Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/30903
Title: Exploring Ion Dynamics in Solid-State Electrolytes of Lithium- and Sodium-Ion Batteries through Solid-State Nuclear Magnetic Resonance
Authors: Cui, Mengyang
Advisor: Goward, Gillian
Department: Chemistry and Chemical Biology
Keywords: Lithium-Ion Batteries;Solid-State NMR;Solid-State Electrolytes;Ion Dynamics;Sodium-Ion Conductor;NMR Relaxometry;NMR Diffusometry;MRI
Publication Date: 2025
Abstract: This body of work applies various solid-state nuclear magnetic resonance (ssNMR) techniques to study the ion transport phenomena within different solid-state electrolytes (SSEs) for energy storage devices. The investigation covers length scales ranging from atomic-level ion hopping to microscale ion diffusion, extending further to macroscopic electrode-electrolyte interfacial stability. 7Li NMR diffusometry was employed to probe the Li+ transport in polymer electrolytes upon structural modifications. Additionally, pressure-treated crystalline electrolytes were analyzed with diffusometry and relaxometry, to explore how mechanical stress impacts ion transport as a result of micromorphological changes of the crystalline materials. Furthermore, with the combination of ssNMR and computational methods, the crystallographic Na+ site exchange mechanism in a novel crystalline sodium ion conductor was also explored. Finally, in situ 7Li ssNMR spectroscopy and magnetic resonance imaging (MRI) were employed to correlate stack pressure with metallic Li microstructures formed at the Li-electrolyte interface in a hybrid electrolyte. In summary, the work presented in this thesis demonstrates the robustness of ssNMR in delivering detailed insights into ion dynamics and molecular structures, from molecular scale to macroscopic interface stability. It provides valuable information for battery research, enhancing our understanding of material properties and performance in energy storage applications.
URI: http://hdl.handle.net/11375/30903
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Cui_Mengyang_202501_PhD.pdf
Open Access
7.03 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue