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ABSTRACT

During continuous emulsion polymerization of many monomers (e.g. vinylacetlite.

vinyl chloride). sustained oscillations (limit cycles! OCcur in conversion and all the late" and

pol~'mer properties. This creates severe problems with the commercial application of

continuous reactors. As shown by Pollock (1984) advanced control theory is inadequate for

controlling these reactors. However, it was shown that the limit cycle behaviour could be

eliminated through redesign of the reactor train configuration. The redesigned production

trIli.'1 was shown via simulation to be free of oscillations and to oITer greatly increased

flexibility in controlling particle si:e and monomer conversion.

In this thesis the mathematical model of Kiparissides 1I97S) and Pollock 1I9S~1.

based on a particle age distribution analysis and incorporating detailed chemistry and

physics of the polymeri:ation phenomena involved, is modified and is used to simulate the

dynamic behaviour of these reactol';'1bf different modes of process operation tbatch, semi-

batch and continuous train) and monomer systems (PVAc, PVd.

Experimental studies which demonstrate. the improved dynamic performance of

the redesigned reactor system are carried out in a pilot plant stainless steel reactor train with

on·li..'1e monitoring of monomer conversion with a set of on- line densitometers. Control of the-- .
final1atex pa.~icle si;:e and conversion is achieved through manipulation of the initiator feed

rate to the first particle nucleating reactor, and the split of the monomer'and water fiow rates

between t..~e fU"St two reactors of the train.

The effect of monomer "rid water soluble impurities on the emulsion

.polymerization of Case I monomers is further investigated both theoretically and

experimentally. E:cper:.rnental iden:ificatior~ a..~ci "'erification of the ::lain source of stochastic
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NOMENCLATURE

average number oflg,ng-chain branch points per polymer molecule. 111-
latex _ "

concentration of initiator in the'initiator feed stream. gmolellit of
stream

initial poly~er particle diameter. equal to the final diameter of
mice lies. dm

particle diameter of a particle born at time ti. now being at time tr. dm

some average particle diameter. dm

"

density ofpu're polymer. gr/lit

concentration ofradica:ls in the water phase. gmolel1·latex

ratio of kfp to kp

ratio ofkfm to kp

ratio ofkfx to kp

constant defined in equation (2.17)

number average pol)-mer particle diameter. dm or A •

J'
xvii

total polymer particle surface area. dm211-latex

constant in the free volume expressions. equation (1-113)

total surface area ofmicelles. dm211-latex

density of pure monomer.g/lit

particle area correspondlngto vvo.<- dm2

area of monomer droplets. dm211-latex

initial particle surface area at birth. dm2

constant in the free volume expressions. equation (1-112)

thermal expansion coefficient,litf'K. in equation (1-106)a

ap(t.t)

ato,t

A

A..!(t)

A",(t)

Ap• Ap(t)

"

B

Bs(t)

c

Cfx

CI

Cm

Cp
"

Cw

d~l

dp

dp(t.tl

dp(tr,ti)

Da.ve

D:-;



~Dp

E(t)

f

fit)

·diffusion coefficient ofnomomeric radicals in polymer particles, dm2fsec

total (cumullitivel polymer particle diameter, dmll-latex

polymer particle diameter based on a monomer fr~ basis, dIIi

maximum degree ofpolymerization

weight average polymer particle diameter, dm or'A

diffusion coefficient ofmonomeric radicals in the water phase, dm2fsec

exit age distribution (residence time distribution) function for an ideal
CSTR,sec·- 1

efficiency factor for initiator decomposition

mole fraction of unreacted monomer I in the reactor (copolymer case)

'.
net particle generation rate, 1f(1-latex)-sec

I in the copolymer' chain (instantaneous

number frequency ~fthePSD

"'mole fraction of monomer
copolymer composition) '-

FI

FTOT

I

[(RI)

Iw.' ,

Iw(tl

volumetric flow rate of initiator stream, lit of s'treamlsec (mUmin in
Chapter 7) •

total volumetric flow rate (mUmin) to reactor 2 (Chapter 7)

denotes initiator

initiator volumetric flow rate to Rl (mUmin). Chapter 7

initiator concentration in the feed, gmolefl-Iatex

initiator concentration in the reactor at time t= (}, gmOlefl-latex\

initiator concentration in the water phase, gmolefl-latex

radical capture (absorption) rate constant, dmlsec
,

radical capture rate constant (homogeneous nucleation), dm3/sec

rate coefficient of initiator decomposition, sec- 1
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