Artificial Intelligence Techniques Applied to Fault Detection Systems

by

Daniel Fischer

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree
Doctor of Philosophy

McMaster University
April 2004



DOCTOR OF PHILOSOPHY (2003) McMASTER UNIVERSITY

(Electrical and Computer Engineering) Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

CO-SUPERVISOR:

NUMBER OF PAGES:

Artificial Intelligence Techniques Applied to Fault

Detection Systems

Daniel Fischer,
B.ASc. (EEE.) University of Toronto
M.A Sc. University of Toronto

W.E.S. Poehlman, Professor, Department of Computing

and Software

B. Szabados, Professor, Department of Electrical and

Computer Engineering

VI, 195



Abstract

This thesis presents novel applications of Artificial Intelligence-based algorithms to
Failure Detection Systems. It shows the benefits intelligent, adaptive blocks can provide
along with potential pitfalls. A new fault detection structure is introduced which has
desirable properties when dealing with missing data, or data corrupted by extraneous
disturbances. A classical alarm generation procedure is extended by transformation into

an optimum, real-time, adaptive block.

Two techniques, artificial Neural Networks, and Partial Least Squares, complement each
other in one of the failure detection applications exploiting their respective non-linear and

de-correlation strengths.

Artificial Intelligence techniques are compared side by side with classical approaches and

the results are analyzed.

Three practical examples are examined: The Static Security Assessment of Electric
Power Systems, the Oil Leak Detection in Underground Power Cables, and the Stator
Overheating Detector. These case studies are demonstrated since each one represents a

class of failure detection problems.

The Static Security Assessment of Electric Power Systems is a class of problems with
inputs which are somewhat correlated, and which has very little learning data. While the
time required for the system to learn is not a concern, the recall time must be short,

providing for real-time performance.

The Oil Leak Detection in Underground Power Cables represents the class of problems
where one has vast amounts of data indicative of a properly functioning system, however
data from a failed system are very sparse. Unlike the Static Security Assessment

problem, the oil leak detector has to consider the time dynamics of the system. Special



provisions must be made to accommodate missing data which would interrupt contiguous
data sets required for proper operation. This case study shows ways to exploit the slight
sensor redundancy in order to detect sensor breakdown along with the detection of the

main system failure.

A third class of problems is showcased by the Electric Generator Stator Overheating
detector. This application must deal with highly correlated inputs, along with the lack of
fault data to be used for learning. Physical system non-linearities as well as time

dynamics must also be addressed.
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CHAPTER1

1. Introduction to the Fault Detection Systems Problem

A Fault Detection System (FDS) is an algorithm whose purpose is to produce an alarm
signal whenever the monitored device experiences the beginning of a breakdown. While
classical implementations of different building blocks used by FDS have been described
in the literature, Artificial Intelligence based approaches can make a positive
contribution. This chapter introduces generic Fault Detection Systems, followed by the
Problem Definition, Objectives, and Methodology of this work. The introduction of
three real-world FDS classes follows. A list of contributions made in this research

followed by the organization of the thesis, completes the current chapter.

1.1 A Generic Fault Detection System

Modem systems are often faced with unexpected changes such as component faults
resulting in a degradation of overall performance [1]. In order to maintain a high level of
reliability, fault tolerant systems must be able to detect such changes as soon as possible.
A monitoring system, which has the capability of detecting faults, is called a Fault
Detection System (FDS). A FDS can be implemented by using either hardware
redundancy or analytical redundancy. Hardware redundancy implies the use of several
identical or similar sensors whose outputs are compared for consistency [2], [3]. While a
valid and often used approach, hardware redundancy results in an enlargement of

equipment, needing additional volume, weight, complexity, and cost.

Analytical (or functional) redundancy is based on inherent relationships among measured
quantities present in the system [4]. Analytical redundancy is also known as Quantitative
Model-Based Fault Detection.



A literature search of the analytical redundancy approaches, shows that the published

methods fall into one of the two groups:

1. parameter estimation methods

2. state (or output) estimation methods

There is a relatively small, published, body of work that uses the parameter estimation
technique. This approach detects a fault by tracking the abnormal variation of model
parameters. This implies the need for on-line identification and estimation, a
computationally intensive proposition. Secondly, the estimated coefficients belong to a
mathematical model of the process, and not to the physical process itself. The fact that
there are several mathematical models which could equally well correspond to a physical
system, implies that the variation of identified coefficients does not necessarily mean a

fault, but could just be a computational byproduct.

The state estimation approach is the analytical redundancy method of choice. Like the
parameter estimation methods, it also requires some sort of mathematical model of the
system under consideration. However, unlike the parameter estimation technique which
needs an on-going re-estimation of model coefficients, the state estimation makes use of a
model computed only once (or seldom enough for the physical system to be considered

stationary).

Figure 1-1 shows a block diagram of the state estimation technique. The Nominal Model
block shows a parametric mathematical model that computes the state variables a
properly functioning system would produce with no fault present. The Estimated
Operating Model computes the actual state variables taking into account the physical
system output vectors. If the state values monitored by the FDS are the physical system
outputs, then the Estimated Operating Model is reduced to simple connections (one line
for each monitored output). The Residual Generator computes the distance between the
estimated nominal and actual state vectors. The value of the distance is fed into a

Decision Block responsible for issuing the alarm marking a detected fault.
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Figure 1-1 Fault Detection System block diagram.

A FDS design must consider a number of implementation choices. The mathematical
models used can be linear [1], [2], [3], [4], [5], [6] (model linearized around an operating
point), or non-linear [7], [8], [9], [10], [11], [12], [13]. The mathematical models can be
constructed using observers (filters) in a deterministic setting, or in a stochastic setting
(Kalman filters) [14], [15], [16]. The model choice will strongly impact the type of pre-
processing needed to condition the input and output data. Such operations as: mean
removal, re-scaling, differentiation, dimensionality reduction, feature extraction, are often
called for. The goal of the mathematical model is to allow the computation of a residual,
which is ideally zero if no system fault is present, and non-zero, otherwise. A zero

residual is unlikely in practical implementations, model uncertainty being one of the



important issues affecting the performance of an analytical redundancy scheme [11],
[12]. Model uncertainty refers to the degree to which a mathematical model can estimate
the state of a physical system. As Petrick and Wigdorowitz [17] have pointed out, “The
engineer who is under the impression that modeling will give rise to the “true” system is
bound to be bitterly disappointed, especially if the system exhibits a variety of nonlinear
dynamic behaviour in the operating region of interest, useful for the application in mind”.

There are no correct models. Some are useful.

~ The Decision Block must use the residual value and decide if an alarm output should be
asserted. A decision process may be as simple as a threshold test applied on the
instantaneous value of the residual, or may be implemented based on the statistics of the
residual. The main characteristic of the Decision Block is its accuracy. When
implementing the decision algorithm, a balance is struck between a tendency to false
alarm and one to fail to alarm. The choice of decision threshold, coupled with, in certain
instances, an ability to adjust the threshold depending on the residual values, may result
in superior fault detection capabilities.  Regardless of whether or not the residual
statistics are explicitly used in the construction of the Decision Block, the alarm
algorithm together with the residual are characterized by a false alarm and fail to alarm
probability. If the costs of a fail to alarm and a false alarm are known (or estimated), a
classifier, which minimizes the cost of making a wrong decision, can be constructed.

Details of the classifier design will be available in the presented test cases.

Another characteristic of the Decision Block is its decision time. Typically, by low pass
filtering the residual value, the Decision Block can improve on its false trip performance.

Of course, low pass filtering delays the initiation of an alarm.

In our work, we will consider three real-life case examples of Failure Detection Systems:
1. The Electric Power Systems Static Security Assessor
2. The Underground Power Cable Oil Leak Detector
3. The Flow Restrictions in Water-Cooled Generator Windings Detector



Besides being practical applications of an Artificial Intelligence based FDS methodology,

these examples represent distinct classes of problems.

The Static Security Assessment problem must deal with a large number of inputs which
can be grouped into sets that have some inter-set correlation level. The amount of input /
output learning data is extremely small, resulting in a high danger of model overfitting.
This fact must be mitigated by the adopted implementation. Finally, the input / output

relationship is nonlinear.

The Oil Leak Detection problem has a small number of input signals. Unlike the Static
Security Assessment problem, the Oil Leak Detector must deal with system time
dynamics. There are significant time lags between changes in the input signals and
changes in the outputs. Large, non-linear, physical system perturbations corrupt the data.

Also, data loss is a major challenge in this class of problems.

The Stator Bars Blockage problem deals with a large number of highly correlated inputs.
While this correlation is beneficial, resulting in resilience to hardware breakdowns, it has
to be properly handled in order to avoid near-singularities during numerical processing.
Published approaches use a non-linear input / output model. By exploiting the mentioned
data correlations, we show how this class of problem can be linearized, resulting in faster

learning while maintaining a very high accuracy.

1.2 Problem Definition

Several papers have proposed solutions to the fault detection problem. All approaches
involve system modeling, the calculation of a residual, and a decision (alarm) block.
There are many approaches to the system modeling state: “classical” models such as

Least Mean Squared (LMS), Kalman filtering, Partial Least Squares (PLS) as well as



Artificial Intelligence based systems such as Neural Networks, Fuzzy Logic, and Expert

Systems.

Based on the literature research that has been performed, no published work compares
these techniques in the context of fault detection system applications and, in the process,
outlines their respective strengths and weaknesses. Issues such as: linear vs. non-linear
modeling, the effect of correlated inputs, the effect of small learning data sets, the effect
of the total lack of learning data representative of a failed system, the effect of missing
data samples in the learning and testing sets, have not been addressed as applied to fault

detection systems.

1.3 Objectives

The objective of this work is to extract the positive features of the classical model and
alarm generation techniques and integrate them within an Artificial Intelligence unified
framework. The developed methodology will then be applied to three real-life test cases

that represent three classes of fault detection problems:

1. The Static Security Assessment to Electric Power Systems
2. Oil Leak Detection in Underground Power Cables

3. Power Generator Stator Bars Coolant Blockage Detector

1.4 Methodology

Various technologies proposed in the literature will be analyzed and their performance
assessed, having in mind our classes of fault detection problems. System Identification
and Time Series Analysis will provide the methodology for realizing linear process
models simultaneously with accounting for disturbances via a disturbance model. In

order to account for non-linearities, or to perform unsupervised learning for clustering,



Neural Networks will be used. Fuzzy Logic will be used to combine the outputs of
several fault detection methodologies into one final decision alarm signal. Partial Least
Squares will be applied for both modeling as -well as providing assistance to Neural

Networks in a new unsupervised data clustering algorithm.

In order to produce an alarm output signal, a classifier is needed. A Bayes classifier will
be used in several of the test cases. The classifier will be extended into a new, real-time

module, with on-line learning capability.

1.5 Case Studies

1.5.1 The Static Security Assessment of Electric Power Systems

Voltage stability is concerned with the ability of a power system to maintain acceptable
voltages at all buses in the system under normal conditions and after being subjected to a
disturbance [18]. A system experiences voltage instability, when an increase in load
demand, or a change in system conditions, coupled with a certain system operating point,
result in a progressive and uncontrollable decline in voltage. The main reason causing
this voltage collapse is the inability of the system to meet the demand for reactive power
[18], [19].

The weak link in the power system security assessment task is the calculation of the
operating limits (e.g. transmission line flows, bus voltages, transmission line thermal levels).
Due to the numerically intensive nature of the used algorithms, these limits are computed
off-line. Two of the input requirements for these calculations, are future customer demand
and equipment availability. Future customer demand is not available at the time of
computation and must be forecasted introducing uncertainty. This uncertainty is mitigated

by increasing the security limits.



To mitigate the high computational burden caused by these studies, the limits are derived
based on off-line simulations for only a limited number of operating conditions. Experts for
each area must pick the critical contingencies and configurations, based on past experience.
The initial base case (power flow for Winter peak, Summer peak or Spring low load
conditions) for each area is selected based on the type of problem under consideration. For
example, Summer peak load conditions are normally used for studies of thermal limits. The
total system or area load level is based on forecasts, which are updated annually to reflect
changing customer plans. The generation dispatch is selected based on historical operation
and planned outage data. Significant differences between any of these assumptions and the
prevailing conditions will affect the accuracy of the limits. An extra margin is built into the
limits to allow for these sources of inaccuracy. The critical parameter is reduced from the
point of simulated instability to arrive at the limit. This approach is considered crude and
may present an opportunity for improved economic operation through reduction of the error
margin. The off-line limits are reviewed at regular intervals (annually) or whenever major

facility changes are planned.

During the power system operation, data are transmitted from all critical facilities (230 KV
and 500 KV) to the Control Centre every 2 seconds (Ontario Hydro practice). These data
are collected and processed by the Data Acquisition and Computing System (DACS).
Every 6 seconds, a snapshot of the prevailing system state is created and compared with the
limits that have been computed off-line. Major differences between the studied cases and
the existing conditions, must be handled by assigning penalty factors to the limits, or

performing simulations for the new configuration.

To summarize, the real-time portion of the present power system security assessment
process involves the following steps:
e acquire a snapshot of measurable quantities pertinent to the power system
e perform state estimation to determine unknown quantities and detect/adjust
inconsistent data
e compare operating levels with off-line calculated limits based on forecasted

customer demand and equipment availability



e provide operator with feedback on the present state of the power system (e.g.
limit violations, operating percentage of limit) and, in some cases, recommend

actions

This process must be performed at regular intervals or whenever the operating state of the
power system has changed. The objective of the power system security assessment is to
prevent:
e voltage decline (post-contingency steady-state voltage below an acceptable
level)
e voltage instability (dynamic collapse of voltage at one or more points as a result
of insufficient dynamic voltage support)
e plant instability (loss of synchronism of generators following contingencies)
e area instability (unacceptable levels of power oscillations associated with groups
of generators)
e thermal (thermal overload of overhead conductors or transformers following loss
of elements)

e short circuits (excessive fault current levels)

The current approach to power system operation has served utilities well for many years.
This was due, in part, to the close coordination between the planning and operating
functions. The system was operated close to its designed point. With the ongoing
movement toward open access to transmission facilities, utilities recognize that conservative
past practices may not be adequate resulting in potential revenue loss and unused
transmission capability. Beyond the economic penalties associated with conservative
operation, there is a growing concern that the integrated North American power grid may be
susceptible to higher risks than initially anticipated. This increases the probability of a
multiple-contingency event. In fact, the North American blackout of August 14, 2003, was
caused by a number of transmission lines and power plant outages, which, in turn, caused
two large power surges as power from southern Ohio tried to reach loads in northern Ohio

[20]. Approximately SO million users were left without power.



The use of forecasted equipment availability, of a selected number of operating base cases
based on forecasted demand and generation dispatch, as well as the inevitable mismatch
between the off-line studies and the current conditions, underline the need for an on-line
security tool that would permit operators to assess system vulnerability based on real-time

system conditions.

An on-line voltage stability assessment application can be thought of as a Fault Detection
problem. The residual is a vector whose components are computed by taking the difference
between the computed post-contingency bus voltages and the bus voltage nominal value.
The Alarm Decision Block will typically select the vector component having the largest
value, and decide if a voltage violation has taken place. The current off-line
implementations use traditional analytical techniques such as dynamic simulations and load-
flow algorithms, which are based on models of the individual power system components
(transmission lines, generators, loads, reactive compensating devices, etc.). Because of

being numerically intensive, these methods are best applied to power system planning tasks.

An on-line static security assessment application, implemented in the Failure Detection
Systems framework, can benefit from using the so-called black-box models, as the Nominal
Model Block in Figure 1-1. Black-boxes are data-driven models which do not model a
physical component, but rather represent an input/output relationship established by the
system which is monitored. The advantage of these models is their high computational
speed. In this thesis, Neural Networks and Partial Least Squares models will be used for the
static security assessment problem. Also, special care will be used to data conditioning, thus

allowing a Neural Network algorithm to reliably learn on a very limited data set.

1.5.2 The Underground Power Cable Oil Leak Detection Problem

Electric power utilities around the world have a number of underground power cables

that are immersed in oil. Such a system consists of pipes connected to an oil tank via an
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oil pump and return valves. Oil pressure sensors control the pump(s) which turn on
whenever the pressure decreases below a threshold. Once the pressure value reaches a
set point, the pump turns off. If the pressure exceeds an upper limit due to the oil thermal
expansion, return valves allow the oil to spill back in the tank(s). In general, such a
system is reliable, oil leaks being rather infrequent. However, should an oil leak occur,

this fact should be detected as soon as possible.

This case study is the description of an oil leak detection system which makes use of
advanced signal processing techniques in general and Artificial Intelligence technologies
in particular. Its purpose to (a) describe the design of an oil leak detection system that is
very cost effective, using a minimum of data sensors, and (b) describe the steps involved
in using state-of-the art Artificial Intelligence technologies in the process of solving such

a practical field problem.

Because of environmental concerns, oil leaks must be detected as soon as possible.
Traditionally, human operators have been assigned the task of deciding whether or not an
oil leak is present. A human would examine the oil pressure record and build a mental
time series model that would explain the usually periodic behaviour of the pressure.
Specifically, the person would look for pump operations and decide if a pump operation
is historically justified, or if it is a sign of a leak. If too many pump operations seem to
be taking place, the operator checks the oil temperature record and looks for temperature
drops. If such a drop takes place, the extra pump operations may be justified and an
alarm may or may not be called. However, should an oil temperature increase take place
during an oil leak, the pressure drop may be masked by the pressure increase caused by

the oil expansion.

The use of a human operator to detect oil leaks has several disadvantages:
e it is arelatively expensive solution
e it requires a long training time, and the operator becomes an essential element in
the detection system

e the task is boring and stressful for humans
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e the detection is unreliable
e the experience acquired by one operator is lost once he or she stops performing

the function

1.5.3 The Detection of Flow Restrictions in Water-Cooled Generator
Windings Problem

General economical and environmental aspects are the main reasons for increased use of
monitoring, analysis, and diagnostics systems in power plants [21]. Such FDS are
employed to prevent or reduce down time, to enhance operating reliability and plant
availability, and to extend the service life of equipment. The main goal of a FDS is to
achieve early recognition of progressive miss-operation, so that corrective action can be

taken thus preventing permanent damage.

The stator windings of modern high-capability generators are water-cooled [22]. All, or
only a few strands of a stator bar are hollow and passed by pure water. In a generator
stator for a nuclear plant, water pressurization is provided by air, nitrogen or hydrogen
[23]. General knowledge of copper behaviour in pure water is very limited and does not
provide an understanding of the mechanisms involved in the partial obstruction of hollow
conductors [23]. It is imperative to monitor the temperature of the generator stator bars
and to alert the operator of any abnormal higher values present for an unreasonably long

period of time perhaps signaling the onset of blockage.

A number of such systems have been described in the published literature [22], [24].
Both systems rely on determining the stator bar temperatures based on physical factors
such as: stator electric current, coolant temperature, and machine parameters. While such
physical models can perform well, if they are sufficiently detailed, they have two major

downsides:
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e The model will be only as good as the designer’s knowledge about the
physical phenomena that take place in the machine.
e The model will be highly customized to a particular machine. A system for a

different generator will have to be hand crafted again.

We propose a different approach that will overcome the above problems by exploiting the
high correlation between the temperature values amongst the different stator bars. We
will prove that this method has several advantages:
e Itis resilient to sensor breakdowns
e A strongly nonlinear model is replaced by an almost linear one, decreasing
learning time

e This approach is self-adapting being applicable to other generator installations

1.6 Contributions

1. A clustering technique using the Partial Least Squares (PLS) approach is used to
group contingencies in an Electric Power Systems. This is the first known usage
of PLS in an electrical application. Previous applications of PLS have been in
Chemical Engineering for process control. The clustering technique is applicable
to any modeling problem where rather than using one input-output model for the
whole input set, a number of models are constructed for parts of the input set. It
will be shown that the novelty of the approach lies in the fact that the clustering
process is based on a set of models which are themselves build on a certain
clustering level. The process is iterative mimicking the approach a human expert
would use in solving this clustering task. The technique was presen‘ted in the
paper “Automatic Contingency Grouping Using Partial Least Squares and Feed
Forward Neural Network Technologies Applied to The Static Security
Assessment Problem” at The Large Engineering Systems Conference on Power
Engineering, (D. Fischer, B. Szabados, and W.F.S. PoehIman , pp. 84-89, May
7-9, 2003)
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. A Neural Network based model capable of estimating the future state of a power
system following a contingency is developed. While such a network has
previously been reported in the literature, data preprocessing (Principal
Component Analysis - PCA, and PLS) results in a greatly reduced required
learning data set and a shorter learning time, also improving generalization.
. A number of new architectures for an Oil Leak Detection System in Underground
Electric Power Cables are proposed. The proposed architectures have several
advantages over other possible approaches such as physical modeling. The
proposed architectures exhibit adaptive behaviour and sensor analytic
redundancy.
. For the first time, an Artificial Intelligence (AI) based system is developed for the
oil leak detection application. The results from tests using real field data and the
lessons learned from this implementation are presented. Al is used to perform
feature extraction, modeling, as well as soft voting.
. Custom data preprocessing leads to the possibility of a linear model to handle a
strongly non-linear task. This leads to a vastly shortened learning time.
. While a classical Neural Network supervised learning method is used to build a
model in the Oil Leak Detector test case, no learning data set (a teacher) is
available. A new approach shows how such a teacher can be constructed while
learning takes place. The method is iterative and builds the model while
constantly adjusting the training data set. It is similar to a student learning from a
teacher, who then uses the student to fill in knowledge gaps, advancing the
teacher’s knowledge. This method provides, as a benefit, an elegant, generic,
process for handling missing or corrupted data.
. A new approach to the Electric Power Generator Stator Blockage Detection
problem illustrates a way to exploit high input data correlations in order to
achieve:

e high resilience to hardware breakdowns

e an almost linear input / output relationship resulting in fast learning
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The method is described in the paper “Combining Partial Least Squares and Feed
Forward Neural Network Technologies in a Fault Detection System with Large
Number of Correlated Sensors” and- was presented at The 19th IEEE
Instrumentation and Measurement Technology Conference (D. Fischer, B.
Szabados, and W.F.S. PoehIman, vol.1, pp. 829-834, 21-23 May 2002)

. All Fault Detection Systems presented in this thesis use a Bayes classifier
responsible for deciding whether or not an alarm should be initiated. A new, on-
line, adaptive, extension to the classical Bayes classifier is presented. The method
was published in the paper “Using a Bayes Classifier to Optimize Alarm
Generation to Electric Power Generator Stator Overheating”, presented at the 2002
IEEE International Symposium on Virtual and Intelligent Measurement Systems,
and subsequently published in the IEEE Transactions on Instrumentation and
Measurement (D. Fischer, B. Szabados, and W.F.S. PoehIman, vol. 52, no. 3, pp.
703-709, June 2003)

. All Fault Detection Systems presented in this thesis have to deal with the lack of
data showing a system fault. They must learn using data produced by correctly
operating systems but recognize when inconsistent data, produced by a fault, is
presented. Two new Fuzzy Logic based implementations show how statistics of

failed systems data can be generated using expert knowledge.

1.7 Organization of the Thesis

As described in Chapter 1.1, a generic Fault Detection System makes use of two major

techniques: a modeling algorithm (Nominal Model block, Estimated Operating Model

block) and a classification algorithm (Decision Block). Chapter 2 will discuss different

modeling algorithms implemented as a black-box. These algorithms build data-based

models having either linear or non-linear properties. Issues such as the effect of noise on

model parameters, learning and recall abilities, are discussed. The Artificial Intelligence

based approaches (Neural Networks, Fuzzy Logic) are compared in performance with the

classical techniques.
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Chapter 3 describes a variety of classifier designs. The performance of a design is a
result of the classifier complexity. The optimum design is the Bayes classifier. This
algorithm can minimize the probability of a classification error, or the cost of a
classification error. We present a new, on-line, real-time extension of this technique,
which adapts to the data it uses. We will also present a novel way for a fuzzy logic

algorithm to produce statistical features needed by the Bayes classifier.

Chapter 4 contains three case studies: the static security assessment problem, the oil leak
detector in underground electric power cables, and the detector of flow restrictions in
water-cooled generator windings. These case studies are classes of Fault Detection
Systems. Each implementation will be based on the general FDS framework introduced
in Chapter 1, and will use a mixture of Artificial Intelligence as well as classical
techniques. Finally, Chapter 5 will list the advantages and disadvantages of the different

methods used and will present the conclusions along with topics for further research.
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CHAPTER II

2 Parametric Models

The previous chapter has introduced the problem domain as well as briefly analyzed the
input and output data. One crucial building block in a fault detection system is the black
box model. Such a computational entity establishes an input/output relationship between
presented input and output data. Once the relation is determined during learning, the

block is used on new input data to predict the value of the output.

Several types of empirical models will be briefly introduced. The linear transfer function
model coupled with a noise stochastic model will first be presented. A solid design
methodology has been developed over time and is presented in numerous time series
analysis and system identification treatments [25], [26], [27], [28]. If a linear model is
not adequate for the problem at hand, a neural network may prove beneficial. Two
supervised topologies are shown, highlighting the advantages and disadvantages they
present over the established linear approach. Fuzzy logic provides another modeling
approach. A discussion of Kalman filtering will show another modeling approach which
is beneficial when the state transition matrix of the system and noise statistics are known.
If a large number of redundant information is available, the Partial Least Squares
technique may come to the rescue. Advantages and disadvantages of each technique will

be highlighted.

2.1 Stochastic Linear Model

Models describe relationships between measured signals. Figure 2-1 shows an output

signal y which is partially determined by the input signal ». In order to account for the
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mismatch between the output of the model and the actual measured signal y, a

disturbance signal, ¢ is also included.

Figure 2-1 Input signal u, output signal y, and disturbance e.

The disturbance represents noise which may be present in the measured output y, input «,
or unmeasured inputs present at any part of the physical system. We consider the discrete
signal case where u, y, and e, are sequences of number rather than continuous functions

of time.

The general linear models can be described symbolically by equation (2-1):

y=Gu+ He 2-1)

where G is the process transfer function, H is the disturbance transfer function, and e is

white noise.

The relationship between y and u can be expressed as a linear difference equation:
y(t)+ay(t-1)+..+a,y(t—n)=bu(t-1)+b,y(t-2)+..+b,y(t—-m) (2-2)
or

go:aiy(t—i)=2biu(t—i) 23)

i=1
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If we attach polynomials having coefficients a; and b; to the sequences a; and b;, then

(2-3) becomes:
A(q)y(@®)=B(q)u) (2-4)

Variable g is called the time shift, or delay, operator. The power of g indicates the
number of delays the operator performs. The transfer function G is now expressed as a

ratio of two polynomials.

A commonly used parametric model is the ARX (auto regressive with exogenous inputs):

B
T OB S

Alg) " Aq) @)

Therefore, the process and disturbance transfer functions in equation (2-1) are:

6= 22

1 (2-6)
H(q)=——

In general, systems can be modeled as:

A(q)y@®) = %qku@)’r%e(t) @7
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The model (2-7) is called the Box-Jenkins (BJ) model structure, and allows for maximum
flexibility. The term q" in the process term, allows for k delay intervals between the

output y and input u.

If the noise transfer function is equal to one, and the polynomial A(g) is of order zero,

then:
B
y(t)=%qku(t)+e(t) 2-7)

Equation (2-7) is the so-called Output Error (OE) model. The input u(f) drives the

process transfer function whose output is finally affected by white noise.

In order to derive a model that accurately describes a phenomenon, a number of steps

must be performed [25], [26], [27]:

1. A process and disturbance structure must be estimated. The powers of the
polynomial A, B, C, D, and F are to be estimated.

2. Given the power, the polynomial coefficients can be estimated

3. Tests are performed [27] to determine if the process and noise structures are
appropriate.

4. Usually the model is tested on a validation data set.

The strength of the procedure is derived from the systematic approach from which the
parameters are derived [29], [30], [31]. Its weakness could arise from the fact that it uses
only linear models. If non-linearities are to be accounted for, one approach is the use of

Neural Networks.
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2.2 Neural Network Model

Referred to also as connectionist architectures, pérallel distributed processing systems, an
artificial neural network (ANN) is an information processing approach suggested by the
way the densely interconnected, parallel structure of the mammal brain processes
information. ANNs are a mathematical model that emulates some of the observed
properties of the biological nervous systems, one of the most important being the ability
to learn from examples. Biological systems learn by adjusting their synaptic connections
between neurons. ANNs also learn by adjusting parameters, called weights, that are

associated with links between the artificial neurons.

There are many types of ANNs [31], [32], [33], [34], [35], [36], [37]. One major way of
classifying them is based on their learning methodology. The networks that learn when
presented with a solution by a teacher, use supervised learning. The ones that learn

without a teacher, use unsupervised learning.

Two of the very useful Neural Networks structures successfully applied to modeling tasks
are the feed forward network taught with the back propagation (BP) algorithm and the
radial bases functions (RBF) network. The next sections will briefly present them. One
philosophical comment should be made regarding the BP and the RBF networks. Both
networks are very useful in solving practical problems. However, it is generally
acknowledged that the brain does not have a teacher for learning, and if there is a teacher
for some learned tasks, the feedback is usually rather vague and is provided after a long
sequence of actions have been controlled by the brain. Learning how to ride a bicycle is
one such a case, where there is virtually no teacher, the instructions are sparse, and the
feedback is usually provided by a fall followed by pain with no instruction for the reason
for failure. The BP and RBF have a fundamentally different learning approach where
each network output is characterized by an exact error measure. The BP and RBF are

useful, but have little biological support.
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2.2.1 Feed Forward Networks with Back Propagation Learning

Figure 2-2 shows the structure of a feed forward back propagation network. An [
dimensional vector whose components are real numbers is presented at the input of the
network. The input layer performs no computation and is strictly to latch the input and

pass it on to the next layer, the hidden layer. Computations are performed by the hidden

and output layer nodes.

output
layer

O nodes

hidden

layer
input 5
layer

Figure 2-2 Feed forward back propagation structure.

H nodes
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Figure 2-3 Back propagation neuron.
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Figure 2-3 depicts the structure of a single node. The input values ay, aj, ay, ... an.1, are
the n inputs the node must process. Each value is multiplied by a weight, w;; and then
passed on to a summing element. The sum of the weighted inputs is applied to a transfer

™ input of fixed value, 1, is also

function that produces the output of the node. An (n+1)
weighted by a weight, w,. This input is called the bias and allows the weighted input sum

to be shifted before being passed through the transfer function.

The transfer function must be monotonically increasing. A common choice is the
hyperbolic function shown in Figure 2-4. As it can be seen, while the absolute value of
the weighted input sum is small, smaller than 0.5, the node behaves almost linearly. For

non-linear behaviour, the node can appropriately increase the value of its weights.

15 T T T T T T — T

Figure 2-4 Hyperbolic tangent activation function.

During learning, the network is presented with a number of input and output vectors.

Initially, the network’s weights are randomly initialized with values that are typically
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small. The result is that the network produces an output to an input pattern which is
different from the desired target. The difference between the output and the target
becomes the network’s error. The learning process consists of applying an algorithm
which decides the way the weights must be adjusted in order to reduce the total output
error. The output error is propagated backwards, from the output nodes towards the
inputs, hence the name, back propagation given to the learning procedure. One name for
the error propagation, is the credit assignment problem: it is the assignment of “blame” to
the different weights responsible for producing an output which contains an error. The
details of the back propagation algorithm are described in many published works [33] and

will not be repeated here. A few comments will be made:

1. The algorithm is iterative, therefore has the potential to be time consuming.
There are many methods applied to speed it up.

2. The sensitivity of the error with respect to a weight depends on the derivative
of the node output to its input. Therefore, if a node output is saturated by a
large sum of its weighted inputs, the derivative of the output will be very
small. The implication is that the weights that are feeding such a node will
change very slowly. It is said that a saturated node learns very slowly. This is
the reason for initializing a network’s nodes with small values in order to
allow them to learn.

3. In order to avoid saturating the hidden nodes, the input data set must be scaled
appropriately. It is better to have input values that are too small than inputs
that are too large. The network will learn quickly if it has to increase its input
weights to compensate for small inputs. It may take longer for the network to

be able to reduce the values of the input weights, once it is saturated.
Once the learning step is completed, and the network’s weights are determined, the

network can be used for recall. A new input vector will cause a feed forward

computation to take place and an output to be computed.
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2.2.2 Radial Basis Function Networks

Radial Basis Function (RBF) networks represent another major class of neural network
models. The activation of an RBF hidden unit is determined by the distance between the
input vector and a prototype vector associated to the hidden unit [33], [34], [35], [36],
[371, [38].

Figure 2-5 shows the structure of the network. An input vector of dimension # is applied
to the hidden layer composed of r nodes. Each node has a n dimensional prototype
associated with it. It computes the Euclidian distance between its prototype and the input
vector. The value of the distance is passed through a transfer function which has a

maximum of one when the distance is zero and decays with the increase of the distance.

output

linear combiner

non-linear
transformation
r nodes

Figure 2-5 RBF network.

An example of such a transfer function is:

¢, (x)=e 7 1<j<r (2-8)
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where x is the n dimensional input vector, and ¢; is the prototype vector of dimension n
associated with the node j while s just a parameter that sets the decay rate of @ with the

distance of the input into the node to its prototype.

The prototype nodes are chosen based on the input training data. Chen [38] shows how
to chose these prototypes in an optimum sense. The linear combiner computes the

weights w in such a way as to be able to approximate the data set.

The RBF network acts as an interpolator. The advantage it has over the BP is in the

higher learning speed.

2.3 Fuzzy Logic Model

This chapter will briefly introduce the need for Fuzzy Logic followed by the description
of the steps used to convert a set of inputs applied to a Fuzzy Logic block, into a number
of outputs. Two implementation approaches are outlined: the Rule Based Model, and the
Table Based Model.

2.3.1 Introduction to the Fuzzy Logic Paradigm

The term “fuzzy logic” has evolved from the work on the theory of fuzzy sets done by
Lotfi Zadeh [39]. As Zadeh explained [40], his papers were motivated by the conviction
that traditional methods of systems analysis were unsuited for dealing with systems in
which relations between variables do not lend themselves to representations in terms of
differential or difference equations, systems present in biology, sociology, and
economics. Zadeh was concerned with the effect system complexity has on one’s ability

to explain system behaviour:
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“As the complexity of a system increases, our ability to make precise and yet
significant statements about its behaviour diminishes until a threshold is reached
beyond which precision and significance (or relevance) become almost mutually
exclusive characteristics.” (Lofti Zadeh, Outline of a New Approach to the

Analysis of Complex Systems and Decision Processes [40])

In order to deal with these issues, Fuzzy Logic is built as an extension to Boolean logic.
Variables, which in classical logic have values attached to, are now assigned labels, or
fuzzy sets. Fuzzy sets are functions that map a value to a number between zero and one,
indicating its actual degree of membership. A variable can be, and is, attached to several
fuzzy sets. For instance, a temperature can be simultaneously high, medium, and low,
with different degrees of membership. In the case of Boolean logic, a temperature would
be considered high if its value is above a certain threshold, medium if its value is inside a
range, and low if its value is lower than another threshold. Boolean logic requires for one
and only one label to be associated with the temperature variable, and based on the label,

an algorithm would perform its computations.

Fuzzy logic postpones the choices that must be made, as much as possible. An algorithm
will perform its logic as if the temperature is high, and medium, and low, and then

reconcile possibly conflicting conclusions, at the very last point of the inference.

The mapping from a specific variable value (crisp value) into a fuzzy set is called
fuzzification. The computational algorithm typically consists of a number of “if”
statements. The left hand side of the “then” in the statement, is called the antecedent.
The right hand side of the “then” is called the consequent. Antecedents use fuzzy sets
and the “AND” or “OR” conjunctions. There are a large number of ways “AND” and
“OR” can be implemented in order to compute the value of the antecedent. Examples for
the implementation of “AND” are the “minimum” operator and the “product” operator.

“OR” is many times implemented using the “maximum” operator.
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Once the antecedent value is determined, the implication will determine the value of the
consequent. The implication method results in the shaping of the consequent, which is
itself a fuzzy set. The implication can be supported using the “minimum” operator or
“product” operator. The minimum operator would use the value obtained for the
antecedent, and compute the minimum between this value and the fuzzy set of the
consequent. Once the consequent is computed based on the implication, a weight, whose
value is between 0 and 1, also multiplies the consequent. This models the fact that some
rules may be considered more important than others in determining the output of the

fuzzy logic process.

The implication is performed for each rule, or “if” statement. In order to combine
different fuzzy sets that refer to the same output (eg. the value of the pressure is “high”,
the value is “medium”, and the value is “low”), rules must be aggregated. This can be
done in many ways. One such way, is by overlaying the output fuzzy sets on each other
after they have been affected by implications, and computing the maximum value of the
union. This approach is called the “min-max” inference (“min” used for implication,

“max” is used for aggregation)

Finally, defuzzification converts the output, which is a function, into a real number. One
way to achieve this, is by computing the center of gravity of the area below the function

which represents the output fuzzy set.

The inference mechanism described above is called the Mamdani inference, a method
which is intuitive, accepted, and well-suited to human input [41], [42], [43], [44], [45],
[46].

An alternative approach to implementing a fuzzy output for each rule is the Takagi-
Sugeno model. This model defines the consequent of each rule as a linear combination of
the crisp inputs of the antecedent of the rule modulated by the membership function value

for the crisp input:
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Rule; IfxisA;theny=g  x+b, i=12,.. K

X ...crisp (real) variables, input vector of antecedent for rule “i”

Vi ...crisp (real) variable

a;, b, ...crisp (real) parameters (2-9)
A; ...linguistic terms (fuzzy sets)

K ...number of rules

The Takagi-Sugeno inference is computed as:

) gﬂm(x) yi i iﬂAi(X)(giT_.§+bi)

i=1

) iz::/“f(x) ZK: pai(x) (2-10)

i=1

y

where 14; is the implication value of the antecedent of rule i.

As can be seen from equation (2-10), the output of the Takagi-Sugeno model is a piece-
wise linear function in the input x. Therefore, this model is expected to have the

following features:

e computationally efficient

e works well with linear techniques (PID control)

e works well with optimization and adaptive techniques
e guaranteed continuity of the output surface

e well-suited to mathematical analysis

There are several potential advantages of the fuzzy logic approach, compared to a

Boolean implementation:
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1. by converting the crisp inputs into fuzzy sets, the algorithm (the “if” rules)
can concentrate on handling higher level methods rather than also having
to deal with the details of the variable values.

2. rather than having to commit to categorizing an input to a certain part of
the algorithm (for instance, once the temperature is considered “high” a
certain part of the algorithm is functional, perhaps differently from the

case if the temperature was “low”), the whole algorithm is exercised.

2.3.2 Fuzzy Logic Implementation Techniques. Rule Based and Table
Based Models

Now that the fundamentals of Fuzzy Logic models have been introduced, a few‘
implementation choices must be discussed. Many controllers are constructed using the
methodology described above. At run time, inputs are fuzzified, and rule antecedents are
computed one by one, followed by the computation of rule implication, aggregation, and
finally output defuzzification. As can be expected, the above procedure is rather
processor intensive. Its advantage is that it is memory efficient. An alternative approach
is to encode the transfer function of the Fuzzy Logic controller in a lookup table. The
inputs are digitized into intervals, and the output of the controller is computed for all
input combinations, for all intervals. A potentially large table, of the order of O(F"),
where F is the number of fuzzy sets for each input, and N is the number of inputs, is
stored in a lookup memory. At run time, the controller may choose to linearly interpolate
a number of table results, depending on the actual vector input value. The result is a
much shorter computation time, compared to the rule based approach. This is the method
of choice for demanding real-time applications. =~ Another advantage of this
implementation is that the fuzzy logic table can be computed off-line using a user-

friendly fuzzy logic tool, which is not needed, and may not be available at run-time.
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2.4 Kalman Filtering

A Kalman filter is a recursive, linear, optimal, real-time data processing algorithm used to

estimate the states of a dynamic system in a noisy environment [47].

.2 oo Dynamic
_,| Dynamic system
system model

Controls u

System

State '

x Obsegtved
4 measurements

Measurement| 2 Kalman

>
L

transducers ; filter

Optimal
—» state

. estimate
Measurement xN

...............................................

Figure 2-6 Kalman filter block diagram.

Figure 2-6 shows a dynamic system controlled by a known vector u. The mathematical
description of the model, the vector u, and the observed measurements z are the only
information used for estimation purposes. The quantity to be estimated is the system

state x.

The general form of the Kalman state estimation equation is [47]:
x(k+1)= A(k)* x(k)+B(k)* z(k +1) (2-11)
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where:

x(k+1) is the Kalman filter estimate at latest time k+1
A(k) time varying matrix gains
B(k)

Z(k+1) measurement vector

The Kalman filter is:
® Recursive: based on equation (2-11), the new state can be estimated based on
the previous state and the latest measurement
e Linear: property seen in equation (2-11)
e Optimal: matrices A(k) and B(k) are calculated at each cycle by the Kalman
filter in such a way as to minimize the variance of the state estimation error.

® Real-time: ideally suited to real-time applications

In order to be able to use the Kalman design, three assumptions must be made with
respect to the plant and measurement:

1. the system model is assumed to be linear

2. all noise sources are white

3. all noise sources are Gaussian.

Equation (2-11) contains the two time-varying matrices, A(k) and B(k) which refer to the
expected system state transition as well as the measurement process. This equation can

be broken down into the Kalman filter steps:
x(k+1)=®x(k)+Qu(k)+w(k) (2-12)
z(k)=H x(k)+v(k) (2-13)

x (k)+K(z()-Hz (k) 2-14)

x(k)

32



Equation (2-12) describes the system state evolution in time, under the effect of the
controlling input u(k). It must be known (or estimated from data, as in the previous
Linear Stochastic Model chapter). Equation (2-13) describes the measuring process. If
the measured quantities are the system state components, then matrix H is simply a
diagonal identity matrix with the dimension equal to the number of sensors. Vectors w
and v represent noise in the state transition and measurement process. They are assumed

to be independent of each other, white, and with normal probability distributions.

Equation (2.14) is the Kalman equation. f’ is the system state computed by (2-12) and
the “-“ sign refers to the fact that it is computed for the time right before a new
measurement z(k) is available. K is called the Kalman gain and is re-evaluated at each

step. Its formula is given in all texts describing the Kalman filter [48].

The Kalman equation states that the new state estimate is a mixture between an a priori
estimate (based on a model only, hence the term “a priori”) and a difference between the
latest measurement and an a priori forecast of the measurement (this difference is called
the innovation). Depending on the noise level of the state transition and measurement
processes, the Kalman gain puts more emphasis on the transition equation or on
measurement, in order to minimize the variance of the residual computed as the

difference between the estimated state and the true system state.

A number of papers [49], [50], [51] discuss the use of Kalman filters in FDS applications.
The purpose of the filter is to model the process in order to detect a discrepancy between

the measured process state and the estimated one.

It is interesting to note that this discrepancy is exactly the Kalman filter innovation. As
Tylee notes in [52], a fundamental property of the Kalman filter is that if the physical
system actually evolves according to the state and measurement equations (2-12) and
(2-13), the filter will generate a innovation vector 8'(k) that is zero-mean and white. In

other words, the Kalman filter will adjust its gain in order to statistically track the process
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state and produce a zero mean error. The result of this behaviour, is that once a fault
occurs and the state of the system changes, the Kalman filter will start absorbing this
change, to the point of producing estimates which again match the modeled system. The
Kalman filter has just masked the fault and has treated it as if the process was the cause

of the state shift, and not the fault.

If one uses the innovation to trigger an alarm block, depending on how quickly the
Kalman filter will adapt to the fault, the innovation caused by the fault will be a spike
which may not be obvious compared to the innovation values during normal filter

operation.

We found that by taking the integral of the innovation, we can “lock in” the fact that a
fault has taken place. Of course, by integrating a noisy innovation (residual), the
standard deviation of the integral increases in time, resulting in an input into the alarm
block which could increase or decrease in time, being driven strictly by noise. In order to
eliminate this problem, the residuals to be integrated should be windowed. This is
essentially what Sohlberg does in [53]. For the one-dimensional case, Sohlberg’s
approach results in a rectangular window by which the residuals are modulated. The
length of the window is governed by the fail to trip (too narrow window) or false to trip

(window too long results in too much noise being integrated) tradeoff.

In order to demonstrate the behaviour of the innovation signal in the presence of a fault,
we have simulated the case of a scale which measures a weight of 173 1b and which
develops a fault at time point 50. Figure 2-7 shows the scale measurement, the Kalman
estimate (the measurement is the state to be estimated), as well as an indictor for the
moment the fault occurs. Figure 2-8 shows the variation of the Kalman gain which
settles to a value of 0.5, taking into account that the declared state modeling and

measurement noises are equal in variance.

As it can be seen in Figure 2-7, the Kalman estimate quickly tracks the faulted

measurement, thus masking the fault.
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Figure 2-7 Measurement and Kalman estimate with a step fault.
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Figure 2-8 Kalman gain. Process noise equals measurement noise.

35



This can be also seen in Figure 2-9 where the value of the innovation during and after the

fault is hardly different than the one before the fault.

Figure 2-10 shows our proposal: rather than using the innovation as a fault indicator, we
use the innovation’s integral. This quantity could easily be triggered on by an alarm

block used by a Fault Detection System.

Figure 2-11 and Figure 2-12 show the behaviour of the innovation integral in the more

realistic case of a fault which develops gradually.
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Figure 2-9 Innovation for step fault at time 7=50.
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Figure 2-12 Innovation for ramp fault starting at 7=50.

As expected, the innovation signal cannot mark the location of the fault. However, its

integral value can, as shown in Figure 2-13.
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2.5 Partial Least Squares

Partial Least Squares regression is a technique useful for building a linear model that can
predict a set of dependent variables Y from a very large set of potentially correlated,
independent variables X [54]. Matrix X contains the independent variables, where each
column represents measurements from a specific sensor, while each row represents an
observation, a set of measurements taken at one point in time. Similarly, matrix Y,
contains dependent variables, each variable being stored in a column, with each row

representing a dependent observation.

When the number of predictors is large compared to the number of observations, X is
likely to be singular and a regression approach, which could be used to relate X to the
dependent Y, is no longer feasible. One approach to deal with this problem is the use of
Principal Component Analysis (PCA). PCA examines the matrix X, and replaces the
correlated independent variables with a smaller in number, set of uncorrelated variables.
These variables are linear combinations of the original ones and are determined based on
the covariance matrix of X. The orthogonality of the principal components (the
eigenvectors of the covariance matrix of X) eliminates the colinearity problem, however
the choice of principal components PCR performs, is sub-optimum from a modeling

point of view. PCR examines X, but not Y.

In contrast, Partial Least Squares (PLS) finds components from X which are also relevant
to Y. The PLS regression searches for a set of directions, called latent vectors, that
perform simultaneous decompositions of X and Y with the constraint that these
components explain as much as possible of the covariance between X and Y. The PLS
algorithm is available in a number of publications in chemometrics applications [55],
[56], [57], [58], [59], [60], [54], [61], and will not be repeated here. Two Fault Detection
System applications presented in the following chapters make extensive use of PCA and
PLS.
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CHAPTER III

3 Classifier Design and Alarm Generation

Figure 1-1 indicates that a FDS must be able to perform two major computations:
modeling and decision making. This chapter will briefly introduce classifiers, the
algorithms responsible for deciding if the vector output of the Residual Generator block

in Figure 1-1 indicates a healthy system, or if a failure alarm should be issued.

First, the distance-based classifiers are described, followed by the minimum intra-class
distance classification. The maximum a-posteriori probability (Bayes -classifier)
algorithm is briefly described. This decision making process has the advantage of being

optimal, in the sense of minimizing the probability of making a mistake.

Main ingredients for the Bayes classifier are the probability density functions of the
classes the classifier must categorize the input data into. In our FDS case, these classes
are: system OK class, and system FAILED class. We will introduce classical methods

for density estimation, followed by a novel, Fuzzy Logic based method.

Finally, a new extension to the classical Bayes algorithm is introduced. This method

allows real-time adaptive classification behaviour.

3.1 Minimum Euclidean Distance Based Classification

Let us consider the two dimensional space shown in Figure 3-1. A number of vectors
cluster around a vector Z1. Another set of vectors are clustered around another vector,
Z2. A new vector, x, needs to be classified. The question to be answered is: does x

belong to class 1, represented by Z1, or to class 2 represented by Z2?
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In the Failure Detection System context, class 1 could be the class of vectors representing
a system that functions correctly, while class 2 could be the representation of a failed
system. The two dimensions of the vectors in Figure 3-1, x1 and x2 could represent the
difference between two temperatures measured at different points in the system and their
values modeled by the modeling block in Figure 1-1. This vectorial difference represents
a residual vector. Each vector of coordinates (x1,x2) represents an actual residual at one
moment in time. Therefore, if the system functions properly, all measurements will
cluster around vector Z1 of coordinates (0,0). If the system fails, the new measurements
will cluster around Z2, the failure residual vector. The components of the vector x, are

called the vector’s features.
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Figure 3-1 Two-class problem, new vector X to be classified.
If a new residual vector x is computed we wish to decide if x is indicative of a failed

system. The Minimum Distance classifier groups the new vector with the class whose

prototype is closest to x. If x is closest to Z1, then x belongs to class 1.
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Let the Euclidean distance between x and Zx be defined as:

1
2

(Xi—x1d)2} (3_1)

n

ds(x,Z) = {

i=1

1

de(x,Zi) = {(5 ~2Z)" (x- Zk)}E (3-2)
The decision rule based on this metric decides that x belongs to class k if and only if:
de(x,Zk) < de(x,Z1)  foralll #k (3-3)

For a two class problem, the points whose distances are equal to both classes, form the
decision boundary. For the Minimum Euclidean Distance (MED) classifier, the decision
boundary is a hyperplane orthogonal to the line that connects the two class prototypes,
and intersects the line half way between the two classes. Figure 3-1 shows the decision
boundary. The advantage of the Minimum Euclidean Distance classifier is its simplicity.
The only information one has to have in order to be able to use it, is the location of the
class prototypes. Usually, these prototypes are computed as the statistical mean of the

available samples known to belong to the class.

3.2 Minimum Intra-Class Distance Based Classification

A fundamental problem with the Euclidean distance method, is shown in Figure 3-2.
According to the MED rule, the new vector x belongs to class 1. However, while it is not

very close to the prototype of class 2, Z2, it is close to a number of vectors known to
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belong to class 2, one of which being located at (3.5, 7.2). There are two reasons for this

phenomenon:

1. the variance of feature x1 is larger than the variance of feature x2. This is a

common occurrence in practical applications caused by different units and

gains attributed to the features presented to the classifier

2. the two features are correlated. Feature correlation will be a major topic in

one of the case studies described in Chapter 4.

Intuitively, one feels that a different classification rule from the MED, should be used.
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Figure 3-2 Two-class problem. Different feature variance and feature correlation.

An alternate approach to deriving a suitable metric for pattern classification is based on

the premise that the metric should indicate that members of the same class are as similar
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as possible. This can be achieved if the distance of the members within a class is

minimized [62].

The new distance measure is derived as:

d*(x{x})=(x-%) 5" (x-X)

where X is the class mean, and S is the class covariance matrix
(3-4)

This distance measure is called the Mahalanobis distance measure.

Therefore, given a two class classification problem, where the classes A and B have

means ma and mg, and covariance matrices S, and Sg, a vector x belongs to class A if:
T o - T o -
(g—r_t_m) Sa '(5—@1)<(x—11w) Sz l(g—rgs) (3-5)

Note that unlike the Euclidean distance which was defined for any two vectors, the new
distance is defined between a vector and a class. Therefore, for any given vector, each

class has its own intra class distance metric determined by its own covariance matrix.

It is shown by Kittler [62] that the metric derived in equation (3-4) that minimizes the
intra-class distance, also deals with the issues pointed out in Figure 3-2, namely the
correlations between features and the different class variances. Therefore, if the class
means and covariance matrices are known, or can be estimated from data, the
Mahalanobis distance defined in equation (3-4) is a better choice compared to the simple

Euclidian distance. For the case of uncorrelated features with the two classes having



different means and equal covariance matrices (diagonal), the Mahalanobis distance

reduces to the Eucledian distance.

3.3 Maximum A Posteriori Probability Classifier

We have briefly introduced the Minimum Eucledian Distance (MED) and the Minimum
Intra-Class Distance (MICD) classifiers. The MED classifier is appropriate for the
simple cases having uncorrelated feature vectors, classes having different means and

equal variances. If the above conditions are not met, the MICD is a better choice.

If more information about the probabilistic behaviour of the class is available (or can be
estimated from data), an alternate approach to classification is possible. Assuming that
the class conditional probability density functions are known, and that the probability of
occurrence of the classes are also known or can be estimated, the Bayes classifier, also
known as the Maximum A-posteriori Probability (MAP) classifier provides optimum

classification [62], [63], [49], [50].

The following section will develop the Bayes decision surface, or the optimum threshold
strategy. Such a strategy will either minimize the probability of making a mistake (false
alarm or fail to alarm), or will minimize the cost of a mistake. The minimum
requirements of a Bayes Classifier are the description of the probability density functions
(pdf) of the residual values for the no-fault and faulty classes. In practical applications,
deviation values computed from a no-fault system are readily available. There is
relatively little difficulty in estimating the pdf for the no-fault case. Estimating the pdf of
a faulted system is challenging. Normally, faulted system data are very sparse or not
available. Moreover, the failure degree may vary resulting in a family of pdfs that need

to be estimated.

Practical FDS avoid this issue by considering only the pdf of the no-fault system and

setting the alarm threshold at a value large enough that would result in a low false alarm
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probability. This approach does not consider the fail to alarm probability and is
intrinsically sub-optimal. Once we have introduced the Bayes decision strategy, we will
focus on several ways to estimate the required. probability density functions. Two new

approaches that use Fuzzy Logic controllers will be demonstrated.

3.3.1 Introduction to Bayes Classification

The Bayes classifier is based on the Bayes theorem published in 1763 [51]:

Prob(D| P.) *Prob(P)

Prob( D| P1)*Prob( P1) +...+ Prob( D| Pe) *Proby( Px) (3-6)

Prob( P:| D) =

where D, P, _, Py are events, P, Py are exclusive and exhaustive and Prob(P;|D) is the
conditional probability. In the special case of a two class problem where one class
represents an OK system while the other one is a FAILED system and D represents an

observed quantity (measured or computed), equation (3-6) becomes:

Prob(D| OK)*Prob(OK) 3-7)
(D] OK)*Prob(OK) +Prob( D| FAILED)*Prob( FAILED)

Prob(OK| D) =

The Prob(OK|D) represents the probability that the system is OK given that we are
observing the datum D. It is called the a posteriori probability. Prob(D|OK) represents
the probability that an OK system generates datum D. It is called the likelihood
probability. Prob(OK) is the probability that the system is OK before any datum D is

observed. It is called the prior or a priori probability. Similarly:

Prob(D| FAILED)* Prob( FAILED)
Prob(D| OK ) *Prob(OK) + Prob( D| FAILED)*Prob( FAILED)

Prob( FAILED| D) = (3-8)
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A Failure Detection System needs to classify the state of a device into OK or FAILED
given an observation D. If the FDS uses a Bayes classifier, it will assume that the device

is OK if:
Prob(OK | D) 2 Prob( FAILED | D) (3-9)

In other words, the classifier will select the most likely state given the observed data. In
fact, for the classifier to make its decision and select the OK state, only the numerators of

equations (3-8) and (3-9) need to be computed and compared:

Prob (D | OK)*Prob(OK ) > Prob(D | FAILED)* Prob( FAILED) (3-10)

This decision strategy has the advantage that it minimizes the probability of a mis-
classification (a fail to alarm or a false alarm) [50]. This is why a Bayes classifier is

optimum.

If rather than dealing with a discrete data event D, the observed datum is part of a
continuum, some of the probabilities in equations (3-7) and (3-8) become conditional

probability density functions:

pdf (D] OK)*Prob(OK) (3-11)
pdf (D| OK)*Prob(OK) + pdf (D| FAILED)*Prob( FAILED)

Prob(OK | D) =

pdf (D | FAILED)* Prob( FAILED) (3-12)

Prob(FAILED| D) =
rob( 2) pdf (D| OK )*Prob(OK )+ pdf (D | FAILED)* Prob( FAILED)

and the decision to consider the device OK or FAILED is made if:

oK

pdf (D| OK)*Prob(0K) 2 < pdf (D| FAILED)*Prob( FAILED) (3-13)

FAILED
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In order to evaluate inequality (3-13), the two density functions and two priors must be
estimated. Taking into account the fact that the OK and FAILED system modes are

exclusive and exhaustive, one can write:
Prob( FAILED) =1-Prob(OK) (3-14)

Therefore one has to only know an estimate for Prob(OK) and the other prior is
computed. The probability density functions of the two classes must be obtained from
data obtained while observing the device. Most of the time, the device is in an OK state,
therefore several estimation techniques can be used to estimate pdf(D|OK). Little or no
data are available to describe the FAILED state, therefore the estimation of the pdf in
this case is challenging. The following section will show how the two pdfs can be
obtained. Field data introduced in Chapter 4.3 will be used. These field data refer to
temperature measurements on the stator bars of an electric power generator. As it was
discussed in Chapter 1, for each temperature measurement, a residual is computed by
subtracting an estimate of the temperature at one particular point from its measured value.

It is this residual that is being applied to the classifier, as an input.

3.3.2 Probability Density Estimation Using a Mixture of Gaussians

As we have discussed in the previous section, the estimation of the two class probability
density functions is key to being able to implement the Bayes classifier. Since observed
data are normally available for the OK state, we will start first with the estimation of this
pdf.

There are two approaches to the estimation of such a function. If the pdf can be assumed
to be of a certain type, it can be characterized by a set of parameters which can be
estimated. This approach is called parametric estimation. If sufficient knowledge is

available, it is advisable to try to fit a density function of prescribed form to the data [63].
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This approach is used for a case study presented in Chapter 4.3, the electric generator
overheating problem, and the pdf(D|OK) is estimated as a normal distribution. A
Gaussian of zero mean and an undetermined standard deviation is fitted to the values of
the disagreement for a particular temperature sensor. The resulting standard deviation
estimate is caused by measurement noise, process modeling errors, and the normality
assumption.

Figure 3-3 shows the resulting pdf(D|OK).

.| —— Gaussian (parametric pdf)
0.06- + observed distribution
parametric pdf
0.05}+ i
-~
0.04+ -t 1
g
0.03F ghserved distribution 1

0.02

0.01

-----------------------------------

04 0.2 0 0.2 04 0.6
disagreement value <deg C>

Figure 3-3 Parametric estimation of pdf. Measured histogram vs. Gaussian pdf.

While the parametric approaches yield impressive results, nonparametric techniques [50],
[64] free of a priori assumptions (e.g. normal distribution assumed) are more general,
therefore more adaptable. Histograms, splines, and mixture of densities are a few
examples of nonparametric techniques [65]. Among the different nonparametric methods
of pdf estimation, considerable interest has been shown in mixture density models [64],
[66]. A mixture density is composed of a number of components, each being defined by

its own set of parameters. The mixture model combines most of the flexibility of the
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nonparametric models with the robustness of the parametric approach. Since in our
generator stator overheating problem no FAILED class data is available, and since the
generator can experience many degrees of .overheating, the pdf for this class is

constructed as a mixture density, the kernel used in the mixture being pdf(OK).

In the Overheating Detection System, we expect the pdf of a certain overheating value to

be similar to the normal system pdf, but translated towards a positive disagreement mean
value:

pdf (D | FAILED) = K * pdf (D - 01| OK) (3-15)
5 Gaussian PDF for overheating and normal operations
FAILED

A
5 n system §
i PDF

35

15

0.5+

0 L ' L 1
-2 -15 -1 -0.5 0 0.5 1 1.5 2
overheating deg C

Figure 3-4 pdf estimate of FAILED system. One failure mode.

Figure 3-4 shows the pdf of the “OK” class as well as a “FAILED Overheating value O;”

class. In this case, the overheating value Oy is 1°C.
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If the system could fail in only one overheating value mode, the two Gaussians could be
used by a Bayesian classifier to achieve optimum results. However, if two overheating
values are predominant, and if the two failure modes are independent then a cumulative
failure pdf can be obtained by summing the individual pdfs and applying an appropriate

scaling:

pdf (D | FAILED) =W 1* pdf (D — 01| OK) +W2* pdf (D — 02| OK) (3-16)

Mixture of Gaussians & Gaussian PDFs for overheating and normal operations
5 T T T T T

T

4.5

4 -
FAILED system PDF
(2 failure modes) i

35
3+ OK system
PDF
25+

2F

15

1+

05

T

AWAEE

overheating deg C

Figure 3-5 pdf estimate of FAILED system. Two failure modes.

Figure 3-5 shows, both the pdfs of the “System OK” class as well as a “System Failed
Overheating value O; and O,” class. In this case, the overheating values are 1°C for O

and 2°C for O,.
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If all overheating values from zero to infinity are possible, and if the probability density
function of these modes is w(t), the previous sum of individual pdfs becomes a weighted

sum of an infinite number of pdfs, which is expressed by a convolution integral:

+oo0
pdf (D| FAILED) =K * | w(x)pdf(D- x| OK)dx (3-17)

—0Q

K scales pdf(D|FAILED) in order to meet:

[ pdf (D| FAILED)dD =1

—oo

If we assume that all failure modes are equally likely and that the pdf of failure outside

the range [a, PB] is zero, equation (3-17) becomes:

B
pdf (D | FAILED) . K * [ pdf (D - x| OK)dx (3-18)
a

If we further assume that pdf(D|OK) is a Gaussian, then the two pdfs become:

2

pdf (1| OK) = Jzim? e 20 (3-19)

pdf (t| FAILED) = %[ (—J=] - (—t‘/iﬂ (3-20)
2

where : Erf (x) = )fe" dt (3-21)

0
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Mixture of Gaussians PDF & Gaussian PDF for overheating and normal operations
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Figure 3-6 pdf(D|OK) and pdf(D|FAILED).

Figure 3-6 shows both pdf(D|OK) and pdf(D|FAILED). In equation (3-13), the Bayesian
classifier scales the pdfs by their respective prior values and uses the intersection of the

two resulting curves as a threshold value to be used for classification.

3.3.3 Probability Density Estimation Using a Fuzzy Logic Generator

This section will build on the fuzzy logic concepts introduced in Chapter 2.3 and
demonstrate two Fuzzy Logic approaches that result in the estimation of a faulted system

probability density function. The first implementation is based on a Mamdani inference,

while the second one uses a Sugeno engine.
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Chapter 3.3.2 has derived the probability density function of a failed system based on the
pdf of the OK system and has shown in equation (3-17) that a convolution is performed
between the pdf and a weighting function. Furthermore, the pdf of the failed system was
computed for the special case when the pdf of the OK system is a Gaussian and the

weighting function is a rectangular box.

+oo
pdf (D | FAILED)=K* | w(x)pdf (D - x| OK)dx

—0Q

() 1 for5:<x<0-
w(x)=
0 otherwise

Obviously, the above w(x) implies that all failure modes between 8; and &, are equally
likely and that there are no possible failure modes for residuals smaller than §; or larger

than &,. These assumptions, while resulting in useful results, may be too restrictive.

We are proposing now a Mamdani fuzzy logic engine that estimates the probability
density function in a general case. The engine is a Single Input Single Output model.
The input is the residual value, while the output is the pdf value. The membership
functions shown in Figure 3-7 are Gaussians covering the range of temperature residuals

of interest, in this case from 0°C to 8°C. The set rule is:

If the residual is Low then pdf is Fuzzy_0.0 with weight 1

If the residual is MediumLow then pdf is Fuzzy_0.1 with weight 1
If the residual is Medium then pdf is Fuzzy_0.25 with weight 1

If the residual is MediumHigh then pdf is Fuzzy_0.5 with weight 1
If the residual is High then pdf is Fuzzy_0.0 with weight 1

A T e
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The weight for each rule is 1 implying that all rules are equally important in determining

the value of the pdf.
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Figure 3-7 Input membership functions to be used with Mamdani engine.
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Figure 3-8 Output membership functions to be used with Mamdani engine.
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The output fuzzy sets that were used are shown in Figure 3-8. Min-max inference was

used.

A comment is now in order regarding the output membership functions shown in Figure
3-8. The range on which these functions are defined, or the universe of discourse, is [-1,
2]. The Min operator is applied to each function during rule inference, followed by the
Max operator being applied during the rule aggregation. Finally, deffuzification is
performed using the center of gravity method. Therefore, examining the universe of
discourse, the maximum range of the crisp output that could result from this fuzzy engine
is [-1, 2]. However, in our application, this output represents, a probability density
function whose value must be greater than or equal to zero. The integral of the function
over the whole interval must be equal to 1. The conclusion of this analysis is that the
universe of discourse for the output membership functions may contain regions which do
not have a physical meaning for the problem at hand. In our case, such an interval is
[-1,0)

Figure 3-9 shows the output produced by the Mamdani Fuzzy Logic inference. As was
desired, the pdf increases gradually with the increase of the residual. This effect was
achieved by careful positioning of the output fuzzy sets. The same effect could have
been achieved by hand crafting the weighting function w(x) in equation (3-17) in the
previous section. The advantage of using the Fuzzy Logic approach lies in the fact that
the -output fuzzy set positioning may be based on problem domain expert knowledge.
Based on this knowledge the Fuzzy Logic engine internally computes w(x) and also
performs the convolution, all in one step. This knowledge may be easier to acquire

compared to knowledge regarding the particular shape for w(x).
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Figure 3-9 pdf of OK and FAILED system obtained with Mamdani inference.

An alternative approach of deriving the pdfgieq using the Mamdani inference, is to use a

fuzzy logic engine employing the Takagi-Sugeno method of inference.

Just as in the previous case, we could have fed the engine with one input, the residual
value. In order to provide the Fuzzy Logic design with invariance relative to input
changes in scale and offset, we chose to compute five quantities which are the distance
between the residual and five fixed values, and then to v.divide the differences by a fixed
quantity. This allows us to design the Fuzzy Logic engine once, and rescale its behaviour

by simply changing the position of the five fixed values and of the scaling factor.
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In our example, the fixed values are: 1, 3, 4.5, 6, and 8. The goal is to design rules that
produce a pdf value based on the fact that inputs may be close to the values: 1, 3, 5, 6,
and 8.

The rules for the Sugeno engine are:

If inputl is Small then output is large with weight 0.3
If input2 is Small then output is large with weight 0.4
If input3 is Small then output is large with weight 0.5
If input4 is Small then output is large with weight 0.6
If input5 is Small then output is large with weight 1.0

ARSI S

If inputl is large AND input2 is large AND input3 is large AND input4 is large
AND inputS5 is large then output is small with weight 1.0

For the output fuzzy sets, since an order 1 Sugeno inference is used, only one constant
must be determined for each set (in equation (2-9), Chapter 2.3.1 all q; are equal to zero,
only b; must be chosen). In our case, bigrg is equal to 1, while bgnay is equal to 0. If the
residual value results in the inputl to be small, the output of the engine will be equal to
0.3. If input2 is small, then the output is 0.4, and so on. If the residual value results in all
inputs to be large, then the output of the engine is 0. Unlike the Mamdani engine that
modulates its output, based on the output fuzzy sets, our Sugeno engine performs the

same function by using its rule weights as parameters.

Figure 3-10 shows the resulting probability density function. As expected, the pdf of the

failed system is similar to the result obtained in Figure 3-9.
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Figure 3-10 pdf of OK and FAILED system obtained using Sugeno inference.

3.3.4 On-Line Adaptive Bayes Classification

Chapter 3.3.1 showed how the Bayes classifier can make an optimum decision for a two

class classification problem. In the case of classifiers used for Failure Detection

Systems, the input in the classifier is a computed residual value and the two classes are
the class of residuals that belongs to the system OK class, and the ones that belong to the
system FAILED class. The chapter also showed how, by observing the values of the
residuals during the normal operation of the system, one can estimate the probability
density function pdf(D|OK) and the pdf(D|[FAILED). By having an educated guess of the
prior, P(OK), one can use equation (3-14) to compute P(FAIL). These four elements

allow the application of the Bayes classifier every time a new disagreement value is
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observed. The classifier can estimate the most likely system state, OK or FAILED.
Every time a new value becomes available, the system evaluates inequality (3-13) and
makes its decision. An equivalent technique to this evaluation is to compute once the
intersection of the two scaled pdfs and use this intersection as a decision threshold for
new disagreement values. From equation (3-13), setting the datum D to the value of the

residual threshold, the inequality becomes an equality:

pdf (Th| OK ) * Prob(OK ) = pdf (Th| FAILED)* Prob( FAILED) (3-22)

Equation (3-22) must be solved for the value of Th which is the decision threshold:

oK

v

D (3-23)

IA

FAILED

If the value of D is larger than the threshold Th, the system has FAILED, otherwise the
system is OK.

It is apparent that the threshold value is constant, being independent of new data. If
before any data were available, the value of the prior P(OK) was assumed to be 0.5, is it
reasonable to assume that after perhaps a large number of measurements that have
resulted in small value residuals, the prior P(OK) should still be set at 0.5? Intuitively,
one feels that the prior value should also change once data become available. If these
data reinforce the belief that the system is OK, the prior value should increase, otherwise
its value should be lowered. The result would be a system that compares the

disagreement against an adaptive threshold.

Starting with equation (3-11), the Bayes theorem, and dividing both the numerator and

the denumerator by the numerator value:
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1
pdf (D| FAILED) , Prob(FAILED) (3-24)
pdf (D| OK) Prob(OK)

Prob(OK | D) =

which, when combined with equation (14) results in:

Prob(OK:| Di)=—l_
1+ xi*ai
where:ai=ﬁ—l
rob(OK:) (3.25)
pdf (D.- | FAILED)
and : xi =
pdf(Di | OK)

€63
1

The subscript “i” was used to indicate that the computation is done for a disagreement at

step “i”. The purpose of computation (3-25) is to estimate the probability that the system
is OK. Once this is done, and before a new disturbance value at step “i+1” is used, the

prior value is updated:

Prob(OKi +1) = Prob(OK: | D) (3-26)

[13%44
1

In other words, the a posteriori probability at step “i”” becomes the prior at step “i+1”.
In summary, the method we propose [67], for the adaptive Bayes classifier, is the

following:

1. Estimate the conditional probabilities pdf(D|JOK) and pdf(D|FAILED) using
one of the methods outlined in the previous chapters (mixture of Gaussians,
Fuzzy Logic, etc.)

2. Start with a “gut feel” value of the prior Prob(OK)

3. Use equation (25) to compute the a posteriori probability at step 1 (step “i”).

i

We have performed now the classification at step

4. Use equation (26) to propagate the a priori probability value.
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5. Gotostep3

It will be shown in a case study in Chapter 4.2.6.1.5, that the re-estimation of the priors at
every iteration results in the use of higher threshold values when small value residuals are
computed, while large disagreement values result in small thresholds. In other words, if
small disagreement values are seen by the system, the system has more confidence that
no failure takes place and increases its threshold being more tolerant to spurious noise. If
however, large disagreement values are experienced, the system lowers the threshold
value making a classification to “FAILED” more likely. It will be seen that the proposed
system is an improvement over a classical Bayesian implementation (fixed threshold) and
a large improvement over a fixed, arbitrary value threshold classifier (which is the result

of a false alarm minimization constraint with no regard for a fail to alarm consideration).
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CHAPTER IV

4 Case Studies

This chapter will present three real-life problems and propose solutions within the Fault

Detection System framework. These applications represent classes of FDS:

1.

The Static Security Assessment in Electric Power System represents the
class of FDS having an extremely limited data set available for learning. The
internal modeling blocks must perform a non-linear mapping. Some of the inputs
are highly correlated, resulting in a potential near singularity, unless de-

correlation methods are used.

The QOil Leak Detection in Underground Power Cables represents the class
of FDS having an abundant amount of learning data acquired while the system is
functioning correctly (no oil leaks take place). However, no data from a failed
system are available (no leak data). This situation is typical of the majority of
FDS applications, where one does not have the luxury of witnessing a failed
system in operation. Another complication that must be addressed involves the
strongly non-linear phenomena, which overlap the process the FDS is trying to
model (oil pressure is changed by valve and pump operations, distorting the oil
temperature/pressure relationship to be modeled). Finally, the issue of data
corruption and data loss will be addressed. A relatively small amount of data loss
present in the data set might render the whole set unusable. We will present an

approach that was developed to solve this general problem.

The Detection of Flow Restrictions in Water-Cooled Generator Windings
problem represents the class of FDS applications which have to deal with a large

number of highly correlated input quantities that also have a rather small

63



variability (the electric power generator works very closely to its set point, most
of the time). These facts can result in a poorly numerically conditioned problem,
unless data pre-conditioning is performed. Solutions to this application have been
published and make use of non-linear modeling blocks. We will present an
approach which needs only linear models (non-linear modeling ability does not
add significant accuracy), and does not have to linearise the non-linear physical
model around an operating point (as it is usually done, reducing the problem to a
small signal application). Similar to the Oil Leak Detector, no fault data are

available for learning.
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4.1 The Static Security Assessment in Electric Power Systems

Voltage stability is a problem in power systems which are heavily loaded, faulted, or
have a shortage of reactive power [18]. The problem of voltage stability concerns the

whole power system, although it usually has a large involvement in one critical area.

This chapter first introduces the notion of maximum power transfer. It then shows two
cases of voltage collapse experienced by a loaded system. A possible solution that
reverses the voltage collapse trend is shown. The power flow equations of the power
system are then introduced. These equations allow the calculation of the steady state bus
voltages. Because the equations are non-linear, several iterative methods used to
compute the solutions are mentioned. While these approaches are adequate for off-line
studies, their computational load prevents them from being applied in an on-line setting.
In order to achieve a high computational speed, we propose a black-box approach that
utilizes a number of Neural Networks as models. We show that a very limited learning
data set results in a poor recall performance of the Neural Networks. We introduce a new
method that conditions the data set, thus solving the sparse data set issue. This method is
first applied to a very small modeling example, followed by its application to the New
England IEEE 39 bus system. Finally, we show the performance of the modeling

approach when various parameters of the Neural Networks are varied.

4.1.1 State of the Art

The Power-Voltage Curves

The concept of voltage stability can be exemplified by the analysis of the circuit in

Figure 4-1. The generator G produces active and reactive power transferred via a
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transmission line of reactance X to the load having the series resistance R, and reactance

X, The load uses the active power P and reactive power Q.

E ' %4

P, QO
R, X;

Figure 4-1 Two bus system.

We would like to calculate the value of the load voltage V, as a function of E, X, P, and

0.

J = Eﬂ (-1)
Ri+ j(X + Xv)
f=—E 4-2)
Ri+ j(X + X1)
S=v.I' (4-3)

Voltage E is used as a reference. The load voltage V and current I are used as phasors, to

account for the shift in phase between them and E.

Substituting (4-2) into (4-3) and applying the complex conjugate operator:

§ = g2 2RL+_]XL ' (4-4)
RZ+(X + X1)
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By definition, the load active power is the real part of the total power S, while the

reactive power is the imaginary part of S:

2 RL
RZ+(X + X0)*

XL
R +(X + X0)*

0=F’

Using (4-1) to compute the magnitude of V:

R + X2
RZ2+(X + Xu)*

V2=E2

(4-5)

(4-6)

(4-7)

Our task is to eliminate R; and X; from (4-5), (4-6), and (4-7). Dividing equation (4-5)

by (4-6):

P R

0 X

and Ry is:

Equations (4-6) and (4-7) become:

XL

2
(5) X2 +(X + Xo)?
Qo

Q=E

2

V2=%XL+QXL

(4-8)

4-9)

(4-10)

(4-11)
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Combining (4-10) and (4-11) by eliminating X; results in:

V0
2 P +Q? '
O=E > 4-12)
412 2
o) S xr Loy
Q) (P°+Q%) P°+Q
Equation (4-12) is a quadratic in V2 and the solutions are:
E’-20X)+.E* -20XE* -2P*X
V=J( oX) \/ 5 Q (4-13)
If we consider the load power factor:
tan () =% (4-14)

and we vary P for a fixed value of the power factor, we obtain the family of curves

shown in Figure 4-2.

To compute these curves, the line impedance, X, was set to 100Q. Both V and P were
normalized. Pmax is the maximum active power that can be transferred to a unity power
factor load. The nose point on each curve indicates the maximum active power that can
be transferred to the load through the transmission line. For each curve, the voltage
corresponding to the maximum power transfer is called the critical voltage. The reason
for this name will become apparent shortly. As can be seen, for a desired active power
transfer, the operating point is closer to the maximum power transfer, if the power factor
is larger, compared to a smaller power factor. A negative power factor can result in an

actual increase of the load voltage with an increase of the load.
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Figure 4-3 Temporary motor power demand increase may result in voltage collapse.
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Let us consider a constant power load. An example of such a load is an induction motor.
Figure 4-3 shows two examples: a motor having a power factor of 0.2 and one with a
power factor of 0.4. We assume that initially, both motors match a mechanical power
demand P/Pmax of 0.3. If the mechanical power demand is increased to 0.35, the motor
having power factor 0.2 finds a new position of equilibrium. Once the demand becomes
0.3, the operating point returns to the same position as before. However, the motor
having power factor 0.4 behaves differently. A power demand of 0.35 is beyond the
maximum power transfer of that curve. Therefore, the power transferred does not match
the power demand, and the motor starts stalling. This reaction, in turn, results in a
decrease of the motor’s impedance, which results in a lowering of load voltage, which, in
turn, further lowers the transferred active power. As it can be seen in Figure 4-3, even if
the power demand is restored to 0.3, the voltage collapses and the motor stalls. For this
reason, the voltage corresponding to the maximum power transfer of a curve, is called the

critical voltage.

The example above showed that a temporary increase in the power demand of a constant
power load can result in a voltage collapse. The following example will show that a
contingency affecting the power delivery capability of the system can also result in a

voltage collapse.

Let us consider an aggregated constant power load (large industrial motors) having a
power factor of 0.2 supplied by a line having an impedance of 100Q. It can be seen that
the operating point is well above the critical voltage point and the system is stable
(Figure 4-4). Let us assume that the line trips and that power is delivered via an alternate
path having a larger impedance of 200Q. The new PV curve shifts, having this time the
maximum power transfer capability less than the power demand. Just like in the previous
example, the motors start stalling, thus decreasing their impedance, resulting in a voltage
collapse. This situation can be avoided, if the power factor is decreased before a

complete voltage collapse. A capacitor can be used as illustrated in Figure 4-5.
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Figure 4-4 Contingency resulting in voltage collapse.
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Figure 4-5 Capacitor compensator.
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It can be noted that the system is stable once the capacitor is switched in, in spite of the
fact that the voltage dipped below the minimum critical voltage at time T3C. The
delivered power is larger than the power demand, allowing the motors to accelerate. This
increase in rotational speed results in an impedance increase allowing the operating point

to move to the power demand value.

Transmission Power Flow Analysis

Now that we have exemplified the effects of an unsuitable power transfer capability /
load power factor pair, we shall examine ways of determining whether or not a system is
close, at any bus, to the critical voltage point. The load-flow, or power-flow, analysis
involves the calculation of power flows and voltages for a specific system configuration,
certain loads and generation dispatch. The network equations can be written in terms of

the node admittance matrix [18]:

[T ] V1]
72 YII Yln ‘72
B (4-15)
= Ynl Y nn -
_In N _Vn i
where:
n is the total number of nodes
Y is the self admittance of node i (sum of all admittances terminating at node i)
Y; is the mutual admittance between nodes i and j (negative of the sum of all

admittances between nodes i and j)
Vi is the phasor voltage to ground at node i

I is the phasor current flowing into the network at node i
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The system of equations (4-15) would be linear if the currents were known. In practice,
the currents injected at each node are not known. Their values can be specified in terms

of active, reactive, powers injected at nodes, as well as the node voltage:

- Pe— jOk
k= Ve (4-16)
Substituting (4-16) into (4-15) and writing the equation at bus k:
Pr— jOx — =
—_— = = )¢ kak + Y kak
k i=zl (4-17)
ik
and the voltage V; is computed as:
= Pr—jOc 1
Vo= 1<y 7
YV &« Yo 'ig (4-18)
ik

Equation (4-18) is at the basis of an iterative algorithm called the Gauss-Seidel method.
Each bus voltage is computed based on an informed guess of the other voltages in the
system. In general, this iterative approach has slow convergence [18] due to the weak
diagonal dominance of the node admittance matrix. One factor used to accelerate the

convergence rate is an overly corrected solution based on:
V newk _ accelerated = V old K+ C(V newk - V old k) (4_19)

where c is the acceleration factor and has a value greater than unity.
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Another approach used to solve the non-linear system (4-18), is the Newton-Raphson (N-
R) method.

Let us consider a system of non-linear equations:

fi(xy, x2,..., x2) = b1

fa(x1,x2,...,xn) = b2

(4-20)
Ju(x1,X2,..., Xn) = bn

We can replace the unknowns x; with a set of initial estimates combined with a set of

corrections to these estimates, in order to satisfy (20):

f1(x°1+Ax1,x°2+Ax2,...,xon+Axn) =b
f2(x°1+AX1,x°2+sz,...,x0n+Axn) = b2

: (4-21)
ﬁ(x°1+Ax1,x°2+sz,...,x°n+Axn) =bn

Expanding each function f; in a Taylor expression around x’ , keeping only the linear
terms in Ax;, and solving for Ax; results in:

( ( A \
bi— fl(xo 1, xo 2,00y xon) (% % eee (—a.f—l Ax:
ax1 J,\ 9xz ), 0xn ),
b2— f2(x°1,x%2,...,x%) _ . . . Ax:
‘ FY (Y () | 4-22)
0 0 0 0 — ces —
bn—ﬁl(x 1, X 2,.,..,x n) \( axl , ax2)0 ax" 0) Axn

or:

Af =J*Ax (4-23)
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Matrix J is called the Jacobian matrix. If the initial estimates of x; were exact, then Af
would be zero resulting in vector Ax being also zero. The Taylor expansion has resulted

in the linear set equation (4-23).

In order to apply the N-R method to the power-flow problem, we write the total power

injected at a bus as a function of the real and reactive powers:

S =B +jQ =VI; (4-24)

Using (4-15) to eliminate the currents I from (4-24) results in:

— n —
B, +jQ, =V, >.(G,, - jB, WV, (4-25)
m=1
Isolating the real and imaginary parts:

P, =V, Y (G,V,cos8,,+Bk,V,sinb,,)

m=1

0, =V, Z G,,V,sin@, —Bk,V, cosd,,)

m=1

(4-26)
where 6, is the angle difference between the voltages at buses k and m. Using (4-22)

and substituting for b; the specified active and reactive powers, P;” and Q;” , at all buses,

results in:
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OR OR OB 9R
001 00, 09Vi 0Va

P?1=Py(6°,6°,..,0°n.V V2, .V ) : : A8,
: P, 9P, 9P, OP,
P?0=Pu(0°,6%2,...0°%V°, V.. V% | |36, 96, Vi oV A6.
Q71— Qi(6°1,6°,...,0%. VoLV, V%) | | 00, 00, 90, 9Q L) R
: 36 6. v w. |: | @2
Q7 n—0On(6°1,6°2,...,6°.V°1L,V s, .., V) : : AV,
aQ" cea aQn aQ" Y aQ"
891 aen 3V1 aVn
or:
oP P
AP| |96 ov || A6
s0)~|ag ag |lav (4-26)
36 oV

where the four elements of the Jacobian are submatrices.

As has been previously mentioned, the Gauss-Sidel method is reliable, however it is
relatively slow for larger systems. The Newton-Raphson method has a reasonable
convergence rate, being well suited to large systems, however it relies on an appropriate
starting solution [18]. A good combination, is to start the computation using the Gauss-

Sidel method and then to switch to N-R when one is close to the solution.

To accelerate the N-R method, Fast Decoupled Load-Flow (FDLF) methods are used.
These techniques exploit the weak physical coupling between active powers P and

voltages V, and also, between the reactive powers Q and voltage angles 6.

Equation (4-26) is reduced to:

Ap=2F g
o6 4-27)
30 -
20=2L v
Q=3

or:
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AP =HA®@

AQ = LAV (4-28)
where:
_ 0P« .
H, —E=VkVM(G,msm0m—B,mcos6m) form # k
OPx
kk =E= -B, V.’ -0,
_ 90 _ : - (4-29)
L,m,—m—Vk(kasm49,w,—Bk,,l cosd,)=H,/V, form#k

00k
L, =m=_BIchk Q1Y

The N-R method requires the Jacobian matrix to be re-evaluated after each iteration.
Similarly, matrices H and L have to be re-evalutated and re-triangularized at each
iteration.

In order to further speed up the load flow algorithm, simplifications can be made [18]:

cosd ., =1
G,,sinf ., < B,, (4-30)
Q, <B,V?,

With these simplifications, system (28) becomes [18]:

AP/V =BAG@
AQ/V =B AV

4-31)
The advantage of this formulation is in the fact that matrices B’ and B” are real and
sparse, and that they contain only network admittances that are constant; they have to be
triangularized only once at the beginning of the load flow computation. Being an
approximation of the N-R method, the FDLF requires a larger number of iterations to

converge to a solution. However due to its lower computational requirements (no need
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for Jacobian re-evaluation), this method is faster. It should be kept in mind that one
approximation made in the FDLF is that of small angles across lines (first equation in (4-
30)). Therefore, for system conditions with very large angles, the full N-R algorithm

may be needed.

As was previously discussed, being able to do an On-Line Static Security Assessment is
very useful. In order to achieve this goal, a number of developments have been published
in the literature. The limitation imposed by the finite number of off-line load flow
studies, are mitigated to a certain extent in [68]. A feedforward NN is trained with the
backpropagation algorithm in order to perform an interpolation thus approximating
unstudied cases. A Neural Network is trained in [69] to compute a voltage security
index, based on off-line studies. [70] computes a severity index for contingency
screening using a NN also trained on off-line studies. A contingency screening and

ranking was performed in [71], [72] using a feedforward NN trained on off-line studies.

A number of papers [73], [74], [75], [76], [77] have used the Kohonen neural network to
identify similarities of system states in order to assist in contingency analysis. Unlike the
feedforward NN trained with backpropagation, the Kohonen network uses an
unsupervised learning scheme; no teacher is required. The Kohonen network has the
property of automatically clustering the input data vectors it receives during the learning
process. Naturally, the result of its clustering process is fully dependent on the specifics
of the input vectors the networks does its learning on. It is the responsibility of the
designer of the algorithm using the Kohonen NN to ensure that the clustering the network
spontaneously performs, is the clustering the user needs done in the application. This
constitutes, in our opinion, the weakness of the Kohonen based implementations. The
unsupervised network will perform the function it wants to perform. It may not be a
trivial task to verify that the task performed by the network is the task needed by the

application, in our case the static security assessment.

A number of papers [78], [79], [80], [81], [82], address the issue of data preprocessing,

before data are presented to the Neural Network for learning and recall. Some designers
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view data preprocessing as a way to improve the NN learning speed. It is our opinion
that data preprocessing is vital in a real-world implementation of the on-line static
security assessment, where field learning data are by far not as abundant as simulated
data, the result of which can be a NN that learns very well by memorizing and therefore
does not generalize. The mentioned references use Principal Component Analysis (also
called Karhunen Loe’ve expansion) as the preprocessor of choice. While this approach
may not be optimum, it is working reasonably well. Sidhu [83] presents a rather unusual
approach that uses the Fast Fourier Transform (FFT) and applies it to the power system
state vector (active and reactive powers). The paper treats the state vector components as
a digital sequence signal and computes its FFT. Of course, by reordering the components

in the sequence, the FFT will be different. We feel that:

e The order of the components is determined by the numbering of the power
system buses. However, this arbitrarily decided order unduly influences the
preprocessor’s performance.

e There is no physical meaning to the ordering of the state vector components.
The FFT, on the other hand, attaches significance to the order in which the

digital signal samples are presented.

We feel that the reason the FFT approach works in [83], is due to the relatively high
correlation between the state vector’s components. This means that there is a rather
strong “DC” component in the “signal” (which is the average of all samples). Of course,
when the FFT computes the DC value, the order of the signal samples is irrelevant, since
the average has no time (independent variable) dependency. We feel that the FFT may

not do just as well de-correlating the “signal” components present in its “harmonics”.

The following section will present a novel preprocessor designed to mitigate the scarcity

of field data as well as reduce the input correlations.
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4.1.2

Proposed Artificial Intelligence Based Development

There are several challenges a Neural Network based system designer must face when
addressing the static security assessment problem. The first one is the NN structure.
Most published work [70], [71], [83], [84] use one NN and compute the post contingency
values for all contingencies that are considered. Some authors [82] use a separate NN for

each contingency. We will contrast these two approaches and offer a combined solution.

Another challenge is the scarcity of real fault data on which the system needs to learn.
The system must be able to learn to compute post contingency bus voltages based on
real-time observed system conditions and not just on off-line simulations. It would be
unlikely that the effect of a contingency could be observed under many operating
conditions, a requirement for robust learning. This section will present a novel data
conditioning method which will simultaneously deal with both, the lack of sufficient

learning data and with the Neural Network based system structure [85].

4.1.2.1 Contingency Clustering Technique

Figure 4-6 shows a possible NN-based static security assessment engine. The model is
presented with the pre-contingency bus voltages and generator and load active and
reactive powers. Its task is to compute the post-contingency bus voltages. One Neural
Network is responsible for learning the effect of a specific contingency. Jeyasurya uses
this approach in [82]. Due to the large number of NNs, the number of weights to be

determined is very large. Therefore, a large training set is needed.
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Figure 4-6 Post-contingency NN model. One NN for each contingency.
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Figure 4-7 Post-contingency NN model. One NN models all contingencies.

To deal with this issue, Figure 4-7 depicts an alternative approach. As before, the pre-
contingency bus voltages, and the active and reactive powers are presented to the, now
one only NN. Moreover, a contingency code has to inform the NN which contingency is
being applied. This code is computed by the contingency encoder shown in Figure 4-7.
Most authors simply use the contingency number as a contingency code. One could

assign one Neural Network (NN) for all contingencies and encode the contingency name
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as an input into the Neural Network. The first disadvantage of this method is that the NN
would have to combine the analog inputs presented to it (pre-contingency bus voltages,
active and reactive powers) with contingency names. The contingency names must be
translated into real numbers, and the NN will have to perform mathematical calculations
with them (for instance, it may have to compute the vectorial distance between two input
vectors or it may have to compute the post contingency bus voltages based on math
applied to the numerical name of a contingency). The way the translation from a
contingency name to a real number will be crucial to the success of the NN

implementation and will affect the output accuracy; however this translation is artificial.

The second disadvantage of the method is that it forces the NN to simultaneously
accommodate contingencies that may have drastically different effects on the power

system. This results in a lower performance of the NN.

Because of this fact, it would be desirable to somehow group contingencies that have
similar effects on the bus voltages. If this can be done, the number of models needed to
compute the effects of the different contingencies is lowered. Also, the model that
represents a particular set of contingencies is expected to be more robust since it is based
not only on a small number of training cases a particular contingency was involved, but

on a larger data set supplied by all equivalent contingencies.

The contingency grouping can be done either manually by a power system expert, or
automatically by non supervised clustering. The method that we will present is an
automatic, unsupervised algorithm of contingency grouping, followed by the building of
a set of Neural Networks capable of computing the post contingency bus voltages. Each
Neural Network is responsible for modeling a group of equivalent contingencies. Our
approach is to use the Partial Least Squares (PLS) [86], [55], [56], [57] method to build
models, one model for each contingency. Each PLS model will be fed with the pre-
contingency bus voltages, and active and reactive powers, and will be trained with the
post-contingency bus voltages. The disadvantage of PLS is that being a linear method,

when applied to a non-linear problem it has a lower recall accuracy compared to a non-
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linear model. The advantage of the method is that it is very well behaved, being able to
compute its parameters using as few as two vectors as a learning set (regardless of the
input vector dimension). In contrast with PLS, a NN having too few training vectors
would memorize during learning and exhibit a poor recall ability. The next step is to
check how well a PLS model representing a contingency can compute bus voltages when
used under different contingencies. If two models produce similar results, the
contingencies they represent are considered similar and the field data sets each one has,
are combined. We have now a contingency group. The process is again repeated. The
process will keep performing iterations resulting in further contingency grouping. In the
limit, the method will stop when all contingencies end up in one group, implying that all
contingencies are equivalent. Of course, this is rather unlikely, therefore a contingency

termination criterion is used.

The second step is the training of Neural Networks models. The topology used is the
Feedforward Back Propagation Network. Just like the PLS models above, the Neural
Networks are first trained using data from a single contingency. Therefore we are going
to compute as many NN as there are contingencies. Due to the small number of training
cases, we will show that each NN learns extremely well, however it will have a very poor
recall ability (the NNs memorize). The next pass will train as many NNs as there are
contingency groups (the groups formed by PLS in the previous step, iteration 2). It is
expected that the NNs which have access to learning data that have resulted from a group
of contingencies, would have a better recall performance. We will show that the system
of Neural Networks reaches an optimum when the number of groups is smaller than the
number of contingencies but larger than 1. Too many groups result in NNs memorizing
(not enough data for learning). Too few groups force the NNs to predict bus voltages

under conflicting, non-equivalent, contingencies. The NNs will compromise.

The Static Security Assessment problem is a Multiple Input Multiple Output (MIMO)
decision making problem. Both inputs and outputs are high dimensi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>