Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/5748
Title: Adaptive Filtering and Pattern Recognition of Evoked Potentials
Authors: Madhavan, Poovanpilli Gopal
Advisor: Bruin, H. de
Department: Electrical and Computer Engineering
Keywords: Electrical and Computer Engineering;Electrical and Computer Engineering
Publication Date: Nov-1985
Abstract: <p>The problem of estimating evoked potentials and its pattern recognition and classification is addressed in this thesis. After providing the relevant physiological background and reviewing the various methods of processing the evoked potential, we propose the method of adaptive noise cancellation for estimating the evoked potential without stimulus repetition. A new weighted exact least squares lattice algorithm is derived for this purpose. The variable weighting factor can be used to make the algorithm robust. Its performance is compared to that of unnormalized and normalized exact least squares lattice algorithms and is shown to be superior. One example of using adaptive noise cancellation to estimate evoked potential without stimulus repetition is presented. Pattern recognition of evoked potentials is achieved by syntactic methods. We derive a finite-state grammar to represent the normal evoked potential. Suitable preprocessing using a zero-phase bandpass filter, parsing and attribute checking are the steps in this classification procedure. A database of normal evoked potentials and optimized acceptance criterion are used for checking the attributes. Detailed training and test runs are performed to demonstrate the performance of this classifier.</p>
URI: http://hdl.handle.net/11375/5748
Identifier: opendissertations/1093
2608
1314606
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.52 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue