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ABSTRACT -

fhis thesis describes the bottom of the lattice of varieties
of modular ortholattices. The theorem that is proved is

Theorem. Every variety\bf modular ortholattices which is dif-
ferent from all the [ﬁBn] », 0 <ns<w, contains [MOw] .

This theorem is proved by translating the problem, at least

partially, into the languagé of regular rings.
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Introduction.

In this thesis the bottom of the lﬁttice of varieties of
modular ortholattices (bounded modular lattices equipped with an
orthocomplementation)‘is described. Avoiding the language of
modular ortholattices as much as possible the main result may b;
stated as

Theorem. The lattice of varieties of modular ortholattices
contains a countably infinitg ascending chain‘with least element
" the trivial variety and with supremum the variety EMOw].’ Every
variety of MOL's not in this chain contains [MOw];'

The material in [3] reduces the problem to showing that
certain subdirectly irreducible algebras must contain a nontrivial
Boolean interval. The problem is then translated into a ring-theorétic_
setting and the theorem depends on the proof of a technical lemma

concerning certain lattices of submodules. This lemma is stated at

the end of section 1.

- L

The proof of the lemma constitutes the bulk of this thesis.
The reduétion from the general case to the setting of the lemma is
not given until section 7, It is therefore suggested that the reader
scans section 7 before commencing section 3 in order to aid motivation.
Claims stated without proﬁf or specific reference are either
well known, eg. (1.1}, or very easy to-prove, eg. (7.1). In one
instance proofs are nested, see (4.1). This has been done because thesé
claims would be difficult to formﬁlate outside the context of (4.1).

The symbol [ signifies the end of a proof.
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1. Preliminaries (MOL's).

A lattice L is modular in case av ({avb)ac) = (avb)
A(avc) for all a,b,ceLl. A bounded modular lattice, with least
element 0 and greatest element 1, is complemented in case fqr each
x e L there exists yel with' xvy = 1 én__d xAay = 0. Comélemented
modular lattices are discussed in [4]. If L is coﬁplemented modular
then the set of elements in L with uniqué complements is called
the center of L, written C(L)'.

(1.1) The map L > [o,a] x[n,:;']- gi\}en by x=>(xnra, xaa'),
" where a'gis a complement of a, is an isomorphism if and only if
aeC(LY. 'If the map is an isomorphism then its inverse is given by
(s,t)=~=>svt.

It follows that

(1.2) Lis irreduci-ble if and only if C(L) = {0,1}.

(1.3) (15.4, page 147, [4]) C(L) is a sublattice of L
and as a sublattice is Boolean.

An antiaﬁtomorphism of a lattice is a lattice isomorphism
f between a lattice L and its dual, i.e. a bijection with f{xvy) =
f(x) Af(y) and f(xay) = £(x) V'f(y) f.or all x,yeL. An antiautomorphism
f is of period two in case f(f(x}) = x for all xe L, and is a complement-
ation if xVf(x) = 1 and xAf(x) = 0 for all xeL. An antiautomorphism
x>x" which is of period two and is a complementation is called an
orthocomplel;lentation (abbreviated: OC). A modular ortholattice
(abﬁreviaf_edl: M;IJL) is an algebra L = {|L];v,A,',0,1) where (|L|;v,n,0,1)
is a bounded modular lattice anél ' is an OC. In an MOL L, x,ye L are

2
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said to commute, written xCy, i1f and only if X= (xAay)vixay').
1.4) In an MOL L
(1) xCy implies yCx
(2) For XEL let C(X) = {a€eL: aCx for all x e X}.
Then C({X) is a subalgebra of L. '
(3) L is Boolean if and only if L = C(L).

Observe that C(L) éefined in (1.4;b) coincides with\C(L) as
defined previously becéuse- (1.1} gives the;t a e C(L) if and only if
{(xana)v(xaa') = x for all xel, If a,bel with ashbh then [a,b]
inherits an OC given by x*ﬁw(avx') Ab, Th fact \

(1.5) ([a,bl;v,A,#,a,b) € HS(LY. | |

The above theory {é deve;&ped in the more general setting of
orthomodular lattices rin [11].

The simplest examples of MOL's are the MOn's. Let n be a
cardinal number greater than 1, MOn consists of 2n pairwise incémbarable
points\énd the bounds. Define MOJ to be tﬁe_one éiement MOL and MOl to Ee_
the two element Boolean‘algebré. Let [MOn] be the variety of MOL's |
generated by MOn, 0sn<w. It‘followé from Jénsson [10] that‘tMO(nf;)]
cove%s fMOnl, 0-sn<w, in the lattice of varieties of ﬂOL'%.- Every
MOL with more than one element has distinct bounds and hence evérx
var%ety of MOL'S which is not céntﬁined'in (MO0] contains [MO1]. That
every variéty oé MOL's which is not contained in [Moi] contains [M02]
$ollows from | _

-{1.6) If L is a nonBoolean MOL tﬁen there.exists 0 Q‘?%L so <

that MO2 is a subalgebra of the MOL [0,y].



‘The main (explicit) result of [3] is
(1.7) (page 1, [3]) Every variety of MOL's which is not
contained in [M02] c_oﬁtains [MO3].

The main result of this thesis is the stronger

b T

Theorem. Every variety of MOL's which is different from all
the [NOnJ, 0<ns<w, contains [MOw]. .

This theorem is a weqkening of a coﬁjecture nade by G. Bruns.
A projective‘plane is an'irreducible complemenfed modular lattiée
of.heighf'S. ‘ .

= Conjecture. (page 1, [3]). Every variety of MGL'S which is

different from all the [MOn], 0§I\Sw, contains é-ﬁrojgctive Rlane
(as the 1atti§e reduct of an algebra)..

‘fhat the conjecture is stroﬁée;‘than thevtheorem'folldws from
" the important theorem of Baer. _
| (1.8). ([21) Every projective plane'wﬁich admits ég,gC

'

(2 polarity without an absolute point) is infinite. . . <.~
. ) Lo _ : - & 3 . . .

" The algebra.rliocufcan be consi:;ucte& as an 4u1tralproduct of
7 the MOﬁ, Qﬁxl<aﬁ.aqd‘so | |
(1.9) Every'v‘a'riety of MOL's which contz;ins infinitely
many of the [MOn], 0snsw, contains [MOw]. o
| An n‘frame., nz2, (see [5]) in a bounded modular latticer

L is an (n+lj-tup1e xl;..;,x such that

n+l
(1) \/ xi =1, j=1l,e..,n+l
i=j

Y

(2).XiA \/ xk=0, 1<i,jsn+l

ixjzk=i



A familiai'éxample of a 3-frame is four points in general position in
a projective plané. If R is a ring thgn <(1,0,0}...,0)>R, <(0’l’0""’0)>R
yeae, <(0, 0,.,.,0 1)> R’ <(l,1,...,1)> R? Mhe;g <(al,...,an)>R is

the rlght submodule of R generatéd by (al,.,.,an) ERF, islan n-frame
in the lattice of right submodules of'Rn. It .is célled,the canonical

frame.

—

If L is an MOL then an n- frame in L is called orthogonal in

case x.ij ‘1si,jsn. For example ifR= ]Rand the OC is ‘the, one

»induced by the usual inner product thenithe - canonlcal n- frame is

,

orth?gonal.
The main body of this thesis, sections 4, 5 and 6, is-devoted

to proving the somewhat technical.

L

' [ S )
Lemma, ‘Let L = E(RS) be an~MOL with orthogonag'baﬁonid?l_ﬁ

3-frame for some ring R with prime characteristic. Then MOy e‘HSP(L)
’ <
or L contains a nontrivial Boolean interval of the form [0,x].
Sections 2 and 3 are introductory. Section 7 uses results

from [3], a method suggested by A. Day [6] ‘and--the above lemma tQ

- - T e

prove the maln theorem..

-

‘j -~ Finally soﬂe*remarks on notation. An MOL L may admit several

different, OC's only one of which is the operation of the alﬁebra.

We adopt the convention that, unless otherwise stated, the OC associated

Lo
s

with L as an MOL is written '. Also, sub5cripts on an interval
indicate which algebra this interval'is to be taken. in. Such subscripts

are only used when necessary in order to avoid confusion.



2. Regular Rings.
In this section some of the theory of regular rings ([8],
(131 and [141]) is recalié{‘and a few observations are made. Much
of this and the fqllowing ection is taken from the first four chapters
of section iI of [13].7 All Tings considered haﬁe unit,

Let R be a‘ring and ne N. L(Rﬁ) will be the modular lattice
of right submodules of R", L(R") wiil be the poset of finitely
generated right submodules of R". The rlght submodule R" generated"
by a set X will be wrltten <X>R, if no confusion seems, :fzély then
the subecrlpt R w111 be dropped. The pr1nc1pal*r1ght ideal generated
by a ¢ R will be written aR. On the rare occassion that left submodules

are.considered subscripts will ayagls be included, i.e. L(ﬁRn), -

A
\

E(RR R \ <X> "and Ra are the lattice of left submodules of R", the
poset of: flnltely generated left submodules of R", the left submodule
of R" generated by the set X and the principal left ideal generated by

a € R respectively. An element eceR is'idempotent in case e =‘e2.

-~

(2.1} (Corollary, page 69, [13]) Let R be a ring. Then

> .
(1) € is an idempotent if and only if 1l-e is an

idempotent.
- &2)_ eR = {a eR:- eef= al - v
. (3) eR and (1-e)R are complements in L(R)
] . (4) If eR = fR and (1-e)R = (1-f)R where e and f

oy

are idempotents then e=f,

(2.2) (Theorem 21.1, page 69, [13]) Two right ideals I and J

are complements in L(R) if and only if there exists an idempotent e ¢R
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with eR = T and (l1-e)R =_J. “This pi-operty characterizes unliquely the
idempotent e.
'(2.3) (Theorem 2.2, page 70, [131)} T.A.E.

(1) Every principal right ideal has a complement in

L(R). _ ]
(2 a € R there exists an idempotent e eR

with aR = eR,
‘ (3) For every a e R there exists r ¢R with ara = a.
(4) For every a eR there exists an idempotent f ¢R
with Ra = Rf. | 3
‘ (5) Every pz"inci‘_pal left ideal has a complement in
L(gR) - | ' '
— :

A ring  is said to be regular in case it posse.sses one ofl-the above
equivalent properties. ﬂenceforth R will be a regular ring.

For each right ideal I of R we define ZAnn(I)- = {yeR:
~yz = 0 for all ze¢ I} and for each left ideallJ of R we define rAnn(J) |
= {yeR: zy‘=. 0, for all z eJ}. o .

| (2.4) (Corollary 1, corollary 2, page 71,.[i3]] Thle mapping

1w EA.nn(I) is an anti-isomorphism (an'order. reversing bijection) between '
the posets L(R) and TJ(RR); The inverse of this map is given by
J=> rAnn(J).

(2.5) (Theorem 2.'3,-page 71, [13]) The join (in L(R)) o% two
Principal right ideals is again a principal right.irdeal.
(2.6) .- (‘I‘.héorem 2.4, page 72, [13]j .'E.(R) is a complemented

modular lattice, in fact a sublattice of L(R).



For any ring S and ASS we define CO(AJ' = {s,e S: as = sa, for all
a e A}. In particular the center of S is Co(S).

(2.7) Co(A) is a subring of S.

(2.8) (theorem 2.5, page 74, [13]) Co(R) ié regular.

(2.9) (lemma 2.9, page 76, [13]); A principal right ideal I
of R is uniquély represented as I = eR, e an idempotent, if and only
if e e Co(R).

(2.10) The map aCo(R)>~>» aR is a lattice isomorp}{ism

L(Co(R)}— C(L{R)).

Proof. Clearly this map is well defined and order preserving.

Let aeCo(R').‘ Since Co(R) is regular there exists e, r e Co(R) with e
ideﬁpotent so that eCo(R) = aCo{R) and ar = e. But aeeCo(R) if and
only if ea = a if and only if ac¢eR. It follows that eR = aR.

If a, beCo(R) with aRs'bR then there existslidemp'otents e, feCo(R)
so that ep{ = aR<BR = £R, But eR<S £R if and only if fe = e if |
_and only if eCo(R) £ fCo(R). Hence, the map. is an order émbedding.
That this map is onto C(L{R)) follows immediately from (2.9). An
‘order ‘embedding onto a lattice is a lattice embedding. |

. - .
Maps similar to the cone defined above will be used throughout the

N

1

remainder of this work. If S is a subset of R which, with' the restricted

operations except possibly the unit, forms a ring then the map aS~-* aR,

a€8, is well defined %nd monotone. When this map is a lattice
embedding (nql:_}lcessarily preservingl bounds) then we write
L(S) V—>L(R) and we call i the canonical injection.

For an idempotent e ¢R let R(e) = {aeR: eae = a}.

1



(2.11) (Theorem 2.11, page 77, [13]) R(e) is a regular ring
with e as unit.

(2.12) E(R(e))ri+E(R)-onto.[o,eR]r(R).

Proof. Clearly the map is well defined and monotone. If

fR = eR,.f an idempotent, then feR = fR since fef = f2 = f, Also

N\

e(fe)e = efe = fe. ‘;;is éstablisheg that the map is onto [o,éR]E(R).

If aR € bR, a, beR(e), then there exists reR with br = a. But

bere = bre = ae = a, s0 aR(e) € bR{e). It follows éhat the map is

an order embedding onto a sublattice of L(R) and tﬁerefore a lattice
embedding. C 0.

For a ring S and n €l let Sy be the ring of n xn matrices over

(2.13) fTheorem 2.14, page—Sl, flS}) Sn is regular if and only
if 8§ ;s regular.
The next theorem is proved in [13] (see pages 80, 81 and appendix 3,
page 90) 'but it is not expficity stated. It is stated and proved in
Skornyakov [14], this source is cited. Let S be a ring and neN,
define L(s") L>L(s)) by M~—{(a;)t (355 By50e-000) € M} and
‘ L(Sn)J£—>L(Sn)_by I **{(al,...,an): (al,...,an) is the column of a
matrix in I},

(2.14) (Proﬁbsition 14, page 13, [14]) ¢ and ¢ are inverse
" lattice isomorphisms. Furthermore finiéely generﬁted right subpodules
and finitely generated right ideals correspond to each other.

(2.15) (Corollary) E(Rn)—2+ E(an; nksN, is an isomorphism

.and finitely generated right submodules of R" are at most n generated.
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A homogeneocus basis of order n, n>2, in a bounded modular .

lattice L is an n-tuple (xl,...,xn) such that

(I)in =1

(2) X, A \V/ x. =0, i=1,.,.,n.
izj I '
(3) For each i,j there exists ¥y so that X; vy = xj v

v

y-= 1 and xiAy=xjAy= 0.

(2.16) If (x,5...,x is an n-frame then (x »eeeyX ) is
) 1 1 n

n+1)
a homogeneous basis of order n.’ ¢
Proof. (1) and (2) are immediate. For (3} let y = \V/ X

j=k=i
R is said to be of order n in case L(R) has a homogeneous basis of

K"

order-n (see pages 93, 100, [13)). P

(2.17) (Theorem 4.1, page 104, [13]) If R is of order n2?2
then the only ring automorphism R i R such that ¢(a)R = aR for all

a€R, 1s the identity,



e ¢R with e = f(e) and aR = eR.

3. OC's and Involutions,

In this section the relationship between OC's on L(R), R -

“a regular ring, and involutions on R is described. An additive

bijection.f: R — R such that f(ab) = f(b)f(a), for all a,beR,
is called an antiautorﬁdrphism of R.

(3.1) (1 (thEOI‘EI;l 4.3, page 113, [13]). If f is an anti-
automorphism of R then aR‘*.->;Annf( (a)) 1is an antiautomorphism of

L(R). The map f is said to generaté F. If R is of order n23 then

" each antiautdmorphism of L(R) is generated by a unique antiautomorphism

of R, ' ' . )
(2) (Lemma 4.3, page 114, [13]) If F is generated by
£ then F(F(aR)) = £(£(a))R for all a eR. __ o pu—
(3) (see theorem 4.4, page 114, [131) If f is of
period two, ie. f(f(a)) = a for all aeR, then F is of period two.
Conversely, if F ig of period two, éenerateﬁ by £ and if R is of
order n22 then f is of period two.
. (4) (Theorem 4.5, page 114, [13]) If f is an anti-
automorphism of R of periéd two and f generates F then T.A.E.

(a) TAF(I}

0, for all I¢L(R)

n

(b) IVF(I) =1, for all IeL(R)

{c) For every acR there exists z ¢ R with zf(a)a = a
(d) f(a)a = 0 implies a = 0 -

| (e) For every acR -t}?ere rsts a (unique) idempotent

-
L

11
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Proof of (3.1.3). If f is of period two then (2) implies
tﬂa; F is of period two. If F is of period two and f generates F
then aR = f(f{a))R ft;r all’aeR. Since R is of order nz2 (2.'17) applies
and fzis the identiéy on R, _ ' h
| An antiautomorphism a-=>a* of R of pe&iod two such that a*a = 0
implies a = 0 is called an involution on R. If * is an involution
on R then‘R is called *regular; a e R-with a = a* is called *self-adjoint
and a *self-adjoint idempotent is called é *projection. The set of
*projections of R is written *Pr(R). The relevaﬁt pﬁrts of (3.1)
may, now be stated in terms of involutions and OC's,
.‘ (3.2) (1) If R is *regular thenq‘aR%rAnn(Ra*) is an OC,
', on E(R). The involution * is 'said to generate theIOC . If.R
is of order n 23 then each OC on L(R) is generated by a unique

involution on R.

(2) If e e *Pr(R) then (eR)’ (1 - e)R.
Proof of (3.2.2). Since e + 1 - e = 1,eRv (l - e)R = 1.
Since e*(l1 -~ e) = e(l -e) =0, (1 - e)R s (eR)?'. |
If nz24 and E(Rn) has an orthogonal n;frame then F. Maeda [12]
has shown that corresponding to the 0C on E(Rn) is a "Hermitian form'".
‘He only uses the fact that n24 to invoke the'coordinétization
theorem of von Neumann [13], tdé remainéér of the proof workg peffectly

well for the case n = 3,
(3.3) ([121) If T(R”) is ar MOL with orthogonal canonical
3-frame then there exists an involution * on R and invertibleﬁ*self-

adjoint elements a,B e R so that for Me L(W?j

4
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M' = {({a,b,c): yarm + b*qmz * c¥Bmy = 0 i-jor.all (ml,mz,ms)
€ M}.
The triple («,B,*) is called a form associated with .
If ec *Pr(R) then by combining (2.12) and (2. 14) we know that
E(R(e) )—->E{R(e) )n-—>'E(R )——bE(R ) is onto [0, a(e)JE(RJ) where

a(e) = <(e,0,0), (0,e,0), (O,O,e)>R, anda lattice 1nJect10n. Call

the composite isomorphism I:(R(e) )—>[0 a(e)]E(RJ) Then I'(R(e)s)

1nher1ts an OC given by M~ l((nc (m))'), which we w111 also call ', .

(3 4}' A form assoc1ated with '-on E(R(e) ) is (eae, ege, *)

Proof. Since e ¢ *Pr(R), *lR(e) is an involution on R(e).
The map « is given by the composition

L(R(e) )—bL(R(e) )lt—)I(R )—>E(R ) which is an embedding
onto [0, a(e)]E(R3) ‘Let Me E(R(e) ). There exists (eij) st(e)3 S0

that M = <(e = 1’2’$>R(e) and ¢ (M) = (eij)R(e.)s.‘ Hence

15° 2J,ez,j)u
iM) = (é..)R_ and k(M) = {(al,az,as): (a,,3,,a;) is the column
2 € J):J. = 1,2,J>R = <M>R.

Therefore for a,b,c € R(e) we have the following equivalences

of a matrix in (eg )R } = <(el €

(a,b,c) e M’
if and only if
(3,000 gy 67 (0e00) )
if and only if
K(<(a,b,c)>R(e)) < (k(M)'
if.and only if

-<(a,P,c)>R's (<M>Ri '
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if and only if

14

* * * -
a*n, + b an,, + c an g, for gll (nl,nz,ns) e<M>R
if and only if ~ .

* * * = L
_a elj + b aezj + c_Be3j 0, 3 1,2,3.
if and only if
* * * = 1=1 2 <
a elj + b*egne e2j + c*efe esj 0, j=1,2,3

if and only if

* * Lk =
a*m, + b*ene m, + c* epe m. 0, for all (ml’mZ’mS) e M,

. If aeR is *self-adjoint and e ¢ *Pr(R) with aR = eR then,

nce ea = a = a* = a*e = ae, a¢ R(e). And, since there exists beR

with e = ab = b*a* = b*a, we know that a is invertible in the ring

R(e). The symbol a™! is used for this

modify earlier notation and will write

for beCo(a).

a

-1%* - -
and a 1 is a left inverse of a in R{e). It follows that a 1. a

(5.5) (1) a”t = arl

"local inverse'" of a. We

C(a) for C({a}) and b Co a

(2) For beR, a Co b if and only if a™iCo b.

Proof. Re(l). If e = ab then let a > = eb. First of all,

1% - '
€ R{e) so a ! € R(e). Now a 1 is a right inverse of a in R(e)

Re(2). If ab=ba thena 'b=a a 2p =

- - - - - - o 2 o =2

a 1. a 2a2 ba L aa 1ba L. a 1baza 2 . a a 1ba -
-1 )

(3.6) Let R be *regular and Zc R a subring of

id,. There exists a regular subring S of R with *lg

~1*
-2 -
ba = a 2
aba-‘2 =
3 »*
with IZ
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Proof. Let S be the set of all subrings S of R with

(1) Z&S
and
* = 3
(2) |S 1ds.
Cleifly S is inductive. By Zorn's lemma there exists a maximal

-

SeS. If aeS then S\J{a_l} generates a ring which satisfies (1).

But *[S idS implies that S is commutative. ‘This with (3.5.2)

implies that the ring generatea by SIJ{a—l} %s commutative. Every
element in this ring may be expressed as a polynomial in a-l with
coefficients in S. All such polynomials are *self-adjoint, and (2)
is satisf}ed. It follows that a-1 € S. This is true for any‘.a QS
"~ and therefore § is regular.

(3.7) Leé R be *regﬁlar, Fg;R.a subring of R which is a
field with *IF = idF. Also let {al,..:,an}s R with each a; e Co(F

U{al;...,an}).and so .that for each i there exists,ki >1 with

ki

a.

i0= 2y Then there exists el,...,ﬁne (*Pr(RO\{0}) nCo(FlJ{al,...,

én}) so that

(1)

and ' ‘ . e .

[ = |

o
n
[—
-

o
o
N
(o]
1]

(2) {zei: z eCo(FLJ{al,...,an})} generates a field
Fi in R(ei)‘with *IFi = idF-' .Furthermore, if F is finite then so is
- . 1 . )
each F..
i

Proof. Let S be the subring of R generated by F u{al,...,an}.

Since S is generated by commuting *self-adjoint elements, *IS = ids.
S may be considered as an F-vector space and as such is spanned by the

2 - -
set {al 1aéE2...aﬁ£“: ()S-%_ski}. It follows that S is finite
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dimensional over F, Every ideal of S is an F vector subspace of

S and it follows that the lattice of ideals of S is of finite height.
Hence S is a semisimple Ting (see pagé 153, [11). The Wedderburn-
Artin theorem (page 154, [1]) guarantees that S is a ring;d§rec§.sumw
‘of matrix rings over division rings. The fact that S is commutative

implies that each of these matrix rings is in fact a field. If F

" is finite then so is S.'

m ' k 2
If a = a*and a, = 0 then for k with ms2" we have 2a° = Q.
2k 2k-1 k-1 . 2k-1 .

But 0 = a° = (a 1*(a } implies a = 0. It follows by -

induction that a = 0. Hence

(3.8) If a = a* and a" = 0 then a = 0. -



4. Teé&nicalities I.
\ Let L = I_..(RS) be an MOL with ortho‘gonal‘ canonical frame
and associated form (a,B,*). Assume that MOw ¢ HSP (L) and .that R
has primé characteristic. In this section we take the first steps
toward proving the lemma given-in section 1.
(4.1) Let O0=z2a = a*¢ R: There exists m >0 with am+1 = a.
Proof. Let O0=a = a*¢R, we will prove (4.1) \;r;'La a long
series of claims. Let aa-1 = ¢ and let Z be the subring of R ggnefated
by a. Since x|, = id, we may apply (3.6) to obtain a regular s"ubring S

of R withZ<Sand *IS = id Since *IS ='id|S’ S is commutative and

g
since a,a-l,e S we have e« *Pr(8).~ Our first claim depends only on
the commutativity of §.

Claim 1. If f, ge*Pr(S) with fg = g and r ¢ S(f) ‘then if rg

. ™
is noninvertible in S(g) it follows that r is noninvertible in 5(1).
Proof. If rr ! = £ then rgrqlg = rr-lg‘= fg = g. 0

. = N " -
Define two sequences, (mi)i_ 1 of natural numbers and .

().

s=.q oF *projections recursively by:

Step -1 e, =eand m =0,

-1 1
Step (i+1) If e; 20 and there exists m> 0 with (am -re)ei noninvertible

in S(ei) then let L be.the least such m and let €1 T

. m- m- -
a e)e, [(a L e)ei] l:s *Pr(S(ei)). 1f e, = 0 or if.no such

(

m exists then let e, . = e, and m. . = m, .
i+l i i+l i’ )
Claim 2, 1If OsnSmi_ and e =0 then (an'- e)ei is invertible

in S(ei), 0=i,

17
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claim 1; (an - e)ei_
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Proof. "If e. =0 then since e, _e. = e., e. . =0, Assume
_ i 1-1"1 i i-1
that‘(an - e)ei is noninvertible in S(ei) for some n>0. Then, by

- .t + -
is noninvertible in S(e.

1_1). Since e, . =0

1i-1

noninvertible. in

1

- . . ,'__' " n .
and since there exists n >0 with (a - e)ei 1

' , . - m
-S(ei_l)_we know that m ., is the least m-w1th (a - e)ei_ non-

1
invertible in S@Qi_l). It follows that m, sn, and since -

My mj ) _.17 _ ) L
(a:- -e)e, , la ele; 3 "= e, we have m.=n. 0

. o . ‘
Claim 3. The sequence (mi)i_ 1s increasing.

1

Proof. If m. , #m. then e. =0 and (ami+1 - e)e. is noninvertible
—== T i+l i 1 1

in S(e.).. It follows from claim 2 that m, <m. .. 8
i 1 i+l

Claim 4. If m, = m, . thene, = 0 or (ak - e)e. is invertible
—_— i i+l RS § i

in S(e;) for all k>0. K

Proof. If ei==0 and (ak - e)ei is noninvertible in,S(ei) for

-~

some k>0 then first of all, by'claiﬁ“Z, m, <k. Secondly mi+1;is the
- 0 \ . .
f i A" -
least such k. Therefore if e; =0 and m, = mi+1'no such k exists. O

- ‘
By claim 3 either (mi)iz—l is strictly increasing or there
exists a least s with m  =m_, - If there exists such an s then, by
. X o - k S . . .
claim 5, either e = 0 or € =0 and {(a - e)es is invertible in S(es)

for all k> 0. We.wiII/Aispose of the case e, = 0 first.

A
Claim 5. If mo\= 0 then mk 0 and e, = e for all k=0.

k

Proof, If m, = 0 then e = e and (am - e)eo is invertible in

S(eo) for all m>0. If m, = 0, e,

m .. .
;=€ and (a - e)ei is invertible

in S(ei) for all m>0 then (applying step (i+l)) we obtain m ., =m

i+l i?
= m _' . . . .
€1 e, and consequently (a e)ei+1 15.1nvert1b1e‘1n S(ei+l) fgr
all m>0. It follows by induction that m, = 0 and e t e for all
kz0,. . ) e : '..V 5|
A \'
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[

Claim 6. If m_=0 then (ami - e-)e_ S =e.S.
—_— - 0 1-1 1
Proof. If m_ =0 then e = (amf), - e)e [(am° - e)e]-l. 1f

is the least m with (am -"e)e. nonirfvertible‘ in S(e.) then

m,
i+1 i ‘ _ it R
= mi"'l - . @™ - -1 i :l v
€. (a _. ele; [(a e)ei] . Otherwise Mg =M and |
N - - '..‘
€1 = % 'I'he result follows by J'_nductlon. if-«-’h\ . O ) ‘._ 
Claim 7. If ¢, = 0 (and s is the lea;g*;p?ch number) then : f .,
there exists m\:.-_.,()1 with am+1 = \
Proof. Let m = 1 m, If m = 0 then by claim 3 m, = 0. -_.;-'.\
O<iss i’ . _ co f-el“" )
and it follows from claim S that 0 = e_ = e. But if'e = 0 theén 'i -
. S ST
a = 0, a contradiction. Therefore, m>0. For 0<siss let f. = -, :
- l
(e, - e.) e *Pr(S(e)). Since (aml - e)e 5= e, S, see claim 6, we
my - mj m_l - -1 .
have (a e)e1 1 (a e)ei__lei ( )}— e)e .. Let n,, i € N
Me = (M i=pa™ - ic - Ny _ M3 _ -
Then 2 £, = (a fi)'. = [at(e, ei)]. [e. e.] Pef = £
Also L £, =e-e_ +e -e_ +,,.+e = e. Therefore a® = a"e =
L - 1 . 0 Q l 5"1 « Ypst———
3 1=0 s ) .
a"r  f, =§ afl=z; f.=e. n}
i=o *t =0 . i=Q * '

In order to complete! the proof of (4.1) we need the following

Propo_sa.t:.on. Let neN u..{m}, O=fe *Pr(S(e))- with (a - e)f
. — : _
invertible in S(f) for all O<k<n. Then MO[n] e HSP(L) where {n]

is the number of odd numbers less than n. / 2
Before setting out to prove this proposition observe how it I .
handles the two -remaining cases. N If (m ) is strictly increasing / ’ J'

then the proposition may be appl:.ed w1th no=m and f = e, to obtain

_ MO[rni] ¢HSP(L). It follows from (1.9) that MOw ¢ HSP(L). If e =0
_anrd_ _{;a‘? - 3535_5:;; invertible ‘in S(gs) for all k>0 then the pfoposiﬁié_m

‘l‘m.;-.l}" be applied withn = w and £ = e, to obi;ain MOw € HSP(L).. Sihce---q--.:'

: . \‘ w
MOw ¢ HSP (L) these two cases cannot occur. It remains to prove tHe
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proposition.
Let A = {<(a-sf, f, 0)>R§E(R3): s 1is odd, 0 <s <n}
and let A' = {y = x' A<(f, 0, 0), (O, ‘f; OJ?R: xeA}l.'
Claim 8. A' = {<(-asfaf,_ f, 0)>p: s 1is odd, 0D<s<n}.
.l’rﬂ. Let 0-<s<n with s odd. Then (a "f)* (-a°faf) +
f*af = -f a "a fif + fof = 0 and <(-a’fof, f, 0)>p s <@ ’f, £,
0)>',-( Let (0, €, ) e<(a” %, £, 0)>'p A<(£, 0, 0)} (0, £, 0)>,.
. Since (bon C,» d) e <(f, 0, 0), (0, f, 0)>;{ we know“_ that d = 0 ar;d
by (2.12) there exists b, c ¢ R(f) with <(b, c, 0):~R = <(b-o; C,» 0)>R.
Since <(b, c, o)>Rs<(a_5f, f, 0)'>;{, we have 0 = (g_sf)* b + f*ac.=

£a™5b + fac = a™> b+ fafe. Multiplying on the left by a®

gives b = -a®fufe,  ie. <(b, c, 0)>Rs<(-asfaf, £, 0)>p. ,
If (as - e)f is invertible in S(f) then, since a™> is also
invertible in S(f), so is (2™ - e)f = -a">f(a - e)f. Also, note

that since most of the elements we are working with come from S we
often have multiplicative commutativity. However oé¢S and therefore

care must be taken_.

Claim 9. If x, yeA with xAy >0 then x = y.

Proof. Let x = <(a”> £, £, 0)% and y = <(z1-k £, £, 0)>p

»

with.xAy>0 and 0<k<ss sn, s, k odd. Then there exist q, t e R with

@ £, £ 0 q=@" ¥, £, 0)t=(0, 0, 0). Let r = £fq = ft =0. .

Then a™5r = a ™% and so 0 = (a-k -a %y =a° (a-k -a¥)r =

(as-k- ejr = (as_k- e}fr. But 0<s - k<n therefore unless s = k
s-k

we know that. (a” "~ e)f is invertible in S(f). Since fr = r=0, it

follows that s = k and x = y,.
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Claim 10. If x, ye€A' with-xAy >0 then x = Y.

Proof. Let x = <{-a’faf, £, 0)>, and y = <(-afaf, £, 0)>,
with xAy >0 and 0<sksS<n,¢%, k odd. There exist q, t€R with
(-a°faf, £, 0)q = (-akféf, £, 0)t=(0, 0, 0). Let r = f£q = ft =0.
Then akfafr = asfc:fr and 0 = (as - ak)fafr - a‘k (aS - ak) fofr =

(aS—k - e)fafr. " But 0s<s - k<n and therefore unless s = k we know

that (a%™% - e) f is invertible in S(f). Since 0 = fafr implies
r = 0, it follows that S = k and X =Y. |

Cl'aim 11. If x.éA and ye A" then xay = 0.

Proof. i.et x = <{a f £, 0)> #nd y = <(-akf £, £, 0)>R
with 0<sk,s <n and so, k odd. Assume xAy>0. Then there exist
q, teR with (a” f, £, 0)q = (-akfaf, £, 0) t=(0, 0, 0). Let
r = fq = ft ¥0. Then 0 = :‘.-qu + akfaf,t = (a-s + akfcxf)r = a_k
(a |

Then 0 = (a£a£+ faf)r = r*(atals faf)r = (r*a ) (a¥r) + r*fufr =

L faf)r = (a-(s"'k) + faf)r, Let £ = -2 2-1 (s + k) eZ.

(a T)* (a r)} + (fr)*afr. This glves g = azr = fr, but fr = r 20,
a~contradiction,
.

The set AUA' is closed ‘under the ocC 1nher1ted from L by
the interval [0, <(f, 0 0), (0 £, 1> L Since dlstlnct elements
meet to give zero it follows that AuA' together with the bounds
form MO[ ] in this interval. This completes the proof of the prop-
osition and hence.oé (4. 1)

(4.2) Let O=ec *Pr(R), if h is odd then'eahetCO(R(e)).

Proof. Assume otherwise, ie. there exists O=zee *Pr(R) and

h odd with écr.he € Co(R(e)). Since R has prime.cl\-u:a.c&exstic p the
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unit of R generates the p element field, and therefore e generates the

[

p element field in R(e). By (4.1) ea’e and e Be are of finite order
over this field, ie. there exist m, n>0 with (eahe)m = e = (eBe)n.
It follows from (3.7) that there exists 0 =f ¢ *Pr(R(e)) so that

£a"f and £ B f generate a finite field F in R(f) with *lp = idg.
If (a, b, ¢} ¢ F and 0 = a*a + b*f.uhf b + c*fBfc = a*a + b*f ata aﬂ

'a=a£fb = fc. But 0 =a£

fb + c*f 8 fc, where £ = 27> (h-1), then 0

-£
fb implies 0 = a a'efb=fb=bandfc=c, s0 0 = a= b = c. This

implies that (fcxnf, £fg£f, *)} is a form for some OC on the finite
projective plane L(FS), contrary to {1.9).

(4.3) p=2.

n :
Proof. By (4.1) there exists m with o = 1. Let m = r2“

n N
with T odd. If p=2 then 0 = ™% -1 = (@¥ - 132 . But (a - 1)*

= o - 1, it follows from (3.8) that af -1 =0 contrary to (4.2).



5.  Technicalities II.
Under the assumptions of section 4 we can, from (4.1) and
(4.2), assume that there exists t >0 with a2t = 1, and from l(4.3j
that 2 is invertible in R. The element af and the Ting R may be
kept in mind as initial motivation for this section. Aside from the
elementary (5.1), the L;'esults to be used later on are (5.2) and (5.6).
Throughout this sectio.n Q is *regular, 2 is invertible and
q € Q satisfying !
(i)  q is invertible and *self-adjoint.
(i)  The map azv»q-la*q is an involution on Q.
(iii) q% e Co(Q).
Let L(Q —'—>f(Q) b.e the OC generated by * and let L(Q) —#—>E(Q) be

: ¥
the OC generated by t. Let L =T(Q), S = {xelL: x = x" }.

#1 A #e
T(x) = xv x and T(x} = xa x .
. 1 ' . #t )
(5.1 (1) The map L#—->L given by x~+x  is-an MOL
automorphism, under ', of L.

H#1 . ‘ ' ’
(1)# The map L—L given by x -» x# is an MOL
automorphism, under #, of L.

(2) T:L—S, T(x)

It

A{seS: xss} i

(5) 'E‘: L —5, ‘;‘(x)

viseS: s=x}

= (T(x")) = (Tex#). ‘

, v '
(3) For x e L\S, {x,x# } generates an M02, under
either of the OC's inherited by the interval [T(x), T(x)]L.

I

(4 C(L)cs.



(S} If S=L then there exists x ¢S with T(x) = 1,
and hence 'f‘(x') = 0.
(6) Co(q) is *regular and L(Co (q))»LL onto S.
Proof. If a¢Q then q-laq = q aq"l,' in particular if
e € *Pr(Q) then so is q-leq. In fact q-leqa = 0 if and only if

a'(1 - eJqa = a implies that e ="q7}(1 - e)aq. This implies

that (@) = (@'l - )@’ = a7l q q, and that (e )" -

¥ - t '
(1 -e)Q =q1qu._ That is,‘#=# .
#I # 1 1 #l #l
Re(). (xv»)' = x"ay") = x" vy’ and qually xay)
uv #1 g1 # togt
=X Ay . Also, (x ) =x = (x) .
#l T ! 1 1 #1 '
Re(2). Since (xvx )# = x# vx# # = x# vx, T: L —8§,
#ro g # St N
If x<seS thenx <s = s and XvVx s=s. (T(x')) = (x'vx) =

#r -
XAx = T(x).

Re(3). A series of straighforward calculations shows that
T, x, X', T v & AT, T v AT(x)), and T(x)" form MO2
in the prescribed interval. |

Re(4). If xeC(L) then x has only one complement in any
interval in which it is contained. By‘ (3), xeS.

uV"]:(u'). Then T(x) =

it

Re(5). Let ueL\S, and let x

It

uvTE ) v wwlw ) '=uva®' Q'}(u') TW) VT =1, by (2).
Re(6). It follows from (1) that S is'a sub\algebra of L
. as an MOL under ', since it is the set of fixed points under the
automorphism Li-'—ﬂ.. For e € *Pr(Q) we have the follc')wing e;:;uivalences
eQeS
if and only if

e@®" - eq



»

if and only if

q7'eqQ = eQ

if and only if
q-leq = e, as a result of (3.l.e)

if and only if
e e Co(q).
- It remains to show that Co(q) is *regular.

, Since q = q*, Co(q) is closed under *. If a2 e¢Co(q) and ara = a
then let s = 2-1(q'1rq'+ r). We hdve qs = Z-I(rq +qr) = 2_1(rq + q-1
rqz) = sq aﬁd asa‘= Z-I(aququa + ara) = 2"1(q-1araq +a) = 2—123
= a, | 0
(5.2) For ee*Pr(Q), T(eQ) = (e + q leq)qQ.

Proof. Clearly (e + q leq)Q<cQvq leqq = T(eQ). We will
show the reve;se inEquality first in the special case that %[eQ) = 0.
Let (e + q-leq)Q = (1 - £)Q, fe*Pr(Q). Then ef = -q-leqf' eeQ:\q_l

-2 -1
eqQ = T(eQ) = 0. This implies that 0 = ef = q eqf and so.eQ, q eqQ s

1 - Ha.

© For the_general case let T(eQ) = gQ, g ¢ *Pr(Q), and note that
'g QCOG{e,q}). Siﬁce T preserves meet, %(e(l - ng) = %(eQ:\(l - 2)Q)
= T(eQ) AT((1 - g)Q)

(el - g) + q_le(l - 2)q)Q, ie. there exists aeQ with (e(l - g)

It
1

gQA(l - g)Q = 0. Therefore T(é(l - 23Q)

+

a”le(l - g)q)a = 2¢(1 - g). This gives
(e + q"leq) (A - gla + p)
= (e +qrea)(l - gla + (e + q teq)g
= (e - +q el - ga)a  + (eg + q legq)

= 2e{l - g) + 2g = 2e, and



1

1A

eQ < (e + q_leq)Q. By a symmetric argument, or applying # s quleq
(e + 9 eq)q. : . .

(5.3) 1If %(x) = 0 and [0, T(x)]ssgé(EO,_T(x)]L) then
(o, xJL is Boolean. _ .

Proof. Let a¢ [0, x]L. T(a) € [0, T(x)]SEEC([O, T(x)]L),
hence x A T(a) € C([0, x]L). But a<xAT(a) = xA(a V_a#') =av

(x Aa#')Sa‘v (xAx#') = a.

(5.4) Let ge *Pr(Q) nCo(Co(q)) and e ¢ *Pr(Q) with gQaeQ

a - 2)QAaeQ = 0, Then gQveQes.
Proof. Let f =-q(eg - ge)q“1 + (eg -~ ge) eCo(q), then "

r=r1g+r(l-g) = gTg + 1-gr - g) = 0. . Let (eg - ge)q

(1 - £)Q, fe*Pr(Q). Then 0 = f(eg - ge) = -fq(eg - ge)q L.

’ '_'1 L . ' gt
Hence q(1 - f)q "(eg - ge) = eg - ge and (eg - ge)Qs ((eg - ge)Q) .
This implies, by (5.1.3), that (eg - ge)Qe S, ie. fe Co(q). ' But

f(eg - ge) = 0

implies
feg = fge
implies
gef = (feg)* = (fge)* = egf
implies
gef e eQagQ
- implies
gef = 0
implies

(1 - g)ef = ef



implies
efeeQa(l - g)Q

implies

This gives eQ< (1 - £)Q. But (1 - ijeSn[O, ngeQ]L, S0 e.Qng .
= (1 - )Qveqvgd = (1 - £)Qvgqes. A 0
Corollary. Let teS, x¢ C(f0,t1.) and 0=z [0,t]; with
XAz=x'az=0. Then xvzeS.
‘Proof. Let t = hQ, he*Pr(Co(q)), x = gQ, g ¢ *Pr(Q(h)) and
e ¢ *Pr(Q(h)) with z = eQ. The ring Q(h) and the element gh satisfy
the assumptions made on Q aﬁé q at the beginning of this section. That
‘is, Q(h) is *regular and not of characteristic 2, gqh is *self adjoint,
invertible, the‘map a—*ﬁﬁqﬁ)-la*qh ‘is an inveolution on Q(h) and -
(ah)° e Co(Q(h)) . |
Define S(h) analogously to S, E(Q(h))i—éEO,hQ]L is an iso-
morphism implies that for ee *Pr(Q(h)) -we have '
e es(
if anfl only if
e € Co(qh), by (5.1.6)
if and only if
e € Co(q)
if and only if
eQe S, again by (5.1.6)
We may apply (5.4) to Q(h), qh, g and e to obtain gQ(h) veQ(h) ¢

S(h) and consequently gQveQeS. - n



(5.5) Let tes. 1If c(lo, t]S)E C(lo, t]L)-then th\ere
exists O0=zuvel0, tJS, so that [0, UJS = [0, UJL.. "
. Proof. Let xeC([0, tI\C(Lo, €1 ). Since x ¢ C([0, 1))
there exists 0=yelo0, t]L with xAy = x' Ay = ¢ (if x E_; let y =
s A (xvs')Aa(x'vs"))., If z sy then by the. above corollary xvzeS.
If we [x-,xvy]L then W = (xVvy)aw = xv {(yaw)es, since y a W < y,
, Hence, [x, xvy]L = [x, xvY]s.‘ Let u = x"A(xvy).
(5..61 If there exists 0=t eS with Lo, t]s Boolean then
there exists 0=y ¢ L with [0, u]L Boolean.
Proof. There are two cases: -
Case 1. [0, t};ss..C([O, t]Lj.

Case 2. (o0, t]sé C([b, t]L).

If case 1 occurs and equality does-npt hold then ther.e‘
ex'isté xelo0, t]L with 'f‘(x) <x. Let u=xa [';‘(x))'. Since [0, t]S,E
C(C0, t])) .we have [0,-T(uj]Ss C(L0, T(w)1,), also T(u) = 0. By
(5.3) EO,u]L is Boolean, If case 2-occurs then b}r (5.5-) therg exists
Oxlu'e [O,t]S so that [O,u]S = [Q,w]L, in particula{[O,u]L is

Boolean. ’



6. Technicalities III,

Having developed the necessary tools 1n section S we return
now to ;:he setting of section 4 to-}prove the lemma mentiocned in the
introduction. Throughout this section f,(Rs) will be an MOL with
orthogonal canonical frame and associated form (a,B,*). We also assume
that MOthSP(E(RS)) and that R has characteristic p, for some
prime p. In order to prove the lemma .it suffices to show that E(RS) o
contains a nontrivial Boolean section. ‘ | )

From (4.1) we know that there exists m>0 so that o" = 1,
Let p(k) = arzk where r is odd, r2" = m an:i O<k<n., For Os<ksn
land e ¢ *Pr(Co(p(k))) define R(e,k) = Co(p (k)]ln R(e), and for k<j<n
define L(e,k,j) = {aR(e,j) e L(R(e,j)): aeR(e,k)}. This rather
cumbersome notation is necessary in order to distinguish between the
lattice of principal right ideals of a ring and its image under
certain canonical injections. Our ﬁim is to show the existence of
a nonzero ge¢ *Pr(R(1,0}) so that L(g,0,0) is Boolean and then to use
(5.6) to push the existence of a nontrivial Boolean section up to
L{1,n,n). Successful application of section 5 is a result of

(6.1) Let 0sksn, and 0#g e *Pr(R(1,K)).

Then

(a) (i) p(k}g is invertible and *seif-adjoint in

R(g,k), in fact (o(K)g) > = p(k) Yg. ©
(ii) The map a »p (k)-‘la'* p(k) is an involution

on R{g,k + 1).



(1i1) (0 (Kg)* = p(k)2g e CoR(g,k + 1)).
{b) R(g,k) is *regular.
(¢) The results (and notation) of section 5 may be applied
with Q = R(gf k +1) and q = p(k)g. In this setting L = L(g, k + 1,
Ak + 1) and S‘= Lig,k, k + 1).

Proof. Re(a). Sin;e p(K) = p(k)* and p(k) Co g (i) and (ii)

both hold. The map defined in (ii) is clearly additive, of period

- ' -1
_tvo and for a,beR(g,k + 1), p(k) N@b) (k) = p(K) lbrp (k)
‘.p(k)-la*p(k), It rémains to show that for a e R{g,k + 1) 5(kj;l
a*p(k)a = 0 implies a = 0. If k = 0 then p(k)—la*p(k)a = 0 implies
t

0 = a*p(k)a = (a*at) a {aa) = [ata]*ia(ata), where t = Z_I(r - 1.
- Consequently, 0 = a'a = a. If k>0 and p(k)-la*p(k)a = 0 then
0= a*p(k)a = (a*at) (ata) = (uta)*(uta), where t = 25 s
gives 0 = uta'= a.

Re(b). To shoﬁ (b) first observe that (c) holds whenever
R(g,k + 1) is *regular, for *regularity, (i), (ii) and (iii) of
(aj are precisely the assumptions made at the beginning of section
5. In particular (5.1.6) tells us that R(g,k) is *regular. Since
R(g,n) is *regular the result follows by inductioqf

Re{c). This follows immediately from (a), (b) and the
observation made in the -preceding péragraph.

From (6.1) we mgke a useful observation.

(6.2)"Let 05)<n and let ge *Pr(R(1,j)). Then the

following are equivalent.



(1) For some jsk<n, L(g,j,k) = L(g, j + 1, k)
(2) *Pr(R(g,i)) = *Pr(R(g,j +:1))
(3) For each j <ksn, L(g,j,k} = L(g,j + 1, k).
Proof. From (6.1) we know that for j <& L(g,ﬂ,ﬂ)léﬁL(g,ﬂ,ﬁ + 1)
and that R(g,£) is *regular. By a suitable composition we obtain o
L(g,ﬂ,ﬂ)-i—>L(g,£,k) for any £ <k'sn., Since R(g,£) is *regular we? L
know that each element of i(L(g,£,£)) in L(g,£,k) ié uniquely
detexmined by so‘me ee *Pr(R(g,L)) as eR(g,kj.' This establishes the
equivalence of (1), (2) and (3). : a
With each nonzero g € *Pr(R(1,0)) there is associated an
increasing chain gf MOL'-s (L(g,k,n));:__~0 and an increasing chain of
*regular rings (R(g,k))LO. We wish to examine and compare the firs-t
proper containment in each of these chains., Define k(g) to be the
smallest k so that L(g,ls,n) =zL(g,k + 1, n) or, if no such k exists;
let k{(g) = n. Define j(g) t-o be the smallest j so that R(g,j) =
R(g,J +'1) or, if no-suCh ;i_exists, let j(g) = n. Since R{g,j) =
R(g, j + 1) implli'es *Pr(R(g,j)) = *Pr(R(g,j + 1), (6.2) implies that

j{g) sk(g). Our first task is to show that this inequality is strict.

‘Towards this end we need the ring-theoretic.

4  (6.3) Let 0=ae€R(1,0) with a=a*, aal - g and let

fe*Pr(R(g)) with faf = 0. Then £ = 0.

Proof. Let a and f satisfy the hypotheses of the claim. We
may apply (3.7) to the-ring R(g,0) with F taken as the p element

field, a; = a and a, = pg, where p = p(0). This gives nonzero

‘e; € *Pr(R(g,0)) nCo({a, pg}), i = 1,...,n,s0 that *



Lt
[

(1) ¥ e. =g, e.e. =46 .e. ;

2) {aei, pei} generates a finite field F; in

R(e ) w1th *[ id
Fi

Slnce.Fi is finite the multiplicative group of nonzero . /

o
elements is cyclic. Let bi be a generator for this group. There

exist £,k so that bf = pe; and bi = -e;. We'first show ;hafrk is

fk }.‘1"7-_ ’(' -e. ) e Co(R(e,)) and

Fy° \ R

even. We have e: urke. = (pef)k
1 1 1

b(4.2).gua;antees that:rk, and hencé'k, is even. We will now show

that £ is odd. Suppose £ is even and let s = 2_l(k -8, t

. »*
Koe e, + b%%aa®® = ele, + (aTb5)*a(atdS). This
R R iti : )

27 e - 1y,
Then 0 = e, + b
implies that 0 = e; = atbs, a contradiction. Hence £ is odd.

For each i let bi be a_generator far the multiplicative
group of nonzero elements of Fi and-define Zi, hi so that‘ﬁfi = pe;
hj . g . ) _ors .
and b;® = ae;. Let I_ = {i: h,; is odd} and I, = {iz h; is evsp}.

For ieI_ letm =2 Y(h, - £.) and for i eI. let m. = 2 h.. e
o) 1 i ] 1 1 p g

l -
n
have 0 = faf = £(I aei}f
i=1
= f£(I ae)f + £('Z ae)f
ieIl * ieIo e ' _

£Cz_bMy(z b, 1)f+ £(x b1y a%a® (2 b."i)¢
1511 1&11 1€.I ieIO

I

((L b 1)f) (£ b 1Jf * (a (: b 1)f) o a ( z b 1yf,
1€I1 1EI 1eI . 1sI

where s = Z-I(r - 1),

@ghis inplies that 0 = ( I b;"8)f = (£ b,"1)f and therefore
) 1511 iel ’



LoT
L]

=TI mj ‘
i
b. ) (L bi _)f.

i=1 i=1

I
~
L

n

N .
= (£ e)f=gf=Ff, o : O
is1 * | _ *

(6.4) If 0=g e *Pr(R(1,D)) “then j(g) <k(g). |

Proof. If j(g) = n then a'geCo(R(g)) contrary to (4.2).
Assume j(gj = k{g) = k <;? By (6.1.c) we ﬁay apply the resultslaﬁdv
notation of section 5 with Q = R{g,k + 15 and q = p(k)g. By (5.1)
there exists x e L\S with T(x) = L\\ By (5.2), if e¢ *Prfaa with x = eQ
then T(x) = (e + q—leq)Q. This implies that e + q'leq is right * ¥i
invertible (in Qj and since it.is *self-adjoint it is invertible.
It follows that a—l = qe + eq is invertible (with inverse a) and an
elemeﬁt of Co(q). . Consider the ‘left ideal Qea. Suppose Qéa = Q,
then there exists s €Q with sea = g, This gives ase = aseam—l =

_ aga” =~ 8 which in turn implies that e = g, a Eontraéiction. So

there exists a nonzero fe *Pr(Q) with Qea = Q(f - g). From 0 = eaf

we obtain eqaf eqaf + qeaf = a-laf = f, and ef = f = f* = fe,

This givqs faf feaf = 0.
Since R(g,k) = R(g,0), a and f satisfy the hypotheses of
(6.3) and we can conclude thaf f=0,a contrédiction. | a
(6.5) ‘Let-O'xg e*Pr(R(l,d)). If L(g,0,0) is nonBoolean then
« there exists nonzero_he *Pr(R{g,0)) so that k{h)z:k(é) and j(h) > j(g).

Proof. Let 0#=ge *Pr{R(1,0)) and assume L{g,0,0) is nonBoolean

and. let j = j(g). ‘Since L(g,0,0) is nanéolean (1.6) guarantees the
r

—



s

{

existence of 0=h e *Pr(R(g,0)) so thag [O,MhR(g,O)]L(é’O’O) contains

M02 and hence a ?—frame. Since L[h,0,0)1—+E0, hR(g’O)]L(g,O,O) is an

isomorphism, and since L(h,0,0)i—+L(h, j +1, j + 1) the ring

R(h, j + 1) 'is of order 2.‘ .

Consider the automorphism ¢ of R(h, j o+ 1)>givén by

a-¢p(j)—lap(j), This generates an automorphism ¢ of L(h, j + 1,

j + 1) given by aR(h, J + 1) =¢(a)R¢h, j + 1). The ;utémorphism

g is cbmplegely determined bf the action of ¢ on *Pr(R(h, j.+ 1)).

‘But j <k{(g) sk(h) and (6.2) insures that *Pr(R(h,j)) = *Pr(R(h, 7 + 1)).
f{ But this implies ihét ¢ acts identically on *Pr(R(h, j + 1)) and

hence that § = idL(h,j+1,j+l)’ again by (6.2). Since Rth, j o+ 1)_.

is of order 2, (2.17) applies and ¢ = id This implies that

R(h,j+1}"
R(h,3} = R(h, j + 1) and therefore that j <j(h). 0
- Corollary.,  There exists 0 =g e *Pr(R(1,0)) so that L(g,0,0)

+is Boolean.

-

Proof. Choose g so that (k(g), £(g)) is maximal with respect
to the lexicographic ordering, (6.5) ensures that L(g,0,0) is Boolean. [J
We can now prove the desired resﬁlt.

L .

-(6.6) There exists O#J(EE(Rs) so that [O,XJE(RS) is Boolean.
- v . '

Proof. For afy g e *Pr(R(1,0)) we have L(g,0,0)>L(1,0,0),
and by the above corollary L(1,0,0) contains a Boolean sectiéh. For
k <n the map L(l;k,k)i—+L(1,k, k + 1) is an isomorphism so if
L{1,k,k) <ontains a nontrivial Boolean section then so does L(1,k, k + 1).a
Applying (6.1.c) with Q = R(l,:k + 1) and q = p(k) and'invoking (5.6)

ensures the existence of a nontrivial Booléan section in L(L, k + 1,

k +1). It follows from the principle of induction that L(1,n,n) = L(R)
. p -

-



contains a nontrivial Boolean section and since L(R) =[0,<

. (0,1)0)>R]E(R3) the proof is complete.
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7. Results

I quote from [3].

"I suspeét that a subdirectly irreducible MOL generated

by elements a,b,c satisfying the assumptions of lemma 1 and b} Act! = 0
is a projective plane. This together with the remainder of the

paper would/prove the conjecture of the introduction."

= atab%e’ =b'a(ave) = 0 and of course the
<

conjecture is the conjecture quoted in section 1. The proof of the

first observation of thas section is a series of straigh@forward
calculations and Laﬁﬂ'fb the reader. - ”

(7.1) 'The above assumptions together with b!' ac' = 0 are
equivalent to the assumption that (a, at Ab, b', CZ 1is an orthogonal
S—fraﬁe. . ;

‘Every subdirectly irreducible complemented modular létticé L can
ge embedded in a ﬁrojgctive geoﬁetry G, see Frink [7]. Thus if L is
a‘subdirectly irreducible MOL witb‘orthogOnal canonical frame and G
is a projective plane then Lis a ﬁrojective plane and (1.8) ensures
that MOw ¢ HSP(L). If G is not a projective pléne then it has
(geometric ) dimension greater than two and is therefore Arguesian [9].
Since L is a.sublattice of‘G, B too is then Arguesian. The coordin-
atization theorem of JBnsson fQ] may now be invoked and we may assume

that L = E(RJ) with orthogdhal canonical frame. This shift from the

general situation to the ring-theoretic setting is due to A. Day [6].
g‘ 36 o t-
N ' | ’



‘element of HSP(L). Let BSL(R(e)’) be defined as B = {<(e,ae,0)>,

Eventually we will want to apply (6.6) to E(R‘)) and in order to

.do this we must - establish that R has characteristic p for some prime

p. Since L(R’) is irreducible it follows from (1.1} and (2.10) that
Co(R) is a field. Let neN so that 2n + 1 s {Co(R)] if Co(R) is
finite and let n = w if Co(R) is infinite.

(7.2) Let L = E(RS) be a subdi{(:?l/y irreducible MOL with -
orthogonal canonical frame. Then MOn € YSP(L).

Proof. Let A = {<(1,a,0)>R: 0#aeCo(R)} and let

= {<(1, a-la,0)>R: 0=aeC0(R)}.{ Suppose (b,c,0) e((l,a,O);R- for

]

-1 *_ .
a 1,0)>R.

¥

0#aeCo(R), then b + a*a ¢ = 0. It/follows that b = _a-qu—lc

ie. that (b,c,0) € <(1,-a Therefore A = {x'A<(1,0,0),

: (0,1,0)>R:' x e A}. Since Co(R) is a field distinct elements of A

meet to give zero as ‘do distinct elements of A'.

Assume that there exists <(1,a, 0)> €A.and <(1, a 1b 0)>p ¢ A"‘A
with <(1 a, 0)> A<(l,n JLb 0)>p = 0. Then there ex1sts 0=e¢e*Pr(R
with ae = o~ be. It follows that eae = cé where ¢ = b ¢ Co (R)

The MOL LT(R(e)}” ) with assoc1ated form (ece, gge *) is an

R(e )"

: xe€ B}. Since

R()

exe = ce, c € Co(R),and since B' = {<(e, (eae)” ae,0)>

O=aeCo(R)}. Let B' = {x'A<(e,0,0),(0,e,0)>

R(e): 0= ace Co(R)}

we have B' = B. Since Co(R) 1is a.field dlsg.nct elementsof B meet

"to give zero. It follows that B together with the bounds forms an

-

MOk i ; - "z wh
Ok in the interval [0,<(e,0,0), (O’e’o)>R(e)]L(R(e)°J where
2k + 1 = |Co(R)]. . '
. Otherwise., 1f xeA and yeA' then xAy = 0 and it follows

that AuA' forms MOk in the interval [0, <(1,0,0), (0,1,0)>RJL

S



}(xl,...,xn) in an MOL (see [3], [111), y(x

where k + 1 = |Co(R)|. -
(7.3) Let{}-be a subdirectly irreducible MOL generated by

an orthogonal 3-frame. If MOw & HSP(L) then L contains a nontrivial

Boolean section.

Proof. From the abbve discussion we can assume that L = EtRS).
with orthogonal canonical fraﬁe. By (7.2) R has characteristic p
and we can apply (6.6)..

We now list three results from [3].

(7.4) (lemma 2, page 5 [31) If an MOL L contains elements

d,u so that the interval [0,u] is not Boolean and uad = uad' = 0

. then a homomorphic image of a subalgebra of L containSAelements a;b,c

satisfying the assumptions listed above (7.1).
(7.5) (theorem 1, pﬁée 2 [3]) If a is an element of a
subdirectly irreducible MOL and if the interval [b,a] is Boolean then

L

a is either an atom or zero.

(7.6) (lemma 3, page 5, [3]) If a subdirecty MOL L contains
aﬁ atom then 1t is either an MOn (nz1) or it has a projective plane
as a homomorphlc image of a subalgebra.

The main result may now be proved.

(7.7) Every variety of MOL's which is different from all the
[MOn], 0<n'<w, contains MOw.

Proof. Let us recall the definition of the commutator
R— . /\ \n/ a(i)
l""’xn)‘= o i¥l %
where o runs over all maps from {1,2,...,n} into {0,1}, x° = x and
xl = x'. ‘The argumernt given-hefe'is an extension of the one€ given

on page 6 of [3] and is due to G. Bruns.



Assume k 1s a variety of MOL's which is different from all
the .I:MOh], 0snsw, then there exists Lek and x,y,z ei. so that
Y(x,¥(y,z)) #0, since Y(x,Y(y,z)) holds in a subdirgptly irreducible
MOL if and only if it is an MOn. Let S be the Subalge{)ra of L |
génerated by {x,y,z}. S has a subdirectly irreducible image M

which is generated by a set {s,t,u} satisfying y(s,v(t,u)) =0.

! .

The element y(s,t,u) commutes with each of s,t,u ‘and is therefor.e;
:central in M. Since M is irreducible C(M) = {0,1}. If y(s,t,u) = 0
then y(t,u) = 0 and v(s,y(t,u)) = 0‘ {these computations are _all easy
to check), a contradiction. Therefore vy(s,t,u) = 1. Since y(t,u) =1
(otherwise y(s,Y(t,u)) = 0) not all of uat, u'At, uat', u' at'

are zero and we will assume that uA't =0. From Y(s,t,u) =1 it
follows that s;‘\tAu=S"AtAu=‘0. : *

If [0,t Aul is not Boolean then it follows’ from (7.4) that
there exist elements ao,b,c not all zero satisfying the assumptions
listed above (7.1). If we gonsider the interval [O,ch:]M and replace
a, with a = a A (bve) we then have the additional assumption that
b'Ac' = 0. Let A be the subalgebra of [0,b v.c]M generated by
a,b,c. Since. not all of a,b,c are z‘éro A has a nontriv'iall subdirectly
irreducible image B generated by elements satisfying the above
assumptions or, equivalentiy, by an:orthogonal 3-frame. It follows
‘from (7.3) that MOw € HSP(B) of B contains a nontrivial Boofean section.

Therefore MOw e HSP(B), B contains a nontrivial Boolean section’
or [0,t Au]M i; Boolean. 1In aln)r case MOw e HSP(L) or there exists a
subdirectly irreducible algebra in HSP(L) generéted by an orthogonal

- »
3-frame and,. by (7.5), containing an atom. Since this algebra contains
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a nontrivial 3-frame it cannot be an MOn and by (7.6) must contain a

projective plane as a homomorphic image of a subalgebréﬁ By {1.8)
/7. :

' MOw € HSP(L).



3. Conc&uding remarks.
We restate the main result of this thesis.
Theorem. Every variety of MOL's which is different from all
the [MOn], 0 < n < w, contains [MOw] .
+ There remain two closely related open questions. First of all,

is the conjecture quoted in section 1 true? Secondly, apart.from the

- 13

material presented in section 7 the proof of the theorem is complicated
and ungainly. Is there an elegant proof? I believe that both of these
questions can be profitably attacked from the purely ring-theoretic

point of view.

41
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