Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/5962
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBruns, G.en_US
dc.contributor.authorRoddy, Stewart Michaelen_US
dc.date.accessioned2014-06-18T16:33:41Z-
dc.date.available2014-06-18T16:33:41Z-
dc.date.created2010-05-03en_US
dc.date.issued1985-03en_US
dc.identifier.otheropendissertations/1301en_US
dc.identifier.other2397en_US
dc.identifier.other1295716en_US
dc.identifier.urihttp://hdl.handle.net/11375/5962-
dc.description.abstract<p>This thesis describes the bottom of the lattice of varieties of modular ortholattices. The theorem that is proved is</p> <p>Theorem. Every variety of modular ortholattices which is different from all the [MOn] , 0 ≤ n ≤ ω, contains [MOω].</p> <p>This theorem is proved by translating the problem, at least partially, into the language of regular rings.</p>en_US
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titleVarieties of Modular Ortholatticesen_US
dc.typethesisen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
788.52 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue