Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6099
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHamielec, A. E.en_US
dc.contributor.authorPollock, James Marken_US
dc.date.accessioned2014-06-18T16:34:09Z-
dc.date.available2014-06-18T16:34:09Z-
dc.date.created2010-04-12en_US
dc.date.issued1983en_US
dc.identifier.otheropendissertations/1431en_US
dc.identifier.other2262en_US
dc.identifier.other1271783en_US
dc.identifier.urihttp://hdl.handle.net/11375/6099-
dc.description.abstract<p>The population balance model of Kiparissides (1978) for the continuous emulsion polymerization of vinyl acetate, has been extended to predict molecular weight moments and has been corrected for induction time and particle shrinkage due to density changes. The developed model was successfully able to simulate experimental results from Kiparissides (1978) and Greene et al.(1976) for the continuous emulsion polymerization of vinyl acetate. Application of the model to the batch data of Keung (1974) had reasonable access as well. The model was extended to the continuous emulsion polymerization of styrene which follows different nucleation kinetics and was able to predict the average conversions and particle diameters for the data of Brooks et al.(1978). Little success was achieved in predicting the small experimentally observed oscillations for the styrene system.</p> <p>To eliminate the sustained property oscillations in the vinyl acetate system Linear-Quadratic stochastic optimal control theory was applied to the model. Due to extreme non-linearities inherent in the system, this approach was shown to be inadequate. Instead, the reaction system was redesigned to include a small continuous seeding reactor with monomer and water bypass. Model predictions indicated that the redesigned system eliminated the oscillations. Experimental testing of the redesigned system verified that a dramatic improvement in stability was possible. The redesigned reactor configuration was also shown to be more flexible in controlling particle sizes and conversion through use of the bypass.</p> <p>A method for selecting the optimum sensors was developed. It was shown that the measurement combination providing the most information would be conversion (as currently available from an on-line density meter) and some measure of weight average molecular weight.</p>en_US
dc.subjectChemical Engineeringen_US
dc.subjectChemical Engineeringen_US
dc.titleModelling and Control of Sustained Oscillations in the Continuous Emulsion Polymerization of Vinyl Acetateen_US
dc.typethesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
4.75 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue