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ABSTRACT

This thesis describes the bottom of the 'lattice of varieties

of modular ortholattices. The theorem that is proved is

"Theorem. Every variety of modular ortholattices which is dif-

ferent from all the [MOn] , 0,; n ,; w, contains [~IOw].

This theorem is proved by translating "the problem, at least

partially, into the language of regular rings.
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Introduction.

In this thesis the bottom of the lattice of varieties of

modular ortholattices (bounded modular lattices equipped with an

orthocomplementation) is described. Avoiding the language of

modular ortholattices as much as possible the main result may be

stated as

Theorem. The lattice of varieties of modular ortholattices

contains a countably infinite ascending chain with least element

•the trivial variety and with supremum the variety [~IOw]. Every

variety of ~IOL' s not in this chain contains [MOw].

The material in [3] reduces the problem to showing that

certain subdirectly irreducible algebras must contain a nontrivial

Boolean interval. The'problem is then translated into ,a ring-theoretic.

setting and the theorem depends on the proof of a technical lemma

concerning certain lattices of submodules. This lemma is stated at

the end of section 1.

The proof of the lemma constitutes the bulk of this thesis.

The reduction from the ~eneral case to the setting of the lemma is

not given until section 7. It is therefore suggested that the reader

scans section 7 before ,commencing section 3 in order to aid motivation.

Claims stated without proof or specific reference are' either

well known, ego (1.1), or very easy to prove, ego (7.1). In one

instance proofs are nested, see (4.1). This has been done because these

claims would be difficult to formulate outside the context of (4.1).

The symbol 0 signifies the end of a proof.
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1. Preliminaries (MOL 's) •

A lattice L is modular in case a v ((a v b) "c) = (a v b)

" (a v c) for all a,b,c € L. A bounded modular l"attice,' with least

element 0 and greatest element 1, i~ complemented in case for each

x.€ L there exists y € L with' x v Y = 1 an,d X" Y = O. Complemented

modular lattices are discussed in [4]. If L is complemented modular

then the set of elements in L with unique complements is called

the center of L, written C(L).

(1.1) The map L ... [o,a] x[o,a'] given by x~>(x"a, x"a'),.

where a' is a complement of a, is an isomorphism if and only if

a € CCL) • If the map is an isomorphism then its inverse is given by

(s, t) -..."s V t.

It follows that

(1. 2) L is irreducible if and only if CCL) = {O, l}.

(1.3) (15.4, page 147, [4]) C(L) is a sublattice of L

and as a sUblattice is Boole~n.

An antiautomorphism of a lattice is a lattice isomorphism

f between a lattice L and its dual, Le. a bijection Idth f(x v y) =

f(x) "f(y) and f(x" y) = f(x) v fey) for all x,y € L. An antiautomorphism

f is of period two in case f(f(x)) = x for all x € L, and is a complement­

ation if x v f (x) = 1 and x" f (x) = 0 for all x € L. An antiautomorphism

x->x' which is of period two and is a complementation is called an

orthocomplementation (abbreviated: OC). A modular ortholattice

(abbreviated: MOL) is an aigebra L = (ILI;v,A,',O,l) where (ILl ;v,",O,l)

is a bounded modular lattice and' is an OC. .In an MOL L, x,y € L are

2
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said to corrunute, written xCy, if and only if x = (x Ay) V (x Ay' ) •

{1.4) In an ~IOL L

(1) xCy implies yCx

(2) For X~ L let' eeX) - {a E L: aCx for all x EX}.

Then C(X) is a subalgebra of L.

(3) L is Boolean if and only if L '; C(L).

Observe that eeL) defined in (1.4. b) coincides with" eeL) as

defined previously because· (1.1) gives that a E C(L) if and only if

(xAa)v (.xA,a') = x for all xEL. If a,bEL with asb thim [a,b]

#
inherits an OC given by x~(avx') Ab. rn fact

(1.5) ([a,b];v,A,#,a,b) E HS(L}.

\

The above theory is deve~oped in the more general setting of

orthomodular latti~es in [11].

The simplest examples of MOL's are the Man's. Let n be a

cardinal number greater than 1, Man consists of 2n pairwise incomparable

points and the bounds. Define Mad to be the one element II.QL and 1401 to be.

the two element Boolean algebra. Let [Man] be the variety of ~IOL's

generated by ~IOn, 0 s n S w. It follows from Jonsson [10] that [~IO(n+l)]

.
covers [MOn], O,s n < w, in the lattice of varieties of MOL's. Every

MOL with more than one element has distinct bounds and hence every,

variety of MOL's which is not contained' in [MOO] contai!ls [~IOl]. That

every variety of MOL's which is not contained in [~IOl] contains [M02]

'Sallows from

(1.6) If L is a nonBoolean MOL then there exists 0 ~~L'SO

that M02 is a subalgebra of the MOL [O,y].
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,The main (explicit) result of [3] is

(1.7) (page 1, [3]) Every variety of MOL's which is not

contained in '[M02] contains [M03].

The main result of this thesis is,the stronger

Theorem: Every 'variety of ~10L' s which is different from all

the nlOn], 0" n" w, contains' [MOw]."

This theorem is a we~kening of a conjecture ~ade by G. Bruns.

,A projective plane is an irreducible complemented modular lattice

of. height 3.

- Conjecture. (page 1, [3]), Every variety of MOL's which is

different from all the [~IOn], 0" n" w, contains a projective pl?-ne

(as the lattice reduct ,of an algebra)., .

That the conjecture is stro~ger than the theorem foll~WS from

the important theorem of Baer •

(1.8) ([2]) Every projective plane which admits an,OC
....,,,. ",

(a polarity without an absoiute point) is infinite •.. ..--',-:',,_,.'
,- r .....

< I...
The algebra MOw'can be constructed as'an ultraproduct of

,,' the MOn, 0" n < w, ,and so

(1.9) Every variety of MOL's which contains infinitely

many of ,the [MOn], 0" n" w, contains [MOw].

An n frame, n" 2, (see [5]) in a bounded modular lattice

L is an (n+l)-tuple xl""'x 1 such that, n+

"

•

j=l, ... ,n+l(1 )

(2)

v x. = 1,
. . 1
1"'J

,X'. to. V x
k

= 0,
1 i"'j",k"'i

1" i,j "n+l
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A familiar example of a 3-frame is four points in general position in

a projective ~lane. If R is a ring then «l.O,O·, •••• O»R. «O,l,O, ••• ,O»R

'"'' «O.O,.~.,O.l»R' «l.l, ••• ,l»R' ,where. «al, ••••an»R is

the right su!)module of Rn generated by (al, ••• ,a ) € Rn • is an n-frame. n

in the lattice of right submodules of ·Rn • It.is called the canonical
. .

frame •.

If L is an MOL then an n-frame in L is called orthogonal in
." '.

case x. Cx., 1 s i, j S n.
J. J

For example if R=lRand the 'bc is the one

o:i.nduced by the usual iT)ner product then\.the 'canonical n-frame is

orthogonal.
(:..

The main body of this thesis, sections 4, 5 and 6, ~s·devoted

with orthogonal canonical. . .'Let LLemma.

to proving the somewhat. technical.
(')

= L(R3) be an~10L

3-frame for some ring R with prime characteristic. Then MOuJ € HSP(L)

"or L contains a nontrivial Bo~lean interval of the form [O,x].

Sections 2 and 3 are introductory. Section 7 uses results
..

from [3] • [6].
. .

a method suggested by A. Day and,-the acove lemma tQ,
-.." .."

'.

the main theOl;em •.
...... .. ,-"

prove
'0, \ . (

.. / Finally some"remarks on notation. An ~IOL L may admit several

.differen~ OC's only one of which is the operation of the algebra.

We adopt the convention that, unless otherwise stated. the OC associated

with L as an MOL is written I Also, subscripts on an interval

indicate which algebra this interval'is to be taken.in. Such":subscripts

are only used when 'necessa!y in order to avoid confusion•

...



2. Regular Rings.

In this section some of the theory of regular rings ([8],

[13] and [14]) is recalle~and a few observations are made. Much

of this and the following ~ction is taken from the first four chapters

of section II of [13J. I All rings considered have unit.

Let R be a ring and n € IN. L(Rn) will be the modular lattice

n n '
of right submodules of R , r:(R ) will be the poset of finitely

generated right submodules of Rn• The right submodule ~Rn generated'

by a set X will be written <X>R' if no confusion seemS~lik~y then

the subscript R will be dropped. The principal,right ideal generated

by a € R will be written aR. On the' rare occassion that left submodules

,

\

, and Ra are

are-, considered
\

r:
n \

(RR ), \R <X>

subscripts will alps

the lattice

be included, i.e.

of left submodules of Rn , the

poset of·1initely generated left submodules of Rn , the left submodule

of R
n

generated by .the set X and the principal left ideal generated by

a € R respectively. 2An element e € R is' idempotent in case e ""\e •

(2.1) (Corollary, page 69, [13]) Let R be a ring. Then
.I'

(1) e is an idempotent if and only if I-a is an

idempotent.

(2) eR = {a € R:· ea = a}

(3) eR and (l-e)R are complements in L(R)

(4) If eR = fR and (l-e)R = (l-f)R where e and f

are idempotents then e=f.

(2.2) (Theorem 21.1, page 69, [13]) Two right ideals I and J

are complements in L(R) if and only if there exists an idempotent e € R
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with eR ; I and (l-e)R ;,J. This property characterizes uniquely the

idempotent e.

'(2.3) (Theorem 2.2, page 70, [13]) LA.E.

(1) Every principal right ideal has a complement in

L(R).

(2) exists an idempotent e € R

1

with aR ; eR.
.. a€ R(3) For every there exists r€R with ara ; a.

(4 ) For every a€R there exists an idempotent fER

with Ra ; Rf.
•

(5) E1(ery principal left ideal has a complement in
•

L(RR) •..
A ring. is said to be regular in case it possesses one of the above

equivalent properties. Henceforth R will be a regular ring.

'For each right ideal I of R we define ~n(I) ; {y € R:

, yz ; 0,' for all z € I} and for each left ideal J of R we define rAnn (J)

; {y€R: zy; 0, for all Z€J}.

(2.4) (Corollary 1, corollary 2"page 71" [13]) The mapping
~-

I~ tAnn(I) is an anti-isomorphism (an order reversing bijection) between

the posets t(R) and t(RR). The inverse of this map is giverr by

J-> rAnn(J).

(2.5) (Theorem 2.3, page 71, [13]) The join (in L(R)) of two

pl'incipal right ideals is again' a principal right ideal.

(2.6) (Theorem 2.4, page 72, [13]) L(R) is a complemented

modular lattice, in fact a sublattice of L(R).

•
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For any ring S and A E S we define Co (A) = {s ,E S: as = sa, for all

a E A}. In particular the center of S is Co (S) •

(2.7)

(2.8)

Co (A) is

(theorem

a subring of S.
r

2.5, page 74, [13]) Co(R) is regular.

(2.9) (lemma 2.9, page 76; [13]), A principal right ideal I

of R is uniquely represented as I = eR, e an idempotent, if and only

if e E Co(R).

(2.10) The map aCo(R)~ aR is a lattice isomorphism
\

L(Co(R))-+ CCL(R)).

Proof. Clearly this map is well defined and order preserving.

Let a E Co (R) • Since Co (R) is regular, there exists e, r E Co (R) with e

idempotent so that eCo(R) = aCo(R) and ar = e. But a E eCo (R) if and

only if ea = a if and only if a E eR. It follows that eR = aR.

If a, bE Co(R) with aRo: bR then there exists idempotents e, f E Co(R)
I

so that eR ,= aR 0: bR = fRo But eR 0: fR if and only if fe = e if

and only if eCo (R) 0: fCo (R) • Hence, the map is an order embedding.

That this map is onto C(r(R)) follows immediately from (2.9). An

order embedding onto a lattice is a lattice embedding. 0

•
Maps similar to the one defined above will be used throughout the

remainder of this work. If S is a subset of R which, with,the r~stricted

operations except possibly the unit, forms a ring then the map aS~'" aR,

a~ S, is well defined 1nd'monotone. When this map is a lattice

embedding (nQt;n~cesSarilYpreserving bounds) then we write
" '

reS) ..i-..L(R) and we ,call i the canonical injection.

For an idempotent e ERIe): R(e) " {a ER: eae = al.
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(2.11) (Theorem 2.11, page 77, [13]) R(e) is a regular ring

with e as' unit.

(2.12) L(R(e))~ L(R) onto [O,eR]L(R) •

"- Proof. Clearly the map is well ·defined and monotone. If

2fR ~ eR, f an idempotent, then feR = fR since fef = f = f. Also

e(fe)e = efe = fe. t.ritis 'establishes that the map is onto [O;eR]L(R)'

. If aR ~ bR, a, b <! R(e), '.thsm there exists r <! R with br = a. But

bere = bre = ae = a, so aR(e) ~ bR(e). It follows that the map is

an order embedding onto a sublattice of L(R) and therefore a lattice

embedding.

For a ring Sand n a-l let S· be the ring of n x n matrices' over
n

S.

o

(2.13) (Theorem 2.14, page 81, [13]) Sn is regular if and only

if S is regular.

The next theorem is proved in [13] (see pages 80, 81 and appendix 3,

page 90) 'but it is not exp1OJ.city stated. It is stated and proved in

Skornyakov [14], this source is cited. Let S be a ring and n <! N,

(aI" a2 ,,···,a ,) <! M} and
J J nJ

(al, ••• ,an) is the column of a

mat:rix in I}.

(2.14) (Proposition 14, page 13, [14]) ~ and ware inverse

lattice isomorphisms. Furthermore finitely generated right submodules

and finitely generated right ideals correspond to each other.

(2.1~) (Corollary) L(Rn) ~ L(Rn); n<!N, is an isomorphism

and finitely ,gener~ted right submodules' of Rn are at most n generated.






































































