Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/30499
Title: Extended Target Tracking of Convex Polytope Shapes with Maneuvers and Clutter
Other Titles: Extended Target Tracking of Convex Polytope Shapes
Authors: Mannari, Prabhanjan
Advisor: Thiagalingam, Kirubarajan
Ratnasingham, Tharmarasa
Keywords: Extended Target;Convex Hull;Self Occlusion;Expectation Maximization;Probabilistic Multiple Hypotheses Tracker
Publication Date: 2024
Abstract: High resolution sensors such as automotive radar and LiDAR have become prevalent in target tracking applications in recent times. Data from such sensors demands extended target tracking in which, the shape of the target is to be estimated along with the kinematics. Several applications benefit from extended target tracking, for example, autonomous vehicles and robotics. This thesis proposes a different approach to extended target tracking compared to existing literature. Instead of a single shape descriptor to describe the entire target shape, different parts of the extended target are assumed to be distinct targets constrained by the target rigid body shape. This formulation is able to handle issues such as self-occlusion and clutter which, are not addressed sufficiently in literature. Firstly, a framework for extended target tracking is developed based on the formulation proposed. Using 2D convex hull as a shape descriptor, an algorithm to track 2D convex polytope shaped targets is developed. Further, the point target Probabilistic Multiple Hypotheses Tracker (PMHT) is modified to derive an extended target PMHT (ET-PMHT) equations to track 3D convex polytope shapes, using a Delaunay triangulation to describe the shape. Finally, the approach is extended to handle target maneuvers, as well as, clutter and measurements from the interior of the target. In all three cases, the issue of self-occlusion is considered and the algorithms are still able to effectively capture the target shape. Since the true target center may not be observable, the shape descriptor abandons the use of target center in the state, and the shape is described by its boundary alone. The shape descriptors also support addition and deletion of faces, which is useful for handling newly visible parts of the target and clutter, respectively. The algorithms proposed have been compared with the existing literature for various scenarios, and it is seen that the proposed algorithms outperform, especially in the presence of self-occlusion.
URI: http://hdl.handle.net/11375/30499
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
mannari_prabhanjan_202312_PhD.pdf
Access is allowed from: 2024-03-31
12.55 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue