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Abstract

High resolution sensors such as automotive radar and LiDAR have become preva-

lent in target tracking applications in recent times. Data from such sensors de-

mands extended target tracking in which, the shape of the target is to be estimated

along with the kinematics. Several applications benefit from extended target track-

ing, for example, autonomous vehicles and robotics.

This thesis proposes a different approach to extended target tracking compared

to existing literature. Instead of a single shape descriptor to describe the entire

target shape, different parts of the extended target are assumed to be distinct

targets constrained by the target rigid body shape. This formulation is able to

handle issues such as self-occlusion and clutter which, are not addressed sufficiently

in literature.

Firstly, a framework for extended target tracking is developed based on the

formulation proposed. Using 2D convex hull as a shape descriptor, an algorithm

to track 2D convex polytope shaped targets is developed. Further, the point

target Probabilistic Multiple Hypotheses Tracker (PMHT) is modified to derive

an extended target PMHT (ET-PMHT) equations to track 3D convex polytope

shapes, using a Delaunay triangulation to describe the shape. Finally, the approach

is extended to handle target maneuvers, as well as, clutter and measurements from

the interior of the target.

In all three cases, the issue of self-occlusion is considered and the algorithms are
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still able to effectively capture the target shape. Since the true target center may

not be observable, the shape descriptor abandons the use of target center in the

state, and the shape is described by its boundary alone. The shape descriptors also

support addition and deletion of faces, which is useful for handling newly visible

parts of the target and clutter, respectively.

The algorithms proposed have been compared with the existing literature for

various scenarios, and it is seen that the proposed algorithms outperform, espe-

cially in the presence of self-occlusion.
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Chapter 1

Introduction

1.1 A brief review of Extended Target Tracking

Traditional target tracking algorithms assume point targets and a vast amount

of literature exists for point multitarget tracking, which includes filtering, data

association, validation, track initialization and track management. Point targets

are those whose extent occupies at most a single resolution cell of the sensor, and

hence each target can generate at most a single measurement per frame. Recently,

high resolution sensors such as automotive radar and LiDAR (Light Detection and

Ranging) have become more prevalent in target tracking applications. The targets

of interest for such sensors occupy multiple sensor resolution cells and can generate

multiple measurements in a single frame. Such targets are termed as extended

targets and have a finite extent compared to the sensor resolution cell as opposed

to point targets that have zero extent. An example of measurements generated by

an extended target is given in Figure 1.1. The measurements from an extended

target contain information about the shape of the target, and hence the shape as

1
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well as the kinematics of the target are to be estimated using measurements over

time. The size of the resolution cells of the sensor can vary with the distance from

the sensor. The same target can be considered as a point target or an extended

target depending on the sensor-target geometry.

Figure 1.1: Example of measurements from an extended tar-
get [1]. The measurements are shown in red and the sensor
location is shown in blue

Extended target tracking provides a shape estimate of the target and has several

downstream applications, for example, classification of targets, obstacle detection

and path planning to name a few. Autonomous vehicle and robotics applications

use high resolution sensors for close range scenarios and particularly benefit from

extended target tracking.

One of the major challenges in extended target tracking is the joint uncertainty

in the shape and the kinematics of the target, i.e. the same set of measurements

can be generated over time by targets with distinct combinations of shapes and

kinematics. As such, the target state needs to include a shape descriptor to de-

scribe the target shape. Filtering for estimation of the target shape using the

measurements needs to be developed depending on the shape descriptor used.
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The source location for the measurement on the target shape is unknown as well

and is termed as measurement-origin uncertainty.

Occlusion is yet another challenge in extended target tracking. Measurements

are generated only from the parts of the target visible to the sensor. Parts or

faces of the target to which the sensor has a direct line of sight are visible to the

sensor. Even in the case of a single target, the entire target shape is not visible

in the same frame, particularly in the scenario with a single sensor. The case

when the line of sight to some parts of the target is blocked by the target itself is

termed as self-occlusion, and an example is given in Figure 1.2a. The problem is

further exacerbated in case of multiple targets as seen in Figure 1.2b. This case,

when the line of sight of the sensor to an extended target is occluded/blocked by

another extended target is termed as mutual occlusion. Currently, in the thesis, the

scenario with a single extended target and a single sensor is considered with self-

occlusion. The objective of an extended target tracking algorithm is to estimate

the entire shape of the target even when the measurements occur from different

parts of the target in different frames due to self-occlusion.

1.2 Literature Review

Several approaches for extended target tracking have been proposed in literature,

and they can be categorized based on the shape descriptor used. Simple shapes

such as ellipses and rectangles have been used in [3],[4] and the parameters such as

length/breadth or major/minor axes are to be estimated. The Gaussian Process

(GP) approach used in [5] and [6] uses a star-convex shape descriptor that can
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(a) Example of self-occlusion [2].

(b) Example of mutual occlusion [2]

desribe a variety of complicated shapes. The Random Hypersurface Model (RHM)

used in [7] supports different shape descriptors including ellipse, rectangle and

polygon to describe more complex shapes. A shape model using splines has been

presented in [8] and [9].

The Random Matrix (RM) approach first proposed in [10] uses a symmetric

positive semi definite (PSD) matrix XS to describe the shape of the target with

xc as the center. More specifically, the measurements from the target are obtained

around the target center xc with covariance XS. The shape model is appropriate

for ellipsoidal shapes. For example, even a rectangular shaped target can generate

measurements closer to an ellipsoid if the measurement noise covariance is large

enough compared to the shape. The shape matrix XS is assumed to be Inverse
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Wishart distributed since it is a conjugate prior and an analytical Bayesian so-

lution is derived. The Random Matrix method is extended in [11] with multiple

ellipsoids to represent non-ellipsoidal shapes more effectively. Multipath detections

are considered in a terrain constrained environment in [12] using the Random Ma-

trix model. Further extensions to the Random Matrix model can be found in [1].

The Random Matrix can estimate the general features of a complicated, however

it is unable to capture finer features of the shape.

The Gaussian Process proposed in [5] for 2D and [6] for 3D uses a radial basis

function to describe star-convex shapes. The radii follow a Gaussian Process with

a kernel function κ to describe the covariance between the radii for different angles.

An Extended Kalman Filter (EKF) is used to handle the nonlinearity in the joint

filtering of the shape and kinematics. The Gaussian Process approach has been

extended in [13] to handle the scenario when a target changed from a point target

to an extended target (or vice-versa) due to the varying sensor-target geometry by

using a Poisson rate for the number of measurements from the target. The article

[14] includes clutter by using a Probabilistic Data Association (PDA) along with

the Gaussian Process shape descriptor.

The Random Hypersurface Model approach [7] uses a pseudo-measurement

equation φ(XS, Z) = 0, where XS is the shape descriptor, Z are the measurements

and φ is a distance metric between the measurements and the source location

on the target shape. The objective is to estimate the shape that minimizes the

distance metric.

Various models to describe a variety of shapes have been proposed in literature,
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however the problem of self-occlusion has not been addressed sufficiently. This

is a major limitation and visibility issues need to be included for more realistic

assumptions. The models used in literature generally include the target center

as a part of the state, whereas the true target center may be unobservable, for

example, when the target is only partially visible across frames. The existing

methods use a fixed number of parameters to describe the target shape. It is

useful to vary the number of parameters used to describe the shape as new parts

of the target become visible over time.

This thesis aims to relax these assumptions, particularly that of self-occlusion,

to develop algorithms suitable for more realistic scenarios. To this end, a frame-

work for extended target tracking is proposed and algorithms to track 2D and 3D

convex polytope shapes are developed.

1.3 Theme and Objectives of the Dissertation

In compliance with the terms and regulations of McMaster University, this disser-

tation has been written in the sandwich thesis format by assembling three articles.

These articles represent the independent research performed by the author of this

dissertation, Prabhanjan Mannari.

The focus of the thesis is to develop a general framework for extended target

tracking and implement algorithms for tracking convex polytope shaped targets

with self-occlusion in the presence of maneuvers and clutter. The main highlights

of the contribution of the thesis are as follows :
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1. A framework for extended target tracking based on the point multitarget

tracking framework was proposed (Paper I) and extended to 3D (Paper II

and Paper III). Under the framework, different parts of a single extended

target are treated as distinct targets constrained by the target rigid body

shape. This allows for handling of self-occlusion and clutter by associating

measurements to appropriate parts of the target. The framework effectively

transforms the extended target tracking problem to a complex multitarget

tracking problem with closely spaced targets (the faces of the target may, in

fact, have common edges as well).

2. A shape descriptor for convex polytope shapes has been proposed for 2D

(Paper I) and 3D (Paper II and Paper III). The model uses a convex hull

representation to describe the shape only by its boundary, and the center

is not included in the shape model. The triangular mesh representation

used for 3D convex polytope shapes adopted in the thesis is widely used in

engineering [15].

3. The self-occlusion issue is handled for 2D case (Paper I) as well as for the

3D case (Paper II and Paper III) by associating the measurements only to

the visible parts of the target.

4. The point target Probabilistic Multiple Hypotheses Tracker (PMHT) has

been modified to develop an extended target PMHT (ET-PMHT) for the

shape triangulations proposed (Paper II). The ET-PMHT has further been

extended to include clutter and to handle target maneuvers (Paper III).

5. Face management is proposed under the extended target tracking framework
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that can be used to delete faces using a quality parameter and, proves to be

useful especially in the presence of clutter (Paper I, Paper II and Paper III).

6. The framework supports adding new faces to the shape estimate as measure-

ments are obtained from parts of the target that were previously not visible

or as new features of the target become observable (Paper I, Paper II and

Paper III).

1.4 Summary of Enclosed Articles

A summary of the papers included in the thesis is given below:

1.4.1 Paper I (Chapter 2)

Prabhanjan Mannari, Ratnasingham Tharmarasa and Thiagalingam Kirubarajan

"Extended Target Tracking under Multitarget Tracking Framework for Convex

Polytope shapes", Accepted by Elsevier Signal Processing journal as of November

6 2023.

Preface: The problem of tracking a 2D convex polytope shaped target is addressed

in the paper. The target is assumed to be a rigid body with known dynamics, such

as nearly constant velocity (NCV) model. A convex hull shape model is developed

using a directed set of vertices to describe the shape. An extended target tracking

framework is proposed based on the points multitarget tracking framework, in

which different parts/faces of a single extended are assumed to be distinct targets.
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Under this framework, the visible faces of the estimate can be identified and the

measurements can be associated only to those faces, thus handling the problem of

self-occlusion. The source location for a measurement is estimated as the closest

point on the shape estimate to the measurement and nearest neighbour is used

for associating measurements to faces of the estimate. The updated shape and

kinematics are estimated using a Kalman Filter (KF) with uncertainty in the

source locations, i.e. the true source locations are unknown and an estimate is

used instead. New faces are initialized using the measurements falling outside

the validation region of the estimate. This is necessary as new measurements may

occur from parts of the target that were previously not visible due to self-occlusion.

Face management step is proposed to delete erroneous faces. The performance of

the proposed algorithm is compared with 2D Gaussian Process for various scenarios

using simulations. The proposed algorithm is able to effectively estimate the entire

target shape even in the presence of self-occlusion.

1.4.2 Paper II (Chapter 3)

Prabhanjan Mannari, Ratnasingham Tharmarasa and Thiagalingam Kirubarajan

"3D Extended Target Tracking using ET-PMHT for Convex Polytope Shapes with

Partial Visibility" Ready to be submitted to a journal as of December 8, 2023.

Preface: This article discusses the problem of tracking a single 3D extended target,

even when the target is only partially visible. The target is assumed to have a con-

vex polytope shape and known dynamics, such as nearly constant velocity (NCV)

model. The target shape is represented using its vertices and a Delaunay triangu-

lation that divides the surface of the target shape into non-overlapping triangles.
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Based on the extended target tracking framework proposed in our previous work,

each of the face triangulations is assumed to be separate targets constrained by the

target shape. The point target Probabilistic Multiple Hypotheses Tracker (PMHT)

is modified to develop an extended target PMHT (ET-PMHT). The equations for

ET-PMHT joint association and filtering are derived for a single frame update

for the general case and for the case where the shape is unchanged across the

update. The mode with constant shape estimate proves to be useful to maintain

a good shape estimate that may otherwise degrade due to further measurements.

Face initialization and face management techniques are used to add new faces and

delete erroneous faces, respectively. The proposed algorithm is compared with

the 3D Gaussian Process for different scenarios, and it is found that the proposed

algorithm is able to track the target, even when it is only partially visible.

1.4.3 Paper III (Chapter 4)

Prabhanjan Mannari, Ratnasingham Tharmarasa and Thiagalingam Kirubara-

jan "ET-PMHT for Tracking 3D Extended Targets with Maneuvers and Clutter".

Ready to be submitted to a journal as of December 8, 2023.

Preface: The problem of tracking a maneuvering extended target in 3D is dis-

cussed in this article. The visibility issue of self-occlusion and the effect of clutter

as well as measurements from the interior of the target are included in the scenario.

The target has a convex polytope shape and maneuvering dynamics such as co-

ordinated turn with an unknown turn rate. Extended target PMHT (ET-PMHT)

equations are derived under the framework developed in our previous works with
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linearization to handle the nonlinear transition dynamics. The self-occlusion prob-

lem is handled by associating the current measurements only to the visible faces of

the estimate. The effect of clutter is included in the ET-PMHT equations and face

management is used to delete erroneous due to clutter. The algorithm supports

adding new faces as parts of the target that were previously not visible, become

visible over time. The performance of the proposed method is compared with the

3D Gaussian process for various scenarios and RMSE of the center, RMSE of the

velocity and IoU metrics are used to quantify the performance.
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Extended Target Tracking under Multitarget

Tracking Framework for Convex Polytope shapes

Abstract

This paper discusses the problem of extended target tracking for a single 2D ex-

tended target with a convex polytopic shape and known dynamics. Extended tar-

gets are those that produce multiple measurements for a single frame. One of the

major challenges in extended target tracking is the joint uncertainty in the shape

and the kinematics of the target. Another challenge is the lack of visibility due to

self-occlusion in targets with a finite extent (as opposed to zero extent for point

targets). To address these challenges, we develop a framework for tracking single

(or widely separated) extended targets. This framework is based on the existing

point multitarget tracking framework by modeling different parts of an extended

target as separate targets. An algorithm is developed using the proposed frame-

work for tracking convex polytope-shaped targets. The proposed shape function

consists only of the boundary of the target since the center may not be observable.

The algorithm is capable of dynamically changing the number of parameters used

to describe the shape as more parts of the target become visible over time. The

performance of the algorithm is evaluated for various scenarios using root mean

square error (RMSE) of velocity, center, and intersection over union (IoU) met-

rics. It is seen that the algorithm is able to handle the self-occlusion problem and

estimate the whole target shape even when different parts of the target are visible

at different frames, for various shapes, and for various conditions of measurement
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noise covariance and number of measurements. New faces are added to the shape

estimate as more parts of the target become visible. The algorithm is able to

conserve the parts of the target that were visible in the previous frames but are

no longer visible.

Keywords: Extended Target, Convex hull, Data Association, Self-Occlusion

2.1 Introduction

Traditional target tracking algorithms assume that the targets have zero extent

(i.e., they are point targets) and that a measurement from the target falls into at

most one resolution cell of the sensor. Such algorithms are termed as ’point target

tracking’ algorithms. This is the scenario when the target size or extent is small

enough to fit in a single resolution cell of the sensor. However, with the increasing

availability of high-resolution sensors such as Light Detection And Ranging (Li-

DAR), these assumptions are no longer valid as measurements from a single target

may occur from different resolution cells for the same frame. Hence, the targets

need to be modeled as ’extended targets’, and the shape (extent), as well as the

kinematics of the targets, need to be estimated. Extended targets occupy multiple

sensor resolution cells, and it is possible to obtain multiple measurements from an

extended target for the same scan. The measurements from an extended target

depend on the sensor-target geometry. Indeed, the same target can be considered

as a point target or an extended target depending on the sensor-target geometry.

The major challenge in tracking extended targets is estimating their shape while
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handling the joint uncertainty between shape and kinematics, since the same set

of measurements over time can be produced by targets with distinct shapes and

kinematics.

Extended target tracking becomes relevant when high-resolution sensors are

used such as automotive radar in transport applications and LiDAR in robotics

applications. The shape and kinematics estimates of the objects in the environ-

ment can then be used for applications such as obstacle detection, drivable area

detection, path planning and classification to name a few.

Several approaches have been proposed to handle the extended target tracking

problem. In [1],[2],[3], the target shape is assumed to be a simple shape, such as

a rectangle or an ellipse, whose parameters need to be estimated. The kinematic

and shape parameters are decoupled and estimated separately. In [3], the elliptical

shape is described by its center, its orientation, and the lengths of the semi-axes.

A multiplicative error model has been used for the measurement equation. The

Random Matrix (RM) model [1] extends the kinematic point target state with a

positive semi-definite (PSD) matrix X, which represents the target shape as an

ellipse. The kinematic state follows the Gaussian model, while the matrix that

represents the extent follows the Inverse Wishart model. A closed-form expression

for kinematic and shape update has been derived in both [1],[3]. In article [4], mul-

tiple random matrices are used to approximate and track a non-ellipsoidal shape

more effectively than the standard RM approach. The RM model is extended in [5]

to include multipath detections and clutter in a terrain-constrained environment.

Probabilistic Data Association (PDA) is used to handle multipath detections and

clutter, while a variational Bayesian technique is used to reduce the computational
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complexity. Note that several other extensions of the RM model exist [6]. The

Random Matrix approach uses a simple shape model for extended target tracking

and is unable to effectively estimate complex shapes such as polygons. The shape

estimate is always an ellipse and fails to capture the features of complicated target

shapes.

Another approach to handle more complex shapes is to use a star convex model

for the target shape. In [7], [8], a radial basis function is used to describe the target

shape. The parameters (radii for different angles) are assumed to follow a Gaussian

Process (GP) with a kernel function to determine the covariance between the

parameters (radii) for different inputs (angles). The total state (including shape

and kinematics) is estimated recursively using an Extended Kalman Filter (EKF).

The complete formulation of the GP [7] is given in Section 2.6.1. The article [9]

extends the standard GP model using a Poisson measurement rate for each basis

point. The algorithm is able to handle clutter and missed detections using the

Probabilistic Multiple Hypotheses Tracker (PMHT) for association. The tracker

can simultaneously handle both extended and point targets. In [10], the GP model

is extended to handle clutter using PDA, and a relation between point target PDA

and the proposed extended target PDA is shown. The Gaussian Process approach

is able to capture a large number of star convex shapes with the radial basis model,

however the shape estimation depends on the choice of parameters for the kernel

function used to describe the correlation between different parts of the target

shape. The GP uses a single kernel function for the entire shape. Hence, if the

target shape has both smooth parts (parts of the target with high correlation) and

jagged parts (parts of the target with low correlation), the performance of the GP
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is not optimal.

In [11], an approach to handle several different kinds of shapes is presented,

termed as the Random Hypersurface Model (RHM). The measurements z are as-

sociated to source locations in the shape xp using a shape distance function φ

to form a pseudo-measurement equation φ(xp, z) = 0. Simple shapes, such as a

circle or an ellipse, can be used with this method. Complicated shapes can also

be represented using a polygonal shape descriptor. Once the measurements are

associated to their source locations, the state can be updated by using a Linear

Regression Kalman Filter (LRKF) or an approximation of the likelihood to prop-

agate the density using a particle filter. The GP and the RHM approaches can be

used to incorporate measurements from the contour as well as the interior of the

target using a scaling factor. Yet another model for the target shape is the spline

model, described in [12] and [13]. [12] also addresses multiple extended targets

using labeled random finite sets. A comprehensive review of the existing literature

for extended target tracking is given in [6].

One of the major challenges in extended target tracking is self-occlusion. De-

pending on the sensor-target geometry, measurements may occur only from certain

parts of the target that are visible to the sensor. As the target moves, the sensor-

target geometry changes and hence, measurements can occur from different parts

of the target at different times. This problem has not been sufficiently addressed

in the existing literature. Most approaches to extended target tracking track the

centroid of the target as a kinematic state. However, the true centroid of the

target may be unobservable, depending on the measurements obtained. The tar-

get shape usually has a fixed number of parameters. It can be useful to vary the
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number of parameters required to estimate the target as measurements occur from

previously unseen parts of the target. In the existing literature, the entire set of

measurements is used to update the target shape. However, the shape features of

different parts of the target depend only on the respective local measurements.

In [14] , a nonparametric maximum likelihood is introduced, where the likeli-

hood is calculated entirely based on data. This motivates the choice of a nonpara-

metric shape model, which is not limited by previously defined parameters. The

article [15] proposes a method for maximum likelihood estimation for convex hull

operation on the convex set to be estimated and noise under various assumptions.

The choice of the convex polytope model is based on these references. A convex

polytope is a generalization of a convex polygon (2D) or a convex polyhedron (3D)

to higher dimensions. A 2D convex polytope (polygon) represented by its vertices

and edges/faces is used in the current work. Consecutive vertices of the polytope

form the edges/faces. The shape model is able to represent only the boundary of

the target, abandoning the center. The convex polytope model can accommodate a

variety of shapes while having a simple representation. The shape model is partic-

ularly relevant in applications where the target can be approximated by a convex

polygon, for example - vehicles in automotive applications. A linear measurement

model can be developed for the shape model. The shape model is non-parametric

and is estimated entirely using the measurements. For example, an initial estimate

with a single set of measurements can be the convex hull of the measurements.

A representation of partial target shape is required to handle the self-occlusion

problem. Since the measurements occur from the visible parts of the target, an
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association step is necessary to update only the visible parts using the local mea-

surements they are associated to. A procedure to add additional faces is needed

to refine or extend the target shape as more details or areas of the target become

visible over time.

The issues listed above motivate using the point multitarget tracking framework

and modifying it accordingly to handle the single extended target tracking prob-

lem. The individual faces of the convex polytope used to represent the extended

target are treated as separate targets and hence the measurements can be asso-

ciated only to the visible faces. Additional faces can be added for measurements

falling outside the validation region, similar to Track Initialization. Erroneous faces

can be deleted using a quality parameter similar to Track Management, which is a

technique used in multitarget tracking to add new tracks, confirm existing tracks

or delete existing tracks [16].

The major contributions of this paper are :

1. A generic framework is developed based on the existing point multitarget track-

ing framework to handle the single extended target tracking problem.

2. An algorithm is developed under the framework proposed to track 2D convex

polytope-shaped targets. An iterative approach is used to handle the uncer-

tainty in the source location of the measurements.

3. The center of the target is abandoned from the state since it may be unobserv-

able. The shape is thus described by its boundary alone.
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4. The algorithm is able to dynamically change the number of parameters used to

describe the state by initializing new faces.

5. The measurements are associated with separate parts of the target and the asso-

ciated sets of measurements are filtered separately, constrained by the relation

between the adjacent faces. This ensures that the measurements contribute

only to the local region of the target.

6. The self-occlusion problem is handled by determining the visible parts of the

target and associating the measurements only to these parts.

The paper is organized as follows - Section 2.2 describes the problem with the

target and measurement models. The theory for probability update is developed

in Section 2.3. The extended target tracking framework for a single target is

described in Section 2.4, and the algorithm implemented under the framework is

described in Section 2.5. Results are presented in Section 2.6. Finally, Section 2.7

summarizes the conclusions derived from the study.

2.2 Problem Description

The problem of tracking a single extended target (or widely separated targets)

is discussed in the absence of clutter (usually outliers from clustering in a high-

resolution scenario). An extended target has shape and kinematic features, which

are to be estimated using measurements from the target over time. The target is

assumed to be a rigid body with a convex polytopic shape. The target is assumed

to have known dynamics, such as the nearly constant velocity (NCV) model. The
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target state denoted by x consists of the shape descriptor XS and the target

kinematics v,

x =

XS

v

 . (2.1)

2.2.1 Target model

The shape descriptor of the target XS is represented (in 2D) by the vertices of the

target shape (convex polytope) in the counterclockwise order. The actual target

shape is obtained by taking the convex hull of the vertices. The faces of the target

can be described by a pair of adjacent vertices (the last vertex is paired with the

first vertex). Let the vertices of the shape be
[
pT1 pT2 . . . pTNS

]T
, where NS is

the number of vertices of the target shape and each vertex pi =
[
pxi pyi

]T
, where

pxi and p
y
i are the x and y co-ordinates of the vertex. The target state is then given

by -

XS =
[
px1 py1 px2 py2 . . . pxNS pyNS

]T
, v =

[
vx vy

]T
, (2.2)

x =
[
px1 py1 px2 py2 . . . pxNS pyNS vx vy

]T
. (2.3)

The target dynamics, assuming the NCV model, and with k as the index for the

time frames, is given by -

x(k + 1) = F (k)x(k) + Γ(k)ν(k), where ν(k) ∼ N (0, Q(k)). (2.4)

Let T be the time between frames k and k + 1. The transition matrix F (k) and

the process noise covariance Q(k) are then given by -
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F (k) =



1 0 0 . . . T 0

0 1 0 . . . 0 T

...
... . . . ...

...
...

0 0 0 1 0 T

0 0 0 0 1 0

0 0 0 0 0 1


, Q(k) = q



1
3T 3 1

2T 2 0 0
1
2T 2 T 0 0

0 0 1
3T 3 1

2T 2

0 0 1
2T 2 T


, (2.5)

Γ(k) =



1 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0
...

...
...

...

0 1 0 0

0 0 0 1



,

where q is the power spectral density of the process noise.

Note that this model is slightly different from the standard NCV model. The first

2NS elements of the state are the x and y co-ordinates denoting the position of

the vertices and the last 2 elements are the velocities of the target in the x and

y directions (vx and vy respectively ). Since the target is a rigid body, all the

vertices of the target have the same kinematics, i.e., the same shift for each time

step. This is achieved by using a process noise ν(k) of size 4× 1 and using matrix

Γ(k).
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2.2.2 Measurement Model

Measurements are obtained from the faces of the target visible to the sensor. The

measurements are assumed to occur only from the surface of the target. The

visibility of a face of the target depends on the sensor-target geometry. For a

convex polytope, a face is visible to the sensor if the center (mean) of the polytope

and the sensor location are on opposite sides of the face.

The target is assumed to have a surface with a known average number of mea-

surements per unit effective area - ρ. An effective area Ae is introduced to account

for the variability in the number of measurements from a face due to sensor-target

geometry. The effective area of a face Ae with respect to the sensor location is

defined as :

Ae = A× sin
(
αS
2

)
, (2.6)

where A is the actual area of the face and αS is the angle subtended by the face

at the sensor. The number of measurements from each visible face is assumed to

be Poisson-distributed with the average number of measurements Nf ,

Nf = ρ× Ae. (2.7)

In reality, the expected number of measurements from a face is usually nonlinear

outside a certain range and does not follow (2.7). The expected number of mea-

surements for a face very close to the sensor may be zero instead. Such models

can be included and handled in the Association and Face Mangement step of the

framework.
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The measurements are assumed to be uniformly distributed along the face. An

example is shown in Figure (2.1), where the same face at different locations with

respect to the sensor produces a different number of measurements. The face is of

length 10m and average number of measurements per unit effective area (length)

ρ = 10m−1. The half angle subtended at the face as well as the average number of

measurements decreases when the face moves away from the sensor or is inclined

with respect to the sensor’s field of view (FOV), as in Figure (2.1c).

(a) Angle subtended: 90 de-
grees.
Nf : 70.711

(b) Angle subtended: 53.13
degrees.
Nf : 44.721

(c) Angle subtended: 22.393
degrees.
Nf : 19.418

Figure 2.1: The effect of sensor target geometry on number
of measurements obtained

A measurement zi =

zxi
zyi

 occurs from an unknown source location si on the

boundary of the target corrupted by Gaussian measurement noise with zero mean

and known measurement noise covariance R.

zi = si + wi, wi ∼ N (0, R), R =

σ2
x 0

0 σ2
y

 . (2.8)

The source si, indexed by i, lies on the face (pi, pi∗), where (i∗ = mod (i, NS)+1)

and can be written as :
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si = (1− λ)pi + λpi∗ . (2.9)

where 0 ≤ λ ≤ 1 is the parameter that determines the location of the source

between the vertices. If Ni measurements occur from face (pi, pi∗), the total mea-

surement set is written as :

zij = (1− λij)pi + λijpi∗ + wij ∀ i = 1 to NS j = 1 to Ni, (2.10)

where wij ∼ N (0, R), λij ∼ U [0, 1], Ni ∼ Poisson(N i
f ). (2.11)

zij is the jth measurement from face (pi, pi∗). λij ∼ U [0, 1] signifies that the

measurements are uniformly distributed across the face and Ni ∼ Poisson(N i
f )

implies that the number of measurements for the face is Poisson distributed with

parameter N i
f calculated according to Equation (2.7). It is assumed that the sensor

is calibrated in advance using a technique such as [17] and all the measurement

noise sources can be represented using zero mean Gaussian noise with measurement

noise covarianceR. An example of measurements obtained from the target is shown

in Figure (2.2). Only two faces (shown in green) of the target are visible and

measurements are obtained only from these faces. No measurements are obtained

from the faces (shown in black) that are not visible. It can also be seen that the

density of the measurements is lower for the visible face, which is longer since it

is inclined and subtends a lower angle at the sensor.

In the current work, a simple model has been used for the distribution of the

measurements along the face, with uniform distribution being used. In reality, the

distribution of the measurements along the faces may be skewed, with measure-

ments being concentrated towards one vertex of the face depending on the sensor
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Figure 2.2: Example of measurement from a target with the
sensor at [0 0]. The visible faces are green and the measure-
ments are red in color

target geometry. When the inclination of the face with respect to the sensor is

low, a uniform distribution is appropriate. However, faces with high inclination

with respect to the sensor may have a distribution of measurements that is skewed

along the face. More realistic models can be developed by assuming more compli-

cated distributions for the probability of measurements being generated along the

face. Using a Gaussian distribution with the mean at the mid-point of the face

can be used to generate more measurements near the center of the face compared

to the parts away from the center. To generate skewed distributions of measure-

ments along the face, a Gaussian with mean away from the center can be used or

a mixture of Gaussians can be used.

2.3 Probability Update

Given the measurements Zk = {Z1, Z2, . . . , Zk} over time steps k = 1 to K and a

prior density p(x) of the state, the objective of a Bayesian solution is to estimate
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the posterior of the state p(xk|Zk) for each k = 1, 2, . . . , K. The posterior is esti-

mated recursively, i.e., p(xK |ZK) is estimated using p(xK−1|ZK−1) as the prior and

measurements ZK and p(xK−1|ZK−1) is in turn estimated using p(xK−2|ZK−2) as

the prior and measurements ZK−1, and so on. With Gaussian assumptions for the

prior and posterior, the estimates of the probability densities for time step k can

be described using the mean and covariance : x̂(k−1|k−1), P (k−1|k−1) for the

prior and x̂(k|k), P (k|k) for the posterior, respectively. The state x is described

by a shape descriptor XS with NS vertices, and its kinematics. NS can vary de-

pending on the shape estimated.

At time k, Nk measurements are obtained Zk = {z1, z2, . . . , zNk} from faces

described by the association variables {a1, a2, . . . , aNk}, where aj ∈ {1, 2, . . . , NS}.

The association variable aj = i denotes that the jth measurement is associated to

the ith face. The exact measurement sources {s1, s2, . . . , sNk} and the association

variables aj are not observed. These sources can be described in terms of the state

using a measurement source matrix H, which is to be determined. The structure

of H is described below -

(i) The number of rows in H is compatible with the number of measurements,

and the number of columns is compatible with the state shape and kinemat-

ics. Hence, the uncertainty about the number of vertices in the state shape

is incorporated in H.

(ii) H encodes the association uncertainty in the following manner: For measure-

ment zj associated with face aj, the columns in H have zero values except
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the ones corresponding to the face aj, for the rows corresponding to the

measurement. This ensures that only the associated face contributes to the

measurement.

(iii) For measurement zj associated with face aj, the columns corresponding to

the associated face have values I −Λij and Λij, where Λij = λijI for a scalar

λij ∈ [0, 1]. λij corresponds to the jth measurement from face aj = i and is

used to denote the exact location of the measurement source along the face.

The total measurement set Zk at time step k can be written in terms of the

state x and an appropriate measurement source matrix H for time step k as :

Zk = Hx + w, w ∼ N (0,R). (2.12)

where w is the stacked noise vector for the measurement set, and R is the block

diagonal matrix whose elements are the measurement noise covariance for a single

measurement R. The number of block diagonal elements R in the matrix R is

equal to the number of measurements in Zk. This notation is used in the further

sections such that R is compatible with the number of measurements being ad-

dressed.

It must be noted that H in Equation (4.9) is unknown. An example of the mea-

surement source matrix is given in (2.13), where measurements z11, z12 occur from

face (p1, p2), z31 occurs from face (p3, p4), z41, z42, z43 occur from face (p4, p5), and

no measurements occur from the remaining faces. Figure (2.3) shows the Equation

(2.13) visually.
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z11

z12

z31

z41

z42

z43


=



Λ11 I − Λ11 0 0 0 0 0 0

Λ12 I − Λ12 0 0 0 0 0 0

0 0 Λ31 I − Λ31 0 0 0 0

0 0 0 Λ41 I − Λ41 0 0 0

0 0 0 Λ42 I − Λ42 0 0 0

0 0 0 Λ43 I − Λ43 0 0 0





p1

p2

p3

p4

p5

p6

v



+



w11

w12

w31

w41

w42

w43


(2.13)

Figure 2.3: Visual representation of Equation (2.13)

Treating H as a random variable, the posterior conditioned on H can be written

as :

p(x|Z,H) ∝ p(Z,H|x)p(x) (2.14)

∝ p(Z|H,x)p(H|x)p(x), (2.15)

where p(Z|H,x) is the likelihood of the measurements Z conditioned on H.

Using (2.13), the likelihood of the measurements Z, given the measurement

source matrixH and the state x, can be approximated using Gaussian assumption.

It must be noted that H is kept fixed and its uncertainty is not incorporated
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directly into the likelihood. Since the H is unknown, the measurement likelihood

is one of the measures of consistency of the measurement model.

p(Z|H,x) = N (Z;Hx,R) (2.16)

The probability of a certain measurement source matrix H, given the state x,

p(H|x) is approximated by the probability of the number of measurements as

specified by H occurring from the faces of x,

p(H|x) =
NS∏
i

Poisson(nif ;N i
f ), (2.17)

where nif is the number of measurements associated to the face i as specified

by H and N i
f is the average number of measurements generated from the face as

calculated using Equation (2.7). If a certain face of the target is not visible but the

estimated face corresponding to it is visible, no measurements may be associated

to the specified face leading to a low probability of the face. This problem is

handled in Section 2.5.5. On the other hand, if H associates any measurements to

a face of x that is not visible to the sensor, then p(H|x) = 0.

The prior for time step k is assumed to be Gaussian. The predicted density is given

below as the prior. The predicted density is calculated using transition dynamics

and the updated estimate from the previous time step.

p(x) = N (x;F x̂(k − 1|k − 1), FP (k − 1|k − 1)F T + ΓQΓT ) (2.18)

The predicted mean and the covariance for Equation (2.18) are calculated using

Equation (3.4).
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The optimal method would be to jointly estimate the posterior state x and cur-

rent measurement source matrix H to maximize p(x,H|Z) (such as using a grid

method). The joint estimation requires the calculation of the posterior p(x,H|Z)

for all possible values of x and H and choosing the values that maximize the pos-

terior. Since the association to the source locations and the number of vertices in

the state estimate are unknown, the posterior needs to be evaluated for different

combinations of the number of vertices of the state estimate and source locations.

This is computationally expensive, especially since the posterior may not have an

analytical form. Another method is to estimate H and x, alternately assuming

that one of them is known at each step. It is then possible to obtain an expression

for the conditional probability densities p(x|Z,H) and p(H|x). The latter method

is used (and a framework is developed) to iteratively estimate x and H, assuming

one of them is fixed at a time.

2.4 Extended Target Tracking in Multitarget Track-

ing Framework

A typical multitarget tracking (MTT) framework for point targets involves :

1. Gating - Measurements are validated using the appropriate confidence gates for

existing tracks. New tracks are to be initialized for measurements not falling

within the gates of any existing tracks. The confidence gates are constructed

using the predicted density of the tracks. Multitarget data association is used

if measurements fall into overlapping gates of multiple targets.
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2. Association - Various data association algorithms can be used to associate valid

measurements to existing tracks. Nearest neighbour association is a simple data

association technique and can be used directly in case of no clutter. Some data

association techniques that support clutter include Joint Probabilistic Data As-

sociation (JPDA) [18],[19] and Multiple Hypotheses Tracker (MHT) [20]. The

same measurement may be (probabilistically) associated to multiple targets.

3. Filtering - The existing tracks are filtered using the measurements associated to

them. Kalman Filter is used in the case of linear Gaussian models. Extended

Kalman Filter can be used to filter targets with nonlinear dynamics and/or

nonlinear measurement function by linearization at the estimate [21]. Unscented

Kalman Filter (UKF) is yet another method to handle the nonlinearity.[22]. In

the case of non-Gaussian noise models, the Particle Filter approach is used,

particularly if the noise is multi-modal. The Particle Filter is versatile and can

be used in the case of nonlinear models as well [23].

4. Initialization - Measurements not associated to any existing track are used to

create new tracks.

5. Track Management - Quality or logic based track management can be used to

upgrade tentative tracks to confirmed tracks and delete low-quality tracks [16].

The point multitarget tracking framework can be modified accordingly to handle

data streams (measurements) from sources other than point targets as well. The

framework can handle data from unknown and possibly time-varying number of

sources with association uncertainty, i.e., the target source for each individual

measurement is unknown, assuming that the source dynamics and measurement
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generation mechanism are known. For an extended target, the different faces/

parts of the target can be considered to be the different sources with its dynamics

constrained by the fact that it is a rigid body. Since the target now has a finite

extent (as opposed to the zero extent of a point target), visibility issues also need

to be considered. The framework is described as follows:

1. Association - Measurements are to be associated with visible parts of the target

or clutter. Traditional association techniques may need to be modified since the

measurement function may be unknown at this point. The nearest neighbour

approach can be used directly to associate the measurements to the closest

visible face/part of the target.

2. Determination of the measurement function - Using the associated measure-

ments from the previous step, a measurement function has to be determined for

each face, and hence for the whole target. The projection of the measurements

on the estimated shape can be used to determine the measurement function.

The distribution of the measurements along the face can also be accounted for

in the measurement function.

3. Gating - It is determined whether the measurements associated with each face

fall within the gate of the current face to which they are associated. The

measurements which fall outside the gate are to be used for initializing new

faces.

4. Filtering - Measurements associated with the existing faces of the target are

used to update the target shape and kinematics. For example, a Kalman filter

can be used for linear models with Gaussian noise.
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5. Initialization - New faces are initialized using the measurements, which do not

fall within the gate of any face. New faces are added at the vertices of the

existing target shape. Unassociated measurements can be grouped into sets,

each of which is used to initialize a new face.

6. Face Management - Faces are either maintained for the next step or deleted,

depending on the quality of the face. The quality of the face can be determined

using the actual number of measurements associated with the face versus the

expected number of measurements occurring from the face.

7. Additional Constraints - Additional constraints (such as the convex constraint)

can be applied to restrict the target shape if the constraints are not already

incorporated into the filtering step.

This process is continued for each frame until the maximum number of iterations

is reached or an optimality criterion is met. The flowcharts for a single iteration

of the multitarget tracking framework and the proposed framework are shown in

Figures (2.4a),(2.4b).

2.5 Implementation

Assuming a 2D convex target shape, NCV model dynamics, and the absence of

clutter, an algorithm is described under the above framework for extended target

tracking. Some of the functions used to determine the measurement function are

described first.
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Multitarget Tracking Framework

Measurements

Gating Track Initialization

Multitarget Association

Filtering

Track Management

Inside
Outside

(a) Single iteration of the MTT framework

Single Extended Target Tracking Framework

Measurements

Association & Construct H

Gating Face Initialization

Reconstruct H

Filtering

Face Management

Inside
Outside

(b) Single iteration of the ET framework

Figure 2.4: Flowchart of the frameworks

2.5.1 Determining the measurement function - Association

of measurement to source location

The measurements are assumed to occur only from the surface of the target with

a known measurement noise covariance R. A linear model is used to represent the

measurement function for each measurement from the face with vertices pi and pi∗

as follows :

zij = (1− λij)pi + λijpi∗ + wij, wij ∼ N (0, R). (2.19)

The objective is to associate each measurement with a face (pi, pi∗) and estimate

the source location along the face specified by λij. The source locations can then
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be assembled similar to Equation (2.13) to form the measurement source matrix.

Construction of the measurement source matrix is described below:

(i) Nearest Neighbour association - The measurements as associated to the near-

est visible face of the target. It must be noted that this is a greedy association

model. The Euclidean distance between a measurement and a face is given

by the distance between the measurement and the projection of the measure-

ment on the line along which the face lies. If the projection is outside the

limits of the face, the Euclidean distance is the distance of the measurement

to the closest vertex of the face. The measurements are grouped by the face

to which they are associated.

If the groups of measurements have at least two measurements per set, the

following procedure is used-

(ii) Face estimation - A line/plane is fitted to the face with the set of associated

measurements using linear regression. The measurements are assumed to

occur from the same (associated) face with zero mean Gaussian errors and

a covariance R. Assumptions about measurement noise need not hold in

the case of an incorrect measurement-to-source-location association. A set of

measurements associated with the face i termed as Zi can be obtained using

the association described previously. The set Zi = {zi1, zi2, . . . , zinf}, with

each measurement zij =
[
zxij zyij

]T
, where zxij, z

y
ij are the x and y co-ordinates

of the measurement respectively. The objective is to estimate the line along

which the source face of the measurements lies. The line is estimated in the

slope-intercept form with slope m and intercept c as follows -
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(a) A stacked measurement equation is developed using the slope-intercept

form of the line for each associated measurement, i.e., zyij = mzxij + c+

wxyij , where w
xy
ij is the zero mean Gaussian noise with covariance σ2

x+σ2
y .

The stacked measurement equation can be written as :

Yi =
[
Xi 1

] m
c

+Wi, (2.20)

with each element of Wi being wxyij ∼ N (0, σ2
x + σ2

y),

and Yi =



zyi1

zyi2
...

zyinf


, Xi =



zxi1

zxi1
...

zxinf


, Wi =



wxyi1

wxyi2
...

wxyinnf


, 1 =



1

1
...

1


. (2.21)

(b) The estimate of
[
m c

]T
and its covariance Pmc are then calculated as :

m
c

 = Pmc

XT
i

1T

 (σ2
x + σ2

y)−1Yi, Pmc =
(XT

i

1T

 (σ2
x + σ2

y)−1
[
Xi 1

] )−1

(2.22)

The covariance Pmc is a measure of the consistency of the association.

A large covariance Pmc for the line may indicate that the measurements

do not belong to the same face.

(iii) Estimating the exact source location on the face -
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• Directly using the projections - Once a set of measurements is associ-

ated to a face, the source location of the measurements along the vertices

needs to be determined. The source locations can be determined using

the distribution of the measurements along the face. The projections

of the measurements along the face are used as empirical samples to

fit the known distribution. The vertices of the face are calculated using

the parameters of the distribution. The source locations of the measure-

ments are then the projections of the measurements along the vertices

calculated in the previous step.

The source location between the vertices of the face can also be esti-

mated directly without knowing the distribution of the measurements

along the face. The latter method is used in this work. The direct

estimation of the vertices using the projections ignores the spatial dis-

tributions of the measurements along the face and is not optimal for

faces with a skewed distribution of measurements. Using the uniform

distribution model in such cases leads to poor estimates for the vertices,

which affects the measurement source matrix estimation and in turn the

entire estimation process. Additionally, the Face Management step is

affected by the wrong choice of the distribution as well.

To estimate the source locations directly, the projections of the measure-

ments onto the estimated line/face are calculated. The vertices are set

to be the maximum and minimum of the projections along the line/face.

The source locations are calculated as -
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λ̂ = λz − λmin
λmax − λmin

, (2.23)

where λz is the projection of the measurement onto the face, λmin, λmax

are the minimum and maximum of the projections respectively.

It must be noted that the λ̂ is different from λ in (2.9). The latter is un-

known, and the former has been estimated using the measurements.

If the set of measurements has only one measurement, the source location

along the face λ̂ is set to 1. In all cases, the maximum and minimum projec-

tions are compared with the vertices of the face to which they are associated.

The form of λ̂ is such that the minimum projection corresponds to pi in

Equation (2.19). If the minimum projection is closer to pi∗ instead, then the

source locations are changed as λ̂ = 1− λ̂. The measurement source matrix

H is calculated using the source locations.

2.5.2 Convex hull and open convex hull

The algorithm uses the convex hull constraint to maintain the convex shape of the

target since the shape after filtering may not be convex. A convex set K in Rn is

a set such that

∀p, q ∈ K, γp+ (1− γ)q ∈ K, γ ∈ [0, 1]. (2.24)

The convex hull of a set of points in Rn is the smallest convex set that contains

these points. Such a convex hull is, in fact, a polytope. If the points are random,

the resulting convex hull is a random polytope. Algorithms to find the convex hull
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of a set of points are described in [24]. The implementation of such algorithms is

a part of many libraries [25],[26].

An ’open convex hull’(polytope) is described to account for the uncertainty in the

shape. An indicator variable δo is used for each face. The indicator variable δo = 1

implies that the face is a part of the ’open convex hull’. Meanwhile, δo = 0 implies

that the vertices of the face are a part of the convex hull, but the face joining the

vertices is not part of the boundary of the target This is used to keep a record

of the faces that were estimated using measurements and faces that are only an

extension between the vertices of existing faces.

The inputs to the convex hull are either measurements or estimates, both of

which are random. The algorithms for the convex hull do not incorporate noise

or error in the points, and hence the output can be quite unstable. Vertices of

the convex hull output with adjacent faces that have angles greater than θCH are

deleted from the convex hull to ensure a more stable output.

2.5.3 Initialization of velocity and shape

Using the measurements Z(0) from the first frame, the shape XS(0) and its co-

variance PS(0) is initialized iteratively as follows :

(i) All the measurements are initially assumed to occur from a single face and

hence are grouped into one single set Zi.

(ii) The measurement source matrix H is determined from the measurements.
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(iii) The vertices of the face i termed as fi, and their covariance Pi are estimated

as follows :

Pi = (HTR−1H)−1, fi =

 pi
pi∗

 = PiHTZi. (2.25)

Note that for the first iteration, a single face is estimated, i.e., i = 1. In the

following iterations Equation (2.25) can be used to initialize faces i = 1 to

NS.

(iv) The following procedure is continued until there is no change in the associa-

tion of measurements or the maximum number of iterations is reached.

(a) The measurement source matrix H is constructed using the estimate

from the previous iteration XS(0), PS(0) (only a single face in the first

iteration). The measurements are validated using the face estimates to

which they are associated. The measurements Zi = {zij}j=1 to ni
f
are

associated to the face i, i.e., (pi, pi∗) and the covariance of the face is

Pi. The part of the measurement matrix corresponding to the face-

measurement combination isHij. A pre-defined threshold ΓG is a tunable

parameter used to determine the gating of the confidence region.

(
zij −Hij

 pi
pi∗

)TS−1
ij

(
zij −Hij

 pi
pi∗

) ≤ ΓG, (2.26)

where Sij = HijPiHT
ij +R.
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In [21] , Chapter 10.4 , the process noise covariance is artificially in-

creased to compensate for the uncertainty due to the linearization of the

process and measurement models at the estimate. In the current case, the

measurement source matrix H is not known accurately. An innovation

inflation factor τI is thus incorporated to compensate for the uncertainty

in the measurement model

Sij = HijPiHT
ij +R + τIII , where II is of compatible size as Sij.

(2.27)

(b) The measurements falling inside the validation region are grouped into

sets based on the faces to which they are associated. On the other hand,

the measurements falling outside the validation region are grouped by

the closest visible vertex in the estimate. Together, these sets of mea-

surements are termed as ZT consisting of sets Zi for faces i = 1 to NS.

(c) All the sets of measurements are initialized separately to form new faces

fi using (2.25).

(d) The convex hull of the new faces that are initialized gives the shape

estimate. The covariance matrix is changed accordingly. It must be

noted that the cross-covariance between the faces is zero since they were

initialized separately.

(v) An array ∆o(0) of indicator variables δo is created to represent an ’open

convex hull’. The measurements are re-associated to the final shape estimate

after the iterations are completed. For the face (pi, pi∗) associated with at
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least one measurement, the corresponding δo is set to 1. For the faces not

associated with any measurements, the corresponding δo is set to 0.

The velocity is initialized according to the specific dynamics model. For

example, for the NCV model, the velocity is initialized as v(0) =
[
0 0

]
with

an appropriate covariance Pv(0). The total initial estimate is -

x̂(0|0) =

XS(0)

v(0)

 , P (0|0) =

PS(0)

Pv(0)

 . (2.28)

Algorithm 1 Shape Initialization
procedure initialize_shape(Z(0),iter_max)
H ← construct_measurement_source_matrix(Z(0)) (associated to single face)
PS(0)← (HR−1H)−1 XS(0)← PS(0)HTR−1Z(0)
for r=1, iter < iter_max do
H ← construct_measurement_source_matrix(XS(0), Z(0))
ZT ← validate_measurements(XS(0), PS(0),H, Z(0))
for Zi ∈ ZT do
H ← construct_measurement_source_matrix(Zi)
Pi ← (HTR−1H)−1 fi ← PiHTR−1Zi

XS(0)← [XS(0) fi] PS(0)← block_diagonal(PS(0), Pi)

XS(0), PS(0)← convex_hull(XS(0), PS(0))
∆o(0)← face_measurement_association(XS(0), Z(0))

2.5.4 Prediction

The state and covariance are predicted across time steps k using the dynamics

equation, Equation (3.4) while utilizing the fact that the target is a rigid body.
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The array of indicator variables remains unchanged.

x̂(k + 1|k) = F (k)x̂(k|k), P (k + 1|k) = F (k)P (k|k)F (k)T + Γ(k)Q(k)Γ(k)T

(2.29)

∆o(k + 1|k) = ∆o(k|k) (2.30)

2.5.5 Update

Given the measurements Z(k) =
[
zT1 (k) zT2 (k) zT3 (k) . . . zTNk(k)

]T
and the

estimate predictions x̂(k+1|k), P (k+1|k),∆o(k+1|k), the objective is to estimate

the updated state x̂(k + 1|k + 1), P (k + 1|k + 1),∆o(k + 1|k + 1). The following

operations are performed until the maximum number of iterations is reached and

the updated estimate with the minimum cost is chosen. The cost metric ∆cost is

the distance error between the current measurements to their closest point in the

estimate.

The variables xr, P r,∆r
o are temporary variables used in the iteration set initially

to the predicted estimates x̂(k + 1|k), P (k + 1|k),∆o(k + 1|k) respectively.

(i) The measurement source matrix H is constructed using xr and the current

measurements Z(k).

(ii) The measurements are validated for the face to which they are associated by

using Equations (4.58), (2.27) with the H constructed in the previous step.

The measurements falling outside the validation region are grouped by the

nearest visible vertex in the estimate. Measurements associated with the faces
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that have δro = 0 (the face is an extension between existing vertices and was

not initialized using measurements) are treated as new measurements. They

are grouped with the measurements falling outside the validation regions to

initialize new faces. The measurements inside the validation region of at least

one face are termed as ZC and the rest of the measurements are termed as

ZN .

(iii) For the first iteration, the validation step is skipped and all the measurements

are used to construct H and update the predicted estimate. For the second

iteration, the validation step is performed but all the measurements falling

outside the validation region are grouped into a single set. The first two

iterations accommodate the scenario where zero or one new face is added for

the current frame. The procedure described above is followed for the rest of

the iterations.

(iv) The measurement source matrix H is reconstructed using only the mea-

surements falling inside the validation region ZC , and the predicted state

x̂(k + 1|k). Note that this is the unchanged state from before the iterations

begin. The state estimate is updated using a Kalman Filter according to the

equations given below -

S(k + 1) = H(k + 1)P (k + 1|k)H(k + 1)T +R+ τIII . (2.31)

S(k + 1) has been modified in a similar way as Equation (2.27) by using the

inflation factor τI . This modification in the innovation is used to compensate

for the uncertainty in the unknown measurement source matrix H(k+1) and
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leads to better association and validation of measurements.

W (k + 1) = P (k + 1|k)H(k + 1)TS(k + 1)−1 (2.32)

x̂(k + 1|k + 1) = x̂(k + 1|k) +W (k + 1)
[
ZC −H(x̂(k + 1|k))

]
(2.33)

P (k + 1|k + 1) = P (k + 1|k)−W (k + 1)S(k + 1)W (k + 1)T (2.34)

(v) The measurements ZN , which fall outside the validation region, are grouped

into sets according to the nearest visible vertex in the estimate. New faces

FN = {f1N , f2N , . . . } with covariances PN = {P1N , P2N , . . . } are initialized

using each set according to Equation (2.25). These faces are initialized in-

dependently of the estimate (zero cross-covariance). The new faces are com-

bined (appended) with the estimated shape and the covariance is modified

accordingly. The ∆oN for the new faces is set to 1, since they have been

initialized using the measurements.

(vi) Face Management - The probability of association of the number of mea-

surements to each visible face is calculated according to (2.17). Faces with

probability falling below the threshold ΓFM are deleted. If the estimated

face is visible but the corresponding face in the true target is not visible,

zero measurements will occur from that face. This situation occurs when the

angle subtended by the face at the sensor is small (the face is ’barely’ visible).

The probability of the number of measurements associated to such a face is

low. To avoid deleting such faces, a new condition is introduced. When the

angle subtended by the face at the sensor αS is less than a threshold angle

for Face Management θFM , the face is not deleted.
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(vii) The convex hull constraint is applied to the resulting shape, and the covari-

ance is modified accordingly. Since some of the faces may get deleted, it is

necessary to change the ∆r
o appropriately. The projections of the faces with

δro = 1 onto the constrained shape are determined. The δro is set to 1 for the

faces in the constrained shape along which the maximum projections of the

previous valid faces lie. Note that if the face is still present in the constrained

shape, the maximum projection lies along itself.

Essentially, the estimate from the previous iteration is used to validate the

current measurements into 2 sets. The set of measurements falling inside the

validation region is used to update the unchanged predicted state. The other set

of measurements is used to initialize new faces. The updated state is combined

with the new faces and the convex hull operation is performed to generate the

estimate for the current iteration. At the end of the iterations, the estimate with

the minimum cost is chosen.

Iterative Method of Probability Updating - The state x and the measurement

function H are estimated alternately, keeping one of them fixed at a time.

(i) Estimating x̂ while keeping H fixed - The posterior probability p(x|Z,H) in

(2.15) is estimated from the likelihood p(Z|H,x) and the prior probability

p(x) by applying the filtering step. The track management step is used to

reject any faces with low likelihood p(H|x̂).

(ii) Estimating H while keeping x̂ fixed - The estimated state x̂ is used to con-

struct H for the next iteration.
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Algorithm 2 State Update
procedure state_update(x̂(k+1|k), P (k+1|k), δ(k+1|k), Z(k),iter_max)

xr, P r, δro ← x̂(k + 1|k), P (k + 1|k), δo(k + 1|k) X,P,D← [ ], [ ], [ ]
for r = 1 : iter_max do
H ← construct_measurement_source_matrix(xr, P r, Z(k))
ZC , ZN ← validate_measurements(xr, P r,∆r

o,H)
FN , PN ,∆oN ← initialize_new_faces(ZN)
H ← construct_measurement_source_matrix(x̂(k + 1|k), ZC)
xr, P r ← KF_update(x̂(k + 1|k), P (k + 1|k),H, ZC)
Equations (2.31) to (2.34)
xr ← track_management(xr,ΓFM)
xr, P r,∆r

o ← combine_states(xr, P r,∆r
o, FN , PN ,∆oN)

xr, P r,∆r
o ← convex_hull_constraint(xr, P r,∆r

o)
X,P,D← [X, xr], [P, P r], [D,∆r

o]

x̂(k+1|k+1), P (k+1|k+1), δ(k+1|k+1)← min_cost_estimate(X,P,D)

2.6 Results

Simulations are performed to test the performance of the proposed algorithm for

various scenarios :

1. Different levels of measurement noise.

2. Different levels of measurements per unit effective area.

3. Targets with different shapes.

In all three cases, the target moves across the sensor’s FOV (as shown in Figure

(2.5b)) in a manner such that different parts of the target are visible to the sensor

at different times.
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Three metrics are used to test the performance of the algorithm :

1. Root Mean Square Error (RMSE) of the velocity.

2. RMSE of the center of the target. It must be noted that the true center of the

target may be unobservable depending on the visibility and the measurements

obtained. Hence, this metric should be interpreted accordingly.

3. Intersection over Union (IoU) - This metric quantifies the similarity between

two shapes. It is defined as -

IoU = Area(Intersection of the shapes)
Area(Union of the shapes)

The optimum value ( in this case, the maximum ) is achieved when both the

shapes are the same and IoU = 1. Similar to the previous metric, the total shape

of the target may be unobservable and hence the metric should be interpreted

accordingly.

The scenario chosen for the simulation is such that different parts of the target

are visible to the sensor at different times. In the initial time steps, only a part of

the target may be visible to the sensor and the whole shape is unobservable as the

parts that are not visible do not generate any measurements. Over time, more parts

of the target become visible and the whole shape is observable if measurements

were obtained from all parts of the target over time. For a 2D convex polytope, if

NS−1 faces are observable, then the whole shape is observable. The RMSE of the

center and IoU results that follow reflect this unobservability. Initially, the RMSE

of the center is large and the IoU is low as only a part of the target is observable.
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The performance improves over time as more parts of the target become visible.

The performance of the proposed algorithm is compared with the existing al-

gorithm - GP [7] described below.

2.6.1 Gaussian Process (GP)

In this approach, the extent of the target is described by a radial function modeled

as a GP :

f(θ) ∼ GP(0, κ(θ, θ′) + σ2
r). (2.35)

θ is the input for the radial function f(θ), which describes the radial extent of the

target at the given input. The covariance function κ(θ, θ′) generally used ( and

also used in the present work ) is the squared exponential (SE) function :

κ(θ, θ′) = σ2
f exp

(
− |θ − θ

′ |
2l2

)
. (2.36)

l is the length scale and σ2
f is the prior variance. The process model is given by -

x(k + 1) = F (k)x(k) + v(k), v(k) ∼ N (0, Q(k)) (2.37)

with x(k) =
[
xc(k) ψ(k) xf (k)

]
.

where xc, ψ, xf describe the center, orientation and the radial function for evenly

spaced θfs in [0, 2π], respectively. The measurement model for the measurement
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zkl obtained at time k is given as -

zkl = hkl(x(k)) + ekl ekl ∼ N (0, Rkl), (2.38)

hkl(x(k)) = xc(k) + pklH
f (θkl(xc(k), ψ(k)))xf (k), (2.39)

Hf (θkl(xc(k), ψ(k))) = K(θkl(xc(k), ψ(k)), θf )K(θf , θf )−1, (2.40)

Rkl = pklR
f
klp

T
kl +R. (2.41)

Using x̂(0) ∼ (µ0, P0) as the initialization, an EKF is used to recursively update

the state.

2.6.2 Scenario

The target shape is shown in Figure [2.5a]. The sensor is located at
[
0m 0m

]T
.

The target is initially centered at
[
30m 40m

]T
. The initial velocity of the target

is
[
−3ms−1 −4ms−1

]T
. The target trajectory is such that different parts of the

target are visible to the sensor at different times. The sampling time T between

frames is 1s. A sample target trajectory is shown in Figure [2.5b].

The measurement noise covariance R and the power spectral density of the

process noise q are given below.

R =

σ2
x 0

0 σ2
y

 , q = 0.1m2s−3.

The tracker parameters are as follows :
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(a) Target shape (b) Sample trajectory

Figure 2.5: Target shape and sample trajectory

(i) Threshold for confidence region of gating ΓG = 0.75.

(ii) Threshold for face management ΓFM = 10−9, θFM = 10 degrees.

(iii) Threshold angle for convex hull θCH = 175 degrees.

(iv) Innovation inflation factor to account for measurement model mismatch -

τI = 0.1

(v) Maximum number of iterations for initialization and update - iter_max = 10.

The tracker is initialized with velocity
[
0 0

]T
ms−1 and covariance

Pv(0) =

62 0

0 62

m2s−2.

The GP parameters are as follows : σf = 2m,σr = 2m, l = π
4 and α = 0.0001.

Further, 16 points are used to represent the target contour, i.e., the target shape

consists of rgp for 16 evenly sampled angles θgp between [0, 2π].

The GP estimate can be self-intersecting and hence the convex hull of the estimate
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is used to calculate the results. Note that 50 Monte Carlo runs are used to obtain

the results in the present study.

The simulations were performed on MATLAB R2021b on an Intel Core i7-

8550U (1.80GHz) processor with 16GB of RAM.

2.6.3 Different levels of measurement noise

The algorithms are tested for different values of the measurement noise covariance

parameters σx = σy while keeping the number of measurements per unit effective

area fixed, ρ = 100m−1. The values for the standard deviations of the measure-

ment noise covariance used are {0.01m, 0.05m, 0.1m, 0.15m, 0.2m}. Since the GP

model does not account for visibility issues, one set of simulations is performed

assuming all the faces of the target are visible at all times. However, the number

of measurements still depends on the sensor-target geometry.

Figure 2.6: RMSE center for σx = σy = 0.1m and ρ =
100m−1 when all faces are visible.

Figures (2.6),(2.7),(2.8) show the results when all the faces of the target are

visible. Snapshots of the estimates at different times are shown in Figure (2.9)
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Figure 2.7: RMSE velocity for σx = σy = 0.1m and ρ =
100m−1 when all faces are visible.

Figure 2.8: IoU results for σx = σy = 0.1m and ρ = 100m−1

when all faces are visible.

(a) Frame 10 estimates (b) Frame 100 estimates (c) Frame 150 estimates

Figure 2.9: Estimates of the target shape at different times
with σx = σy = 0.1m and ρ = 100m−1. The true target shape
is given in blue, and the measurements at the current time are
given in red. The estimate using the proposed algorithm is in
black and the GP estimate is in green
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It can be seen that the results (particularly IoU) are comparable when the vis-

ibility issues are not considered. The performance of the proposed algorithm is

slightly better since the target shape is a convex polytope, which is more compat-

ible with the proposed model. Importantly, the RMSE of the center for the GP

estimate is biased.

Figure 2.10: RMSE center for different levels of measure-
ment noise. Results for the proposed approach are on the left
and the GP results are on the right

Figure 2.11: RMSE velocity for different levels of measure-
ment noise. Results for the proposed approach are on the left
and the GP results are on the right

Figures (2.10),(2.11),(2.12) show the results when the visibility issues are con-

sidered. Snapshots of the estimates at different times are shown in Figure (2.13)
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Figure 2.12: IoU results for different levels of measurement
noise. Results for the proposed approach are on the left and
the GP results are on the right

(a) Frame 10 estimates (b) Frame 100 estimates (c) Frame 150 estimates

Figure 2.13: Estimates of the target shape at different times
for σx = σy = 0.1m, ρ = 100m−1. The true target shape is
given in blue, the measurements at the current time are given
in red. The estimate using the proposed algorithm is in black
and the GP estimate is in green.

The proposed algorithm outperforms GP when visibility issues are considered.

The plots for the estimates of the center and IoU show that the initial values for

GP are apparently better than the proposed algorithm. However, from Figure

(2.13a), it can be seen that the GP shape estimate is larger than the visible part

of the target up to frame 10, which explains the apparent improvement in perfor-

mance. Hence, the proposed algorithm represents the observable part of the target
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better than GP.

From Figures (2.13a),(2.13b),(2.13c), it can be seen that the number of parameters

used to represent the target shape changes dynamically as more parts of the target

become visible over time.

The effect of change in the measurement noise covariance on the proposed algo-

rithm can be inferred from the error plots (2.10),(2.11),(2.12), i.e., the perfor-

mance improves with a decrease in the measurement noise covariance. The effect

is not as pronounced when σx = σy take values {0.01m, 0.05m, 0.1m}, but as the

measurement noise covariance increases to values {0.15m, 0.2m}, the performance

degrades gradually. The RMSE of the velocity plot (3.7) is similar for all levels of

measurement noise covariance. However, the performance for measurement noise

covariance values {0.15m, 0.2m} becomes slightly worse between frames 100 and

120. This is due to the joint uncertainty in the shape and kinematics as more faces

of the target become visible over this time. The sharp transitions in the plots show

that the estimate becomes closer to the true target state as more parts of the tar-

get become visible. The algorithm is able to estimate the true target state with

NS − 1 faces being visible over time (since the target shape is constrained to be

convex).

The GP approach is unable to handle the visibility issues, as seen from the

snapshots over time (2.13). The estimate worsens over time when only a few faces

of the target are visible and improves slightly as more parts of the target become

visible.
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2.6.4 Different levels of average number of measurements

Simulations are performed under the same scenario as described before, however

the measurement noise covariances are kept fixed σx = σy = 0.1m and the number

of measurements per unit effective area ρ is varied. The different values of ρ used

are {100m−1, 70m−1, 40m−1, 20m−1}. Figures (2.14),(2.15),(2.16) show the results

when the visibility issues are considered. Snapshots of the estimates at different

times are shown in Figure (2.17)

Figure 2.14: RMSE center for different levels of measure-
ments. Results for the proposed approach are on the left and
the GP results are on the right

Figure 2.15: RMSE velocity for different levels of measure-
ments. Results for the proposed approach are on the left and
the GP results are on the right
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Figure 2.16: IoU results for different levels of measurements.
Results for the proposed approach are on the left and the GP
results are on the right

(a) Frame 10 estimates (b) Frame 100 estimates (c) Frame 150 estimates

Figure 2.17: Estimates of the target shape at different times
σx = σy = 0.1m, ρ = 40m−1. The true target shape is given in
blue, the measurements at the current time are given in red.
The estimate using the proposed algorithm is in black and the
GP estimate is in green

The proposed algorithm is robust at different levels of measurements from the

target as seen from (2.14),(2.15),(2.16). The performance degrades slightly when

the level of number of measurements is sufficiently lowered (ρ = 20m−1). Notably,

the transition in the error plots is slower in case of ρ = 20m−1 compared to other

scenarios

The apparent improvement in the performance of GP in the initial time steps has
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ρ Runtime per frame using proposed algorithm Runtime per frame using GP
(m−1) for 10 iterations (seconds) (seconds)
20 0.1364 0.0173
40 0.1561 0.0301
70 0.1982 0.0542
100 0.2674 0.0973

Table 2.1: Table of runtimes for different average levels of
measurements

been addressed in Section 2.6.3 - the scenario when visibility issues are considered.

Overall, the proposed algorithm is better at representing the observable parts of

the target.

The simulation times for the proposed algorithm and GP are listed in Table

(2.1) for different levels of average number of measurements. It can be seen that

the runtime per frame for the proposed algorithm is significantly greater than GP,

however the runtime per iteration is comparable with GP. It must be noted that

the code for the proposed algorithm is not optimized for runtime. It can be seen

that the difference in runtimes for different average number of measurements is

small, i.e., a significant amount of runtime is spent in the setup of the algorithm,

which is independent of the number of measurements. Currently, the algorithm

uses simple nearest neighbour association and runs till the maximum number of

iterations is reached. Better association techniques and an optimality criterion to

end the iterations can be developed to minimize the number of iterations, and to

have comparable runtime as GP.

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

2.6.5 Performance for different shapes

The scenario is kept the same with σx = σy = 0.1m and ρ = 100m−1, but the

target shape is changed. The target shapes used are rectangle, pentagon and

hexagon, as shown in Figure (2.18), and the original custom shape used in the

previous scenarios.

Figure 2.18: Rectangle, Pentagon, Hexagon, and custom
target shapes

The results are shown in Figures (2.19),(2.20),(2.21); the snapshots of the esti-

mates at different times are shown in (2.22),(2.23),(2.24); and the snapshots with

the original shape are shown in (2.13).

Figure 2.19: RMSE center for different shapes. Results for
the proposed approach are on the left and the GP results are
on the right
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Figure 2.20: RMSE velocity for different shapes. Results for
the proposed approach are on the left and the GP results are
on the right

Figure 2.21: IoU results for different shapes. Results for the
proposed approach are on the left and the GP results are on
the right

The algorithm is effectively able to track targets of different shapes, as seen in

the results. The visibility of different parts of the target varies with its shape. The

algorithm tracks the parts of the target visible up to the current time. It can be

clearly seen from Figures (2.19),(2.21) that the performance becomes similar once

the ’whole’ target becomes visible (approximately frame 75 for rectangle, frame 85

for pentagon, frame 125 for hexagon and frame 120 for the original shape). In fact,

only NS − 1 faces of the target are visible over time and these faces are sufficient

to track the entire shape of the target with convex constraint.
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(a) Estimates at frame 10 (b) Estimates at frame 100

Figure 2.22: Estimates of the target shape at different times
σx = σy = 0.1m, ρ = 100m−1 for rectangle target shape. The
true target shape is given in blue, the measurements at the
current time are given in red. The estimate using the proposed
algorithm is in black and the GP estimate is in green

(a) Frame 10 estimates (b) Frame 100 estimates (c) Frame 100 zoomed out

Figure 2.23: Estimates of the target shape at different times
σx = σy = 0.1m, ρ = 100m−1 for pentagon target shape. The
true target shape is given in blue, the measurements at the
current time are given in red. The estimate using the proposed
algorithm is in black and the GP estimate is in green

GP is unable to effectively track the different shapes when visibility issues are

considered.
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(a) Frame 10 estimates (b) Frame 100 estimates (c) Frame 150 estimates

Figure 2.24: Estimates of the target shape at different times
for σx = σy = 0.1m, ρ = 100m−1 and hexagon target shape.
The true target shape is given in blue, the measurements at the
current time are given in red. The estimate using the proposed
algorithm is in black and the GP estimate is in green

2.6.6 Discussion and Remarks

Some highlights and insights about the results are discussed below. It is seen from

the results that both the proposed approach and the Gaussian Process were able

to handle the Extended Target Tracking problem when the target is fully visible.

However, in reality, the target may only be partially visible at each frame with

more parts of the target being visible over different frames. The proposed algo-

rithm is able to handle this problem of self-occlusion whereas the Gaussian Process

estimate is unsatisfactory. This is made possible by using the proposed Extended

Target Tracking framework and by representing the shape of the target only by

its boundary. Since different faces of the Extended Target are treated as separate

targets, it is possible to distinguish between the faces that are visible and those

that are not visible. Measurements can then be associated to the local visible
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faces. The filtering, which maintains the constraint between consecutive faces at

the vertex is done jointly. The proposed approach is able to handle only partially

visible targets by estimating only the boundary since, in such cases, the actual

center of the target is not observable. The shape estimate supports adding new

faces as well for the new parts of the target that become visible over frames. It is

seen from the RMSE center, RMSE velocity and IoU metrics that the algorithm

responds well to changes in the parameters of measurement noise covariance and

average number of measurements. The performance of the algorithm varies corre-

sponding to the change in the parameters, i.e. the performance for σx = σy = 0.1m

is better than for σx = σy = 0.15m, which in turn is better than the performance

for σx = σy = 0.2m and so on.

2.7 Conclusions and Future Work

The extended target problem of tracking a single 2D convex-shaped target with

known dynamics and without clutter was addressed. The problem of self-occlusion

was also considered. A framework for tracking single extended targets was devel-

oped based on the existing point multitarget tracking framework. An algorithm

was implemented under the current framework and tested for various scenarios.

The shape consists only of the vertices describing the boundary and not the center

(since the true center may be unobservable). The number of parameters describ-

ing the shape can be dynamically updated when more parts of the target become

visible over time.
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The performance of the algorithm was tested for various scenarios, including

different measurement densities, measurement noise covariances, and shapes. The

proposed algorithm was found to be robust under all these conditions.

The algorithm is limited by the convex polytope shape. Extension of the algo-

rithm to 2D non-convex shapes and further to 3D shapes are to be attempted as

part of future work. Since target rotation occurs frequently in practice, it becomes

necessary to include target rotation as well in the dynamics for future work. Clut-

ter can also be incorporated by using data association algorithms that support

clutter. The parameters such as the measurement noise covariance and density of

measurements as assumed to be known even though they can be unknown in reality.

It is useful to include the parametric uncertainty in future work. As it is seen from

Table (2.1), the runtime for the proposed algorithm is significantly greater than the

existing Gaussian Process. Advanced association techniques such as PMHT (as

opposed to the current nearest neighbour association) are to be studied to improve

the runtime performance. Moreover, various data association, filtering ( depend-

ing on the target and measurement model), and track management techniques can

be investigated under the proposed framework for single extended target tracking.

Further, algorithms can be designed depending on the tradeoff in the performance

based on the scenario.
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Visibility
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8, 2023.
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Extended Target Tracking using ET-PMHT for

3D Convex Polytope Shapes with Partial

Visibility

Abstract

This article discusses the problem of tracking a single 3D extended target (or

widely separated targets) with convex polytope shape when the target may only

be partially visible. An extended target (as opposed to a point target) is one that

may generate multiple measurements in a single frame. With the advent of high

resolution sensors (such as LiDAR) the targets need to be considered as extended

targets and their shape as well as kinematics need to be estimated. The extended

target may only be partially visible (self-occlusion) and the measurements occur

only from the visible parts of the target. In this work, different parts of a sin-

gle extended target are assumed to be different targets constrained by the rigid

body motion of the whole target and the multitarget tracking framework is used

to handle the tracking. The target shape is described using a convex hull repre-

sented by its vertices and a Delaunay triangulation. The point target PMHT is

modified to develop a single extended target PMHT (ET-PMHT) joint association

and filtering by assuming that the face triangulations are separate targets. Face

management is incorporated into the algorithm to delete erroneous faces and the

algorithm is able to add new faces to refine the shape estimate. The framework is

able to handle self-occlusion (partial visibility) by associating measurements only
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to the visible parts of the target and vary the number of state parameters used

to describe the shape. The performance of the algorithm is compared with 3D

Gaussian process under various scenarios and RMSE of the center, velocity and

IoU metrics are used to quantify the performance.

Keywords: Extended Target, Self-Occlusion, Expectation Maximization, Proba-

bilistic Multiple Hypothesis Tracker, 3D Convex Hull

3.1 Introduction

Traditional target tracking algorithms are designed assuming point targets, i.e.

each target can generate at most one measurement per frame. The objective is

to track the kinematics of possibly multiple targets. The problems of handling

clutter, multitarget association and addition/deletion of targets are addressed in

the traditional methods. However, with the advent of high resolution sensors

(such as automotive radar, LiDAR), targets can produce multiple measurements

across the sensor resolution cells in a single frame. Such targets are termed as

extended targets and their shape as well as kinematics need to be estimated.

This issue cannot be handled by traditional point target tracking algorithms and

hence Extended Target (ET) algorithms have been developed for targets with finite

extent (as opposed to zero extent of point targets).

The main challenge in extended target tracking is to estimate the state - shape

and kinematics with the joint uncertainty in the state. The same set of measure-

ments over time can be produced by targets with a combination of distinct shapes
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and kinematics. One of the other issues that needs to be handled is the problem

of visibility. Depending on the sensor-target geometry, only some parts of the

target may be visible to the sensor and measurements are generated only from the

visible parts. Self-occlusion occurs when some parts of the target are blocked from

the sensor’s view by the same target. When a target is blocked from the sensor’s

view by a different target, it is termed as mutual occlusion. Figure 3.1 shows an

example of self-occlusion of convex shaped target from the view of the point S.

Depending on the scenario, the entire target shape may not be observable due to

occlusion even with multiple frames of measurements.

Figure 3.1: Example of self-occlusion. Visible faces are
transparent and faces that are not visible are shaded. [1]

In [2],[3] shapes such as rectangles and ellipses are used for the extended target

and the measurements over time are used to estimate the parameters such as the

length of major/minor axes and the lengths of the sides of the rectangle. The

Random Matrix approach is presented in [4] where the target shape is described

by a symmetric positive semi-definite (PSD) matrix. More specifically, the mea-

surements are generated around the center with a covariance given by the random

matrix. The random matrix is assumed to be inverse Wishart distributed, which

is the conjugate prior and an analytical Bayesian solution is derived. The algo-

rithm is suited particularly for ellipsoidal shapes. [5] extends the Random Matrix
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approach to non ellipsoidal shapes by using a combination of multiple ellipsoids to

describe the shape. In [6], multipath detections and clutter issues are addressed

in a terrain constrained environment using the Random Matrix model.

A radial basis function which follows a Gaussian Process is used in [7],[8] to

describe a variety of star convex shapes for the extended target in 2D and 3D,

respectively. The squared exponential function with appropriate distance function

(2D/3D) is used to describe the covariance between different parts of the extended

target. An analytical expression is derived for the Jacobian using an appropriate

local measurement model and an EKF is developed for tracking extended targets.

More details of [8] approach can be found in [4.6.1]. The same target can be viewed

as a point target or an extended target depending on the sensor target geometry.

[9] addresses this problem using the Gaussian process model and using a Poisson

rate for the number of measurements. The Gaussian process model is extended to

handle clutter in [10].

In [11] and [12], Random Hypersurface models are used to represent the tar-

get shape. Simple shapes such as rectangle, circle or ellipse can be used or more

complicated shapes can be accommodated using a polygonal descriptor. A pseudo-

measurement model is used with source location uncertainty to represent the mea-

surements from the target. Both Random Hypersurface and Gaussian process

models can handle measurements occurring from the interior of the target using

a scaling factor. Splines are yet another model to represent the target shape ad-

dressed in [13],[14]. A comprehensive overview of the literature on extended target

tracking is presented in [15].

77

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

In the current work, the different parts of the extended target are assumed to

be different targets and the extended target tracking framework [16] developed

based on the point multitarget tracking (MTT) framework is used to develop an

algorithm to track 3D extended targets with convex polytope shape. The existing

literature does not consider the visibility issues i.e., they assume measurements

are generated from all parts of the target at all times, including those that are not

visible to the sensor. In the present work, partially visible targets are handled by

associating the measurements at certain time to only the visible parts of the target

at that time. Due to self-occlusion, the center of the target may not be observable

even over multiple frames of measurements. As such, the current work abandons

the center of the target as a part of the state and only the boundary of the target

is used to describe its shape, whereas in most existing algorithms, the center of

the target is a part of the state to be estimated. Using the ET framework, the

proposed algorithm is able to vary the number of parameters used to describe the

shape as more parts of the target become visible over time.

The target shape is represented only by its boundary using a convex hull us-

ing its vertices and a Delaunay triangulation. The mesh triangulation to represent

objects of different shapes is a common technique used in various fields of engineer-

ing such as structural analysis, fluid mechanics and electromagnetics [17]. Further,

each point on the face triangulation can be represented uniquely as a linear combi-

nation of the vertices as they form a basis for 3D space. Hence, it is advantageous

to represent the target shape in terms of face triangulations rather than polyg-

onal faces. The standard Probabilistic Multiple Hypothesis Tracker (PMHT) is

modified by assuming that the different face triangulations are separate targets
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to develop Extended Target PMHT. Face management technique is used to delete

faces with low probability and new faces can be added for measurements that do

not fall inside the validation gate of the current estimate.

The main contributions of the paper are

1. The target shape model presented is able to describe a variety of 3D convex

polytope shapes. The target shape is described by its vertices and the faces

are described using a Delaunay triangulation.

2. A linear measurement model is developed for the target shape and the self-

occlusion is incorporated.

3. Using the ET framework, an Extended Target PMHT (ET-PMHT) joint

association and filtering is derived based on the point target PMHT.

4. An algorithm is presented which incorporates the ET-PMHT to track 3D

extended targets with convex polytope shape while handling partial visibility.

5. The performance of the algorithm is compared with 3D Gaussian Process

and various metrics are presented to indicate the performance.

The paper is organized as follows - Section II contains the problem description

with the target and measurement models. Section III provides a review of the

framework used for extended target tracking developed in [16]. Equations for ET-

PMHT filtering are derived in Section IV and the complete algorithm is described

in Section V. Section VI contains the simulation results and the conclusions are

presented in Section VII.
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3.2 Problem Description

The problem of tracking a single extended target (or widely separated targets) in

3D is discussed. The target is assumed to have a 3D convex polytope shape and is

assumed to be a rigid body. The shape as well as the kinematics of the extended

target are to be estimated using measurements over time. The visibility issues are

considered as well - measurements only occur from the faces of the target visible to

the sensor. The target is assumed to move according to a known dynamics model

(nearly constant velocity model). The target state x consists of a shape descriptor

XS which consists of the vertices of the target shape, XDT which describes the

edges/faces using a Delaunay Triangulation and a kinematics descriptor v. The

matrix XDT describing the edges using the vertices is not included directly in the

state vector denoted by x.

x =

XS

v

 (3.1)

3.2.1 Target Model

The shape descriptor XS for a target with NX vertices can be written as[
pT1 pT2 pT3 . . . pTNX

]T
where pi are vertex points in 3D space, with pi =

[
pxi pyi pzi

]T
denoting the x, y, z coordinates. The edges between the vertices are described in

XDT using a Delaunay triangulation of the convex polytope shape. The surface

of the target is divided into non-overlapping triangles. Each row of XDT consists
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of the indices of the vertices of these triangles. Notice that the Delaunay trian-

gulation of a 3D convex shape is not unique. The total target state is then given

by

XS =
[
px1 py1 pz1 px2 . . . pzNX

]T
v =

[
vx vy vz

]T
x =

[
pT1 pT2 . . . pTNX vx vy vz

]T
(3.2)

The matrix XDT for figure [3.2] is given by

Figure 3.2: Example of a target as a cube and its Delaunay
triangulation

XDT =



1 2 5

1 4 2

1 5 4
... ... ...

6 7 8
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Let T be the sampling time between frames t and t + 1. For nearly constant

velocity NCV model, the transition matrix F (t) and the process noise covariance

Q(t) is given by

F (t) =



I3×3 03×3 03×3 . . . T.I3×3

03×3 I3×3 03×3 . . . T.I3×3

... ... . . . ... ...

03×3 03×3 03×3 . . . I3×3


Q(t) =



1
3T

3 1
2T

2 0 0 0 0
1
2T

2 T 0 0 0 0

0 0 1
3T

3 1
2T

2 0 0

0 0 1
2T

2 T 0 0

0 0 0 0 1
3T

3 1
2T

2

0 0 0 0 1
2T

2 T



Γ(t) =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0
... ... ... ... ... ...

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1



(3.3)

The dynamics model is then written as

x(t+ 1) = F (t)x(t) + Γ(t)ν(t) where ν(t) ∼ N (0, Q(t)) (3.4)
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The dynamics model described above differs from the NCV model for a point

target. Since the extended target is a rigid body, all the points (including the

vertices) have the same kinematics. This is achieved by using a 6 × 1 process

noise vector with process noise covariance Q(t) (one element for position in each

dimension and one element for velocity in each dimension) and matrix Γ(t).

3.2.2 Measurement Model

Measurements are obtained only from the faces of the target visible to the sensor.

The measurements are assumed to occur only from the surface of the target cor-

rupted by zero mean Gaussian noise with known covariance. For convex polytope

shapes, a face of the target is visible to the sensor only if the centroid of the target

and the sensor location are on the opposite sides of the face. This is the problem

of self-occlusion and is particularly apparent in the 3D scenario.

The number of measurements from a face m is Poisson distributed, with the

average number of measurements Nm
f proportional to the area of the face Am.

Nm
f = ρ× Am (3.5)

where ρ is the number of measurements per unit area.

Let the target x have M number of faces (i.e. number of rows in the XDT ma-

trix) with each face represented by vertices (pm,1, pm,2, pm,3) where m = 1 to M .

Suppose nt,m measurements occur from face m, with the total number of measure-

ments at time frame t being nt, then each measurement zm,rt from face m can be

83

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

written as

zm,rt = λm,r,1pm,1 + λm,r,2pm,2 + λm,r,3pm,3 + w (3.6)

w ∼ N (0, R) and
3∑
o=1

λm,r,o = 1, λm,r,o ≥ 0

where R is the measurement noise covariance.

The measurement zm,rt on the surface of face m is a linear combination of the

vertices of the face, with the constraint on the coefficients λm,r,o to sum to one.

The source locations on the surface of the target described by the λs are unknown.

The total set of measurements occurring from the face m can be written in matrix

form as



zm,1t

zm,2t

zm,3t

...

z
m,nt,m
t


=



λm,1,1I3×3 λm,1,2I3×3 λm,1,3I3×3

λm,2,1I3×3 λm,2,2I3×3 λm,2,3I3×3

λm,3,1I3×3 λm,3,2I3×3 λm,3,3I3×3

... ... ...

λm,nt,m,1I3×3 λm,nt,m,2I3×3 λm,nt,m,3I3×3




pm,1

pm,2

pm,3

+ wm (3.7)

The total measurement set from face m can be compactly written as-

{Zm
t = zm,rt }

nt,m
r=1 = Hm

t


pi1

pi2

pi3

+ wm (3.8)

wm is the stacked measurement noise vector for the face and is distributed as

wm ∼ N (0, Rm), where Rm is the block diagonal matrix of R with the number of
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entries corresponding to the number of measurements being addressed, i.e. nt,m.

The total measurement set from all faces {Zt = zm,rt }m=M,r=nt
m,r=1 can be written

using the above notation as

Zt = Htx + wt (3.9)

wt is the stacked measurement noise vector for the measurements at time frame t

and is distributed as wt ∼ N (0, Rt). In a similar manner as before, Rt is the block

diagonal matrix of R with the number of entries being equal to the total number

of measurements at the time, i.e. nt. The rows of Ht corresponding to certain

measurement zm,rt from face m consists of the coefficients for the vertices of face m

and the rest of the elements are zero, which are the vertices that do not correspond

to the face and hence do not contribute to the measurement. Figure 3.3 shows an

example of measurements occurring from the visible faces of the target.

Figure 3.3: Example of measurements from visible faces of
the target shape
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3.3 MTT Framework for single extended target

tracking

The multitarget tracking framework has been extensively developed for point tar-

get tracking and various techniques have been introduced to handle different track-

ing scenarios. By treating different parts of a single extended target as multiple

targets, the point MTT framework can be modified accordingly to tackle the ex-

tended target tracking problem [16]. The typical MTT framework consists of the

following steps

• Gating - The measurements are validated using the current target estimates

and grouped by the gates of the targets they fall into (single measurement

can fall into multiple overlapping gates). The measurements not falling inside

any gate are grouped separately and used for initialization.

• Association - Multitarget association techniques are used to associate the

validated measurements to the targets or clutter.

• Filtering - The target estimates are filtered using the associated measure-

ments.

• Track Initialization - The measurements which do not fall inside the gate of

any current target are used to initialize new targets.

• Track Management - The track quality scores are calculated for the available

tracks. Tracks can be termed as tentative, confirmed or deleted depending
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Multitarget Tracking Framework

Measurements

Gating Track Initialization

Multitarget Association

Filtering

Track Management

Inside

Outside

(a) Single iteration of the MTT frame-
work

Single Extended Target Tracking Framework

Measurements

ET-PMHT

Gating Face Initialization

Face Management

Inside

Outside

(b) Single iteration of the ET frame-
work

Figure 3.4: Flowchart of the frameworks

on the current track quality.

The general modification of the MTT framework for ET tracking has been

described in [16] and the flowchart is given in Figure 3.4

3.4 Solution

3.4.1 Determination of the measurement function

Given the measurements Z = {z1, z2, . . . , zn} and the face triangulation described

by the points {p1, p2, p3}, the measurement function relating the measurements to
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the face is to be determined. The least squares method with linear constraints is

used to estimate the measurement function. It is assumed that the measurement

function for a certain measurement-face pair is independent of the other faces and

measurements. The measurement equation for the rth measurement from the face

is given as

zr = λr,1p1 + λr,2p2 + λr,3p3 + w where w ∼ N (0, R)

zr =
[
p1 p2 p3

]

λr,1

λr,2

λr,3

+ w = PΛr + w (3.10)

Using the form of the measurement equation above, the estimation is cast as a

constrained optimization problem

Λ̂r = arg min
Λr

(zr − PΛr)TR−1(zr − PΛr) (3.11)

subject to λr,o ≥ 0 and
3∑
o=1

λr,o = 1

The total measurement matrix can then be obtained in a manner similar to

equation (3.7). It is to be noted that solution of the optimization is the coefficients

for the point on the face triangulation closest to the measurement in terms of

Equation (3.11) for the distance measure. Geometric methods can be used instead

of expensive optimization routines to obtain the solution.
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3.4.2 Expectation Maximization for static shape estima-

tion: ET-PMHT initialization

Similar to the Expectation Maximization (EM) procedure applied to a static Gaus-

sian mixture in [18], the EM method is used to obtain shape estimate from a set

of measurements with unknown measurement to face association. This technique

is used in shape initialization, i.e. no prior. The measurement set at frame 0

(initial time frame) is Z0 = {z1
0 , z

2
0 , . . . , z

n0
0 } and the unknown measurement to

face association, the missing data is denoted by K0 = {k1
0, k

2
0, . . . , k

n0
0 }. Each

element krt denotes that the rth measurement at time frame t is associated to

the krt
th face and hence krt takes values from 1 to M where M is the num-

ber of faces in the estimate. The initial estimate provided to the procedure is

denoted by XS(0) =
[
(p1

0)T (p2
0)T . . . (pN0

0 )T
]T

with the face triangulations

F0 = {f 1
0 , f

2
0 , . . . , f

M
0 }. The face triangulations are encoded by XDT (0) of size

M × 3. Each element of the face triangulation fmt is 9 × 1 vector consisting of

the three 3D points that are vertices of the triangle being described. Assuming

that the measurements occur independently of one another, the complete data

likelihood can be written as

pcomp(Z0, K0, XS(0)) =
n0∏
r=1
N (zr0;hk

r
0 ,r

0 (fk
r
0

0 ), R) (3.12)

hk
r
t ,r is the measurement function for the rth measurement at time frame t occurring

from the face fk
r
t

t . Since the measurement function is calculated separately for

each face-measurement pair, it is independent of the association and is hence not

included in the missing data. It is however, a function of the shape state XS(0)
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but is assumed to be a constant estimate with each iteration. The measurement

function for the current iteration is estimated using the estimated state X̂S(0)

from the previous iteration.

The conditional probability of the missing data is calculated in a similar manner

as in [18]

pmiss(K0|Z0, X̂S(0)) =
n0∏
r=1

N (zr0;hkr0 ,r(fk
r
0

0 ), R)∑M
m=1N (zr0;hm,r(fm0 ), R)

=
n0∏
r=1

p(kr0|zr0, X̂S(0)) (3.13)

Denoting the weights for the mth face and rth measurement pair as wm,r0 ,

wm,r0 = p(kr0 = m|zr0, X̂S(0)) (3.14)

The auxiliary function is the expected value of the logarithm of the complete data

likelihood over the missing data. It can be calculated as

L(XS(0)|X̂S(0)) = EK0

{
log(pcomp(Z0, K0, XS(0)))

}

= −1
2

n0∑
r=1

log |2πR| − 1
2

M∑
m=1

n0∑
r=1

(zr0 − h
m,r
0 (fm0 ))TR−1(zr0 − h

m,r
0 (fm0 ))wm,r0

(3.15)

The first term is independent of the state to be estimated and is dropped from

the auxiliary function in the further steps. The measurement function is linear

(from equation (3.7)), i.e. hm,r0 (fm0 ) = hm,r0 fm0 . The underlined part of the

equation can be simplified as follows

n0∑
r=1

(zr0 − h
m,r
0 (fm0 ))TR−1(zr0 − h

m,r
0 (fm0 ))wm,r0

= (Z0 −Hm
0 f

m
0 )T (Rm

0 )−1(Z0 −Hm
0 f

m
0 ) (3.16)
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where

Z0 =



z1
0

z2
0
...

zn0
0


, Hm

0 =



hm,10

hm,20
...

hm,n0
0


, (Rm

0 )−1 =



wm,10 R−1

wm,20 R−1

. . .

wm,n0
0 R−1


(3.17)

Face fm0 can be written in terms of the state XS(0) as fm0 = FmxXS(0). Let NX(t)

be the number of vertices in the shape estimate at time frame t. Matrix Fmx is

of size 9× 3NX(t), which extracts the vertices describing the face from the points

in the state. Fmx is zeros everywhere except the sets of columns (each set is 3

consecutive columns) given by the mth row of XDT . For each set of rows s (each

set is 3 consecutive rows) the XDT (m, s) set of columns contains I3×3. Suppose

the face fm consists of points
[
pT1 pT3 pT5

]T
from XS =

[
pT1 pT2 pT3 pT4 pT5

]T
then Fmx is given by-

fm =


I3×3 03×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3 I3×3

XS (3.18)

The auxiliary function, dropping terms independent of the state, can then be

written directly in terms of the state as

L(XS(0)|X̂S(0)) = −1
2

M∑
m=1

(Z0 −Hm
0 F

mxXS(0))T (Rm
0 )−1(Z0 −Hm

0 F
mxXS(0))

(3.19)
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Since the auxiliary function is a sum of (at least) negative semi-definite matrices,

the maximum can be found by taking the derivative of the auxiliary function with

respect to the state and equating it to zero

∇XS(0)L(XS(0)|X̂S(0)) = 0

=⇒
M∑
m=1

(Hm
0 F

mx)T (Rm
0 )−1(Z0 −Hm

0 F
mxXS(0)) = 0

=⇒
( M∑
m=1

(Hm
0 F

mx)T (Rm
0 )−1Hm

0 F
mx
)
XS(0) =

( M∑
m=1

(Hm
0 F

mx)T (Rm
0 )−1

)
Z0

(3.20)

The EM procedure is followed until the difference in the values of the auxiliary

function between iterations l and l + 1 falls below a certain threshold

1
n0

∣∣∣∣L(XS(0)|X̂S(0))|l+1 − L(XS(0)|X̂S(0))|l
∣∣∣∣ < τI (3.21)

3.4.3 Expectation Maximization for dynamic state estima-

tion: ET-PMHT update

A procedure similar to the above procedure is developed for dynamic state es-

timation, where the state evolves according to known dynamics. The data for

the Expectation Maximization consists of the total measurement set for time

frames t = 1 to T : Z = {Z1, Z2, . . . , ZT}, the states to be estimated: X =

{x(0),x(1), . . . ,x(T )} and the missing data of the association terms is denoted

by: K = {K1, K2, . . . , KT}. The individual terms of the total measurement set
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Z are the measurement sets for each time t: Zt = {z1
t , z

2
t , . . . , z

nt
t } and the in-

dividual terms of the X are the states each time. zrt is the rth measurement at

time t of size 3 × 1 consisting of (x, y, z) co-ordinates. fmt is the state of the mth

face at time t of size 9× 1 consisting of the three vertices describing the face tri-

angulation (p1(t), p2(t), p3(t)) each of size 3 × 1. The individual terms of K are

Kt = {k1
t , k

2
t , . . . , k

nt
t } in which krt denotes that the zrt is associated to the face

f
krt
t . Hence krt takes values in the set {1, 2, . . . ,M}. It must be noted that the

number of faces or the face triangulations do not change during the procedure.

The complete data likelihood is then

pcomp(X,Z,K) = p(Z|X,K)p(K|X)p(X) (3.22)

where, p(Z|X,K) consists of the measurement likelihood terms -

p(Z|X,K) =
T∏
t=1

nt∏
r=1
N (zrt ;h

krt ,r
t (fk

r
t

t ), R) (3.23)

p(K|X) denotes the probability of the association of the number of measurements

to the faces of the given state estimates. This term is handled in the face man-

agement step of update (3.5.2) and only the faces with p(K|X) greater than a

threshold are used for the EM procedure.

p(X) describes the evolution of the states according to the known dynamics in-

dependent of the measurements. Let xmt =

 fmt
v(t)

. p(X) can then be written as

-

p(X) =
M∏
m=1

p(xm0 )
T∏
t=1

[p(xmt |xmt−1)] (3.24)
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The conditional probability of the missing data is given by

p(K|Z, X̂) =
T∏
t=1

nt∏
r=1

p(krt |zrt , x̂(t)) (3.25)

The conditional probability of associating rth measurement to the mth face is

denoted as wm,rt = p(krt = m|zrt ,x(t)).

The auxiliary function is then -

L(X|X̂) = EK

(
log(pcomp(X,K,Z))

)

= EK

( T∑
t=1

nt∑
r=1

log{N (zrt ;h
krt ,r
t (fk

r
t

t ), R)}+
M∑
m=1

(
log{p(xm0 )}+

T∑
t=1

log{p(xmt |xmt−1)}
))

(3.26)

The state evolution terms are independent of the association. The expected value

of the measurement likelihood terms is calculated in a similar way as before. Note

that the determinant terms in the measurement likelihood have been dropped as

they are independent of the states to be estimated.

L(X|X̂) = −1
2

M∑
m=1

T∑
t=1

nt∑
r=1

(
(zrt − h

m,r
t (fmt ))TR−1(zrt − h

m,r
t (fmt ))wm,rt

)

+
M∑
m=1

(
log{p(xm0 ) +

T∑
t=1

log{p(xmt |xmt−1)}
)

(3.27)

94

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

The underlined part of the above equation can be simplified in a similar way as done

previously. The measurement function is assumed to be linear hm,rt (fmt ) = hm,rt fmt .

nt∑
r=1

(
(zrt − h

m,r
t (fmt ))TR−1(zrt − h

m,r
t (fmt ))wm,rt

)

= (Zt −Hm
t f

m
t )T (Rm

t )−1(Zt −Hm
t f

m
t ) (3.28)

where

Hm
t =



hm,1t

hm,2t

...

hm,ntt


, Zt =



z1
t

z2
t

...

zntt


, (Rm

t )−1 =



wm,1t R−1

wm,2t R−1

. . .

wm,ntt R−1


(3.29)

Each face fmt can be written in terms of the state x(t) as fmt = Fmxx(t).

Note the overloading of the notation for Fmx. When used with the state in-

stead of the shape XS(t), Fmx has 3 extra zero columns. Similarly we can de-

fine Fmxv such that xmt = Fmxvx(t). Assuming the prior p(x(0)) to be Gaus-

sian N (x(0); x̄(0), P (0)), and Gaussian dynamics according to Equation (3.4), i.e.

p(x(t)|x(t − 1)) = N (x(t);F (t)x(t), Q(t)), the auxiliary function can be written

as -

L(X|X̂) = −1
2

M∑
m=1

T∑
t=1

(
(Zt −Hm

t F
mxx(t)))T (Rm

t )−1(Zt −Hm
t F

mxx(t)))
)

−1
2

M∑
m=1

(
(x(0)− x̄(0))T (Pm

0 )−1(x(0)− x̄(0))+

T∑
t=1

(x(t)− F (t)x(t− 1))T (Qm
t )−1(x(t)− F (t)x(t− 1))

)
(3.30)
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where (Pm
0 )−1 = (Fmxv)TP (0)−1Fmxv and (Qm

t )−1 = (Fmxv)TQ(t)−1Fmxv. Note

that the time indices for F (t) and Q(t) have been dropped in the further steps since

they are constant. To account for visibility issues in the filtering, the measurements

are associated only to the faces visible at the time. Let M vis
t be the set of indices

of the faces visible at time t. The auxiliary function is modified accordingly as -

L(X|X̂) = −1
2

T∑
t=1

∑
m∈Mvis

t

(
(Zt −Hm

t F
mxx(t)))T (Rm

t )−1(Zt −Hm
t F

mxx(t)))
)

− 1
2

M∑
m=1

(
(x(0)− x̄(0))T (Pm

0 )−1(x(0)− x̄(0))

+
T∑
t=1

(x(t)− Fx(t− 1))T (Qm
t )−1(x(t)− Fx(t− 1))

)
(3.31)

The auxiliary function is a sum of at least negative semi-definite quadratic forms

and hence, the maximum is found by equating the first derivative to zero. The

calculation of the derivatives is given in Appendix 3.8. The total linear system

can be written as -



M∑
m=1

(Pm
0 )−1 + FT (Qm

0 )−1F −
M∑

m=1

FT (Qm
0 )−1 0 0 . . . 0

−
M∑

m=1

(Qm
0 )−1F A1 −

M∑
m=1

FT (Qm
1 )−1 0 . . . 0

...
. . .

. . .
. . .

. . .
...

0 0 0 0 −
m∑

m=1

(Qm
T−1)−1F AT




x(0)

x(1)
...

x(T )



=


M∑

m=1

(Pm
0 )−1x̄(0)

B1Z1

...

BTZT


(3.32)
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where

At =
∑

m∈Mvis
t

(Hm
t F

mx)T (Rm
t )−1(Hm

t F
mx) +

M∑
m=1

(Qm
t−1)−1 + F T (Qm

t )−1F (3.33)

Bt =
∑

m∈Mvis
t

(Hm
t F

mx)T (Rm
t )−1 (3.34)

Using t− 1 and t as the initial and final time frames, the equations for a single

frame update can be obtained as follows -


M∑

m=1

(Pm
t−1)−1 + FT (Qm

t−1)−1F −
M∑

m=1

FT (Qm
t−1)−1

−
M∑

m=1

(Qm
t−1)−1F

∑
m∈Mvis

t

(Hm
t Fmx)T (Rm

t )−1(Hm
t Fmx) +

M∑
m=1

(Qm
t−1)−1

[x(t− 1)

x(t)

]

=

 M∑
m=1

(Pm
t−1)−1x̄(t− 1)∑

m∈Mvis
t

(Hm
t Fmx)T (Rm

t )−1Zt

 (3.35)

The terms of the auxiliary function that depend on x(t) have the form of the

Kalman filter negative log-likelihood equations. Hence, the Kalman Filter equa-

tions can be used for finding the updated covariance.

L(X|X̂)|x(t)terms = −1
2

∑
m∈Mvis

t

(Zt −Hm
t F

mxx(t))T (Rm
t )−1(Zt −Hm

t F
mxx(t))

−
M∑
m=1

(x(t)− Fx(t− 1))T (Qm
t−1)−1(x(t)− Fx(t− 1)) (3.36)
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The equations for the covariance update are then

P (t|t− 1) = FP (t− 1|t− 1)F T + ΓQ(t)ΓT (3.37)

S(t) = H(t)P (t|t− 1)H(t)T +R(t) (3.38)

W (t) = P (t|t− 1)H(t)TS(t)−1 (3.39)

P (t|t) = P (t|t− 1)−W (t)S(t)−1W (t)T (3.40)

where the total measurement matrix H(t) consists of vertically stacked Hm
t F

mx for

visible m and R(t) is the block diagonal matrix with the blocks as Rm
t for visible

m. The nonlinearity of the estimation is reflected in the updated covariance being

a function of H(t) and R(t), which in turn depend on the current estimate at time

t.

The EM procedure is followed until the difference in the values of the auxiliary

function between iterations l and l + 1 falls below a certain threshold τU .

1
nt

∣∣∣∣L(X|X̂)|l+1 − L(X|X̂)|l
∣∣∣∣ < τU (3.41)

In a similar manner, the equations to update only the velocity can be derived,

while keeping the shape fixed.
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P−1
vv (t− 1) + Q−1

vv −Q−1
vv

−Q−1
vv Q−1

vv +
∑

m∈Mvis
t

ΓTvv(Hm
t Fmx)T (Rm

t )−1(Hm
t Fmx)Γvv


v(t− 1)

v(t)



=

P−1
vv (t− 1)v̄(t− 1)∑

m∈Mvis
t

bm

 (3.42)

bm = ΓTvv(Hm
t Fmx)T (Rm

t )−1Zt − ΓTvv(Hm
t Fmx)T (Rm

t )−1(Hm
t Fmx)x(t− 1)

where Pvv, Qvv are the blocks of the estimate covariance and process noise covari-

ance for the velocity part of the state and Γvv is such that Fx(t) = x(t) + Γvvv(t).

3.4.4 Simplification of the convex hull

The basic convex hull operation does not take into account the uncertainty in the

input points and this may result in a large number of faces in the output. To

account for this uncertainty, a convex hull simplification operation is proposed.

The smaller convex hull is calculated by removing points one by one from the

original convex hull. If the point which is removed is within the validation gate of

the smaller convex hull, then the smaller convex hull is considered as the original.

It is to be noted that this is a greedy algorithm since the original convex hull is

modified point by point as opposed to calculating the effect of all points and then

modifying the original hull. The parameter used to define the validation region

for the simplification process is denoted by ΓS.
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3.5 Algorithm

3.5.1 Initialization

The objective is to find an initial estimate of the state x̂(0) =
[
X̂S(0)T v̂T0

]T
and

X̂DT (0) given the measurements at time 0, Z0 = {z1
0 , z

2
0 , . . . , z

n0
0 }. The velocity is

initialized with a given v̂(0) and covariance Pv(0) independent of the shape. The

below procedure is followed for estimating the initial shape until the cost (3.21)

between successive iterations falls below a given threshold or a maximum number

of iterations is reached. The initial estimate for the iterations is the visible faces

of the convex hull of the measurements with pre-defined covariance PS(0).

1. Joint association and filtering - The EM procedure for static state estimation

is termed as ET-PMHT for initialization (3.20) and is used for joint asso-

ciation and filtering. The ET-PMHT procedure does not change the face

triangulations or the number of faces, but it may not maintain the convexity

of the shape. The procedure, as such, can also be used with non-convex

shapes or even disjoint shapes with appropriate triangulations.

2. Convex hull constraint - The estimate after ET-PMHT procedure may not

be convex, and hence, the convex hull operation is used on the estimate to

constrain the shape to be convex. The convex hull is simplified to reduce the

number of faces.

3. Extracting the visible faces - The visible faces are extracted from the convex

shape estimate and used as the initial estimate for the next iteration
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The initialization pseudocode is given below in Algorithm 5

Algorithm 3 Shape Initialization
procedure initialize_shape(Z(0),iter_max)

X0
S, X

0
DT ← get_visible_faces(simplified_convex_hull(Z(0)))

LX , LP , LDT , LC ← [], [], [], []

for l=1, l< iter_max do

X l
S, P

l
S, X

l
DT , C

l ← ET-PMHT-initialization(X l−1
S , X l−1

DT , Z(0))

X l
S, P

l
S, X

l
DT ← simplified_convex_hull(X l

S, P
l
S, X

l
DT )

LX , LP , LDT , LC ← [LX X l
S], [LP P l

S], [LDT X l
DT ], [LC C l]

X l
S, X

l
DT ← get_visible_faces(X l

S, X
l
DT )

X̂S(0), PS(0), X̂DT (0)← min_cost_estimate(LX , LP , LDT , LC)

3.5.2 Update

Given the inputs x̂(t), P (t), X̂DT (t) from time t and the measurement set Z(t+ 1)

at time t+1 the objective is to find the updated state estimate and its covariance -

x̂(t+1), P (t+1), X̂DT (t+1). The following steps are performed till the cost (3.41)

between two consecutive state estimates falls below a given threshold or until a

maximum number of iterations is reached.

1. Initial estimate - The EM procedure for dynamic state estimation with fixed

shape (4.4.4) is used to provide an initial estimate x̂(t + 1) for the itera-

tions. It is seen that the ET-PMHT algorithm is more reactive to current

measurements. A good shape estimate may degrade over time due to further

101

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

measurements. A gain reduction factor αGR is introduced, which reduces the

cost of the initial estimate, and keeps the shape fixed.

2. Joint association and filtering - The EM procedure for general dynamic state

estimation termed as ET-PMHT update (3.35) is used for jointly updating

the shape and kinematics. Since the measurement function is unknown,

the errors in the estimated measurement function propagate through the

procedure. To reduce the effect of this issue, faces with an area below a

threshold (small triangles) or faces with small angles (thin triangles) are

not considered to be visible faces. Faces which are effectively associated

to less than 3 measurements are also not considered to be visible faces to

maintain the consistency of the linear system. The calculation of the updated

covariance can be computationally expensive (size of innovation matrix).

The measurement-to-face association with weights below a threshold can be

dropped to speed up the covariance calculation.

3. Face management - The quality of each visible face m is calculated as

Poisson(nm, Nm
f ) where Nm

f is calculated as (3.5) and nm is the number

of measurements effectively associated to the face. nm is calculated as

nm =
nt∑
r=1

wm,rt If the quality of the face falls below a threshold ΓFM , the

face is deleted from the estimate.

4. Convex hull constraint - The convex hull operation is used on the estimate

and the resulting convex hull is simplified.

5. Validation and face initialization - The measurements are validated with the

visible parts of the resulting estimate. The measurements falling outside the
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validation region of the visible faces are grouped by the edge of the visible

faces they are closest to. For each of the groups, a new face is initialized

using the edge and the farthest measurement to the edge in the group.

6. Convex hull and backwards propagation - The convex hull and simplification

operation is performed since the estimate may not be convex after the addi-

tion of new faces. The resulting estimate is propagated backwards in time

and is used as the initial estimate x̂(t) for the next iteration.

The update pseudocode is given in Algorithm 6. ET-PMHT-FS (4.4.4) is the

update step with the shape being fixed. The variables with subscript FS are the

output of the update when the shape is kept fixed.

Algorithm 4 Update
procedure update(Z(t+ 1), x̂(t), P (t), X̂DT (t),iter_max)

xFS, P FS, XFS
DT , C

FS ← ET-PMHT-FS(x̂(t), P (t), X̂DT (t), Z(t+ 1))
LX , LP , LDT , LC←xFS, P FS, XFS

DT , αGR, C
FS x0, P 0, X0

DT←xFS, P FS, XFS
DT

for l=1, l < iter_max do
xl, P l, X l

DT , C
l ← ET-PMHT-update(xl−1, P l−1, X l−1

DT , Z(t+ 1))
xl, P l, X l

DT ← face_management(xl, P l, X l
DT )

xl, P l, X l
DT ← simplified_convex_hull(xl, P l, X l

DT )
LX , LP , LDT , LC ← [LX xl], [LP P l], [LDT X l

DT ], [LC C l]
xl, P l, X l

DT ← validate_and_initialize_faces(xl, P l, X l
DT , Z(t+ 1))

xl, P l, X l
DT ← simplified_convex_hull(xl, P l, X l

DT )
xl, P l ← backproagate(xl, P l)

x̂(t+ 1), P (t+ 1), X̂DT (t+ 1)← min_cost_estimate(LX , LP , LDT , LC)
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3.6 Results

The performance of the algorithm is tested in various scenarios and the following

metrics are used to evaluate the performance of the algorithm -

• RMSE of the center - The center of a convex shape is calculated as the mean

of the vertices of the shape. Since both the target and the estimate are

convex, their centers are calculated in the same manner as mentioned and

denoted as cT (t) and cE(t). The error in the center for each time frame t,

eC(t) is calculated as

eC(t) =
√
|cT (t)− cE(t)|2 (3.43)

• RMSE of the velocity - The error in the velocity is calculated in a similar

way as the center

eV (t) =
√
|vT (t)− vE(t)|2 (3.44)

• Intersection over Union IoU - This metric is a measure of the similarity of

two shapes calculated for shapes A and B as follows

IoU = Volume(Intersection of the shapes)
Volume(Union of the shapes) (3.45)
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The intersection of two convex shapes is convex, however the union may not be

convex. The IoU metric is thus approximated as follows

IoU = Volume(Intersection of the shapes)
Volume(Convex Hull(Union of the shapes)) (3.46)

It must be noted that the approximation becomes better as the estimate is close

to the target shape.

The whole target may not be observable over time and, hence the RMSE center

and the IoU metrics need to be interpreted accordingly.

The performance of the proposed algorithm is compared with 3D Gaussian Process

described in [8]. The algorithms are tested under the following scenarios

• Different levels of measurement noise when all parts of the target are visible

• Different levels of measurement noise when the target is only partially visible

• Different levels of number of measurements per unit area when the target is

partially visible

3.6.1 3D Gaussian Process

The extent of the target in this approach is described using a radial function which

follows a Gaussian Process

f(θ, φ) ∼ GP(µ(θ, φ), κ(γ, γ′)) (3.47)
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where γ = (θ, φ). The covariance function κ(γ, γ′) describes the relation between

different parts of the target given by

κ(γ, γ′) = σ2
fe
−−d

2(γ,γ′)
2l2 + σ2

r (3.48)

d(γ, γ′) = cos−1
(

cos(φ) cos(φ′) cos(θ) cos(θ′) + cos(φ) cos(φ′) sin(θ) sin(θ′)

+ sin(φ) sin(φ′)
)

(3.49)

where l is the length scale, σ2
f is the prior variance and d(γ, γ′) is the distance

function between two angle pairs. The process model is given by

x(t+ 1) = F (t)x(t) + ν(t) ∼ N (0, Q(t)) x(t) =
[
xt(t) xr(t) f(t)

]
(3.50)

xt(t) denotes the translation component of the state with c(t) as the center, xr(t)

denotes the rotational component of the state and f(t) encodes the shape as a

radial function. The measurement model is given by

ztl = h̃(x(t), ztl) + etl ∼ N (0, Rtl) (3.51)

h̃(x(t), ztl) = c(t) + ptlH
f (γtl(c(t), qt, ztl)) (3.52)

Hf (γtl) = κ(γtl, γf )κ(γf , γf )−1 (3.53)

Rtl = ptlR
f
tlp

T
tl +R (3.54)

Using initial estimate as x̂(0) = N (x̄(0), P (0)), an EKF is used to update the

state.
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3.6.2 Scenario

The canonical scenario is such that the target is only partially visible to the sensor

over time. The sensor is located at
[
0m 0m 0m

]T
and the target is initially

centered at
[
40m 30m 10m

]T
. The target’s initial velocity is[

−2ms−1 −1ms−1 −0.1ms−1
]T

. The target shape is shown in Figure [3.5] and

the target trajectory is such that only the clear faces of the target are visible and

the shaded faces are not visible throughout the entire run. 100 Monte Carlo runs

are used to generate the results.

Figure 3.5: Target shape
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The power spectral density of the process noise q, the measurement noise co-

variance and the average number of measurements per unit area are given by

q = 0.06m2s−3 R =


σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

 ρ = ρN

The tracker parameters are

• Threshold for validation of measurements ΓG = 0.99

• Maximum number of iterations for EM - 10 for initialization and 5 for update.

• Threshold for exiting EM step - τI = 0.1, τU = 1

• Threshold for simplifying the convex hull - ΓS = 0.99

• Threshold for face management - ΓFM = 0.05

• Gain reduction factor - αGR = 0.6

Parameters for Gaussian Process - 642 radial basis points are chosen evenly spaced

on a sphere. The parameters for the kernel are σf = 1m, σr = 0.2m and l = π
8 .

The center is initialized with the mean of the initial measurements, velocity and

the radii for the basis points are initialized to zeros.
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3.6.3 Different levels of measurement noise when all parts

of the target are visible

The algorithms are tested for different levels of measurement noise while keep-

ing the ρN = 0.5m−2 fixed. The standard deviation for the covariances used are

σx, σy, σz = {0.1m, 0.15m, 0.2m}. It is assumed that all parts of the target are vis-

ible and generate measurements for this set of simulations. The Gaussian process

does not account for self-occlusion and hence the scenario when the whole target

is visible is within the assumptions of the GP algorithm.

Figures [3.6],[3.7],[3.8] show the results for the RMSE of the center and veloc-

ity and IoU. It can be seen that change in the measurement noise covariance has

minimal effect on the RMSE velocity estimate. The RMSE center performance

is better with lower measurement noise covariance. It must be noted that the

center is not explicitly estimated as a part of the target state but is calculated

from the vertices of the shape estimate. Hence, the variation in the RMSE of the

center of the targe needs to be interpreted accordingly. The IoU performance is

clearly affected by the change in the measurement noise covariance and the IoU

increases with the decrease in the measurement noise covariance. The proposed

algorithm outperforms the Gaussian process in all three metrics for a convex poly-

tope shape target even when all faces are visible since the ET-PMHT model is

more appropriate for such targets.

The snapshots for a sample run is given with the ground truth, measurements,

Gaussian Process estimate and the estimate of ET-PMHT for different times in
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[3.9]. It is seen that the Gaussian Process estimate performs poorly compared to

the proposed algorithm in terms of the shape. The faces of the target with a lesser

area produce lesser number of measurements on an average. The poor performance

is possibly due to the uneven distribution of measurements since the large faces

are well estimated by the Gaussian Process.

Figure 3.6: RMSE center for different levels of measurement
noise when all faces are visible. Results for the proposed ap-
proach are on the left and the GP results are on the right

Figure 3.7: RMSE velocity for different levels of measure-
ment noise when all faces are visible. Results for the proposed
approach are on the left and the GP results are on the right
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Figure 3.8: IoU results for different levels of measurement
noise when all faces are visible. Results for the proposed ap-
proach are on the left and the GP results are on the right

(a) Frame 1 estimates (b) Frame 10 estimates (c) Frame 15 estimates

Figure 3.9: Estimates of the target shape at different times
when all faces are visible for σx = σy = σz = 0.1m, ρN =
0.5m−2. The true target shape is given in cyan, the measure-
ments at the current time are given in red. The estimate using
the proposed algorithm is in blue and the GP estimate is in
green.

3.6.4 Different levels of measurement noise with partial

visibility

The algorithms are tested for different levels of measurement noise while keeping

the ρN = 1m−2 fixed and the target is partially visible as described in 3.6.2. The

standard deviation for the covariances used are σx = σy = σz which take the values

111

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

{0.1m, 0.15m, 0.2m}.

Figures [3.10],[3.11],[3.12] show the results for the RMSE of the center and

velocity and IoU. It must be noted that the RMSE center and IoU are calculated

using only the parts of the target which were visible to the sensor. Snapshots

of the ground truth, measurements, Gaussian Process estimate and ET-PMHT

estimate for different times of a sample run are given in [3.13]. It is seen from the

snapshots that the ET-PMHT is able to effectively estimate the shape even when

the target is only partially visible, while the Gaussian Process estimate is not able

to handle the issue of partial visibility. The GP estimate is close to the target for

the faces which are visible but is not able to handle the faces which are not visible

and hence, do not generate any measurements.

It can be seen from Figure 3.10 that the RMSE center performance for σx, σy, σz =

0.2m−1 is better than for σx, σy, σz = 0.1m−1, 0.15m−1. This anomaly occurs since

the center is calculated from the shape estimate and not directly. A larger shape

estimate may lead to a better center estimate than a more refined shape estimate.

Clear effect of the change in measurement noise covariance can be seen from the

IoU performance. As in the previous case of total visibility, the RMSE velocity is

not affected to a significant extent by a change in the measurement noise covariance

but the IoU shows increase in performance with the decrease in the measurement

noise covariance. The IoU does not reach its maximum value for the ET-PMHT

since its estimate can be biased for the faces which are not visible. A larger extent

in the direction where the target is not visible has similar likelihood as the actual

target shape and hence, the ET-PMHT estimate is usually larger in extent than

the actual target especially for the parts which are not visible.
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Figure 3.10: RMSE center for different levels of measure-
ment noise with partial visiblity. Results for the proposed ap-
proach are on the left and the GP results are on the right

Figure 3.11: RMSE velocity for different levels of measure-
ment noise with partial visibility. Results for the proposed
approach are on the left and the GP results are on the right

Figure 3.12: IoU results for different levels of measurement
noise with partial visibility. Results for the proposed approach
are on the left and the GP results are on the right
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(a) Frame 1 estimates (b) Frame 10 estimates (c) Frame 15 estimates

Figure 3.13: Estimates of the target shape at different times
σx = σy = σz = 0.1m, ρN = 0.1m−2. The true target shape is
given in cyan, the measurements at the current time are given
in red. The estimate using proposed algorithm is in blue and
the GP estimate is in green

3.6.5 Different levels of average number of measurements

per unit area with partial visibility

The average number of measurements per unit area is varied as ρN = {0.5m−2,

1m−2, 1.5m2} while keeping the measurement noise covariance fixed as σw = 0.1m

for w = x, y, z.

Figures [3.14],[3.15],[3.16] show the RMSE of the center, velocity and IoU for

different levels of measurements when the target is only partially visible. Simi-

lar to the previous scenarios, the effect of the different levels of measurements is

not significant for RMSE velocity. The RMSE center performance is better with

increase in the number of measurements generated per unit area. The IoU perfor-

mance is significantly better when ρN changes from a low value of 1m−2 to 1.5m−2

but the difference between ρN = 1.5m−2 and ρN = 2m−2 is not significant. Hence,

114

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

increasing the density of the measurement above certain level does not affect the

IoU significantly.

Figure 3.14: RMSE center for different levels of measure-
ments. Results for the proposed approach are on the left and
the GP results are on the right

Figure 3.15: RMSE velocity for different levels of measure-
ments. Results for the proposed approach are on the left and
the GP results are on the right

Figure 3.16: IoU results for different levels of measurements.
Results for the proposed approach are on the left and the GP
results are on the right
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3.7 Conclusions and Future work

The problem of tracking a 3D extended target with convex polytope shape even

when the target is partially visible was discussed. A convex polytope model based

on the vertices and Delaunay triangulation was used and a linear measurement

model was developed for the shape. Different parts of the extended targets were

treated as separate targets constrained by the rigid body dynamics of the target

and an algorithm was proposed under the MTT framework [16]. In particular,

the point target PMHT was modified and extended target PMHT (ET-PMHT)

equations (3.20),(3.35),(4.4.4) were derived. An algorithm for initialization and

update was developed using ET-PMHT joint association and filtering. The pro-

posed algorithm was compared with 3D Gaussian Process [8] for RMSE center,

velocity and IoU performance metrics.

Some of the issues to be addressed in future works are discussed. One of the

limitations of the current algorithm considered is the restriction to convex shapes.

While the ET-PMHT filtering supports non-convex shapes as well, developing a

complete algorithm for tracking 3D non-convex shapes can be included in future

work. The current algorithm becomes biased when the parts of the target which

were previously not visible become visible over time. One approach to handling this

issue is to label each face of the estimate and use more advanced track management

to obtain better performance. An extension of the current work to address the

problem of clutter and multiple extended targets can also be considered for future

work.
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3.8 Appendix - Derivatives of the auxiliary func-

tion

The derivatives of the auxiliary function L(X|X̂) (3.31) with respect to the state

xt are given below -

∇x(t)|t6=0,TL(X|X̂) = 0

=⇒
[
−

M∑
m=1

(Qm
t−1)−1F

]
x(t− 1)

+
[ ∑
m∈Mvis

t

(Hm
t F

mx)T (Rm
t )−1(Hm

t F
mx) +

M∑
m=1

(Qm
t−1)−1 + F T (Qm

t )−1F
]
x(t)

+
[
−

M∑
m=1

F T (Qm
t )−1

]
x(t+ 1) =

[ ∑
m∈Mvis

t

(Hm
t F

mx)T (Rm
t )−1

]
Zt (3.55)

∇x(0)L(X|X̂) = 0

=⇒
[ M∑
m=1

(Pm
0 )−1 + F T (Qm

0 )−1F
]
x(0) +

[
− F T (Qm

0 )−1
]
x(1)

=
[ M∑
m=1

(Pm
0 )−1

]
x̄(0) (3.56)

∇x(T )L(X|X̂) = 0

=⇒
[ M∑
m=1
−(Qm

T−1)−1F
]
x(T − 1)

+
[ ∑
m∈Mvis

T

(Hm
T F

mx)T (Rm
T )−1(Hm

T F
mx) +

M∑
m=1

(Qm
T−1)−1

]
x(T )

=
[ ∑
m∈Mvis

T

(Hm
T F

mx)T (Rm
T )−1

]
ZT (3.57)
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ET-PMHT for Tracking 3D Extended Targets

with Maneuvers and Clutter

Abstract

This article addresses the problem of extended target tracking of a 3D convex

polytope shape with maneuvers and in the presence of clutter. Extended targets

(as opposed to point targets) are those that occupy multiple sensor resolution cells.

Hence, it is possible to obtain multiple measurements for the same frame from a

single extended target and the shape as well as the kinematics of the target need

to be estimated using measurements over time frames. In the current work, differ-

ent parts of the extended target are treated as distinct targets constrained by the

target rigid body shape, and an algorithm is developed under the extended target

tracking framework proposed in our previous works. ET-PMHT equations for a

maneuvering target are derived by linearizing the transition function to handle the

nonlinearity of the maneuvers. The visibility problem of self-occlusion is handled

by associating the current measurements to the visible faces of the target. Clutter

is incorporated into the ET-PMHT and face management is used to delete erro-

neous faces. The algorithm is able to handle clutter that occurs from the interior

of the target as well. The algorithm supports adding new faces to the estimate as

faces of the target that were previously not visible become visible over time. The

performance of the algorithm is compared with the 3D Gaussian Process for vari-

ous scenarios of different measurement noise covariance, different levels of clutter

density and different levels of density of measurements from the target. The RMSE
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of the center, RMSE of the velocity and Intersection over Union (IoU) metrics are

used to quantify the performance.

Keywords: Extended Target, Self-Occlusion, Expectation Maximization, Proba-

bilistic Multiple Hypothesis Tracker (PMHT), Hausdorff distance

4.1 Introduction

Traditional target tracking algorithms assume ‘point’ targets. Point targets are

those which have size/extent such that the entire target occupies at most a single

resolution cell of the sensor. Hence, these targets produce at most one measure-

ment per frame. Recent advancements have led to wide availability of high resolu-

tion sensors, such as automotive radar and LiDAR (Light Detection and Ranging),

for target tracking applications. Since the sensors have better resolution, the tar-

gets may occupy multiple sensor resolution cells and hence can generate multiple

measurements in a single frame. Such targets are termed as extended targets, and

have finite extent/size compared to the sensor resolution cell. The sensor resolu-

tion size can vary with the distance from the sensor and hence the same target

can be a point target and an extended target depending on the relative position of

the target with respect to the sensor. The measurements from the target contain

information about the target shape, and hence it is necessary to estimate the shape

as well as the kinematics of the target.

The primary challenge in tracking extended targets is to estimate their shape

in the presence of joint uncertainty in the shape and kinematics, i.e., targets with
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distinct shapes and kinematics can generate the same set of measurements over

time. Yet another challenge in extended target tracking is the problem of self-

occlusion. The measurements are generated only from the visible parts of the

target. Generally, for an extended target, different parts of the target are visible

at different times, and the entirety of the target is not visible at the same time.

It may be possible that some parts of the target are not visible over the whole

time duration. The objective is to estimate the entire shape or the shape of the

observable parts of the target using such measurements. In a high resolution

scenario, the measurements for the target are usually obtained by clustering to

eliminate detections from the background such as ground clutter. However, some

of the clutter points may get included in the target cluster as well. The presence

of clutter can degrade the shape estimation significantly if not accounted for. The

measurements may occur from the interior of the target as well and need to be

handled appropriately.

Several approaches to extended target tracking have been proposed in the lit-

erature. In [1],[2],[3], simple shapes such as rectangles and ellipses are used to

describe the target shape. The parameters of the shape such as length/breadth

and major/minor axes are to be estimated. The Random Matrix approach used

in [1] uses a symmetric positive definite (PSD) matrix to describe the extent of

an extended target or a group of targets moving in a coordinated manner. More

specifically, the matrix determines the covariance of the measurements obtained

from the target around its center. An analytical Bayesian solution is derived by

assuming that the extent matrix is Inverse Wishart distributed. The Random

Matrix shape description is appropriate for ellipsoidal shapes but fails to capture
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more complicated features of the target shape. In [4], the Random Matrix model

is extended to describe non-ellipsoidal shapes using multiple ellipsoids. Multipath

detections and clutter issues are considered in a terrain constrained environment

using the Random Matrix model in [5].

The Gaussian Process (GP) model is introduced for extended target tracking in

[6] and extended to 3D in [7]. The shape is described using a radial basis function

that follows a Gaussian Process. This star-convex model can handle a variety of

complicated shapes and their features. An appropriate kernel function is used for

the covariance between the basis points, with the squared-exponential function

being used generally. An Extended Kalman Filter (EKF) is used to handle the

nonlinearity and an analytical expression is derived for the Jacobian required for

filtering. Further details of the Gaussian Process are presented in Section 4.6.1.

The article [8] addresses the issue when the same target changes from an extended

target to a point target (or vice-versa) due to the relative change in the sensor-

target geometry, using a Poisson rate for the number of measurements from the

target. Clutter is included in the GP model using Probabilistic Data Association

(PDA) in article [9].

The Random Hypersurface Model described in [10] can be used for a variety of

simple and complicated shapes. The model supports simple shapes such as ellipses

as well as more complicated shapes using a polygonal shape descriptor. A pseudo-

measurement equation is formed, which describes the distances from the shape

to the measurements, with uncertainty in the measurement source location. The

spline model described in [11] is yet another model to describe the target shape.

A detailed overview of extended target tracking techniques is presented in [12].
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The current work extends our previous works [13],[14] to track 3D convex poly-

tope shaped targets with maneuvers and in the presence of clutter. The framework

described in [13] is used and different faces of the target are treated as distinct

targets constrained by the rigid body target shape. This allows the determination

of the faces that are visible and association of measurements only to those faces

to handle the problem of self-occlusion, which is not sufficiently addressed in the

literature. The center of the target is generally a part of the state to be estimated

in existing works. However, the true center of the target may not be observable

even with measurements over time, particularly when the target is only partially

visible. In [13], these problems have been addressed for a 2D convex polytope

shape and Nearly Constant Velocity (NCV) model. The extended target PMHT

(ET-PMHT) proposed in [14] is able to track a 3D convex polytope shaped tar-

get with the NCV model even when the target is only partially visible. However,

these works do not consider target maneuvers, which is common in reality. Clutter

and measurements from the interior of the target are not supported as well. The

current work proposes to relax these assumptions and develop an algorithm for a

more realistic scenario.

In the current work, the center of the target is not a part of the state, and

the shape is described by the boundary alone. The proposed algorithm is able to

handle clutter and measurements occurring from the interior of the target. The

number of faces used to describe the shape can be altered using face management

to delete erroneous faces and face initialization to add new faces, as opposed to

existing approaches where a fixed number of parameters are used to describe the

shape. This is particularly useful for adding new faces when new parts of the
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target become visible over time or to delete erroneous faces created due to clutter.

In particular, the target shape is described by a convex hull and its Delaunay

triangulation. Describing arbitrary shapes using triangular meshes is a technique

widely used in engineering. Different faces of the target are then treated as dis-

tinct targets constrained by the triangulation, and an ET-PMHT is derived for

joint association and filtering. The nonlinearity of the maneuvering is handled us-

ing a Coordinated Turn (CT) model for the target dynamics and linearization for

filtering. The clutter is incorporated into the ET-PMHT by reweighting the mea-

surement to face association weights with clutter probability. Face Management

is used to delete faces with low quality, i.e. the actual number of measurements

associated to the face is low compared to the expected number. Face-to-face asso-

ciation is developed using the Hausdorff distance to associate faces of the estimate

across time frames. Face Initialization is used to add new faces using measurements

outside the validation region of the shape.

The main contributions of this paper are

• A 3D convex polytope model with rotational dynamics to handle maneuvers

was developed.

• ET-PMHT equations were derived using linearization to handle the nonlin-

earity of the dynamics model.

• The visibility problem of self-occlusion is addressed.

• The algorithm is able to handle clutter and measurements occurring from

the interior of the target.
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• Face-to-face association is proposed using Hausdorff distance as a suitable

distance measure between the face triangulations to track faces across frames.

• Simulations of various scenarios were performed to evaluate the performance

of the proposed algorithm and compare the performance with the Gaussian

Process for different metrics.

The tracking problem is described in Section 4.2 and some of the preliminary

aspects of the solution are given in Section 4.3. The equations for the ET-PMHT

are derived in Section 4.4 with the algorithm developed in Section 4.5. The results

are given in Section 4.6 and the conclusions are presented in Section 4.7.

4.2 Problem Description

The article discusses the problem of tracking a single extended target with known

dynamics in 3D. The target is a rigid body with convex polytope shape. The target

can exhibit maneuvers by rotation about the z axis, i.e. yaw rotation. The shape

as well as the kinematics of the target are to be estimated using the measurements

from the target over time. Measurements occur only from the visible parts of

the target and not the entire target due to self-occlusion. The effect of clutter is

included in the scenario, including those from the interior of the target.
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4.2.1 Target Model

The target model at time frame t consists of state x(t), which includes the shape

descriptor XS(t) and the kinematics v(t) and Ω(t), where v(t) is the translational

velocity and Ω(t) is the turn rate. It is assumed that the target only undergoes

rotation about the z-axis (yaw rotation). The model supports the case where the

target is maneuvering Ω(t) 6= 0 as well as NCV model as Ω(t) → 0. The target

shape is represented by the shape descriptor XS(t) and a Delaunay triangulation

matrix XDT , which divides the surface of the target into non-overlapping triangles.

The shape descriptor XS(t) consists of NX vertices and the edges between the

vertices are described in the triangulation. Each row of the triangulation consists

of the indices of the vertices that make up the triangular face. The target is a

rigid body, and hence the triangulation does not change with the target motion.

As such, it is not explicitly included in the target state. The target state can be

explicitly written as

x =
[
XT
S vT (t) Ω(t)

]T
(4.1)

XS(t) =
[
pT1 (t) pT2 (t) . . . pTNX (t)

]T
with

pTi (t) =
[
pix(t) piy(t) piz(t)

]
vT (t) =

[
vx(t) vy(t) vz(t)

]
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Let T be the time between time frames t and t+ 1. The target dynamics are given

by -

x(t+ 1) = cNX (t+ 1) + FNX
R (t)

[
FNX
T (t)x(t)− cNX (t+ 1)

]
+ ΓNX4 ν(t) (4.2)

= ft(x(t)) + ΓNX4 ν(t) (4.3)

where ν(t) is the process noise with process noise covariance Q. The superscripts

on the variables c, FR, FT ,Γ4 are used to indicate the number of vertices in the

vector the variables are operated with. This allows for overloading of the same

notation when used with vectors of different sizes. The target dynamic matrices

are given by -

FNX
T =



I3 0 0 . . . Fpv 0

0 I3 0 . . . Fpv 0

0 0 . . . . . . ...
...

0 0 . . . I3 Fpv 0

0 0 . . . 0 Fvv 0

0 0 . . . 0 0 1


FNX
R =



Fr 0 0 . . . 0

0 Fr 0 . . . 0

0 . . . . . . . . . ...

0 0 . . . Fr 0

0 0 . . . 0 I4



Fr =


cos(Ω(t)T ) − sin(Ω(t)T ) 0

sin(Ω(t)T ) cos(Ω(t)T ) 0

0 0 1



Fpv =


sin(Ω(t)T )

Ω(t) − (1−cos(Ω(t)T ))
Ω(t) 0

(1−cos(Ω(t)T ))
Ω(t)

sin(Ω(t)T )
Ω(t) 0

0 0 T

 Fvv =


cos(Ω(t)T ) − sin(Ω(t)T ) 0

sin(Ω(t)T ) cos(Ω(t)T ) 0

0 0 1


(4.4)
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The matrix cNX (t + 1) is used to rotate the target about its translated center

c(t+ 1), given by

cNX (t+ 1) =
[
c(t+ 1)T c(t+ 1)T . . . c(t+ 1)T 01×4

]T
(4.5)

The translated center c(t + 1) is calculated as the mean of the vertices of the

translated shape.

c(t+ 1) = M̄NXFNX
T (t)x(t), where M̄NX = 1

NX

[
I3 I3 . . . I3 03×4

]
(4.6)

The matrix ΓNX4 is used to add the same process noise to each vertex since

the target is a rigid body and all the vertices move together. The process noise

covariance Q and ΓNX4 are described below.

Q =



qx 0 0 0

0 qy 0 0

0 0 qz 0

0 0 0 qΩ


ΓNX4 =



1
2T

2 0 0 0

0 1
2T

2 0

0 0 1
2T

2 0
... ... ... ...

T 0 0 0

0 T 0 0

0 0 T 0

0 0 0 T



(4.7)

131

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

4.2.2 Measurement Model

It is assumed that the measurements are generated from the surface of the target

corrupted by zero mean Gaussian noise with known covariance. The measurements

occur only from the visible parts of the target due to self-occlusion. For a convex

polytope shape, a face of the target is visible to the sensor if the centroid of the

shape and the location of the sensor are on the opposite sides of the face. The

number of measurements from a face is Poisson distributed with average number

of measurements navg proportional to the area of the face A.

navg = ρ× A (4.8)

The effect of the sensor target geometry can be incorporated into the average

number of measurements by using an effective area Ae = A × sin(α2 ), where α is

the solid angle subtended by the face at the sensor. This ensures that a face far

away from the sensor or an inclined face produces lesser number of measurements

compared to the same face being closer to the sensor or facing the sensor directly.

The effect of external conditions such as time of the day and weather can be

included in the density of measurements by having a space and time dependent

ρ(x, y, z, t). This reflects a more realistic scenario where the density can be lowered

in bad visibility conditions such as snow and fog. In the current work, as a first

step towards the solution, Equation 4.8 is used directly without incorporating more

realistic conditions.

Consider a target x with M number of faces (i.e. number of rows in XDT
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matrix), with each face represented by vertices (pi1, pi2, pi3) for i = 1 to M . Let

Nzi measurements occur from the ith face with total number of measurements

being Nz. Each measurement zij from face i can be written as -

zij = λij1pi1 + λij2pi2 + λij3pi3 + w (4.9)

where w ∼ N (0, R) and λijk ≥ 0
3∑

k=1
λijk = 1

R denotes the measurement noise covariance.

Each measurement zij is a convex combination of the vertices of the corresponding

face corrupted by a noise term. The association of the measurements to the target

faces and the source locations of the measurements described by λ’s are unknown.

The total measurement set can be written in terms of the state and a measurement

matrix as shown below in Equation (4.10). The rows in the measurement matrix

for each measurement consist of the coefficients for the vertices corresponding

to the measurement and zero for other parameters. Measurements z11, z12 occur

from face 1 with vertices (p1, p2, p3), zero measurements occur from face 2 with

vertices (p2, p3, p4), measurement z31 occurs from face 3 with vertices (p1, p4, p6)

and measurements z41, z42 occur from face 4 with vertices (p4, p5, p6).



z11

z12

z31

z41

z42


=



λ111 λ112 λ113 0 0 0

λ121 λ122 λ123 0 0 0

λ311 0 0 λ312 0 λ313

0 0 0 λ411 λ412 λ413

0 0 0 λ421 λ422 λ423





p1

p2

p3

p4

p5

p6



+



w11

w12

w31

w41

w42


(4.10)
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The clutter is generated in a region around the target described by the cuboid

CC with volume VC . The measurements occurring from the interior of the target

do not provide shape information about the target, and hence, they are modeled

in the current work using clutter occurring from inside the target. The clutter is

generated with a clutter density ρC and the number of clutter points is Poisson

distributed with average number of clutter points being N̄C . N̄C is calculated as -

N̄C = ρCVC (4.11)

The cuboid CC is divided into cells with ranges Cx, Cy, Cz in the x, y, z directions,

respectively. The clutter points are uniformly distributed across the cells of CC .

Hence, the probability of a measurement being part of clutter PC is given by

PC = N̄C

CxCyCz
(4.12)

An example of a target with measurements and clutter is shown in Figure 4.1.

4.3 Solution

4.3.1 Extended Target Tracking Framework

In the previous works, [13] and [14], the Point Multitarget Tracking Framework

was used to develop a single Extended Target Tracking Framework by assuming
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Figure 4.1: Example of measurements from the target along
with clutter.

different parts of the extended target as multiple distinct targets. This frame-

work is used in the current work to modify the existing point target Probabilistic

Multiple Hypotheses Tracker (PMHT) to handle Extended Target Tracking with

rotation and clutter. A brief description of the Point Multitarget Tracking Frame-

work and its extension to the Extended Target Tracking Framework is discussed

below. The Point Multitarget Tracking Framework consists of the following steps:

• Gating - The measurements at the current time step are validated using the

existing tracks. Measurements that do not fall inside the validation region

of any existing track are grouped separately.

• Association and Filtering - Measurements occurring in the validation region

of a certain track are associated to that track. In case a measurement lies

in the validation region of multiple tracks, multitarget association [15],[16]
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needs to be used. Tracks are filtered using the measurements they are associ-

ated to. Multiple tracks are filtered jointly in case of common measurement

association.

• Track Initialization - New tracks are initialized using the measurements that

do not fall in the validation region of any existing track.

• Track Management - Existing tracks can be deleted and tentative tracks can

be confirmed by using either logic or quality based track management [16].

Both metrics depend on the actual number of measurements received from

the track versus the expected number of measurements from the track.

In the Extended Target Tracking Framework, different faces of the Extended Tar-

get are treated as different targets constrained by the rigid body motion of the

target, i.e. the faces may have some points in common and all faces have the same

kinematics. An Extended Target - Probabilistic Multiple Hypotheses Tracker (ET-

PMHT) joint association and filtering is derived in Sections 4.4.1 and 4.4.3 under

these assumptions to handle Extended Target tracking with rotation and in the

presence of clutter. The measurements are validated using existing faces of the

target and new faces are added for measurements outside the validation region of

any existing face. This is particularly useful to handle occlusion as new faces of

the target that were previously not visible become visible over time. Face Man-

agement is used to delete erroneous faces estimated, especially in the presence of

clutter.
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4.3.2 Determination of the measurement function

Since the source locations of the measurements are unknown, it becomes necessary

to associate the measurements to a face and estimate the source location as in

Equation (4.9). The source location is estimated independently for each face-

measurement pair. The source location for measurement zr from face fm is the

closest point in fm to the measurement zr. Since the face fm is a triangle, the

closest point calculation can be done using geometric methods. The source location

ẑr can be written in terms of the face fm as

ẑr = hm,rfm (4.13)

It must be noted that even though hm,rfm yields the source location ẑr, it is the

best possible estimate (closest in terms of distance) of the measurement function,

and will be used as the estimate of the measurement function itself in later sections.

The total set of measurements can be written in vector form as



z1

z2

...

znt


= Hmfm =



hm,1

hm,2

...

hm,nt


fm (4.14)
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4.3.3 Expectation Maximization

Expectation Maximization (EM) is a technique used to estimate a parameter X

to maximize a joint probability density p(X,Z,K), where Z is the data and K

is termed as the missing data. In the case when jointly maximizing p(X,Z,K)

with respect to X,K is not feasible, but maximizing the density with respect to X

when K is known is possible, the EM technique can be used to iteratively estimate

X. p(X,Z,K) is termed as the complete data likelihood and p(K|Z, X̂) is termed

as the likelihood of missing data in this formulation. The EM technique proceeds

as follows -

1. X̂ is a given initial estimate of X

2. The missing data likelihood p(K|Z, X̂) is calculated using the previous esti-

mate

3. The auxiliary function L(X|X̂) is calculated as

L(X|X̂) = EK

{
log

(
p(X,Z,K)

)}
(4.15)

The expectation is with respect to the missing data likelihood p(K|Z, X̂)

4. The new estimate X̂ is calculated by maximizing the auxiliary function

5. Steps 2 to 4 are repeated until the change in the auxiliary function falls below

a threshold
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6. Steps 2 and 3 involve an expectation operation and maximization operation,

respectively, and thus the technique is termed as Expectation Maximization

4.4 Derivation of the ET-PMHT equations

The PMHT equations for a point multitarget tracking scenario are derived in [17].

The derivation in the current work follows a similar procedure to derive the equa-

tions for extended target tracking with the shape described by face triangulations.

4.4.1 ET-PMHT for initialization with clutter

Let the measurements for initialization be Z = {z1, z2, . . . , zn0} and the faces to be

estimated be F = {f 1, f 2, . . . , fm}. The missing data are the unknown associations

between the faces and the measurements represented by K = {k1, k2, . . . , kn0},

where ki takes values from 1 to M and denotes that the measurement zi is asso-

ciated to face fki . The faces can be represented in terms of vector of vertices XS

using a selection matrix Fmx such that fm = FmxXS. Let PC the probability of

clutter. The complete data likelihood p(XS, K, Z) and the conditional probability

of the missing data p(K|X̂S, Z) are given by-

p(XS, K, Z) =
n0∏
r=1
N (zr;hkrfkr , R) (4.16)

p(K|X̂S, Z) =
n0∏
r=1

p(kr|X̂S, z
r) (4.17)

wm,r = p(kr = m|X̂S, z
r) = N (zr;hmfm, R)∑M

l=1N (zr;hlf l, R) + PC
(4.18)
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The auxiliary function can be written as

L(XS|X̂S) = EK

(
log(p(XS, K, Z))

)

= −1
2

M∑
m=1

(Zm −HmFmxXS)T (Rm)−1(Zm −HmFmxXS) (4.19)

Zm, Hm, Rm are the set of measurements, measurement function and the mea-

surement noise covariance, respectively for the measurements with weights greater

than a threshold Γin, i.e. Zm = {zr|wm,r ≥ Γin}.

The linear system obtained is then -

[ M∑
m=1

(HmFmx)T (Rm)−1(HmFmx)
]
XS =

M∑
m=1

(HmFmx)T (Rm)−1Zm (4.20)

The procedure is followed until the cost between the iterations l and l+ 1 falls

below a certain threshold τI or the maximum number of iterations is reached. The

estimate with the minimum cost is chosen at the end of the iterations.

∣∣∣∣L(XS|X̂S)|l+1 − L(XS|X̂S)|l
∣∣∣∣ < τI (4.21)

4.4.2 State extension

It was seen from simulations that using a single parameter Ω in the estimate for

capturing the target rigid body rotation and the coordinated turn in the translation

kinematics was not feasible using first order linearization. If the target rotation

is significant but its coordinated turn translation is not significant with respect to
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the target extent, the same parameter cannot capture both rotation and transla-

tion. Thus, the state was extended with separate parameters ΩCT for translation

coordinated turn parameter and ΩR for target rigid body rotation parameter. The

total state is now written as

x =
[
XT
S vT ΩR ΩCT

]T
(4.22)

Accordingly, the process noise covariance and the ΓNX4 matrix are modified as well.

Q =

Q 0

0 qΩ

 ΓNX5 =

ΓNX4 0

0 T

 (4.23)

4.4.3 ET-PMHT for update with clutter

The complete data for the Expectation Maximization step consists of the total

measurement set for times t = 1 to t : Z = {Z1, Z2, . . . , ZT}, the states to be

estimated X = {x(0), x(1), . . . , x(t)} and the missing data of the association terms

denoted by K = {K1, K2, . . . , KT}. The individual terms of the total measurement

set Z are the measurement sets for each time t : Zt = {z1
t , z

2
t , . . . , z

nt
t } and the

individual terms of X are the states at each time. Each face fmt of the state can be

written in terms of the state using a Fmx, such that fmt = Fmxx(t). The individual

terms of the association terms K are Kt = {k1
t , k

2
t , . . . , k

nt
t } where krt denotes that

the measurement zrt is associated to the face fkrt . The number of faces or the face

triangulations are not changed during the EM procedure.
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The complete data likelihood is given by

pcomp(X,K,Z) = p(Z|X,K)p(K|X)p(X) (4.24)

where p(Z|X,K) consists of the measurement likelihood terms

p(Z|X,K) =
T∏
t=1

nt∏
r=1
N (zrt ;h

krt
t (fk

r
t

t ), R) (4.25)

p(K|X) denotes the probability of the current association of the measurements to

the target faces. It can be approximated using the probability of the effective

number of measurements associated to each face given the average number of

measurements from the face. The probability of each face is calculated for the

current association and only the faces with probability above a threshold are used

in the Expectation Maximization. This face management step is described in

Section 4.5.1.1.

p(X) describes the evolution of the state according to the known dynamics.

p(X) = p(x(0))
T∏
t=1

p(x(t)|x(t− 1)) (4.26)

The missing data likelihood can be written as

p(K|Z, X̂) =
T∏
t=1

nt∏
r=1

p(krt = m|zrt , x̂(t)) =
T∏
t=1

nt∏
r=1

wm,rt (4.27)

where,

wm,rt = p(kr = m|X̂S(t), zrt ) = N (zrt ;hmt fmt , R)∑M
l=1N (zrt ;hltf lt , R) + PC

(4.28)
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The auxiliary function is

L(X|X̂) = EK

(
log(pcomp(X,K,Z))

)

= EK

( T∑
t=1

nt∑
r=1

log{N (zrt ;h
krt
t (fk

r
t

t ), R)}+
M∑
m=1

[
log{p(fm0 )}+

T∑
t=1

log{p(fmt |fmt−1)}
])

(4.29)

Assuming the measurement function to be linear and writing the face fmt in terms

of the state, we obtain h
krt
t (fk

r
t

t ) = hm,rt Fmxx(t). The density of the initial esti-

mate is assumed to be Gaussian p(Fmxx(0)) = N (Fmxx(0);Fmxx̄(0), Pm(0)) and

using (4.3), the transition density is p(Fmxx(t)|Fmxx(t− 1)) = N (x(t); ft−1(x(t−

1), (Fmx)TQ−1Fmx). Setting initial and final values of t as T − 1 and T , the aux-

iliary function, dropping the terms independent of the state, can be simplified

to

L(X|X̂) = −1
2

∑
m∈Mvis

T

(Zm
T −Hm

T F
mxx(T ))T (Rm

T )−1(Zm
T −Hm

T F
mxx(T ))

− 1
2

M∑
m=1

(x(T − 1)− x̄(T − 1))T (Fmx)T (Pm(T − 1))−1Fmx(x(T − 1)− x̄(T − 1))

− 1
2

M∑
m=1

(x(T )− fT−1(x(T − 1)))T (Fmx)TQ−1Fmx(x(T )− fT−1(x(T − 1)))

(4.30)
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where Zm
T , H

m
T and Rm

T are the stacked vectors/matrix are defined as

Zm
T =



z1
T

z2
T

...

znmT


, Hm

T =



hm,1T

hm,2T

...

hm,nmT


, (Rm

T )−1 =



wm,1T R−1

wm,2T R−1

. . .

wm,nmT R−1


(4.31)

M vis
T is the set of the visible faces at time T . Zm

T are the measurements with

weights wm,rT greater than Γin and Hm
T , Rm

T are the corresponding measurement

functions and measurement noise covariances.

The transition function (4.2) can be simplified as

x(t+ 1) =

[FNX
R (I − V NXMNX ) + V NXMNX ](XS(t) + V NXFpvv(t))

Fvvv(t)

 (4.32)

with V NX =



I3

I3

...

I3


and MNX = 1

NX

[
I3 I3 . . . I3

]
(4.33)

FNX
R is a function of ΩR and Fpv and Fvv are functions of ΩCT . The transition

function can be further simplified by noting that MNXV NX = I3.

x(t+ 1) =

[FNX
R (I − V NXMNX ) + V NXMNX ](XS(t)) + V NXFpvv(t)

Fvvv(t)

 = ft(x(t))

(4.34)
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Linearization about the previous estimate x̂(t) is used to handle the nonlinear

transition function ft(x(t)).

ft(x(t)) = ft(x̂(t)) + J(x(t)− x̂(t)), (4.35)

where J is the Jacobian defined as J = ∂ft(x(t))
∂x(t)

∣∣∣∣
x(t)=x̂(t)

The linearized auxiliary function can be obtained by replacing the nonlinear tran-

sition function with the linear version given in (4.36). The optimal value to max-

imize the linearized auxiliary function is obtained by taking the derivative of the

auxiliary function with respect to xT−1, xT and equating it to zero. The final linear

system obtained is -

[∑M

m=1
(Fmx)T (Pm(T − 1))−1Fmx + JTQ−1

m J −
∑M

m=1
JTQ−1

m

−
∑M

m=1
Q−1

m J
∑

m∈Mvis
T

(Hm
T Fmx)T (Rm

T )−1(Hm
T Fmx) +

∑M

m=1
Q−1

m

][
x(T − 1)

x(T )

]
=

[
A

B

]
(4.36)

where

Q−1
m = (Fmx)TQ−1Fmx (4.37)

A =
M∑
m=1

[
(Fmx)T (Pm(T − 1))−1Fmx

]
x̄(T − 1)

+
M∑
m=1

(−JTQ−1
m )(−fT−1(x̂(T − 1)) + Jx̂(T − 1)) (4.38)

B =
∑

m∈Mvis
T

[
(Hm

T F
mx)T (Rm

T )−1
]
Zm
T +

M∑
m=1

(Q−1
m )(−fT−1(x̂(T − 1)) + Jx̂(T − 1))

(4.39)

145

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

The derivation of the Jacobian of the transition function J is given in Appendix

4.8. It was seen from the simulations that implementing the total linear system

directly is not stable and gives erroneous results. The problem is split into two sub-

problems - the kinematics are estimated while keeping the shape fixed in Section

4.4.4 and updating the only the shape using the current measurements in Section

4.4.5.

4.4.4 ET-PMHT with fixed shape

In a similar manner, ET-PMHT equations can be obtained keeping the shape fixed

and updating only the kinematics using the measurements. The update is split

into measurement update and transition update, and the ET-PMHT is used only

for the update using the measurements. It can be seen from Equation (4.34) that

the updated shape is only a function of v(T − 1). The complete data likelihood is

then given by-

p(v(T − 1), KT , ZT ) = p(ZT |KT , v(T − 1))p(KT |v(T − 1))p(v(T − 1)) (4.40)

p(ZT |KT , v(T − 1)) =
nt∏
r=1
N (zrT ;hk

r
T ,r
T FmxXS(T ), R) (4.41)

p(v(T − 1)) = N (v(T − 1), v̄(T − 1), Pv(T − 1)) (4.42)

p(KT |v(T −1)) is approximated using the probability of actual number of mea-

surements obtained from the target versus the expected number of measurements

from the target when the shape is updated using v(T−1), and handled in a similar
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manner as before. The auxiliary function is then-

L(v(T − 1)|v̂(T − 1)) =

− 1
2

∑
m∈Mvis

(Zm
T −Hm

T F
mxXS(T ))T (Rm

T )−1(Zm
T −Hm

T F
mxXS(T ))

− 1
2(v(T − 1)− v̄(T − 1))T (Pv(T − 1))−1(v(T − 1)− v̄(T − 1)) (4.43)

The final linear system obtained is

[
(Pv(T ))−1 +

∑
m∈Mvis

(Hm
T F

mxJxv)T (Rm
T )−1(Hm

T F
mxJxv)

]
v(T − 1) =

(Pv(T ))−1v̄(T − 1)

+
∑

m∈Mvis

(Hm
T F

mxJxv)T (Rm
T )−1

(
Zm
T − (fx(v̂(T − 1))− Jxvv̂(T − 1))

)

(4.44)

withXS(T ) = fx(v(T−1)),Jxv = ∂XS(T−1)
∂v(T−1) =

[
V NXFpv ∇ΩCTXS(T ) ∇ΩRXS(T )

]
.

The procedure is followed until the cost between the iterations l and l+ 1 falls

below a certain threshold τFS or the maximum number of iterations are reached.

∣∣∣∣L(v(T − 1)|v̂(T − 1))|l+1 − L(v(T − 1)|v̂(T − 1))|l
∣∣∣∣ < τFS (4.45)

The transition update is performed as follows using the parameters obtained from

the iteration with the minimum cost.

v(T ) = fv(v(T − 1)) (4.46)

P (T ) = JP (T )JT + ΓNX5 Q(ΓNX5 )T (4.47)

147

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

4.4.5 ET-PMHT shape update

Using the predicted shape using the updated kinematics from Section 4.4.4, as the

initial shape estimate, the auxiliary function for the shape update is written as

L(XS(T )|X̂S(T )) =

− 1
2

M∑
m=1

(XS(T )− X̄S(T ))T (Fmx)T (Pm
S (T ))−1Fmx(XS(T )− X̄S(T ))

− 1
2

∑
m∈Mvis

T

(Zm
T −Hm

T F
mxXS(T ))T (Rm

T )−1(Zm
T −Hm

T F
mxXS(T )) (4.48)

In a similar manner as in the previous sections, the linear system can be derived

as -

[ M∑
m=1

(Fmx)T (Pm
S (T ))−1Fmx +

∑
m∈Mvis

T

(Hm
T F

mx)T (Rm
T )−1(Hm

T F
mx)

]
XS(T ) =

M∑
m=1

(Fmx)T (Pm
S (T ))−1FmxX̄S(T ) +

∑
m∈Mvis

T

(Hm
T F

mx)T (Rm
T )−1Zm

T (4.49)

The procedure is followed until the cost between the iterations l and l + 1 falls

below a certain threshold τSU or the maximum number of iterations are reached.

∣∣∣∣L(XS(T )|X̂S(T ))|l+1 − L(XS(T )|X̂S(T ))|l
∣∣∣∣ < τSU (4.50)
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The covariance of the shape is updated as follows using the parameters from the

iteration with minimum cost.

S(T ) = HTPS(T )HT
T +RT (4.51)

W (T ) = PS(T )HTS(T )−1 (4.52)

PS(T ) = PS(T )−W (T )S(T )W (T )−1 (4.53)

where HT is the vertically stacked matrix with elements Hm
T F

mx and RT is the

block diagonal matrix with elements Rm
T for visible faces m. The total covariance

is then given by

P (T ) =

PS(T )

Pv(T − 1)

 (4.54)

It must be noted that the covariance for the kinematics is unchanged. This is to

capture the coordinated turn dynamics by inflating the covariance as described in

[18].

4.4.6 Face to Face association

An association step is required to maintain the association between the faces of

the estimate across time steps. Since the number of faces may also change across

time steps, a many-to-one association is performed, i.e. multiple faces at time step

t−1 can be associated to a single face at time step t. A distance metric is required

to measure the similarity between the face triangulations. The Hausdorff distance

is chosen as the distance metric.
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4.4.6.1 Hausdorff Distance

The Hausdorff distance is a metric to measure the similarity between 2 convex sets

A and B with a distance measure d(x, y) defined between the elements x ∈ A and

y ∈ B. It is defined as

dHausdorff (A,B) = max
x∈A

(min
y∈B

(d(x, y))) (4.55)

The Hausdorff distance between 2 triangles A and B can thus be calculated as the

maximum distance between the vertices of triangle A to the vertices of triangle B.

4.5 Algorithm

4.5.1 Initialization

4.5.1.1 Shape Initialization

Given the measurements Z0 at the initial time frame 0, the objective is to find a

shape estimate X̂S(0). It must be noted that the measurements include clutter as

well, and the algorithm cannot distinguish apriori whether a measurement is from

the target or from clutter. The initial shape estimate X̂0
S(0) for the algorithm is

calculated as follows-

• The shape estimate is initially calculated as the convex hull of the entire set

of measurements Z0.
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• Face management : The quality qm of each face m of the estimate is calcu-

lated as -

qm = Poisson(nm, navg) (4.56)

nm =
n0∑
r=1

wm,r0 (4.57)

The faces with quality lesser than a threshold ΓI are deleted from the shape

estimate to obtain the initial shape estimate X̂0
S(0).

The following operations are performed until the cost between two iterations l and

l + 1 falls below a tolerance limit or until the maximum number of iterations is

reached.

• ET-PMHT for initialization (Section 4.4.1) is used to obtain a filtered esti-

mate X l
S(0) for the lth iteration.

• Face management is used to delete the erroneous faces after the filtering.

• The convex hull operation is performed on the estimate and only the visible

faces are selected.

• The cost for the visible faces is calculated according to Equation (4.21).

• The measurements are validated using only the visible faces and only the

measurements falling within the validation region are selected for initializing

new faces. The measurements are validated, using their respective weights
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from Equation (4.18), as follows -

Γout ≤ wm,r < Γin (4.58)

• Initializing new faces - The validated measurements are grouped into sets

according to the edge of the visible faces they are closest to. Each set is used

to initialize a new face with the vertices being the endpoints of the closest

edge and the farthest measurement in the set. Face management is used

again to delete the faces that may have been erroneously added.

The final estimate X̂S(0), X̂DT (0) at the end of the iterations is the one with the

minimum cost. The initialization pseudocode is given below in Algorithm 5.

4.5.1.2 State Initialization

The translational kinematics vx, vy, vz are initialized as the difference in the mean

of the measurements from consecutive time steps and the rotational parameters

ΩR and ΩCT are set to 0. The total state estimate and its covariance is given by -

x̂(0) =
[
X̂T
S (0) v̂x(0) v̂y(0) v̂z(0) 0 0

]T
P (0) =

PS(0)

Pv(0)

 (4.59)

Additional faces are added to the estimate during the convex hull operation.

To differentiate between the faces that are actually estimated using measurements

and those that are additional faces added due to convex hull, an indicator variable

δO is used. δO = 1 implies that the face is valid and has been estimated and δO = 0
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Algorithm 5 Shape Initialization
procedure initialize_shape(Z(0),ΓI ,ΓG,iter_max)

X0
S(0), X0

DT (0) ← get_convex_hull(Z(0)) LX , LDT , LC ← [], [], []

X0
S(0), X0

DT (0) ← face_management(X̂0
S(0), X̂0

DT (0), Z(0),ΓI)

for l=1, l< iter_max do

X l
S(0), X l

DT (0) ← ET_PMHT_initialization(X̂ l−1
S (0), X̂ l−1

DT (0), Z(0))

X l
S(0), X l

DT (0) ← face_management(X̂ l
S(0), X̂ l

DT (0), Z(0),ΓI)

X l
S(0), X l

DT (0)← get_convex_hull(X̂ l
S(0))

X l
S(0), X l

DT (0) ← get_visible_faces(X̂ l
S(0), X̂ l

DT (0))

C l ← init_cost(X̂ l
S(0), X̂ l

DT (0), Z(0))

LX , LDT , LC ← [LX X l
S(0)], [LDT X l

DT (0)], [LC C l]

ZG(0)← validate_measurements(X̂ l
S(0), X̂ l

DT (0), Z(0))

X l
S(0), X l

DT (0) ← initialize_new_faces(X̂ l
S(0), X̂ l

DT (0), ZG(0))

X l
S(0), X l

DT (0) ← face_management(X̂ l
S(0), X̂ l

DT (0), Z(0),ΓI)

X̂S(0), X̂DT (0)← min_cost_estimate(LX , LDT , LC)
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implies that the face is an extension to form the convex hull. An array of these

indicator variables represented by ∆O(0) is initialized to 1 for each of its elements.

4.5.2 Update

Given the estimates from frame t, x(t), P (t), XDT (t),∆O(t), and measurements

Z(t + 1) at frame t + 1, the objective is to find the updated estimates x(t +

1), P (t+ 1), XDT (t+ 1),∆O(t+ 1).

• ET-PMHT with fixed shape described in Section 4.4.4 is used to obtain the

updated state xFS(t+1) and covariance PFS(t+1) with the shape unchanged

from the previous frame. The cost for this estimate is CFS.

• Using xFS(t+1) as the initial estimate and PFS(t+1) as the covariance, ET-

PMHT shape update described in Section 4.4.5 is used to obtain the state

with updated shape xSU(T ), updated covariance PSU(T ) and cost CSU .

• The estimate with the lower cost among CFS and CSU is chosen with the

appropriate covariance.

• The measurements are validated using Equation (4.58) with weights obtained

from Equation (4.28) and the measurements are chosen to initialize new faces.

• The measurements chosen are clustered using DBSCAN to obtain clusters

while handling clutter. A plane is estimated for each cluster using the mea-

surements in the cluster. New faces are initialized for each cluster as the 2D

convex hull of the projection of the measurements onto the plane estimated.
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• Face Management is used to delete faces with low quality, Equation (4.56),

as described in Section 4.5.1.1.

• The convex hull operation is performed to constrain the updated estimate to

a convex shape. ∆O(t + 1) is obtained by associating the faces with δO = 1

in the updated shape to the faces in the convex hull.

Algorithm 6 Update
procedure update(Z(t+ 1), x̂(t), P (t),∆O(t),ΓG)

x̂FS(t+ 1), PFS(t+ 1), CFS ← ET-PMHT-FS(x̂(t), P (t),∆O(t))

x̂SU(t+ 1), PSU(t+ 1), CSU ← ET-PMHT-SU(x̂FS(t+ 1), PFS(t+ 1),∆O(t))

x̂(t+ 1), P (t+ 1)← min_cost_estimate(x̂FS(t+ 1), PFS(t+ 1), CFS, x̂SU(t+

1), PSU(t+ 1), CSU)

ZI ← validate_measurements(x̂(t+ 1), P (t+ 1),∆O(t),ΓG)

x̂(t+ 1), P (t+ 1),∆O(t+ 1)← initialize_new_faces(ZI)

x̂(t+1), P (t+1),∆O(t+1)← face_management(x̂(t+1), P (t+1),∆O(t+1))

x̂(t+ 1), P (t+ 1),∆O(t+ 1)← convex_hull(x̂(t+ 1), P (t+ 1),∆O(t+ 1))

4.6 Results

The performance of the algorithm is tested for different scenarios and the following

metrics are used to quantify the performance

• RMSE of the center - The center of the target and the estimate for the time

frame t are calculated as the mean of their vertices and represented as cT (t)
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and cE(t) respectively. The RMSE of the center denoted by eC(t) is then

eC(t) =
√
|cT (t)− cE(t)|2

• RMSE of the kinematics - The RMSE of the kinematics denoted by eK(t) is

calculated in a similar manner with vT (t),Ω(t) as the target kinematics and

vE(t),ΩR(t),ΩCT (t) as the estimate kinematics.

eK(t) =

√√√√√
∣∣∣∣∣∣
[
(vT (t))T Ω(t) Ω(t)

]
−
[
(vE(t))T ΩR(t) ΩCT (t)

] ∣∣∣∣∣∣
2

• Intersection over Union (IoU) - The Intersection over Union is a metric used

to quantify the similarity between 2 shapes. The metric is defined for shapes

S1 and S2 as

Intersection over Union = V (S1 ∩ S2)
V (S1 ∪ S2)

where, V (S1∩S2) is the volume of the intersection of shapes and V (S1∪S2) is

the volume of the union of the shapes. In the current work, the denominator

is approximated by the convex hull of the union of the shapes, since the

union of the convex shapes may not be convex. It must be noted that this

approximation is pessimistic and becomes closer to the true value as the

estimate shape is closer to the target shape.

The performance of the proposed algorithm is compared with the 3D Gaussian

Process, (Section 4.6.1) under the following scenarios -
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• Different levels of measurement noise covariance

• Different levels of average number of measurements per unit area

• Different levels of clutter density

4.6.1 3D Gaussian Process

The extent of the target in this approach is described using a radial function which

follows a Gaussian Process

f(θ, φ) ∼ GP(µ(θ, φ), κ(γ, γ′)) (4.60)

where γ = (θ, φ). The covariance function κ(γ, γ′) describes the relation between

different parts of the target given by

κ(γ, γ′) = σ2
fe
−−d

2(γ,γ′)
2l2 + σ2

r (4.61)

d(γ, γ′) = cos−1
(

cos(φ) cos(φ′) cos(θ) cos(θ′) + cos(φ) cos(φ′) sin(θ) sin(θ′)

+ sin(φ) sin(φ′)
)

(4.62)

where l is the length scale, σ2
f is the prior variance and d(γ, γ′) is the distance

function between two angle pairs. The process model is given by

x(t+ 1) = F (t)x(t) + ν(t) ∼ N (0, Q) x(t) =
[
xt(t) xr(t) f(t)

]
(4.63)
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xt(t) denotes the translation component of the state with c(t) as the center, xr(t)

denotes the rotational component of the state and f(t) encodes the shape as a

radial function. The measurement model is given by

ztl = h̃(x(t), ztl) + etl ∼ N (0, Rtl) (4.64)

h̃(x(t), ztl) = c(t) + ptlH
f (γtl(c(t), qt, ztl)) (4.65)

Hf (γtl) = κ(γtl, γf )κ(γf , γf )−1 (4.66)

Rtl = ptlR
f
tlp

T
tl +R (4.67)

Using initial estimate as x̂(0) = N (x̄(0), P (0)), an EKF is used to update the

state.

4.6.2 Scenario

The target shape is shown in Figure 4.2 and a sample trajectory of the scenario

is shown in Figure 4.3. The target moves in such a manner that different faces of

the target are visible to the sensor at different times. The sampling time between

frames T = 1s. The sensor is located at
[
0m 0m 0m

]T
and the target is centered

at
[
−14m 10m 0.2m

]T
, with initial velocity

[
1.5ms−1 0 −0.1ms−1

]T
. The

target performs two maneuvers with Ω = π
100rad s

−1 from frames 5 to 35 and with

Ω = − π
50rad s

−1 from frames 40 to 45. 20 Monte Carlo runs are used to average

the performance metrics.
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Figure 4.2: Target Shape

The measurements noise covariance and power spectral density of the process

noise covariance are given below

R =


σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

 , qx = qy = qz = 10−4m2s−3, qΩ = 10−6rad2s−3

The center of the cuboid in which the clutter is generated is located at the tar-

get center for each frame. The length, width and the height of the cuboid are

7m, 7m, 2m respectively. The cuboid is divided into bins in which the clutter

points can occur, with Cx = Cy = 100 and Cz = 10.

The tracker parameters used are -

• Threshold for gating - Γin = 0.1|M vis
t |−1 and Γout = 10−10
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Figure 4.3: Sample Trajectory

• Parameters for DBSCAN - ε = 1.2m, number of points = 5

• Threshold for Face Management - τFM = 0.1

• Tolerance for EM = 1

• Maximum number of iterations for EM = 10

The parameters used for the Gaussian Process are σr = 0.2m, σf = 1m, l = π
8 ,

and 642 basis points are chosen for the shape function.

4.6.3 Different levels of measurement noise covariance

The algorithms are tested for various levels of measurement noise covariance while

keeping the other parameters fixed. The density of measurements ρ = 3m−2 and
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the clutter parameter ρC = 0.1m−3. The standard deviation of the measurement

noise covariance σx = σy = σz is varied among the values {0.05m−1, 0.1m−1, 0.15m−1}

Figures 4.4,4.5,4.6 show the RMSE of the center, RMSE of the kinematics

and the IoU results. The snapshots of the ground truth, measurements and the

estimates at different frames for a sample run is shown in Figure 4.7.

Figure 4.4: RMSE center for different levels of measurement
noise covariance. Results for the proposed approach are on the
left and the GP results are on the right

Figure 4.5: RMSE velocity for different levels of measure-
ment noise covariance. Results for the proposed approach are
on the left and the GP results are on the right
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Figure 4.6: IoU results for different levels of measurement
noise covariance. Results for the proposed approach are on the
left and the GP results are on the right

(a) Frame 5 estimate (b) Frame 15 estimate

(c) Frame 35 estimate

Figure 4.7: Estimates of the target shape at different times
σx = σy = σz = 0.1m, ρ = 3m−2 and ρC = 0.1m−3. The true
target shape is given in blue, the measurements at the current
time are given in red. The estimate using proposed algorithm
is in black.

162

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Ph.D.– Prabhanjan Mannari; McMaster University– Electrical and Computer
Engineering

The results show that the proposed algorithm is able to track the maneuvering

target even with self-occlusion and in presence of clutter. It can be seen from Figure

4.7 that at frame 5, only a part of the target is estimated since only this part was

visible until that frame. It can also be seen that the clutter is rejected and not used

in the shape estimation. New faces are added as more parts of the target become

visible as seen in frames 15 and 35. It can be seen that the estimate is able to track

the visible parts more effectively than the parts that are not visible. The estimate

shape is biased towards the parts of the target that generate no measurements

since there are no constraints from the measurements to be applied to them. Yet

another effect is when a face of the estimate is visible but the corresponding target

face is not. No measurements will be generated and it may lead to deletion of a

valid estimate face. As such, the effect of the shape uncertainty dominates and

the effect of the change in the measurement noise covariance on the performance

is not significant.

The Gaussian Process is unable to track the target especially due to self-

occlusion. It can be seen from the results, particularly IoU, that the shape estimate

of GP is severely affected by self-occlusion and the performance is significantly de-

graded.

4.6.4 Different levels of average number of measurements

per unit area

The average number of measurements per unit area ρ takes values in the set

{1m−2, 2m−2, 3m−2}, while the other parameters are fixed, σx = σy = σz = 0.1m,
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and ρC = 0.1m−3. Figures 4.8,4.9,4.10 show the RMSE of the center, RMSE of the

kinematics and the IoU results. The snapshots of the ground truth, measurements

and the estimates at different frames for a sample run is shown in Figure 4.11.

Figure 4.8: RMSE center for different levels of measure-
ments. Results for the proposed approach are on the left and
the GP results are on the right

Figure 4.9: RMSE velocity for different levels of measure-
ments. Results for the proposed approach are on the left and
the GP results are on the right
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Figure 4.10: IoU results for different levels of measurements.
Results for the proposed approach are on the left and the GP
results are on the right

(a) Frame 5 estimate (b) Frame 15 estimate

(c) Frame 35 estimate

Figure 4.11: Estimates of the target shape at different times
σx = σy = σz = 0.1m, ρ = 2m−2 and ρC = 0.1m−3. The true
target shape is given in blue, the measurements at the current
time are given in red. The estimate using proposed algorithm
is in black.
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The results show that proposed algorithm is able to track the target even with

low average number of measurements from the target. The performance of the

algorithm decreases with decrease in the average number of measurements from

the target. Figure 4.11, frame 35 shows that the sample estimate shape does not

match the target shape entirely. If the density of measurements is comparable to

clutter, new faces might not be added since the clusters are rejected as clutter.

The failure to add new faces further affects the algorithm since the measurements

that are supposed to be associated to new faces are now used in the estimation of

existing faces leading to wrong data association.

Similar to the previous scenario, the Gaussian Process is unable to handle the

self-occlusion problem.

4.6.5 Different levels of clutter

The clutter density ρC is varied is varied as {0.05m−3, 0.1m−3, 0.15m−3}, while the

other parameters are kept fixed, σx = σy = σz = 0.1m, and ρ = 0.1m−2. Figures

4.12,4.13,4.14 show the RMSE of the center, RMSE of the kinematics and the IoU

results. The snapshots of the ground truth, measurements and the estimates at

different frames for a sample run is shown in Figure 4.15.
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Figure 4.12: RMSE center for different levels of clutter. Re-
sults for the proposed approach are on the left and the GP
results are on the right

Figure 4.13: RMSE velocity for different levels of clutter.
Results for the proposed approach are on the left and the GP
results are on the right

Figure 4.14: IoU results for different levels of clutter. Results
for the proposed approach are on the left and the GP results
are on the right
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(a) Frame 5 estimate (b) Frame 15 estimate

(c) Frame 35 estimate

Figure 4.15: Estimates of the target shape at different times
σx = σy = σz = 0.1m, ρ = 3m−2 and ρC = 0.15m−3. The true
target shape is given in blue, the measurements at the current
time are given in red. The estimate using proposed algorithm
is in black.
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The proposed algorithm is able to handle varying clutter densities while esti-

mating the target shape. The snapshot for frame 5 in Figure 4.15 shows that the

algorithm estimating a part of the target that is not visible. This is due to higher

clutter density and leads to apparent improvement in performance. However this

is a drawback of the algorithm and only the observable parts of the target should

be estimated. Frame 35 shows the biased nature of the estimate for the sample

run in a clear manner. While the estimate shape matches the target shape where

the measurements are generated, it fails to maintain the shape that are currently

not visible but were visible in previous frames.

4.7 Conclusions and future work

The problem of tracking a maneuvering extended target in 3D with convex poly-

tope shape was discussed. Clutter as well as measurements from the interior of

the target were considered. The target maneuvers were modeled by modifying the

CT (coordinated Turn) dynamics for extended targets. ET-PMHT equations were

derived using linearization to handle the nonlinear dynamics. The effect of clutter

was included in the ET-PMHT equations and face management is used to handle

clutter as well. Self-occlusion was considered and face initialization was used to

add new faces for parts of the target that are visible for the first time. Simula-

tions were performed for different scenarios, and the performance of the proposed

algorithm was compared with the 3D Gaussian Process.

The convex polytope constraint on the target shape is a limitation of the current

work. While the ET-PMHT equations support arbitrary shapes with appropriate
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triangulation, a holistic algorithm to track non-convex shapes should be considered

for future work. The effect of different clutter distributions needs to be investigated

as well. The extension of the algorithm to a multiple extended target scenario,

while considering mutual occlusion, can be attempted as part of future work.

4.8 Appendix - Derivation of the Jacobian of the

transition function

The Jacobian of the transition function can be derived as

∂ft(x(t))
∂x(t)

∣∣∣∣
x(t)=x̂(t)

=F
NX
R (I − V NXMNX ) + V NXMNX V NXFpv ∇ΩCTXS(t+ 1) ∇ΩRXS(t+ 1)

05×3NX Fvv ∇ΩCT v(t+ 1) ∇ΩCT v(t+ 1)


(4.68)

where

∇ΩCTXS(t+ 1) =

V NX


vx

[
T cos(ΩCTT )

ΩCT − sin(ΩCTT )
Ω2
CT

]
+ vy

[
− T sin(ΩCTT )

ΩCT + 1−cos(ΩCTT )
Ω2
CT

]
vx

[
T sin(ΩCTT )

ΩCT − 1−cos(ΩCTT )
Ω2
CT

]
+ vy

[
T cos(ΩCTT )

ΩCT − sin(ΩCTT )
Ω2
CT

]
0

 (4.69)
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∇ΩRXS(t+ 1) = ∇ΩRF
NX
R (I − V NXMNX )XS(t), ∇ΩRv(t+ 1) =

04×1

1

 (4.70)

∇ΩCT v(t+ 1) =



vx(− sin(ΩCTT )) + vy(cos(ΩCTT ))

vx(− cos(ΩCTT )) + vy(− sin(ΩCTT ))

0

1

0


(4.71)

In the limiting case, as ΩCT → 0,

∇ΩCTXS(t+ 1) =
[
−1

2T
2vy

1
2T

2vx 0
]T

(4.72)
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The thesis discusses the problem of extended target tracking, particularly for con-

vex polytope shapes. The algorithms proposed are able to effectively track 2D and

3D convex polytope shaped targets, considering self-occlusion as well.

An extended target tracking framework was proposed in Chapter 2 and a 2D

convex hull shape descriptor was used to develop an algorithm to track 2D convex

polytope shapes. Nearest neighbour association was used to determine the source

location for the measurements and Kalman filtering was used for joint shape and

kinematics estimation. The correctness of the framework was verified using sim-

ulations and the performance was compared with the 2D Gaussian Process for

different scenarios.

ET-PMHT was derived in Chapter 3 using the framework proposed in Chapter 2

to extend the problem to 3D. The 3D convex polytope shapes were described using
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a Delaunay triangulation. The technique of using triangular meshes to describe the

shapes of objects is widely used in engineering, especially in CAD (Computer Aided

Design) applications. The ET-PMHT equations support arbitrary shapes with

appropriate triangulation, however the overall algorithm is restricted to convex

polytope shapes.

ET-PMHT is further extended in Chapter 4 to include target maneuvers which

occur frequently in practice. A co-ordinated turn model is used to model the

maneuvers and is handled in the filtering step using linearization. Clutter as well

as measurements from the interior of the target are supported in this work.

The proposed algorithms for 3D extended targets are compared with the 3D

Gaussian Process for appropriate scenarios and the performance was quantified

using RMSE of the center, RMSE of the velocity and Intersection over Union

(IoU) metrics.

5.1.1 Challenges and Approaches

A few of the major challenges faced in the research and the approaches to address

them are listed below.

• Development of the Extended target tracking framework - Consider a highly

simplified scenario where the kinematics of the target are known perfectly

and there is no measurement noise, but the source locations of the measure-

ments from the target shape are unknown. For a convex polytope shape in

such a scenario, the total shape can be estimated by successively taking the
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convex hull at the current time step, using the predicted shape from the pre-

vious time step using the known kinematics, and the current measurements.

This technique works even in presence of self-occlusion.

In a more realistic scenario with joint shape and kinematics uncertainty as

well as measurement noise, a measurement equation needs to be developed

that includes self-occlusion. The measurements generated from a region of

the target should be used to estimate only that local region of the target

and not affect the entire shape. When faces of the target that were not

visible previously become visible over time, the measurments from these

faces provide ’new information’ about the shape. In light of these issues, the

extended target tracking framework was developed. The point multitarget

framework uses the association step to group the measurements for each

target (sometimes even probabilistically). This inspires the division of the

target shapes into multiple faces to be treated as distinct targets and then the

measurements can be associated to only the local regions. Track initialization

is used in the MTT framework to handle measurements from ’new targets’.

Similarly in the proposed framework, new faces can be added to the target

shape using measurements from parts of the target that were not visible

previously.

• Delaunay Triangulation - The initial idea for the 3D convex polytope shape

(Chapter 3 and Chapter 4) was using different polygonal faces (not neces-

sarily just triangles). However the existing convex hull algorithms return

a Delaunay triangulation instead. This proved to be more natural since a

unique measurement equation can be developed for each face in terms of
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its vertices which is not possible for faces with more edges. Further, this

method of representing shapes using a triangular mesh is used in various

fields of engineering, particularly for simulations using the Finite Element

Method.

• Handling the nonlinearity of maneuvers - It can be seen in Chapter 4 that

the target state has only one parameter to indicate the turn rate as well as

the rotation, but the estimate state has two parameters, one to indicate the

turn rate and one to indicate the rotation. Simulations were performed with

a single turn rate/rotation parameter in the estimate state and the estimate

failed to capture the rotation completely. One of the reasons may be that

the turn rate maybe unobservable due to high frame rate and the size of

the target, while the rotation is clearly observed. It needs to be investigated

further to point out the exact issue in this formulation. The state was then

extended to include a separate parameter for rotation and turn rate, which

yielded much better performance.

In Chapter 4, Section 4.4.3, the total linear system for one step update

was derived. The simulations with the total linear system failed and gave

erroneous results. The exact issue to fix the linear system is unknown and

can be investigated further. Possibly methods such as preconditioning can

be used if the system is ill-conditioned. However in the current work, the

problem was split into two sub-problems of updating the kinematics while

keeping the shape fixed in Section 4.4.4, and then estimating the shape in

Section 4.4.5.
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5.2 Future Work

The current work in the thesis is focused on convex polytope shapes and exten-

sion to non-convex shapes should be considered in the future. The ET-PMHT

equations developed in the thesis support arbitrary shape triangulations including

shapes with holes and disjoint faces for joint association and filtering. A coherent

algorithm to track non-convex shapes inthe presence of self-occlusion and clutter

needs to be investigated.

The framework proposed in the thesis supports various multitarget techniques

for each block, to be modified for extended targets accordingly. Different shape

models, such as the Gaussian Process, and association/filtering techniques, such

as PDA and Probabilistic Hypothesis Density (PHD) filter can be used under the

framework and their performance can be compared with the proposed algorithm.

Uniform distribution of clutter considered in the thesis may not reflect the

realistic scenario in all cases. For example, ground clutter occurs only from below

the target and is therefore biased, or clutter from background objects will be

correlated across frames. Handling different clutter distributions and analysis on

real data can be considered as part of future work.

Currently, only a single extended target is considered with self-occlusion. The

single extended target tracking framework proposed can be improved to handle

multiple extended targets with mutual occlusion in a hierarchical manner. In

reality, the motion of an extended target is influenced by other targets, for example,

vehicular traffic on a road. Such effects also need to be considered in a multiple
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extended target tracking scenario. Another peculiar effect is that of merge and

split, i.e. multiple extended targets merged into a single one or a single target

splitting into multiple targets. Such a scenario is common in practice while tracking

passengers entering or exiting a vehicle. Including these effects into the multiple

extended target framework will lead to more robust and realistic algorithms.
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