Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/5705
Title: Polymer Reactor Design, Optimization and Control in Latex Production Technology
Authors: Penlidis, Alexander
Advisor: MacGregor, J.F.
Hamielec, A.E.
Department: Chemical Engineering
Keywords: Chemical Engineering;Chemical Engineering
Publication Date: Sep-1986
Abstract: <p>During continuous emulsion polymerization of many monomers (e.g. vinyl acetate, vinyl chloride), sustained oscillations (limit cycles) occur in conversion and all the latex and polymer properties. This creates severe problems with the commercial application of continuous reactors. As shown by Pollock (1984) advanced control theory is inadequate for controlling these reactors. However, it was shown that the limit cycle behaviour could be eliminated through redesign of the reactor train configuration. The redesigned production train was shown via simulation to be free of oscillations and to offer greatly increased flexibility in controlling particle size and monomer conversion.</p> <p>In this thesis the mathematical model of Kiparissides (1978) and Pollock (1984), based on a particle age distribution analysis and incorporating detailed chemistry and physics of the polymerization phenomena involved, is modified and is used to simulate the dynamic behaviour of these reactors for different modes of process operation (batch, semi-batch and continuous train) and monomer systems (PVAc, PVc).</p> <p>Experimental studies which demonstrate the improved dynamic performance of the redesigned reactor system are carried out in a pilot plant stainless steel reactor train with on-line monitoring of monomer conversion with a set of on- line densitometers. Control of the final latex particle size and conversion is achieved through manipulation of the initiator feed rate to the first particle nucleating reactor, and the split of the monomer and water flow rates between the first two reactors of the train.</p> <p>The effect of monomer arid water soluble impurities on the emulsion polymerization of Case I monomers is further investigated both theoretically and experimentally. Experimental identification and verification of the main source of stochastic disturbances in these systems was thus obtained.</p>
URI: http://hdl.handle.net/11375/5705
Identifier: opendissertations/1052
2649
1319057
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
10.84 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue