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Introduction _ ) Lo g
AN ) .

- Ag ele&ené s in a partially ordered SEmiqrouo
is célled.inteqral 1f. 8x & x and xs & x holds ‘for all'-r
elements x in thé sehiqroup .'Not every partial order
admits inteqral elements, but if they exiat at all, then
they form a subsgmigroup. In the ‘theory of partially |
‘ofderiglgrouné this suhsewiqrouo, balled_the cone of the
partial order, determines c0mnigte19 thehorder'reiati?h.'
Indeed the relation of two elements .a b canaff des- .~

cribed in a purely alqebraic wav: (;- *

-~ a<’h 1if and only if ae€ChC

where -C ‘denotes the cone of ;he paftiql orde:fk

'E._A. Behrens has shown in LZ].thgt.a similar powerfpl
relationship hetween partial.ordérs hndﬁthe subsgpi&roﬁp
of integral elements can be found. in cs;plételv simple '
_semiqroppé 1¢ one introduccs a-fundamental hvpothesis.
fnis hv;;thésis postuiaées the éiisténce of fendugh'
inteqral idamootents, i.e. to each element a there

should exist 1hteqra1 idemvotents e andi f such that
a « caf.

Por partially ordercd groups the oxistence of such idem-

potents is trivial, since the only idempotcnt,,the identity

I T
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of the group, is integral for everv partial order.

-

Or, the other way around every group can-be partially

ordered with enough inteqral idempotents, namelv at least
. o

trivially. 1In general this sityation is not true for
primitive reqﬁlar semigroups. -Héwever we can give necessary
and sufficient conditions in order that a primitive regular

ée@iquun can be partially ordered .(Theorem S5.2). A

similar Eharacterizat{on was given fof (strictlv) ordered

‘inverse semigroups bv T, Séitd-[ll,;Theorgmé 6.2 - 6.8].

The existence of enough inteqral idempotents not onlv
allows us to descrlgg\the partial orderkalqebraically, but )
also has btronc etfects on the algehraic structure of the

/semigrouﬁs itself; The most important feature is that it
allows us to define ?n inv;rse fdf all.(non-zéro) elemenﬁs
(PLopositionIB.S)’and.sq partiallv orde?éd, primitive régular
semiqfouos are close to'inverse.seﬁiqrbuos, a fact which
is one of the keys to the whole theory. It has to beﬁﬁoted

\However that thcqe inverses carry a more or less formal’
character:_the usual rule for the inverqe of products does -
not hold, excent.of course when the semigroup is 1nvér§e_as
well, Nevertheless we cén show with theihelp of these o
inverses that many of the statcments in partiallv ordered

_aroups can be directly transforred to the theory of partially
opdqtcd, primitive roqulqr;stmiq;oups. The moast important

onc asserts that a complctciv O-gimpla hcmiqroup ic directed

I &




if and only if it is the'ucmotientsémigrot‘lpu of its inte-

gral elements {(Theorem 4.3). ~ o

EAN <

L - -
¢ theorem which goes back to John von Neumann

and G. Birkhoff LB fheorem 12} charac;\fizeé'tﬁé conés

of oartially ordered qrouns bv four oronerties.' T prove
this theorem one constructs the group of quoLiants over
this semiqroun and then shows that this qroun is partiallv
o;dergq in a natural way. The partial order then turns .

AN

out totbe'directéd. We give a very similar theorem. for

. completely O—Sﬁmple'seﬁiqroups (Theorem 6 i), i.e. we give

necessary and .sufficient conditions Eor a semiquup in

order "that it constitutes the set of inteqral elements of

a directed completely O-simole semiaroun. The. character-

izing propertieq we found resemble vervy much the oriqinal '

ones for qroups, besides having two among them wh}ch
deal with the struﬁture o% the set of idempotents.

N . =

A similar svstem Qas found by E. A. Beh;ehs.[Z]'fpr .
the snecial case of the SOwcalled quasiuniserial semigrouos. .
The reason that these conditions only vaquelv resemble ours
may be found in the oriqin of quasiuniserial semiqgroups: they
are isomorphic to the ‘gemigroup of u- irreducible ideals in

[y

certain arithmetical rinas {cf. Ll Chapter Ix]), a character-
o
&ration which seems to be impossiblc to achieve for the

s
senigroups under investiqation in this thesis.

e
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The prbglém'of'chafapierizing the semiqroup of"
_integfal elemengg in a‘partfglly.oréefed, primitive-
:eguiar'semigraup 1s.o£ course closely relAted,with‘ghe
problem'ﬁf émbeddinqAé giééniéemigroup into a primi;iﬁe
lreguiag semigroup. In the &;ntéﬁt of this-thesis wep
sél@ed.the embeddipg\pfoblemlwhenéber ﬁbé résulting‘pfkmi-
.t{ve fegdiar éemigioup i;}a quotieng semigroup of the sub-

-gsemigroup of inteé;al elements. The general problef,' b

& . . .
however, remains open, i.e. to the best of our knowledge

no reasonable conditions have been found which character-

i?e the semi-group of'integrai elements in an (unrestricted})

partially oxdered, primitive regular semigroup. .
s _ TN |

.
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§1 Background and Fundamental Definitions

Following the standard reference book of A..H.

Clifford and G. B, ?restoh [4]'we call a‘semigioup- R

' primitive reqular, if ‘" is regular in the sense of .
von Neumann and each non-zerOAidempotent is primxtive.-

- . _The atructur?,of thesé semigroups is well knowp {cf.

- |

E union of completely 0-simple semiqroups M, and each of the .

‘

[4J Thm 6. 39])- each such semigroup H [}3 the O-disjoint .

F‘ M, ‘is an ideal_ip H. We shall make frequent use of the * -
famous. Rees-theorem LS] representinq completely O-simple '
semigroups as matrix semigrbups M{G; I, A; P) and shall

uée.this rébresentation,wheneverfgppropriate;“

q

.All semigroups we consider are aasumed t ‘have a -

’ -zero element denoted by 0‘ except when we talk about groups

)
in section 2 and about complotely simple semigroups in the

last thnoéem of this thesis.

\

We want to investigate semigroups which are:par-

tially ordered. By a partial order < “on a étmigroup H
=2 N ' . .

wo mean a réflexive,'tranaitiﬁe'and antisymmetric relation
which is compatible with the multiplication in H: when~ "

ever ac<b in H then 1t ahould follow that ulso ac's bc
-~




5 .

anci ;ca < cb for all elements ce&H. *
P

We shall restrict this general definition by re-
quiring that a partial order-admits enough integral idem-

potents: An element séeH -is called integral (relative

to a given partial order € ) if and only if for every

acH the inequalities saca and as s-.‘a arc gsatisfied.
The identity in a semigfbup has trivially this property.-‘
If integral elements exist at all then they form a semi-
group, 8o it is plausible to require that the zero-element
is integral, which then in turn makes it into the minimum
of all elements, i.e. we have O0ca for all elements a.
-By requiring the existeﬁce of "enough integrél idempotents®
kwe'wpnt-to replace the single identity of a sémigroup
(which does not exist in most of the cases we are interested
in) with a suitable family of idempotents. This is made

- 9
more precise in the next definition. o

) /
Definition 1.1. A semigroup H has enough [integral]

-idempotents if and only if for each element a€H there

eiiat [integ;al] idempotents e,f such that a = eaf.

In all we shall consider only those partial orders

which satisfy our next definition.

[ PR "
S ' o>

Definition 1.2. A reflexive, transitive and anti-ww

pymmotric relation < on a semigroup H, compatible with

-




- the multiplication, is-called an integral order of -H if

: and only if there exist enough integral idempotents and .

the zgro-element is one of themn,

1Y

In particular we shall be concerned only with
th05e . partial orders where the subsemigroup oflinteqral -f_’
elements is non-empty. This subsemigroup we shall call
frequently semicone and we sha%i résérve thq-létter s

for it. In the speclial case of a partially ordered group

t we follow the customary notation- 'we call the subsemigroup

" of integral elements the cone of the qroup and“reserve

<

the letter C for it,

o The set E = {e ]ie1} will always denote the set

of non-zero integral idempotents or when there is no
‘confusion the sef of non-zero idempotents. MWe shall use
E and- I _interchangéébly as index sets, i.e. we shall

index with {eY rather'thin with. eie‘E.

[+7




§2 Partiéllyxgrdered Groups

.. The results in this section are all long-established J

and well-known and can best be found in L. Fuchs' book [5].

]
Nevertheless we would like to state them here in order

to ﬁﬁt into perspective our further development, which
will show a close connection between the results in this
gection and the theory of integrally ordered, primjtive

«reqular semigroups. - ! i
AN
A

i
FPirst of all it should be stated thaF in the case

 of partially ordered groups our definition 1 2 agrees with
. the usual one of & partial order: the identity of the
+ group 1is clearly inteqral under any,ordefinq and moreover _'

';t is "enough™ in the sense of Definition 1l.1.

Theorem 2,1, The cone C of a partially ordered

grounp (G, <) ' is characterised bv
c = {c&Glc < 1}, |

_ Theorem 2.2. The cone C of a partially ordered

group (G, <) determines the partial ordef bv

x <y if and only if xc:CyC'
if and only if xy'lé c. )

-8-"




T T T e e e T —— T

(L. Puchs [5, ch. 11, Prop. 3]) .
As directed. if and’

@0
Theorem 2,.3.

The partial order < in a group G

) only if the cone_C qenerat& G, i e.

\
G = {xy_llx, ye'C}.
—

A
v

(L. Puchs [s, Ch. 11, Thm. 2])

-\,

Theorem "2 4,

A subset;l_‘ P of a group G is the cone of dome part1a1

order of G. if and only if p. satisfies

| (l)PnP-ufl}% J

~

(2) PP EP - ) -

{3) xPrn Px fér all xe&G.
. .

L)

Theorem 2,5. (L. Puchs [5, ch.II, Thm. - 4]).

A’ semigroup P 1is the cone of some partially ordered

group if and only if o

(1) P has an igzéity 1
(2) P is cancellative
. o
(3) xy = 1 implies x =y =1

(4) Px = xP for all - x&P,
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§3 Partially Ordered Primitive “Reqular Semiqroups

l"

Many of the results in this section are modifica-
- tions and extensions of the theory E. A. Belirens developed

for cbmpletely simple semigroups in [2].

-t

The key-observation for the whole theory is the

following: _

Theorem 3.1, (E. A. Behrens [Z;Thm. 1.2]).

If in.a partially ordered semigroup two integral idemp8: '

tents generate the same one-sided ideal, then they are

- LS

equal,

Proof. {loc. cit). Let eH = fH with e and
f integral idemnotents in the aemiqroﬁp H. Then
ewnfacf and £ = ef < e. Hence e n.f, q.e.d.

h ' e

Keeping in mind that the fundamental pefinition

1.2 requires the existence of enough integral idempotents

we get the following: - N

o
N . . (_ x:_"
Corollary 3.2. (E. A. Behrens [2, Thm. 1.§i$r
' - Vi

Let H be aﬁ integrally ordered, primitive reqular semi--
‘group. Then for cach aeéﬁ exist uniquely determined

integr&l idempotents c\;and f gsuch that
a = eaf.

- 10 -
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This corollary .allows us to describe the alqebraic

structure of integrally ordered, primitive regular semi- -

groups more explicitly. The 0-minimal one-sided “ideals are
] in one-to-one correfpondence with the non-zero, integral idompotent%

"E = {eilié.I}. We therefore can use the set I as

index set in the representation of- R as 'matrix\oemiqroup':

~ -

o
. R 5 ~
Theorem 3m§. (E. A. Behrens [2,—Thm; %.5]);

S g

Let R be an inteqrally ordered, primitive reqular semi-
groop with E = '{ein\QI} asg set of non-zero inteqral
idemnotents. Then each comoletely O-Bimole conoonent

of H is isomorohic to a Rees matrix semigroun of the

particular form pﬂGu,Iu, G P ) where Py satisfies

P

i(?) ec, the identity of 6 , D

for all 1ie I, and the sets I, form a partition

{
—~'of 1I.

L3

Proof- Althouqh E A. Behrens proves the’ corres- ’
ponding theorem for complotelv ‘simple semigrouns without .
uainq the matrix reppesentation for that_semiqroup, the

proof for Theorem 3.3 is implicit in his development.

l
h

Dafinition 3.4. A primitive feqular semigroup H

is called square normalized matrix semiqrouo if and only

if H satistfies th conclusion of Theorem 3. 3 The idem-
potents of the particular form e; = (e, i, 1) are

A




; 12
called-idempotents in the diagonal. ' .

Square normalized matrix semigroups behave in many
respects like inverse semigrouns. This is due to the fact
that in these gemiqroups!the inverse of an element can

be defined:

Proposition 3.5. Let H  be a square normalized

matrix semigroup. Let

L . . t

0Odanm eiaej

where ei and 'ej . are idempotents in the diagonal. Then

there exists one and only one element b&R such that

~

ab = ei dnd ba = ei.
) —

3 -~ Proof by an ecasy c§1cu1atidn with the matrix

representation of H, If am= (al: i, 3), then

the identity of the structﬁﬁf group. If x = (xi:‘k, h)

‘i3 another element with said properties, then

-

s

(xlzk,‘h}(al: 1, ) = (x;p,48¢ X, 3) = (e3 3, ) //
1mp1%es k,T j and x) = azlphi-l' A}so
a1 &, D xys 3, R) = fayxys 4, B) = (05 4, 1)

and therefore h = i and 'x, w‘ail. i.0. n. = b, gq.e.d.

le make now the obvious
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DefinitiSﬁ 3.6, For 0 # ae;H,;R a square norm&l- ’
izéd matrix semigroup, define the inverse of a, denoted .
| by a™l, to be the unique element determinéd by Proposi-
f tion 3.5. -
: . . It.is clear that a1 1s.a reqular inverse, i.e.
} ap"la = a and a-iqa_l = a!, and so our definition
| agrees with.the ;sual-éne for inverse semigroups{in case L
~ that ﬁ is mofeovef an inverse s;miqroup,-i.e./a O-disjoiﬂt'
*union of Brandt sgmigroup;; : A |
If aéeiﬂej , then a~le eeri and sg when -

eiHej- is a subqroup.in, H we see that the newly defined-
inverse 6"1 “agrees with the group inverse of a in

i j if and only if ei = ej. -Thgfeforelthe usual rule

for inverses of products does not hold, i.h.'in_general it'
is.not truc’that (ab)”! = b-la-}. Actually this should .
not'come ag a surprise since the correspondiné rule in inverse

-semigroupé depends on the commutativity of the .idempotents

ct. 4, Lem 1.13],)._- . = S ,
’ ¢

Each inteqrally ordered primitive regular semi-
‘qroup H with E = {e Ii eI} .as sot of non-zero
'inteqral idempotents is the 0-dis1oint union of its suhsemi-

groups ei“°j




-
-

P

Each of the‘subsemiqroﬁps eiHej' 1s'either-a group, a

zZero semiqro%gﬁor zero itself, In each case the‘partiai
order defined on H induces a partial order on the subsemi-
group éiﬂej.f:;f eiHQj is a group,dénote With__cij the
Eqne of the. induced order.: We shall see that Sr1eiﬂej,

i.e. the'set of elements in eiBej which are integral

L]

3 '13 the whole semigroup , forms only a subset of Cij

f  which is equal to 'Ci1 if andxgﬁly if e; = ej.. I -
eiHej is a‘iéro semigruop, then all elemeﬁts'ére inteagral
'in elﬂej, but only a subset is intéqral in the whole semi-
group. The ﬁrécise s%étement which is the equivalent of

/

Theorem 2.1 is the following o ) '

' Theorem 3.7. (B. A. Behrens_Lz; Thm. 1.4]),

.Leat H be an inteqrally ordered, primitive reqular semi-

‘qroﬁp and denote with‘ S its subsemiqgroup of inteqral

elements. Then

Snefmj-{aeeﬂmﬂaégﬁeﬂ o e
} = 1%y ;o

Proof. (loc. cit.)

“In the following corollaries let H be an inte-

qtall& ordared, primitive regular semigroup, S its
; : \ .
samicone and ¥ s’{eiliE;I}” the set of nonzero integral
LA . o~
7 idempotents. :

¥ J

—

o~

l*\.
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Corollaxv 3.8, Let eiHej/be a group. Then

bij = eiSe_j -if and only if eﬁ. )

Proéf- Denote with e the identity of ejHey . -

IE ey ".ey then also -

e =e; = ej. If cij = eiSej ’

then

cij ~{ceeiHej|c c e} - .

1 o < = ¢ .
. .{séieiﬂejls - eiej} e Sey

Therxefore eiej = e. From '

!

, € 3 el =ejeie e, < ei j e; ¢ egey

T o e
.
L]

we conclud? -eie,’ei = e and analoqo§sly e_iei.e_j = a
But’ eiH n_ejH # 0  forces (bv Thm. 3.1) ey and ey

-+

' to be equal, q.e.d.

>

cOi-o;larv 39 ejeqey = ey 1f and only if ey = cy.

" Proof. -Since e1ei ¥ 0,-eiHe1 is a subgrouo of
; 2
H. Since ejey = ege 1 i@ y = (6181) o the ldentity of it

must be cqual to ege g Now._apply Corollary 3.8, q. e.d.

Corollarv 3.10. If ‘H -is (strictly) ordered,

then R is an ordered aroup with zero.

‘o

4

Préof. Let e, and ey two integral idempotents

and assume ey g;eﬁ. Then




0 _ | . 16

e; ¢ eiejei geiej < ey.
Hence e,e,e,= €
= i1 i

must be a group with zero,. q._e_.d._

N

and by Corollary 3.9 we conclude‘that H
] R 5

-

. ) o
Remark: T..Saito [B, Thm. 2] comes to .similar

moreover restricted results, even without assuming our fundamen-

tal hypothesis, the' existencé of enouqgh inteqral idem-’ .

‘potents.

Theorem 3.11. (E. A.. Behrens {_2, Thm‘. 1.4‘_])- ) !
¥

et H, S, E be given ngs before. Let a = e-iae_j wit‘ih

4
5
1)
i
|
r
b
L

f

ey ejeE. Then
a &b if and only If ae Sbe

if and onlv if aéeibs : : .

*if and only if ac& Sbs.

Proof: The proof has to be different from tha

one given in {_2] aince the latter one depends on the.

.
non-existence of a zero. - . . ' -

My

. .
If ac SbS, then by the very definition of
1nteqra1 elements we have a & b, 8o the last: statement
implies the first. Clearlv the second a.nd the third one \

both imply the last one.
: ' e

Let then a = ejae ¢ b. Since < 1is compatible-

vith the multiplieation we have also {

I
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ejae, g:eibej.

&

If now eibe? = 0, then the minimality of zero
implies that a = 0 and then cléarly ‘a = OEESbej._
So we may assume eibej # 0, which is onlf
+

possible if a and b lie in the same completely O-simple

——

component of H. So we can solve the_two equations for

xy and x,: _ _ ' -

eiaej - eiﬁfei‘eibej

ei = e be .eszei .

. : . )
In order to prove the implication we have to show that

e;x,e,£5 or equivalently thét' eia‘clei < ey {cf. Theorem.'
g 3.7) ' : . ’

eixlei = ei 1 i-e be 'esze

\ _\.g esbe e xey
=-ey.
So at:b jmplies. the sccond statement. Svmmetricallv
one shows that a & b imnlies the third statement, g.e.d.
~ Thejlast theorem, which is of course a partigl
equivalent to Theorem 2.2, reduces the partial order to
the alljebraic structure of H. We see that elements in
'difgerent completeiy O;Qimble components are not comparable
with eacﬁgother, or conversely given a primitive requ- !

lar senmigroup H,  such that every completely n-gimple

]




v e e

component is integrally ordered, then ‘H itgelf is

integrally ordered by the union of the various partial

I "orders. : .

A similar consequence holds for Brandt semigroups:
here two elements are comparable only if they lie in the.
same subsemiqroup eiHeﬂ;- since the product of different

{(integral) idempotents is always edual to zero.

1

Remark 3.12, At this point we would %}ke to remark

that the analogy between partially ordered groups and

partially ordered primitive reqular semigroupé is not

A

perfect. In groups we have the equivalence (rheorem 2.2)

x <v if and only if. xy “eC.

<
rl -

The correspbndinq statement a < b if and only if
,ab_lé S is true only in one_dlrectiopu' If a'¢cb then

-1 I IEES. (

ab " < bb~
But ab Y€ S does notj imply that a <b. For AN

G6EES, o ac¢bh ‘imolies ab~

- example take a = e;ae; and b = e'iek ¥ 0 with e, ey B.O.

Then a cannot be comparable with. b, 'since a&b

implies
ejae; = a Q;eibei = 0,

/
=1 -1 _
But ab = ejae,- (ege)) e.e‘iﬂel can be chosen to be

‘smaller or equal to ey, the identity of the group:
01301. ‘ ) . - h .
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However the relation between inverses and the

partial order is the same as in groups, i.e. a < b if

and only if a‘1£2 bﬂl. One shows this best by looking

at the matrix representation of H.

s

Theorem 3.13. Let H, S and P be as before.

Let a and b both be different from zero. Then aCb

"if and only if b lg a”l,

T T

Proof: Since a = eiaej and b = ekbeh[ are .

different from zero the rolation a C b can only be-valid

ifa and b 1lie in the same "¢ompletely 0-simole comoon-

ent)and if esey

representation we havq/ Pk 4 0 and Phy £ 0.

d 0 and e e_1 # 0. %p in the matrix

~

Let a = (a;; i, 9) and h = (by; k. h)

(alz i, 1) g;(bl: X, h)

s

(al: i: 1) (e : 'ic i) Q le: i' i)(bl: k,h) {e: j, i
,(al:ii' i)'éf(pikblphjg i, 1).

This‘iﬁequalitv holds now in the groun eiHei and so

we may conclude

-1, -1,-1 -1,

(e 5 4, 1 (o} ke Pt 1 1) € < for 3, D tal’s 1, 1)
epinileghs 4, 0 € apte g 0 a7 o




?

1

= (bJ i hy, k) L
= (e; h, h) tia‘;;b;l{:;i: j, 1) le: X, k)
éfpgj%bilp;i: i, 1) ca™t, g.e.d.

—
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5 54 Directed, Completely O-simple Semigroups

In this section we shall investigate how Theorem
2.3 transfers to the theory of partially ordered,orimitive
reqgular semiqrouns, in other words we examine the connec-
tion between a partial order being directed and the semi-
group H being generated as a "quotient semigroup® by

elements of the semicone 5.

Before going ig\to details we would like to

state a theorem of E. A. Behrens [2] which can easily be

generalized to primitive reqular semigroups.

Theorem 4.1, (E. A. Behrens [_2 , Thn. 1.6]).

Let M be an inteqrally ordered, completely O-simple
semigroup, M = M(G: I, I:; P). Then the partial order of
moreover M induces a 'part:.ial order on the structure group G

—

by x <y if and only if
{(x;: 1, 3) & {y: 1'. 3)

independe”i'xt of the indices i, jéI. Bach element s€S .

can be written as 8 = (slpij: i, 4) for some 16 c,

the cone of G, and indices i, Jel.

Co : - 2] -
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. Défdnition 4.2. Let H, S and E be'as usual.

H,'ia,cali;d a left [right] quotient seﬁiqroupfof S if

and only if each element a€H can be expressed as

a= s it [a = st-]'] with 8, tes.

v

Since irfc’a primitive regular semigroup the diff-
erent, completely OQ-simpie compo;lents multiply %o ze'ro,l
we cannot obtain directedness for the partial c;rder
- unless we restrict oux;selves to complétely O-ginmple

semigroups.

-

Théorem 4}_ Let M = M{G; I, I; P) be’ ‘an‘ inte-

‘quall;r orcieted,completely 0-simple semiqro;lp with’ S as

semicone., The following are equivalent statements:

(1) (M,g) is directed. .

\
(2). The structure group G 1is directed under the induced
partial order and for any two integral ide'mpbtents ey, @ j

there exist inteqgral idempotents e s 8 such that

- eyege, # 0 and exeyey o 0.
(3) 'r'ﬁe structure group G 18 directed under the induced
partial .order and’ M “is a left as well as a right quotient
semigroup of S. '

'~ Proot: (1) impHes (). *

Lot ey and ej ba arbitrary. Since~.M is directed

o
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there exist an element c = ehcek such that
eigc and ejg.c_.

Prom Theorem 3.11 we deduce that there exist s, t€S

such that
e; = e;se, ce ey
ej = ejtehcekej.
Clearly ekei.ﬂ 0 and ekej o 0._ Since e;sey and

ejte, are different from zero it follows from Theorem 3.7

that also e ey vo and. ejeh # 0. "

So in the-matxrix representation we have Py’ Pine
4 . .
pkj and p1h all non-ztro. Hence also e, e ey d 0

and eke1eh d 0O,

Now we have to show that G 'under.the induced

order is directed.

Let eyae; and e;be; be given. There exists c = e ce, f“ ;

N

auch that

ejae; C eycey ,

f:.-'_})/ . .

Multiplying with 91'~¢n both sides we get




ejae; C eje cepey

be.i < eje,ceyey

24

" and the induced partial order on G is directed (Theorem 4.l).

\‘-__

|
!

. ? '
(2) implies (1):

Let (a,; i, §) and- (bl;'_k, h) be given. We want

to construct an element ¢ which is greater or equal

to both of .themr. Choose integral idempotents -

em“ and en' such that

e.iem 9‘.0 a.nd. ey e # 0

"

-

: enej # 0 ‘and eneh# 0.

Since G is directed we can find c¢,&€G such that

1

-1 -1
1 2 Pin®1Pny

<1, -1
62 PymnP1Pnn”

. (Note that all four entries of. tfhe t’su.mdmr:!.ch nmatrix

are unecjual to zero). ' Now we can find elements 84

-1

and t;€C such that

_w

/
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a4y ¥ 51Pin®1Pny
= b1 =I-t]_"‘\’kmclpl'lh'
Hence
(al: i, .= (sy3 i, i) (ey: m, n)yle: 3, )
(by: K, h) = (&)7 K, K)(eys m, m)te: By W)
,and M 1is directed.

(2) implies (3):
We show that ™M is a left quotient semigroup of S. Let
(a; 1, 3} Dbe given. ‘Choose. ey such that ek'ei ¥ 0
and ekej # 0. Then also pk1 # 0  and Pry ¥ 0. Since
G 1s directed we c&n}find 8y tIE C such that

-1 -1
PridBey = 51 &)

_ {Theorem 2.3). Then we have : o : ‘
, ,_1 _
(”L"ki"kv )77 () Oy k., §)
= (pki 11. i, k)(tlnkj, x, §)
d = (ay: 1, J).

So (a1; i j} 1is a 1eft quotient of elements in S.
(alx i, 3) can also be expressed as a right quotient‘

This one shows similarly using the existence of ' ey _uuéh‘

tha? oieh.# 0_-and -ejeh # 0.
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. {3) implies (2):
Let e, and e_1 be given. Pick 0 # a €M such that
a = ejae;. Since a 1s 4 left quotient theTe exist

1

g, t in S such that .

a=o s_lt_= eisml e te,.

3

By Theorem 3.7 we conclude that ey ey ﬁ'o and ‘

ekei # 0. Since a 1is also a right quotieﬁt we get the
-] .

existence of e sguch that e ey £ O andAthgt ejeh ¥ 0, .

But then also ey e ey i 0 an@ ekejeh ¥ O, q.e.d.\-.




§5 Existence of Partial Orders

Every group can be partially jin;egrally) ordered,
at 1east by the identity relation. ‘The situation for .
"primitive requl&r semigroups is not aé satisfactory, indeed
he-"identity relation® being an integral order restricts

the semigroup quite seriously: &

Proposition 5.1. Let H be a primitive regular semi-

group. The identity relatioh together with all pairs of
the form (0, a), ae H, 1is an inteqgral order on H i€

and only if H .is the O0-disjoint union of Brandt semigroups.

‘Proof: If the identity is a partial order then

we have to show that the nroduct of two different idem-dv SN
potents is always equal to zero. Since there are enouqh
integral %dempotents, it is sufficient to show,thia for
integral idémboteﬁts. It e;e j ¥ 0 then 0. ¢ e;e j < ey

and the partial order is not trivial any-more.

Coﬁvé:éely: If H  is the Oediajqini union of.-
Brandt qgmigroups, then the set of all idempotents is
. a subsemigroup. It tollowa irmediately from our next
theoram (5.2) that this snbsemigroup forms a semicone
detormining the identlty relation on ﬂ‘\{ol. q.c. d.

\', ._ -27.—
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So in general the identity is not'aﬁ integral

order, which of course deoends entirely on pefinition

e g

1.2, which requires the existence of enough integral idem-
poients. If we want to findvpértial orders in our sense, then
in view of the special structure of integrally ordered,
primitive regular semigroups (Theorem 3.3), we shodld\gpt

hope to obtain them in other than square normqlized matrix
semiqrbupsf However in that case we Ean prove a theorem
which is very similar to'the.correspondingrone fdr groups
{Theorem 2:4),

=

) .
Theorem 5.2, Let H be a square normalized matrix

semiqroﬁp with E -as family of diagonal idempptents.'
A subgset S of H is théwéubsemiéroup of_inteqral elementsI
with respect to some;iﬁteqral orde; having. E as éet of
integral idempotenté.}f and on{y i s satisfies

‘ "__1 o ' \

(1) SAas " = E .

(2) sSs &S

(3) eaSf = ¢Saf for all aeil and all idempotents

e, feE- | h /\ »

Proof: Let S \49 the semicone with respect to

the integral order & of H., ) -
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. (1) is satisfied: suppose 8 = £7d with 8, te&sS

and both s and t unequal to zero. §rom the uniqueness

of the inverse (Prop. 3;5)'we conclude t = s-;. Since.

1

always s < 88 ~ (Theorem 3.7) and since s -and t

—

R A
are integral we have

8 < B8 2 gt <t

t _c_‘tt:'1 s ts < 8.
Therefore s = t; j.e. 8 is its own inverse. This is only

possible 1f s 1is 4 diagonal idemﬁotent, i.e. s¢E.
- Cd
(2) is satisfied, since S 1is a. subsemigroup.

(3) is satisfied: Let easf be given. Since s

1

is integral we have . . . B

F

easf ¢ eaf.
By Theorem 3.1l we conclude

easf &€ S-eaf < Saf.

\\\xgg;xiplyind'with e from the left we got

eagf € eSaf.

-

Similarily it. follows that eSaf < eaSt.

>

Let now a nubéét S of H with properties .,

(2) and (3) be given. Define a relation & on B by

.

s ' N\
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using property (3).
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a Qbi if and only if a &SbSs.

‘This relation is reflexive since E £S5 by (1). Since

S is a subsemiqrqup (2) the relation is transitive.

. & is antisymmetric:
Let eiaej = aCh = ekbeh and alse b £ a.- The defini-
tion of < implies the existence of s; and ¢t; in & .

i =1, 2; such that

a o 9islekbektlej
b = ekszeiaejpzek.

Then . .

am= eislek3291a81t2ehtlei ,

‘a.a-]'n.e aeseseaetete-a-l
R L N R R

Therefore the element e;8;€,8,e; €S has an inverse in

the subgroup einei! which is the same as the inverse

"in H. This inverse lies in S:

» . -1 -1 -1
eiaejtzehfle_ja Eeia5g1a -eiSae_ja

L = e 1Sad—1 £Ss
“ \'.' )

I




’ | - {: | .;

E By (1) we conclude

o .
ei = eislek- ekszei. )

e

The same argqument for b instead of a yields

ey = ekszeiSeislek. ) ]

That means Fhat the elements e;8,e ~and 8, 8584 are

inverse of each other. By (1) this is only possible if
e = e;5;€) = e 5ye, = ey -
The analogous arqument for t:1 and t, " shows finallly : _

that a = b,

The relation ¢ is compatiblg with the multipl-
jcation: Let a < b = ekbeh and let c = e ce, be

~ arbitrary. a & b implies that

4

‘ac € ShSc - _ . \
- ot Sekaemc \ .- o
v ‘ , \ ' \

- Sekaemc : . \

%Sbcs "
naking .use of (3). The multiplication from the left

is treated analogously.

O




(‘Singe "EEZS, < has enough intvegral idempotent;s.
It remains to ‘show that S 'l c;ons;itutes/'t:he semicone. Tﬁat—
every element in S is integral is obvious"; from the very
definition of the parti.a]j order. Take acH in'tegiral.

Then

- -1%
a = aa .Ia < a’a

a€eSatas =5, a.e.d.

Remark 5.3. Condition (1) of Théorem 5.2 can

be replaced by

’ -

¢
f

(l')'If a,ﬁes and ab = e ¥. 0, e€E, then ‘a= b = e,

Proof: Let the éonditions of Theorem 52 be

e

satisfied. Assume ab = e ¥ 0 for a, b&S. Then we

have in varticular that a€eH and be He. Therefore:

0 ¥ ba m b.e-a = babace.

N
L

s
ba is an idempotent smaller or edqual to the ir}teqral
idempotent e. Since by the proo‘f of'Corollary 3.10 no
two different idempotents are comparable, we conclude
that ba=e¢, i.e. am= _b'l. By ii) of Theorem 52

we have b w a = @, .
We now want to show that condition (1') implies

1 uith s, tes.

condition (1) of Theorep 5.2. Let 8= t~
Then tt'l =.tscE and by (1') we have s = t = 0 &E,

i.0. wa have (1), qg.e.d.
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§6 The Semiafoup of Integral Elements

In this section we characterize those semigrouoé\
which can appear as the subsemiqrouns of inteqral elements
in an integrally ordered, comﬁletely O-Simple semiqroup.
The corresponding theorem in‘the theory of partially
ordered groups (Theorem 2.§i_}s proven by construction of
the group of quotients. Then one shows that the'@o formed
gfoup can bé partially ordered andL}s furthermore directed.
We would 1ike to state and vrove a theorem which is the
complete analoque to that éitﬁation. We qglve neqéssary
and sufficient conditions in order that a semi%rbup con-
stitutes the semicone of a directed, compietely'o-simple

o

semigroup.

Theorem 6.1. The semigroup S is the subsemiqroup

of 1ntegral elements in some directed, 1nteqra11y ordered
completely O-simple semigrour if and only if S sa;isfies
(Al) S has eﬁouqh idemnoteﬁtsf

(AZ);In S. the following cancellation 1gﬁ is valid: Let

e and f be idempotents such tﬁat of ¥ 0, Then
cne-fbf = eae- £t implies fbf = fcf

prqvided exa ¥ 0 and‘ —
caa+fbf = ece*fhf implies c2e @ ec;

. - 33 -
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provided f£bf # O.

(A3) If ab=e=e2# 0 then a=h = e.

(Ad) eaSf = eSaf for all a€S and all idempotents
e, f.

(AS) The idempotents are categorical at zero, i.e.
ef £ 0 and fg # 0 implies ;fq b 0..

7(A6) For each pair of idempotents e and f there
exist idempotents g and h such that geh # 0
and gfh # 0.

: Remark: Conditions (Al)-(A4) reflect very closely

‘tgg?bgggifpondinq conditions for partially ordered gfoups
(Theorem 2.5), which go back to J. von Neumann and

G. Birkhoff (cf. [3, Theorem 12]) who gave similar condi-
tions for “lattice ordered groups. The chﬁnge from the
original svstem is made by replacing the sinqle iaentiéy

of a qfoup.by a family of jdemnotents, which then become
the integral idempotents. In condizion (AS) we followed
the terminology of A. H. Clifford and G. B. Preston’

{cf. [4, Sec. 7.7]).. The categorical behavior at zero

of all eiements plavs ;; essential role in G. Lallement's
and M, Petrich's develooment of matrix decompositions
“bf-aemiqro;pq [5] aﬁa qeneralizations of the Rees-theoren
[6]. condifion (R6) originates of course from the directed-

neds of the démigrdup (Theorem 4.3).
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The proof of the sufficiency of our conditions is
based on the following ideas: The suhsemigqroups of the
form eSe are all cones of partially ordered groups, as
one -can see from (Al)—(hd) letting e = £. (A2) and (A4)
allow us to show that they are all isomorphic to-each
other. The connection between these gpecial subsemigroups
is given by (Ad). (A4} implies in particular that the
semiqroups “off the diagonal™ can be described by semi-
groups "on éﬁé diagonal", namely eSf = eSe. £, thereby
aqiving the idempotents the role of coordinates. 1In a
special case the construction of the sandwich matrix is
fairly direct: Under the agsumption that there exists'aA
A'referenge point'l ey among the idempotents one‘cohposes
tbe already mentioned {somorvhisms in such a way that auto-

mornhisms of else1 result, e.q.:

e]_Sel' + fSf +aSqg * elsel.
These automorohisms of else1 turn out to be inner auto-
morphisms., The elements of elsel determining them
give rise to the ehtries in tho sandwich matrix P, at
which point one has to make use of (AS5). (ﬂﬁ)‘makcs it
possible‘- bv a direcﬁ 1imit construction - to overcomo
the featriction of having a fixed "reference point” and

to prove the general result.
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" broken up into several steps.
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Proof. Let us first prbve the necessity of (Al)-
(A6): let M Dbe a directed, integraliy ordered, completely
0-gimple semigroup with S as semicone and E the inte-

gral idempotents.

Since ™ has{éﬁough inteqral 1démpotents, i.e.
idempotents in S, these idempotents are certéinly enough

for S, i.e. (Al) ig‘satisfied.

(A2) can easily be deduced from the mafrix repres-
entation of M: if e = (e;: 4, 4) and’ f = (e); 3, I
then'\éf A0 impliés Qoii # 0. Let now eae-fbf = eae- fcf.

In the matrix renresentation this looks like

(al: 1;' i) (bl: 'jf 1) = (al: i, 1) (cl’ j; j)
(alpijbl:‘i; j)'f (alpijcl: i, 1).

We can conclude that bltulc1 in the structure group and -

henca fbf = €cf. .

-

o
)

(A3) is condition (1') of remark 5.3 .

_ . ) r

& < ' ,
(A4) is (3) of Theorem 5.2 restricted to elements of 'S.
Since completely 0-simple semiqrouns are catégorical at

zaro, (AS5) is satisfied and we get (A6) by Theorem 4.3. .

The proof of sufficiency as may beé expected 1is

e

7
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E n'{eiliE:I} will denote the set of;nou—zerO'idempotents
in S. In order to save indices we shall index ﬁy I

rather than by E.

6.2 Step 1, S = \ -‘ eiSe .

i,je1 ] -

Proof: Immediate from (Al).

_ 6.3 Step 2. Each of the semigroups eiSai has |
the form ' | // | i
eiSej = eiSei-e_j & ei-ejSej.

Proof by (Ad}:

eiSejn ei'eis'ej o ei-Sei.ej

eiSej = ei-Sej.ej ; ei-ejS-ej.

Corollary 6.4. Se

ey

j = 0 if and only if

eiej = 0,

6.5 Step 3. S is the zero-disjoint union of .’ SO

the  subsemigroups eiSej.

" proof: Let 0 ¢§am= eiaéj = e ae,. "Then by

Step 2 we can find an element a* such that
]
eiaej = ei.eja °j'

Then

eioeja'ej = ekeise.ja'ej = eiekei.eja'eSJ
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Since ejg'ej' is unequal to zero, (A2) allows us to
conclude,that
. . f‘ \,
€5 = ©31%%; T %1% %%y /

By <A3) we get

ei = eiek = ekei

and again‘by (A3): e; = e similarly we show 'ej = e .

which then finishes the proof of step 3.

Definition 6.6. For each pair of idempotents

ey ej‘ such tha; eiej # 0 define mappinas

9i4° e,;Se; — e,jSej and
fji= ejSej ——%_eiSéi ’by | | :
e veje, = eiejg'ij (a)ej for .aeéisei , ' .
ee jbe-j = e, ji(b)ei i for b&ej j

Our definition makes sense because Step 2 (6.3) implies
that. 934 and fji exist and the cancellation lawr(AZ)
implies that they bath are well defined, i e. they are mappings.
Because of (A2) they are also one-tp-ona and it follows from
Step 2 (6.3) that g4 and fjl are onto gaps.‘ Purther~

ﬁore they are homomo;phisms.




eiejqij(a)qij(?)ej = eiejgiila)éj ejgij(b)eg  ‘ g=
= ejaey ejqij(b)ej
- eiabei ej
= eiejqij(ab)ejf
Again (A2) implies that |
qij(ab) = qij(a)qii(b).

Similarly we show fji is an homomorphism. So in all
we have q11 and fji to be isbmorphismg. Ve note the

following

| Lerma 6.7. If ejey # 0 then £41944 13/;hé//
identity on eiéei, aijfji is the identity on ejSej.h

-,

6.8 Step 4. All subsemiqrouns of the form aiSei

L

are isombrohic to each other.

Proof: Let e, and ey be given. By (A6) there

exists an idempotent e, suc§ that ey ey ¢ 0 and ekejA# 0.
Then

qkjfik: eiSoi.$ ejSei.

is an isomornhism from eiSei .onto ejSej, which oroves

cep 4.
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Je now would like to prove the theorem for a

. I
special case:

6.9 Step :5. If there éxists a reference point

among the idempotents, i.e. an. idempotent elé;E' such
iyhat e ey # 0 for all _eie:E, then S can be embedded
into M(Gl: I, I; P)  where thé structure group -Gll

'{s the quotient group over e,Se, ~ {0}.

Proof: The proof is based on the fact that if 4
one composes the 934 and f,_,’1 in such a way that an

automorphism of eISel_ results then this automorphism \

L4

is actually an inner automorphism giving rise to the N

sandwich matrix P. _ |

0

Definition 6.10. Define elements py,, €S = e,Sey
3

for each triple (i, 3, k)€ I~ as follows: if
eie_,ek = 0 then put pijk = 0, if eie_iek # 0 then pijk,
is determined by
. egegey =€)y (Pygp)e o
Remark: the element: pijk exists because of

Step 2 (6.3) and it is unique because of (A2) and Cor.

6.4. We note that

1P113%1%5 = .%1%4%

and that

P141 =% ¥ Puric
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- Lemma 6.11. plij = 0 if and ohly if eiej =9,

Proof: AF this point (AS5) becomes essential .If
e;ey = 0, then eleie1 = 0 and so is Pyj3e If

ei?ﬁ ¥ 0, then c«,s]‘:eir-z_i # 0- since elei'ﬂ O.IVHence

Las

plij # 0, qte.d,

A

- 7 -
Lerma 6.12. If eje, # 0, then for all b, € S,,

b

fi1%ki%1k (P2 Piik ™ Prik C1° -

Proof:

e1P11xP191% = ©1P1ik fr1%1k P1) S1%
] e3P13x%1 %k “1x(P1? k.
eieiek a1k (Py) €

ejey Fy391x (Py) eiék
91.f¥1fk1q1k(b1,.eleiek

ey £33 ®1? P1ax®1%-

—_—

Now {A2) implies the identity, g.e.d. . ' ﬁﬁ

T

temma 6.13., If eiejck d 0 then

PiyxPrik = P114P1ik°
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Proof: . I
©1P114P19x%1% 7 elplijelejekr
= eleiejek
;\elei 913 (Py4x) €1
B - e; £51910(P54x) €1°1%
= ©1P14x®1%1%

. = €3P44xP11x%1%"
I‘I\qain'(}u) implies the formula,:q.e.d.
Remark: The. idea oF regolving multiple‘products
of idempotents in the indicated way goes back to
E. A. Beﬁrens [2], llthopthhe uses commutativity quite

i

heavily. N /

Having thus removed the te;hnicalipies wa proceed
_as follows:. B Y _ 'i' \ | J
Since e ey 4 0 for alllidempotents Jei, qy4 s defined
for all indices i&I. An arbitrarv e}eﬂant eia‘ej in
S can be written in the form .eia'elej .By Step 2 (6.3).
Since_'q11 is an isomorphism we can exnfgas this elemqht'

as

eiqli(al)eiej
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f’\

for a uniquely determined a,¢& Sl'

Al =

31\:{01 satisfies the conéitiéns of Theorem 2.5.
Thérefore we canyéonstruct Gl the gqroup with zero of_
quotients of Sl‘\~{0}. Ve claim that S can be embedded into
M = M(Gy: I, I; P ) where the entries of the qandwichnmtfyk
are qiven bv - | o | PR

P14 =p 144 for all i, je 1.

Defiﬁe'a map §,: S+ M Dby

§, legay (a)e ey S (apgyr 4o 9 AF egey 4 0
and ' '

3 (6) = 0. ‘
' | vl

It folléws from- - the ;ancellation laws in; Si and S that

-

Ql '{s an one-to-one mapping. We have to show that it is
_ 2 _

~

Let a, beS with ' LI

a homomornhism.

aw ei?ii(al)eiej and - b = ekqlk(bl)ekeh . : -
Wwe can exclude the trivial case where one_of the elements
is equal to zeroﬂ as well as the case where &,¢ = 0, be—
, - 0= .11, with
cause then also Djk 0 P4k hy Lerma 6.11 1-
regard to (AS) and Corollary 6.4 we may therefore agsume

: \
that °1ejek ¢ 0.
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The following calculations will invplve inverses
of elements in Sl‘ This presents no probiem, since we
can always calculate in G, knowing that the result will

end up in Sl' v

5, ()3 (B) = (aypygys Ls ) By ko W)

«

= (2;9y44P) 4xP1P1xn’ 1o D) S

ab =‘eiqli(al)eiej;?kqlk(bl)ekeh
_ 3 3\

e;dy; (a;Py 408521k (P1) %x®h

¢; 933 (@105 4) i1k Pr) 25%Cn

eiqli{alnijk FLUNCRITIC

- e,q {g O; (1.0 :.D 71 & e.e e (iemma 6.12)
1911121°14%7214%°1P13k § ik h .

e,q A.D, ,.D | b D‘i n e,o -

19111 21°14xP1ix "1P11k "ikh i%h

= e {a Py D iDyD - i e-e (Iémma 6 13)

19141211147 19%1P1khC14R § TiTh =it

. o
Therefore

. L _
3) (ab) = (219 44P) 4k 1P 1khPLiRP 1N i, h
= §,(a)8, (b),

which finally proves Step-S.
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"~ 6.14 Step 6., Under the hypothesis of step 5

P

(6.9) él(S) is the semicone for a directed,integfal

order -of M(Glf I, I; P).

Proof: -We show that the conditions of Theorem 5.2

are satisfied.

(1') of Remark 5.3 is satisfied becaunse it is
the exact equivalent of (A3} and because -2 is one-to-
one. Equally trivially (2) is satisfied, since éi(S)

is a subsemiaroup.

1}

_re(3): We have to show that if

.Ql(ei)' a, 91(3): él(e‘\, . ‘_

arc given éhen there exists an element é(t) such that

§y leg)as) (a1 leg) = &) (e g (B1ad (ey).

Using the matrix representation we can arque

(el:_i, d)(alz k.-h)(slpmg?”ﬁ. n)}elg 5. 3)
= (P{}®1°1n%1Prn®ny’ 10 P - |
- Ft1°1k°1“hj’ i, g ‘ ' ~

= teyr 1 D (ypyer 1o W (ap ke R (e, 30 3D

Ekciudinﬂ the trivial case where the whole product ;

|
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collapses, We can always find an element tleG1 like

indicated, since Gl is a.group. We have to show that

tle_ Slz-

<

In the next calculation we sha}l use the fact that Sl

-r

is the cope of Gl' i.e. Slx1 =-x151 for all xle:Sl,

and lemma 6.13:

_ ' -1
1 ® P4y?1PhnS1Pmn"nd (P1x21%h3

- -1
81711 PhmPmn®nd (Pix*1%h3 )

] - -1
817111 P1hmP1mnC) n‘i}pikalplﬂ )

!y . =1
81P1 1x®1PhmnPhn 4Prh3 Pik21Phy)

N

-1
€ 51°31%151Ph4 P1x21Phy’
£S a (P,.2:P )-1 = S, h
£51Pix?1Pny ‘PikT1 ny Nt Ban ‘
The .partial order is directed chause of the'fbllowinq'

reason (using Theorem 4.1)2

By: 1,1 Sbyi 1D
(ay7 1, 1) = (55 1, iy, 1, 1)

b

L R i |

b

A

S s |
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. L g
L]

where '¢ denotes the partial order on G1 defined by
the cone S,. < isa clearly directed since G, is the quotient

qgroup of Sl' The rest follows from (A6) and Theorem 4.3, °

. r~
and Step 6 has been proven.

<

6.15 Step 7. S without the restriction of @ ¢

Step 5 (6.9) can be embedded into a completely 0-simple

.

semiqgroup.

broof: Por each idémpotent’ e & E denote by

S(ei) the following subsemiqgroup of S:

Sley) = {ekaeh|ei¢k # 0 and eje # 0,'36'5}.

.‘J
Denote by .

"‘_/

Mey) = MG I(i),I(i): pi), | , o

the completely 0- sinple semigroup constructed over

S(ei) bv'stcp S (6.9). We shall show that S can he

embedded into the direct limit of th? H(ei) in the

following mnnner- T )
If 0@ j # 0 then e1ek # 0 imolies also e,e, ¥ 0

i.e. in other words. S(e_‘) € Sley). 'l‘herefore also the
lcomuletely o—uimnle semiaroups should be aomohow contained

in each other.. Indeed ua can defino certain embeddings

of M(oj) into H(ei) which natisfy the usual univursalitv

o
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property.- The complétély 0-simple semigroup to be con-

\
structed is then the direct limit of this system.

In the followina we shall follow the terminology '
of G. Gratzer [_6, § 21]. We now construct a direct

family of completely 0-simple semiqroups as follows:

-~

‘The directed pi‘eordered set is aiven by (E, %)

where "< is defined by
5 ey if and only if ejey # 0.
The relation (is a oreorderinq, because e £ 0 ‘ i.é.

<
eiw

From (AS) and Corollary 6.4 we deduce that e ey # 0,

e_li“ and}if ek ey £ ey then ejey # 0 and e_j k # 0.

il.e. e < ey. The preordering ¢ is directed because of
(AG) : let ei' ej be arbitrary: Then there exist ekez
- with eke 40 and eyey ¥ 0, i.e. e; L € anq ey < €.

" The semigrouns in bthe direct family of semiqroups }
are the ,tx(ei; = M(Gq: T(4), T(1); P p{8)) uhere the entries
have the fOllow,in’a meaning: |
Gy :I.f; the qroup with zero consistinq of the auotj.cnts

of eiSe { in the same way as G]. was the group with zero %

. of quotients of S, in gtep 5.

I -'{mlelleiem 4 0}).
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(1)

p) . 13y x 1d) » 6 where p'D (1)

(m, n) = P

™
is defined by :

eje e =€ p(i)e e_.
m n ~1¥mn i™n
It should be clear that this notatibn is nothing
but a slicht generalization of the notation used in
step 5 (6.9), confer in particular pef. 6.10. We have
to keep in mind that in the general case a fixed reference
point for all jdempotents (like the idempotent e, in
_Step 5) is missina and that we construct M(ei) - accordinq
to Step 5 - with e; as reference point for the idem-
~potents in TI(i). It wili he shown in the sequel that
there exists’a definite connection between the differ-
ent sandwich matrices,l.e. between e.q. péi) and pég).
This relationship enables us to show that M(e;) and

Hlej) are isomorphic "on their intersection™ and thus

to construct-the direct ;imit.

1f eﬁ_g’ei, iQeL eiej ¥ 0, wa want to define an
ona-to-one homomorphism °1i: M(ei) - M(ei). For this
task [4, Cor. 3.12)‘q1ves the technical means: Since we
do not want to permute the indices of the completely
O-Bimble semiqrouns, it is by the quoted theorem enough

to qive an isomorphism « from Gy to Gy and elements




Vv,

o uné'Gi such that

(6.16) e(pid)y =y o)y

for all indices m, neIf{j) = I(i). We claim that

6.16 is satisfied if we take
K = fji

the extension of fji (cf. Def. 6.6) to the quotient
groups and . - '

1

= pgi) and. u_ = v;;. | ‘

r

With our choice weAhave

(-1 g, (5)

¢ji{(aj7 m:n)} ='(Djm ji(aj) p H m' n)

and ¢,. the identity. We have to show that (6.16) holds,

i.e.
(j (i} (1) _(1)-1
11 ; p1m mn Pin
or
(1) (1) (L), (1)
ji(p ) p1n pjm “mn

This we show by the old technique:

s . ’ ’ - ' . ~




(3)y 5,

ey ji(p pjn i€p =
= ey fji(ﬁég)) eiejen | {def. of pgi))
= eje m LR  (def. of f,)
3 eieﬁemeg ) (dek. of el
= eip;i) 1%m€n o é%:jgff..of P;;))
= e,p g;)péi)eien  (def. of pi).

.~ As usual (A2) gives the desired equality.

We furthermore have to show that in case

e .Ley.Leyy i.e. eje e, # 0, we have

S TR TAs Sh .

In order to prove this we have to ghow two lemmata: e

N\ , -s ‘ ' : -
(i) -1

Lemma 6.17.

Proof: The equation is equivalent to

_),
51 k1q1k‘ai Pik 21P4k

for tﬁe element aieieisei such tﬁat qik(ai) = a. The
latter equation follows immediately from Lemma 6.12

keeping in mind that o, rather than e, is the reference

(1)

point, i.e. we have Pyx instead of P14k’ q.e.q.

o
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- Lemma 6.18. p;i)pé;) péi)) péé)

~  Proof:

N SIS
€;Pyx Pkm ©1%n’-9-2-9-

Now for the proof that ¢ki = °ji¢kj:

¢‘ji¢kj (ak' m, n)

4

1)-1 f* (ak) Prn ¢ e n)

= ¢'ji (9

~./

- (p;;"? fjitoé%) ey fiﬁ(ak) £y, 3t o‘i’. m, B
1)- -1- - ' '”
- o)1 £ i ;i)fii(ak) iy fjito{;’) o{ll: nm)

by lemma 6.17

= pk;’ Lo tay) p{i’: m, n) by lemma 6.18

" oki (‘Dk}_m, n) - ::
%o have therefore shown that the semigroups

H(ei) to?ether with the maps °ij if ‘eiej ¥-0 !orm'

T
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a directed family of semigroﬁps. Denote with M " the

direct 1imit of this svstem and with

™~

¢iw= M(ei)¢+ M

"the resulting limit maps.

-
(8

I+ is advantageous to describe the underlying
set of M. It is the d{sjoint union of the underlying
sets of the H(ei) modulo an equivalence relatidn

p which is defined as follows:
(ai: m, n)PFbj: a, r)

if and only if for some ey with é’ice1 A 0 -and -

ekej ¥ 0 we have . T
¢i£{(di: m, n)} = ¢jk{‘b1: Q. r,}ll

where the index 1 in the first component of a triple

means that the whole element is in Mleg).
1

" Since the S do not chaﬁqe the indices we get

mm=g and n = r. Purthermore we have

{x) (x)-1 g, (x)

(x)-1 -

or in particular as -

Pormula 6.19:

| - . X, "

'.-f . o
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Denote the equivalence class of the element
(ai: m, n} by [ai: m,~ﬂ]. .The multiplication between
two equivalence classes &ai: m, n] and lbj: q., r] ‘is
defined as follows: T ake e, with ey ey # 0 and ekej # 0

and elements ay and bk 'sucﬁ‘that
\ak: m, n} = {ai: m, n] and 5
[bk: qa, r] = [bj: a, r}. ’

g kY, ., L
Then the product is defined as {aanq by: m, %]. _

o

Now we can show that ™ iéicomnletely N-simole:
let a, b be arbitrarv non-zero elements in 4. By the

previous remark we may assume that

b anwm= [ak: m, ﬁ] land b = [bk: a, ;]. )

e

Sincée “(ek) ‘is cbmpletely N-simole there exist elements -

X, ¥ M(ek) such that

-
t

. x(a,; m, nly = (by: a,’ r) € "le,). '

4 o
-

Hence
B

Oy (X) -[_ak:'m_.'n]i?k_'(v) = [hk' q, r] €M

. and M is 0-simple.
’ ]
Let £, g be idempotents in M guch that
fg = qf;-\q. Again this gives r%fe to an equivalent.

statement in one of the H(ek). Keeping in mind that




H-\\¢km is a one-to-one mapping we conclude that g = 0

or f = q. So ™M 1is completely O-simple.

‘Denote by | 0y Sley) ~ Mle;) the embedding

v

constructed in step 5 (6.9). Define a map

-¢: g + M as follows =

Iy

l ' .
¢(eiaej) =I¢1¢Qi(e1aéj) for ejaey # 0 and

v(0) = 0,
iie claim that v 1is a homomoxrphism:
Let ejaje;ey and ekbkek'eh represent two different,

arbitrary.elemeﬁts in S with aié-eiSei and

bké;ekSek. Then——

w(eiaieiej.ekhkekeh)

= 04,00 (ejazeqey) -0y le WPren) !
. (1) . - ‘ }

(1)

= {(aiz i, \lf(fki(bk) (i). k, h)} (note: Pyy -'ei)

(1) W,
- {(aip fki(bk) : 1, h)}

!

L 1°jk | ki‘bk’ oap ¢ 1o h]
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¢(eiaieiej) 6(ekbke£eh) _ . /
JERERI LSRR

=[ agr i 3] okt ™ £y ) olt): k. h] by (6.19)

(1) (1)
= ‘.aipjk £i4 (by) Py s Lo h]

v 1is furthermore one-to-one: 1if

¢(eiaieiei) =.¢(ekbkekeh)
theﬁ [ai: i, j] = Lbk’ k, ﬁ]. This implies first of all

that i =k and § =h and since -01 and ¢i° are both

one-to- we -~ a, = h_.
o one qetr i hk

So S 1is actually embedded into ™. We proceed
to Qhow that ©(S) is the semicone of a directed integral
order of ™ havinq' $(F) as integral jdemootents. As
usual we verify conditions (1), (2) and (3) of theorem 5.2.

Por (1') and (2) there is nothing to show.

Let then ©{e)av(s)¥(f) be given. This has

the form _ . ~

[ei’ i, 1]‘:11:’ m,hn]i[sh: h, l} [;j" 3 j] K

It ey is such that eyey ﬁ‘o, elek-f 0, e, # 0 and

¢yoy ¥ 0, we have in M(el):

Ed




\/ 5
, T, L .
(f-’-l: i, i) (Pkm f* (ak)pkn s m, n)- . \

. ‘ :
-1 (1) (1)
Since (phh hltsh)phL ; h, L) = (fhl(sh)phl : h, 1) -

() (S(el)) and since in H(é ) we have condition (3)
gatisfied we can find an element t = eigli(tl)eie e;S(el)Cis 

such that

L]

~lg (1)

(e ; i i) (Pkm kl(ak)pkn 7 my, n)-

NTSCRINLEE WA NCIER It

(1) ' .
= (eys i, 1) (tlpi(_l): 1, m) By, -1£;1(ak)p)£i): m, .n)

- '(011 j:j)
_ Applying the homomorphism ¢1¢;?é 1imit map, on this eguation
we get: ) ;

I

<r

9 (e)ad (s) ¥ (£) =
- v o) [tlp&) i, m| av(®)
wo have to show that v(t) = [tl p)s g, m| or, what

ig the same, that (gy5(ty)s i.mlf(tlpg’: i,m). This

fbllows frdm Formula 6.19 as follows:
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~

(). ) ).

-1
(tyP5m 7 i,m) = (pii filgli(tl)Pim ;: i, m)p

~

so we have indeed that

»

ole)ay (s) 9 (£) = ¥le)d(e)av(f).

Tt remains to show that the integral order on M {(now
defined) is directed. The usual pattern again applies:
given two elements, find a semiéfoup M(ek) in which both
of them are contained. 1In this semigroup M(ek) there
exists an element greater or equal t%an bath eieménts; 80
the image under o, of this element will be‘greater or

equal than both the original elements, g.e.d. . T




.

1
)

§7 The Semiprime Case and the Case without Zero

-

The whole theory so far developed becomes parti-
cdlarly satisfying for semiprime semiqroups and semiqroups

without a zero.

1f one defines a gemiprime semigroup as'a semi-

qroup having no nilpotent elements, then a semiprime

primitive regular semigroup can be represented as a

'0-disjoint union of completelv 0-simple aemiqroups which

have no zero-divisors, i.e. each component is a completely
si@ple semiqroup with a zero adioint to it. This property
re%lects {tgelf in the sandwich matrix by the fact that
theﬁ all entries a;eiiifferent from zero. Let P,y be

arbitrary. Since (e, i, X) ¥ 0 we must have i, A) =

(0,4
(e, 1, 1) $ 0, 80 Dy ¥ 0. This strona res 'riction on

-

e

the sandwichmatrix, which qoverns the behavi r of the

iﬂempotents, allows us to vprove
: .

Theorem 7.1. The semiorime gemiqroup S i3 the

Bﬁbsemiqroup of the inteqral elements of an integrally
ordered, semiprime, primitive :egular semigroup if and

only if S satisfies the following conditions:

- 59 -

~
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M ’ ")

(Bl) S has enough idempotents. f

(B2):7pr each“{i:mpotent e the set eSex{0} 1is a
cancellati gsubsemigroup.
(83) Tf ab=e=e’ A0 then a=b=e

" (B4) eaSf = eSaf for all ae€sS and all idempotents

A

e and £

>

(BS)/The idempotents are cateqgorical at zero.
_ l PR )

proof: Since (B1) - '1BS) is a weaker-system than
tAl) - (AS5) of Theorem 6.1;.neceé§£ty is clear. 1In orde;
to gﬁow the sufficiency of the éonditions we make two
short remafks be forehand: L

(1) ef # 0 if and only if fe # 0: if ef #7
then, since S |is semiprimeralso efef = (ef)z.# 0. Hence
-fe # 0. .In particular we have efe o B wheneﬁer ef ¥ 0.'

(2) (a2) of Theorem 6.1 is sptisfied: let ./
af ¥ 0 be given and let .eae fbf = eueifcf. By multipli-

\\_‘/ﬁ T

cation from ghe right with e we get
eae-efbfel- eae~éfcfe.
since eSe 1is cancoll#tivﬁ (82) we get
efbfe = efcfe
fc!-fbf-fef--‘fef-fcf-tef

e = fcf.




Similarly we shoﬁ<that {f eae-fbf = ece-fbf then eae = ece.

Define a.relation Q on the set of idempotents

eier ;f and only if eiej'# 0. ™~

In:the gemiprime case this is an equivalence relation
since it is clearly reflexive and by remark (1) also
symmetric. ’ |

Q s ﬁransitive' if eiQe_erk then by remark (1) we
have ejey #0 and ejek # 0. Now (R5) 1mp11es that
ejeyey # 0 and by Corollarv 6.4, which clearly can be .
deduced in this context, we have eiek $ 0.

In each of -the equivalence qldsses of Q we
havé the followina situﬁtion: 1t 5;; 1§ suc; a class
and eie.el an arbibrarv element in there, t‘hen\e1 ey
{.e. the hypothesis of Steo 5 (6.9) is satisfied and

\7

wo can embed B , R
S(e,) = {eis;a_l|e_1ei ¥ 0 and eye, # 0s 8 € S}
- {eis°j|ai' e € 8y 8 €S}
into M‘fl). Defining then

H(oi)M(ej) -0 1if EI o a4

we get the theorem, q.c.d.
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.f/‘
We achieve the best analogy to the theory of
partially ordered groups in the case of completely

simple semiaroups:

. Theorem 7.2. The semigroup ‘S -is the sub-

semiqgroup of the integral elements of some inteqrally
ordered completely simple semiqroup if and only if S

satisfies the\fo1lowinq conditions:

{Cl) There exist enough idémootepts

(C2) For each idempgtent e .the subsemiqrqup eSe 1is
canceliative. | o

(©3) if 4= e el_then a=bm=e

(C4) eaSf = eSaf Lor all ac¢$S and all idempotents

e and £,

Proof: The .proof follows immediately from

the gemiprime case.
!

o
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