Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29559
Title: Exploration of a Bayesian probabilistic model for categorization in the sense of touch
Other Titles: Bayesian Categorization in Touch
Authors: Gauder, Kyra Alice
Advisor: Goldreich, Daniel
Department: Psychology
Keywords: Bayesian;Bayes;Bayesian perceptual model;Categorization;Sensory noise;Computational model;Haptic touch;Tactile perception;Perception;Touch
Publication Date: 2024
Abstract: Categorization is a complex decision-making process that requires observers to collect information about stimuli using their senses. While research on visual or auditory categorization is extensive, there has been little attention given to tactile categorization. Here we developed a paradigm for studying tactile categorization using 3D-printed objects. Furthermore, we derived a categorization model using Bayesian inference and tested its performance against human participants in our categorization task. This model accurately predicted participant performance in our task but consistently outperformed them, even after extending the learning period for our participants. Through theoretical exploration and simulations, we demonstrated that the presence of sensory measurement noise could account for this performance gap, which we determined was a present factor in participants undergoing our task through a follow-up experiment. Including measurement noise led to a better-fitting model that was able to match the performance of our participants much more closely. Overall, the work in this thesis provides evidence for the efficacy of a tactile categorization experimental paradigm, demonstrates that a Bayesian model is a good fit and predictor for human categorization performance, and underscores the importance of accounting for sensory measurement noise in categorization models.
URI: http://hdl.handle.net/11375/29559
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gauder_Kyra_A_2024February_PhD.pdf
Open Access
Kyra Alice Gauder PHD Dissertation Feb 20244.91 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue