Please use this identifier to cite or link to this item:
http://hdl.handle.net/11375/31342
Title: | Convolutional variational autoencoders for secure lossy image compression in remote sensing |
Authors: | Giuliano A Gadsden SA Hilal W Yawney J |
Department: | Mechanical Engineering |
Keywords: | 4006 Communications Engineering;40 Engineering;4009 Electronics, Sensors and Digital Hardware |
Publication Date: | 6-Jun-2024 |
Publisher: | SPIE, the international society for optics and photonics |
Abstract: | The volume of remote sensing data is experiencing rapid growth, primarily due to the plethora of space and air platforms equipped with an array of sensors. Due to limited hardware and battery constraints the data is transmitted back to Earth for processing. The large amounts of data along with security concerns call for new compression and encryption techniques capable of preserving reconstruction quality while minimizing the transmission cost of this data back to Earth. This study investigates image compression based on convolutional variational autoencoders (CVAE), which are capable of substantially reducing the volume of transmitted data while guaranteeing secure lossy image reconstruction. CVAEs have been demonstrated to outperform conventional compression methods such as JPEG2000 by a substantial margin on compression benchmark datasets. The proposed model draws on the strength of the CVAE's capability to abstract data into highly insightful latent spaces, and combining it with the utilization of an entropy bottleneck is capable of finding an optimal balance between compressibility and reconstruction quality. The balance is reached by optimizing over a composite loss function that represents the rate-distortion curve. |
URI: | http://hdl.handle.net/11375/31342 |
metadata.dc.identifier.doi: | https://doi.org/10.1117/12.3013451 |
ISBN: | 978-1-5106-7442-4 |
ISSN: | 0277-786X 1996-756X |
Appears in Collections: | Mechanical Engineering Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
179-130620H.pdf | Published version | 4.35 MB | Adobe PDF | View/Open |
Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.