Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/5937
Title: Artificial Intelligence Techniques Applied to Fault Detection Systems
Authors: Fischer, Daniel
Advisor: Poehlman, W.F.S.
Department: Electrical and Computer Engineering
Keywords: Electrical and Computer Engineering;Electrical and Computer Engineering
Publication Date: Apr-2004
Abstract: <p>This thesis presents novel applications of Artificial Intelligence-based on algorithms to Failure Detection Systems. It shows the benefits intelligent, adaptive blocks can provide along with potential pitfalls. A new fault detection structure is introduced which has desirable properties when dealing with missing data, or data corrupted by extraneous disturbances. A classical alarm generation procedure is extended by transformation into an optimum, real-time, adaptive block. Two techniques, artificial Neural Networks, and Partial Least Squares, complement each other in one of the failure detection applications exploiting their respective non-linear and de-correlation strengths. Artificial Intelligence techniques are compared side by side with classical approaches and the results are analyzed. Three practical examples are examined: The Static Security Assessment of Electric Power Systems, the Oil Leak Detection in Underground Power Cables, and the Stator Overheating Detector. These case studies are demonstrated since each one represents a class of failure detection problems. The Static Security Assessment of Electric Power Systems in a class of problems with inputs which are somewhat correlated, and which has very little learning data. While the time required for the system to learn is not a concern, the recall time must be short, providing for real-time performance. The Oil Leak Detection in Underground Power Cables represents the class of problems where one has vast amounts of data indicative of a properly functioning system, however data from a failed system are very sparse. Unlike the Static Security Assessment problem, the oil leak detector has to consider the time dynamics of the system. Special provisions must be made to accommodate missing data which would interrupt contiguous data sets required for proper operation. This case study shows ways to exploit the slight sensor redundancy in order to detect sensor breakdown along with the detection of the main system failure. A third class of problems is showcased by the Electric Generator Stator Overheating detector. This application must deal with highly correlated inputs, along with the lack of fault data to be used for learning. Physical system non-linearities as well as time dynamics must also be addressed.</p>
URI: http://hdl.handle.net/11375/5937
Identifier: opendissertations/1278
2420
1296961
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
13.09 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue