Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29566
Title: Anomaly Detection in Univariate Time Series Data in the Presence of Concept Drift
Authors: Zamani Alavijeh, Soroush
Advisor: Chiang, Fei
Department: Computing and Software
Keywords: Anomaly Detection;Concept Drift
Publication Date: 2021
Abstract: Digital applications and devices record data over time to enable the users and managers to monitor their activity. Errors occur in data, including the time series data, for various reasons including software system failures and human errors. The problem of identifying errors, also referred to as anomaly detection, in time series data is a well studied topic by the data management and systems researchers. Such data are often recorded in dynamic environments where a change in the standard or the recording hardware can result in different and novel patterns arising in the data. Such novel patterns are caused by what is referred to as concept drifts. Concept drift occurs when there is a pattern change in the statistical properties of the data, e.g. the distribution of the data, over time. The problem of identifying anomalies in time series data recorded and stored in dynamic environments has not been extensively studied. In this study, we focus on this problem. We propose and implement a unified framework that is able to identify drifts in univariate time series data and incorporate information gained from the data to train a learning model that is able to detect anomalies in unseen univariate time series data.
URI: http://hdl.handle.net/11375/29566
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
zamanialavijeh_soroush_202109_msc.pdf
Open Access
4.49 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue