoux, P. and D. Pines, submitted to Phys. Rev. and to Nuovo Cimento D
(dedicated to Prof. Fausto Fumi).

Monthoux, P., D. Pines and A.V. Balatsky, Phys. Rev. Lett. 67, 3448 (1991).
Monthoux, P. and D.J. Scalapino, Phys. Rev. Lett. 72, 1874 (1994).

Morel, P. and P.W. Anderson, Phys. Rev. 125, 1263 (1962).

Nagi, A.d.S. and Yutaka Okabe, Phys. Rev. B28, 1320 (1983).

Nakamura, Y.0., N. Matsuda and Y. Shiina, Solid State Commun. 81, 923 (1992).



205

Nam, S.B., Phys. Rev. 156, 470 (1967).
Nambu, Y., Phys. Rev. 117, 648 (1960).

Newns, D.M. et al,, a) Comments Cond. Mat. Phys. 15, 273 (1992); Phys. Rev. B45,
5714 (1992).

Norman, M.R., Phys. Rev. B37, 4987 (1988).

Novel Superconductivity, (NS 1987), edited by: S.A. Wolf and V.Z. Kresin
(Plenum, New York, 1987).

Nuss, M.C. et al., Phys. Rev. Lett. 66, 3305 (1991).

O’Brien, Mary C.M., Am. J. Phys. 61, 688 (1993).

Onnes, B.K., Leiden Comm., 1206 (1911).

Osofsky, M.S. et al., Phys. Rev. Lett. 71, 2315 (1993).

Pao, C.—H. and N.E. Bickers, Phys. Rev. Lett. 72, 1870 (1994).
Perez—Gonzalez and J.P. Carbotte, Phys. Rev. B45, 9894 (1992).
Pethick, c.J. and D. Pines, Phys. Rev. Lett. 57, 118 (1986).
Phillips, N.E. et al., Physica B148, 360 (1987).

Phillips, N.E. et al., Phys. Rev. Lett. 65, 357 (1990).

Phillips, N.E. et al., to be published in proceedings of M2S—HTSC IV Grenoble,
Physica C (1994).

Physical Properties of High Temperature Superconductors I, (PPHTS I 1989),
edited by D.M. Ginsberg%World Scientific, Singapore, 1989).

Physical Properties of High Temperature Superconductors I, (PPHTS II 1990),
edited by D.M. Ginsberg?WorId Scientific, Singapore, 1990).

Physical Properties of High Temperature Superconductors I, (PPHTS III 1992),
edited by D.M. Ginsberg (World Scientific, Singapore, 1992).

Physical Properties of High Temperatere Superconductors IV, (PPHTS IV 1994), to
be published.

Pickett, W.E., Phys. Rev. B21, 2897 (1980).
Pickett, W.E., Rev. Mod. Phys. 61, 433 {1989).
Pines, D. J. Phys. Chem Solids 54, 1447 (1993).



206

Pines, D., Physica C 185189, 120 (1991).

Pint, W., Physica C 168, 143 (1990).

Pint, W., E. Langmann and E. Schachinger, Physica C 157, 415 (1989).
Pond, J.M. et al., Appl. Phys. Lett. 59, 3033 (1991).

Porch, A. et al., Physica C 214, 350 (1993).

Progress in High Temperature Superconductivity (PHTS 1990), edited by R.
Nicolsky (World Scientific, Singapore, 1990).

Prohammer, M. and J.P. Carbotte, a) Phys. Rev. B42, 2032 (1990); b) Physica B
165-166, 883 (1990).

Prohammer, M. and J.P. Carbotte, Phys. Rev. B43, 5370 (1991).

Froha)mmer, M., A. Perez—Gonzalez and J.P. Carbotte, Phys. Rev. B47, 15152
1993).

?adtl;e, R.J., K. Kevin, H.—B. Schiittler and M.R. Norman, Phys. REv. B48, 15957
1993).

Rairer, D. and G. Bergmann, J. Low Temp. Phys. 14, 501 (1974).

Rainer, D. and F.J. Culetto, Phys. Rev. B19, 2540 (1979).

Remschnig, K. et al., Phys. Rev. B43, 5481 (1991).

Reynolds, C.A., B. Serin, W.H. Wright and L.B. Nesbitt, Phys. Rev. 78, 487 (1950).
Rickayzen, G., Theory of Superconductivity, (Wiley, New York, 1965).

Rieck, C.T., Ph.D. thesis, Hamburg (unpublished 1991).

Rieck, C.T., D. Fay and L. Tewordt, Phys. Rev. B41, 7289 (1990).

Rieck, C.T., Th. Wélkhausen, D. Fay and L. Tewordt, Phys. Rev. B39, 278 (1989).
Romero, D.B. et al., Phys. Rev. Lett. 68, 1590 (1992).

Salamon, M.B. in (PPHTS I 1989) p. 39.

Salamon, M.B. et al., Phys. Rev. Lett. 69, 1431 (1992).

Scalapino, D.J. and N. Bulut, Phys. Rev. Lett 67, 2898 (1991).

Scalapino, D.J., E. Loh and J.E. Hirsch, Phys. Rev. B34, 8190 (1986).



207

Schachinger, E. and J.P. Carbotte, J. Low Temp. Phys. 42, 81 (1981).
Schachinger, E. and J.P. Carbotte, Phys. Rev. B43, 10279 (1991).
Schachinger, E., J.M. Daams and J.P. Carbotte, Phys. Rev. 22, 3194 (1980).
Schachinger, E., M.G. Greeson and J.P. Carbotte, Phys. Rev. B42, 406 (1990).
Schachinger, E., B. Mitrovic, and J.P. Carbotte, J. Phys. F12, 1771 (1982).
Scharnberg, K. and R.A. Klemm, Phys. Rev. B22, 5233 (1980).

Schilling A., H.R. Ott and F. Hulliger, Physica C 161, 626 (1989).
Schneider, T. and H. Keller, Phys. Rev. Lett. 69, 3374 (1992).

Schneider, T. and M.P. Sérensen, Z. Phys. B81, 3 (1990).

Schossman, M. and J.P. Carbotte, Phys. Rev. B39, 4210 (1989).
Schossmann, M. and E. Schachinger, Phys. Rev. B33, 6123 (1986).

Schri)effer, J.R.., Theory of Superconductivity, (Addison Wesley, Redwood City,
1964).

Schultz, H.J., Evrophys. Lett. 4, 609 (1981).

Shen, Z.X. et al., Phys. Rev. Lett. 70, 1553 (1993).

Shiba, H., Prog. Theor. Phys. 40, 435 (1968).

Shiba, H., Prog. Theor. Phys. 50, 50 (1973).

Sigrist, M. and T.M. Rice. Z. Phys. B68, 9 (1987).

Sigrist, M. and T.M. Rice. J. Phys. Soc. Jpn. 61, 4283 (1992).

Supe)rconductivity (S 1969), edited by R.D. Parks (Marcel Dekker Inc., New York,
1969).

Tsuei, C.C. et al., Phys. Rev. Lett. 65, 2724 (1990).

Tsuei, C.C. et al., Phys. Rev. Lett. 69, 2134 (1992).

Ulm, E.R., J.T. Kim and T.R. Limberger (preprint).

van Veenendaal, M.A. and G.A. Sawatzky, Phys. Rev. B49, 1407 (1994).
Varme, C.M., A.J. Millis and S. Sachdev, Phys. Rev. B37, 4975 (1988).
Varma, C.M.,, K. Miyake and S. Schmitt—Rink, Phys. Rev. B34, 6554 (1986).



208

Volovik, G.E. and L.P. Gor’kov, Sov. Phys. JETP 61, 843 (1985).
Voronin, V.1 et al. in (NS 1987) p. 875. '

Weber, W., Phys. Rev. Lett. 58, 1371; 2154(E) (1987).

Wegner, F. and S. Ostlund, Phys. Rev. B47, 5977 (1993).

Wells, B.O. et al., Phys. Rev. B46, 11830 (1992).

Welp, U. et al., Phys. Rev. Lett. 62, 1908 (1989).

Wermbter, S. and L. Tewordt, Phys. Rev. B46, 12061 (1992).
Williams, P.J., Ph.D. thesis, McMaster University (unpublished 1990).
Williams, P.J. and J.P. Carbotte, Phys. Rev. B39, 2180 (1989).
Wollman, D.A. et al., Phys. Rev. Lett 71, 2134 (1993).

Worthington, T.K. et al., Phys. Rev. Lett. 59, 1160 (1987).

Wiihl, H. et al., Physica C 185-189, 755 (1991).

Xing, D.Y., M. Liu and C.D. Gong, Phys. Rev. B44, 12525 (1991).
Yip, S. and A. Garg, Phys. Rev. B48, 3304 (1993).

Zhang, D.N. et al., Phys. Rev. B49, 1417 (1994).

Zhang, H. and H. Sato, Phys. Rev. Lett. 70, 1697 (1993).

Zhou, C. and H.J. Schultz, Phys. Rev. B45, 7397 (1992).

Zarate, H.G. and J.P. Carbotte, Solid State Commun. 52, 449 (1984).



