Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/5685
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBehrens, E. A.en_US
dc.contributor.authorRompke, Jurgenen_US
dc.date.accessioned2014-06-18T16:32:39Z-
dc.date.available2014-06-18T16:32:39Z-
dc.date.created2009-08-05en_US
dc.date.issued1973-02en_US
dc.identifier.otheropendissertations/1031en_US
dc.identifier.other1567en_US
dc.identifier.other925421en_US
dc.identifier.urihttp://hdl.handle.net/11375/5685-
dc.description.abstract<p>The theory of partially ordered, primitive regular semigroups is developed under the hypothesis that the partial order admits enough integral idempotents. This is done in analogy to the theory of partially ordered groups. In particular, results are given which -in a purely algebraic way - determine the existence of partial orders and characterize the semigroup of integral elements of a directed, primitive regular semigroup.</p>en_US
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titlePartially Ordered, Primitive Regular Semigroupsen_US
dc.typethesisen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.06 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue