
BAYESIAN CATEGORIZATION IN TOUCH



EXPLORATION OF A BAYESIAN PROBABILISTIC
MODEL FOR CATEGORIZATION IN THE SENSE OF

TOUCH

By KYRA ALICE GAUDER, HONS. B.SC.

A Thesis Submitted to the School of Graduate Studies in the Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

McMaster University © Copyright by Kyra Alice Gauder
February, 2024

https://www.mcmaster.ca


McMaster University
DOCTOR OF PHILOSOPHY (2024)
Hamilton, Ontario (Psychology)

TITLE: Exploration of a Bayesian probabilistic model for categorization in the sense of
touch
AUTHOR: Kyra Alice Gauder , Hons. B.Sc. (McMaster University)
SUPERVISOR: Dr. Daniel Goldreich
NUMBER OF PAGES: xiv, 140

ii

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/
https://www.mcmaster.ca


Lay Abstract
The process of categorization is an essential part of our daily life as we encounter various
things in the world. Here we explore a model that attempts to explain this process. This
model is derived using Bayesian inference and was applied to human behavioural data in
a categorization task. We found that the model accounted for most of the performance
of our participants but consistently outperformed them. We conducted simulations to
explore and demonstrate that this difference is primarily due to the presence of sensory
noise in participants. Once we accounted for this noise, we found that our model predicted
human performance even more accurately. The work in this thesis demonstrates that
a Bayesian Categorization Model which accounts for sensory noise is a good fit and
predictor for human performance on categorization tasks.
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Abstract
Categorization is a complex decision-making process that requires observers to collect
information about stimuli using their senses. While research on visual or auditory cat-
egorization is extensive, there has been little attention given to tactile categorization.
Here we developed a paradigm for studying tactile categorization using 3D-printed ob-
jects. Furthermore, we derived a categorization model using Bayesian inference and
tested its performance against human participants in our categorization task. This model
accurately predicted participant performance in our task but consistently outperformed
them, even after extending the learning period for our participants. Through theoretical
exploration and simulations, we demonstrated that the presence of sensory measurement
noise could account for this performance gap, which we determined was a present factor
in participants undergoing our task through a follow-up experiment. Including measure-
ment noise led to a better-fitting model that was able to match the performance of our
participants much more closely. Overall, the work in this thesis provides evidence for the
efficacy of a tactile categorization experimental paradigm, demonstrates that a Bayesian
model is a good fit and predictor for human categorization performance, and underscores
the importance of accounting for sensory measurement noise in categorization models.
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Chapter 1

General Introduction

1.1 Overview of Categorization
Categorization is a computational problem comprised of two steps: data acquisition and
decision-making. Observers acquire information as they move throughout the world and
quickly and accurately come to conclusions about the various stimuli they encounter.
Often this requires the combination of many features. It is not enough for an observer
holding a rock to independently observe that the object is grey, hard, and cool to the
touch to determine that it is a rock; any number of other objects may be grey, hard, or
a similar temperature. But by combining these features into a holistic percept, and then
comparing that percept to previous knowledge of what they know about other rocks—a
rock category—an observer can decide whether the object they’re holding is, in fact, a
rock.

Categories are found throughout daily life. Any object or pattern recognition task
could be understood as a categorization problem. Imagine reaching into a bag of the
many different polyhedral dice commonly used throughout tabletop role-playing games
to pull out a favourite twenty-sided die. The dice might have different numbers of sides
and different sets of dice may have different weights and textures. There are many
features of data available to categorize and identify the sought-after die. Or perhaps you
find yourself eating a bag of nuts with both pecans and walnuts mixed in together and
would like to only eat the pecans. Pecans and walnuts can be measured by their size,
texture, and knobbliness. While the average pecan is quite different from the average
walnut, these features can vary greatly due to natural variations in how these nuts grow.
Examining only the size feature to categorize pecans from walnuts may lead to mistaken
classifications; while the average pecan is smaller than a walnut, individual pecans may
be larger and individual walnuts may be smaller. From identifying bird species by bird
calls out of a cacophony of sounds to classifying galaxy shapes from deep space imagery
of the night sky, understanding the underlying processes for how categories are formed
and how categorizations are made is an important pursuit in understanding information
processing.
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A simple model for object categorization could be that the brain stores information
about every instance of an object it has encountered. A rock category could be a
collection of memories of every previous rock an observer has seen. This Exemplar
Theory for categorization would then require the observer to compare the object they are
holding against every instance stored in each known category for similarity; the category
with the highest similarity would be the best classification for the object (Nosofsky,
1986). While Exemplar models are mathematically tractable, they pose great difficulties
in biological implementation. It would be very costly and unsustainable for the brain
to not only store every instance of an object it perceives but then further compare new
objects against every stored exemplar to make a decision. The processing required to
perform this classification task would grow as more exemplars are added to a category
and as more categories are formed.

An earlier seminal model for categorization was Prototype Theory, first explored
by Posner & Keele (1968). Prototype models propose that categories are abstractions
of the objects they represent. Rather than storing all exemplars of a rock, the brain
might summarize or extract from the collection of all rock instances a representative of
a “prototypical rock”. The classification process would then only require comparing a
new object against that rock prototype to determine similarity.

The idea of objects being represented by a more generalized prototype can be traced
back many centuries to Plato’s Theory of Forms, making this theory of categorization
one of the oldest developed. The Theory of Forms posited that for any conceivable
thing you can observe, whether it’s a rock, a chair, or a house, there exists an abstracted
perfect Form of that thing. In trying to create these “things” through art or material
creation, people are effectively recreating imperfect approximations of their Forms.
Conceptually, this bears similarity to Prototype Theory in that the brain may have these
abstracted representations of categories, and when either trying to identify an object
as those categories or create something like those categories, we are referring to that
internal representation.

Prototype Theory, however, is not without its faults as well, and it has been contested
over the years alongside competing Exemplar theories for categorization. A large point of
contention for Prototype Theory is that it requires forgetting large swaths of information
and detail by averaging everything into a single prototype. Brains are capable of holding
specific object information as well as categorical information, which goes against the
notion of pure prototypes. The process of summarizing all instances into an abstracted
average also poses issues when dealing with a category containing high variability. Rocks
do not all look alike and vary wildly in shape, size, sharpness, and colour. If you were to
average all these together, you might end up with a smooth, rounded sphere—something
that looks very different from the rock exemplars that went into it.

Many models have spawned from the competing Exemplar and Prototype models for
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categorization, with both types finding success in various areas but neither taking the
title as the definitive model for how categorization functions in the brain. Both Exemplar
and Prototype models have their strengths and evidence for implementation, but they
often oppose each other as incompatible ideas.

Categorization research has a rich history of study from many different perspectives.
One paradigm for studying categorization is through what we will refer to as the Nominal-
Ordinal Feature Paradigm. Under this paradigm, the focus falls on the relationships
between specific features making up categories that observers can extract and compare
against. Often this is broken down into exploring learned rules that observers may be
using to categorize the stimuli presented to them. There are generally two ways that
observers may be learning these rules; Intentional Learning and Incidental Learning.
With intentional learning, observers approach the problem of categorization analytically
and readily search for single-dimensional rules. Under incidental learning (sometimes
referred to as unintentional learning), observers approach categorization non-analytically
and use approaches such as family resemblance (Brooks, 1978; Kemler Nelson, 1984).
The categories themselves are better described through family resemblance approaches,
but participants in real-world experimental settings tend not to use these types of rule sets.
Instead, participants have been shown to actively search for simple, single-dimensional
rules for even complex natural categories, despite this rarely being an optimal strategy
(Brooks et al., 2007).

Research under the Nominal-Ordinal Feature Paradigm typically uses categories of
objects or stimuli meant to be perceived holistically. Some for instance use fictional,
novel drawings of objects and animals as their stimuli set. These cartoon drawings are
often simplified to only contain information about the relevant features separating the
categories. An example of such imaginary creatures used in categorization research are
the Bleebs and Ramuses found throughout work by Dr. Lee Brooks (Brooks et al., 2007;
Hannah & Brooks, 2009). The features defined in these types of stimuli sets are often
binary—smooth versus rough, spots versus stripes, or round versus angular.

Alternative to the Nominal-Ordinal Feature Paradigm is the Continuous Feature
Paradigm. Under this paradigm, categorization is treated as a statistical learning problem
where the observer measures the statistics of various observable features of the distal
stimulus and matches it to learned categories. For example, pecans are a category of
nut defined by shape, size, and knobbliness. Each of these separated features or cues is
integrated to form the percept of the nut, which in succession informs knowledge of the
underlying distribution of the category the object originally came from.

Research under the Continuous Feature Paradigm typically uses categories of more
abstract stimuli with a continuous parameter space. Rather than comparing the binary
presence of stripes or spots, categories may be comprised of features like the orientation
of bars, size, or the number of dots present (Smith et al., 2012; Ashby & Gott, 1988;
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Bankieris et al., 2017). For instance, Smith et al. (2010) explored categorization in
both human and monkey observers using circular sine-wave disks which varied by bar
width and bar orientation, two continuous parameters that the experimenters could easily
manipulate to generate any number and variation of stimuli. The two categories were
defined by Gaussian distributions with set means and variances, and stimuli were drawn
from these distributions during experiments.

1.2 Perception as an inverse problem
Perception is a general term describing the process by which the brain makes observations
about the world through its various sensory systems, resulting in our abilities to see, hear,
and feel. A percept, then, is the object that was perceived through these systems—the
instantiation of the process that is held in perceptual awareness through attention. The
brain is an expert at this process, quickly and efficiently making decisions on what
it perceives in its environment and feeding the final, holistic percepts back into the
awareness of the observer. However, the percept held in awareness is not a perfect image
of the object explored in reality. The sensory system is subject to neural noise, often
found to be Poisson-like (Tolhurst et al., 1983; Knill & Pouget, 2004; Beck et al., 2008).
Consequently, perception is by nature an inference problem; the task of the brain is
to infer the most likely percept from this noisy sensory data (Yuille & Bülthoff, 1996;
Feldman, 2012).

We call the distal stimulus the object in the external environment, and the proximal
stimulus the impression of that object on the sensory systems (for instance, light cast
onto the retina, or the impression of an object against the skin). The proximal stimulus
activates sensory receptors and gives rise to a neural signal. It is this neural signal,
together with relevant prior knowledge, that the brain acts upon to create an inference
which we call the percept (Pizlo, 2001; Feldman, 2012). Vision, like all sensory systems,
is a system faced with perceptual inference problems, where an observer is tasked with
determining the most likely percept from noisy sensory data (Yuille & Bülthoff, 1996).

We can understand the process of perception further by considering Marr’s Levels of
Analysis (Marr, 1982). A perceptual system can be split into three levels: the computa-
tion of the system, the algorithm the system uses to undertake that computation, and the
implementation of this algorithm (McClamrock, 1991; Marr, 1982). The computation
refers to the goal or task of the system. In the context of our examination of perceptual
processing, this refers to the objective of perceiving the external world and forming
accurate percepts of distal stimuli. However, the proximal information available is noisy
and the algorithms employed by the perceptual system must accommodate for this noise.
If the information was not transformed in some way and the perceptual system took
the noisy proximal information as is, it would be subject to many mistakes and errors.
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Instead, it makes inferences about the distal stimuli based on the proximal stimuli. Com-
putational categorization models often describe various theoretical algorithms that fit
into this second level of analysis. The third implementation level refers to how these
algorithms are physically implemented in the brain, the neural circuitry that carries out
these calculations.

The problems faced by perception lend well to be understood as an inverse problem.
As Feldman (2012) describes, the problem faced by perception is determining what
should be believed about the world from sensory data. The overall goal of the system
is to determine the distal stimulus presented to the observer, but it does not have direct
access to this. Instead, it receives a noisy neural signal from the proximal stimulus
and must infer the distal stimulus that caused it. Bayesian inference provides a natural
framework to solve this inverse problem.

1.3 Bayesian inference applied to perception
Bayes’ theorem, sometimes called Bayes’ rule, was initially laid out by Thomas Bayes
in 1763 who noticed the relationship between the conditional probabilities of 𝐴 and
𝐵 when 𝑃(𝐴|𝐵) could yield a formula for the inverse conditional probability 𝑃(𝐵 |𝐴)
(Bayes, 1763; Feldman, 2012):

𝑃(𝐴|𝐵) = 𝑃(𝐵 |𝐴)𝑃(𝐴)
𝑃(𝐵) (1.1)

This equation allows us to solve the inverse problem faced by perception by calculating
the Likelihood of the proximal stimulus measured by an observer given a hypothesis
for the distal stimulus. We can see this is dependent on the Prior probabilities of the
hypothesis for the distal stimulus and the proximal stimulus. Assuming that all the
possible hypothetical distal stimuli are mutually exclusive, we can calculate 𝑃(𝐵) as the
sum of the Likelihoods for the proximal stimulus and each hypothesis. Replacing 𝐴 with
𝐻𝑖 for the hypothetical distal stimulus and 𝐵 with the proximal stimulus data 𝐷, we can
rewrite Equation 1.1 for a particular hypothesis 𝐻1 as follows:

𝑃(𝐻1 |𝐷) =
𝑃(𝐷 |𝐻1)𝑃(𝐻1)∑
𝑖 𝑃(𝐷 |𝐻𝑖)𝑃(𝐻𝑖)

(1.2)

Through Equation 1.2 an observer can infer the distal stimulus with the highest Pos-
terior probability based on their proximal stimulus measurements. Perceptual models
rooted in Bayesian inference have found a lot of success in explaining many perceptual
phenomena and illusions (Ernst & Bülthoff, 2004; Weiss et al., 2002; Knill & Pouget,
2004). For example, Knill (2007) demonstrated that a robust Bayesian model fits human
performance in cue-conflict experiments. Cue-conflict was first examined by Rock &
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Victor (1964) through a phenomenon coined as visual capture. When observers were
presented with conflicting visual and haptic information about the size of an object,
the perceived size was biased towards the visual information (Rock & Victor, 1964).
This phenomenon was later explored through the ventriloquist illusion by Alais & Burr
(2004) who found that visual capture was explained through cue integration models
that take into account feature reliability. The visual system often provides more reliable
information than other senses and so gets weighted more heavily when combined to
form percepts. Degrading visual information (such as by blurring the visual stimuli)
allows for the ’capture’ of information from other senses. Knill (2007) extended this idea
further by applying a Bayesian model that assumed different hypotheses or categories
for the nature of the stimuli being perceived by observers, providing strong supporting
evidence for a Bayesian model for robust cue integration.

The Bayesian framework can be applied beyond individual percepts to the perception
of categories as a whole. The percepts inferred by a Bayesian perceptual system can in
turn be sorted into categories. Categorization can be seen as a higher-order perceptual
problem. The categories to which a percept may belong provide contextual information
which can feed backward to influence perception.

Throughout this thesis, we explore categorization through our own developed model
which falls under the Continuous Feature Paradigm approach. This model is probabilis-
tic, employing Bayesian inference and treating categorization as a perceptual inference
problem driven by feature measurements and the understanding of underlying categori-
cal distributions. We call this model the Bayesian Categorization Model. Furthermore,
we focus on stimulus perception and categorization exclusively through an observer’s
sense of touch.

1.4 Haptic exploration
The sense of touch is essential for our everyday interactions with the world. Through
touch we explore our environments, effortlessly and quickly making observations and
measurements of the various objects and stimuli we find within them. But the brain
doesn’t just hold disparate raw measurements of what it observes; decisions are made
quickly and effortlessly about the objects we find, combining a multitude of measure-
ments into holistic percepts and categorizing these percepts based on what we know
about the world. Often we are unaware of all of the minute calculations and measure-
ments our brains are making—we perceive the categorical judgement without needing
to worry about how that judgement was made.

The process of exploring an object to gather information through touch is called
haptic exploration. The term Haptic refers to the use of the tactile perception system,
including cutaneous receptors and proprioceptive feedback from muscles, joints and
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tendons (Lederman & Klatzky, 1993) A defining characteristic of haptic exploration
is that it involves active object manipulation. Lederman & Klatzky (1993) observed
several different, systematic haptic exploratory procedures people perform that each
extract specific information about some aspect of an object. Lateral Motion, described
as repetitive surface rubbing, extracts information about texture. Enclosure and Contour
Following, on the other hand, extract information about the global shape of an object.
These techniques differ with regard to the time they take and the information they provide.
Contour Following extracts more precise information about shape than Enclosure does,
but at the cost of time; Contour Following can take upwards of 11 seconds to extract all
of its information while Enclosure only requires 2 seconds, and Lateral Motion requires
3.5 seconds. Finally, some techniques are incompatible with each other as they cannot be
performed at the same time. Lateral Motion cannot effectively be performed alongside
Enclosure, but can be performed at the same time as Contour Following.

Haptic exploration often integrates with other senses, Vision and touch are used
side-by-side every day to interact with the world. Klatzky et al. (1993) found that haptic
exploration of objects is guided by vision; visual preview of an object may provide coarse
information that helps direct further exploration by touch. Interestingly, the information
provided through touch is not necessarily processed from the same viewpoint as how you
see the object (Newell et al., 2001). An observer reaching out and grabbing an upright
object will naturally have their fingers fall on its backside, and this is reflected in the
viewpoint information. To explore this dynamic, Newell et al. (2001) asked participants
to learn objects either visually or haptically and then attempt to recognize the objects
through either the congruent or incongruent sensory modality. Participants performed
worse when learning haptically and recognizing visually, but this improved significantly
when the object was rotated 180 degrees horizontally during recognition. Thus, when
they were seeing the backside of the object, they were able to recognize what they
previously felt. This suggests the information gathered through haptic exploration had
the opposite viewpoint from vision.

1.5 Computational categorization models
The Bayesian Categorization Model we developed and explored throughout this thesis
is a type of computational model—a proposed abstract algorithm which may represent
the process by which a perceptual system computes information. While we believe our
approach and analysis to be unique, especially in the context of applying this paradigm
to the tactile system, there are many other related computational categorization models
and approaches. In this, we are not saying that our Bayesian Categorization Model is
itself absolutely unique; it is based on the same principles shared by other many models.
Here we will cover a select few computational models which are directly related to our
own in some way.

7

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/


DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

General Recognition Theory
General Recognition Theory suggests observers base their categorical decisions on
calculated decision boundaries separating the categories. Ashby & Gott (1988) set up a
two-dimensional problem to explore the observer’s decision processes in a categorization
task. Knowing the parameters of these distributions allows for a decision boundary to
be drawn that an observer might use to categorize stimuli from these distributions. They
empirically tested whether the features were evaluated independently or integrated,
making a more optimal decision boundary. These optimal decision boundaries can
be calculated through a few algorithms: a minimum distance classifier, which finds a
boundary at the minimum distance between the means of the two distributions and is
constrained to be orthogonal to a line passing through both means; a general linear
classifier, which is similar to the minimum distance classifier but without constraints on
slope or intercept; and an optimal decision rule, which compares the likelihood ratio
of the two category distributions against some criterion value. They concluded that
the decision bounds of observers were best represented by those calculated through
integrating the features and found support for a near-optimal general linear classifier,
though needed further work with different category formulations to find evidence for
their optimal decision rule model. This paradigm was used later by Smith et al. (2010)
when exploring category learning in both humans and macaques to success.

General Recognition Theory is rooted in Signal Detection Theory (SDT), which is a
general framework for modelling an observer’s ability to detect the presence or absence
of a distal stimulus,—especially in the presence of uncertainty or noise. SDT is the
underlying framework for the field of psychophysics and is rooted in understanding
perception through the proximal measurements made by an observer’s sensory systems.
By considering the statistics underlying categories as multivariate normal or Gaussian,
we can see that General Recognition Theory is an extension of SDT applied in multiple
dimensions. However, a criticism of this approach is whether it truly represents a two-
dimensional problem. The stimuli used by Ashby & Gott (1988) were two lines of
varying length, one horizontal and one vertical, connecting perpendicularly at a right
angle. The two features defining the categories were the lengths of either line, which were
continuous variables. As pointed out by Macmillan & Creelman (2005, Chapter 12),
this two-dimensional feature space can be re-contextualized as one-dimensional. A
compound decision boundary, referred to as 𝑑‘𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 , can be calculated through a
simple equation which leverages the Pythagorean Theorem in relating the two feature
dimensions:

𝑑‘𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 =
√︃
𝑑‘2
𝑥 + 𝑑‘2

𝑦 (1.3)

Using Equation 1.3 immediately leaves us with the same decision boundary that Ashby
& Gott (1988) calculated through their general linear classifier. Conceptually, we
can consider the two features instead through a single feature defined by the difference
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between the line lengths. This was somewhat addressed through a separate supplemental
experiment with a new stimulus of a horizontal line going through a rotated semicircle.
In this scenario, one feature was the radius of the semicircle (the length of the horizontal
line) and the other feature was the rotation of the semicircle (the angle at the intersection
of the semicircle’s straight edge and the horizontal line). They argued that radius and
rotation were not on the same perceptual scale and thus could not be reduced to a
one-dimensional problem. However, there is a way for these stimuli to be represented
through a single feature—arc length. The length of the arc formed by the semicircle and
horizontal line is directly proportional to both the radius and angle of rotation. Thus,
this may yet again be a poor example of a two-dimensional categorization problem.

This raises interesting considerations for categories with multiple feature dimensions.
Can any two-dimensional problem be reduced to one dimension by abstracting onto a
compound feature space? While the stimuli from Ashby & Gott (1988) can be reduced
this way through a mathematical transformation, this is not always so perceptually trivial
to do. For instance, Smith et al. (2010) used visual sine-wave disks which varied by bar
width and bar orientation. These two features do not have an immediate conceptual one-
dimensional analogue. And stimuli that involve measurements from multiple sensory
systems, such as visual displays of dots and audio pitches, cannot be easily conceptually
reduced in this way. While SDT is primarily based on the measurements made by
an observer, abstracting from the physical instantiations of these measurements into
a generalized parameter space allows for these mathematical transformations outside
of conceptual constraints. However, finding approaches that maintain parity with the
measurements of the distal stimuli is important for ecological validity.

Categorical Sensory Cue Combination
In daily life, humans use information from multiple senses to accurately perceive a scene
or explore an object. Each sense provides an informational cue that the brain can use to
form an overall percept. These different cues are often not weighted equally (Rock &
Victor, 1964). Vision tends to overpower the other senses in localization tasks, leading
to a phenomenon called Visual Capture. This phenomenon was explored further by
Alais & Burr (2004) through the Ventriloquist Illusion, where they demonstrated that
the information provided by vision and audition is weighted by the variance, or reliability,
of that information. This reliability is associated with the acuity of the sensory system
providing the information, although it can be manipulated by degrading or improving
the stimulus (Alais & Burr, 2004; Samad et al., 2015).

Cue combination is a powerful approach to perceptual inference problems where
multiple sources of information need to be combined or integrated in some way to form an
overall percept. It is a model which again relies on the underlying proximal measurement
distributions from a distal stimulus input but instead considers how these measurements
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combine. This model considers the uncertainty or noise of the measurements being
made when information is integrated. This is especially important when conflicting
information is introduced between measurements. If an observer’s sensory system has
less certainty about one measurement than the other, it will be down-weighted and the
resulting percept will be closer to the other measurement (Alais & Burr, 2004). Cue
combination models have been successfully pushed further to predict inferred causal
relationships between the cues; events occurring too distant in space should be less
likely to be associated together as arising from the same cause, and the Causal Inference
Model can match human performance demonstrating this effect (Körding et al., 2007).

Some previous work has explored cue combination integrating tactile cues with those
from other sensory modalities. Gepshtein & Banks (2003) demonstrated that observers
optimally combined visual and haptic information in size perception. When both the
visual system and tactile system provide information about a certain cue, the brain
integrates them to form an overall estimate predicted by cue combination formulae.
Another studied phenomenon is the Rubber Hand Illusion, where the sense of body
ownership is manipulated to incorporate an external object (Kalckert & Ehrsson, 2014;
Samad et al., 2015). In this phenomenon, an observer’s hand is obscured from view and
visually replaced with a fake rubber hand. Both the rubber hand and the observer’s real
hand are stroked with a brush. The visual information of a rubber hand being brushed
is integrated with the tactile sensation of the observer’s hand being brushed, leading to
an illusory perception of body ownership over the rubber hand.

While cue combination tasks are not discussed in terms of categorization, they are
nevertheless related. The difference between the sensory cue combination paradigms
described above and more generalized categorization tasks is the context of the given
task and the objective of the observer. Sensory cue combination generally describes
situations where the observer is tasked with making a judgement about a single, typically
continuous feature, such as location in space, through multiple senses or measurements.
We can consider categorization as an extension of cue combination, introducing an
additional level of judgement for the observer to consider in their observations about the
world.

Recently, Bankieris et al. (2017) extended the cue combination paradigm into catego-
rization. By defining their categories as multivariate normal distributions and consider-
ing the measurement noise of the individual features themselves, they developed a model
which accounted for both the measurement noise of the feature measurements and the
categories those measurements arose from. They considered the problem as a combina-
tion of both the measurement distributions and the category distributions. Effectively,
knowledge about the underlying categories should help inform observations of each cue.
A decision variable 𝐷 can be calculated by a weighted average between the proximal

10

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/


DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

signals of the two features which would reflect this combination of distributions.

𝐷 = 𝑤𝐴𝑆𝐴 + 𝑤𝐵𝑆𝐵 (1.4)

𝑤𝐴 =

Δ𝜇𝐴

𝜎2
𝐴,𝑠𝑒𝑛𝑠𝑒

+𝜎2
𝐴,𝑐𝑎𝑡

Δ𝜇𝐴

𝜎2
𝐴,𝑠𝑒𝑛𝑠𝑒

+𝜎2
𝐴,𝑐𝑎𝑡

+ Δ𝜇𝐵

𝜎2
𝐵,𝑠𝑒𝑛𝑠𝑒

+𝜎2
𝐵,𝑐𝑎𝑡

, 𝑤𝐵 =

Δ𝜇𝐵

𝜎2
𝐵,𝑠𝑒𝑛𝑠𝑒

+𝜎2
𝐵,𝑐𝑎𝑡

Δ𝜇𝐴

𝜎2
𝐴,𝑠𝑒𝑛𝑠𝑒

+𝜎2
𝐴,𝑐𝑎𝑡

+ Δ𝜇𝐵

𝜎2
𝐵,𝑠𝑒𝑛𝑠𝑒

+𝜎2
𝐵,𝑐𝑎𝑡

(1.5)

Bankieris et al. (2017) formed their categories as bivariate Gaussian distributions
along two features: a visual array of dots and an auditory pitch. Weber’s law—a
perceptual rule of thumb that relates the perception of change in a sensory measurement
to be inversely proportion to the initial intensity of the measurement—was used to
determine the step size within their feature range such that each step would be equally
discriminable. The categories were defined by a mean and Standard Deviation (𝜎)
within this two-dimensional feature space. Furthermore, the researchers were able to
manipulate the measurement noise of the auditory cue with the addition of pink noise,
allowing them to test whether the resulting behaviour of an observer followed their
optimal integration which considered both measurement noise and category information
in their decision. They found that their model fit human data well, marking one of
the first applications of the cue-combination paradigm in a higher-order categorization
decision task. Importantly, this is one of the only studies into a categorization model that
considers and accounts for the presence of measurement noise, which we will explore in
more depth in Chapter 4.

Rational Model of Categorization
A previous Bayesian approach to categorization is the Rational Model of Categorization
(RMC) (Anderson, 1991). This model is probabilistic and can be generalized for complex
scenarios where the number of categories is unknown. The RMC treats categorization
as a parameter estimation problem where an observer attempts to learn the underlying
categorical structure of a set of stimuli when they don’t know what those categories are
nor how many categories there are. If 𝑁 objects have stimulus features x𝑁 and category
labels y𝑁 , and there are a total of 𝐽 category labels, then the probability of an object
belonging to category 𝑗 and being labelled 𝑦 = 𝑗 given its features x can be calculated
by the following:

𝑃(𝑦 = 𝑗 |x) = 𝑃(𝑦 = 𝑗)𝑃(x|𝑦 = 𝑗)∑
𝐽𝑖
𝑃(𝑦 = 𝐽𝑖)𝑃(x|𝑦 = 𝐽𝑖)

(1.6)

In other words, we can calculate the probability of a new object being correctly labelled
𝑗 by calculating the prior probability of that being the true label 𝑃(𝑦 = 𝑗 and the
likelihood that the object would have its observed features given that 𝑗 is the correct
label 𝑃(x|𝑦 = 𝑗). The prior 𝑃(𝑦 = 𝑗) in this context is heavily dependent on how likely
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a new object gets grouped into an existing category or not. For this, Anderson (1991)
proposed two possibilities which might be considered by the observer: either the object
is from an existing category, or it is from a new one. In the first case, the prior 𝑃(𝑦 = 𝑗)
can be calculated through the following equation:

𝑃(𝑦 = 𝑗) =
𝑐𝑀 𝑗

(1 − 𝑐) + 𝑐𝑁 (1.7)

where 𝑐 is an arbitrarily set coupling probability and 𝑀 𝑗 is the number of objects
currently assigned to category 𝑗 . This describes a greedy algorithm where existing
categories with many objects are more likely to get new objects assigned to them.
Intuitively it follows from Equation 1.7 that if an observer has seen most of the objects
presented to them assigned to category A and only a few assigned to category B, then
their prior probability that the next object would be assigned to category A will be higher
than the prior probability that it be assigned to category B.

The second case for the prior 𝑃(𝑦 = 𝑗), where the object may belong to an entirely
new category, can be calculated through the following equation:

𝑃(0) = (1 − 𝑐)
(1 − 𝑐) + 𝑐𝑁 (1.8)

With the RMC, an observer can sequentially observe new objects and either categorize
them into a pre-existing category or place them in a new category. Interestingly, this
Bayesian model is more applicable to the Nominal-Ordinal Feature Paradigm as it
doesn’t involve consideration of the features as continuous distributions. However, it
could be further extended to describe the statistical distribution underlying the features
making up categories and even involve further parameter estimation of the category
distribution means and 𝜎’s themselves. However, there is a major limitation of the RMC
with the massive computational cost of calculating the entire Posterior distribution.

To get around this problem, Anderson (1991) approximated the Posterior by em-
ploying a local maximum a posteriori (MAP) algorithm. This way, the algorithm does
not need to recalculate the Likelihood of the previous object category labels with every
new object. Unfortunately, this makes the model highly biased to the order of object
presentations. After several categorizations have been made and the model has more
information about what the underlying categories are, it might be reasonable to be able
to go back and re-evaluate previous categorizations. Doing so, however, exponentially
increases the computation required to calculate the Posterior which quickly becomes
unfeasible. This drawback held the RMC back from further work for many years.

More recently, the RMC was revitalized with modern computational techniques,
solving the computational cost issues. To accomplish this, Sanborn et al. (2010) re-
contextualized the RMC as a Dirichlet Process Mixture Model. A Dirichlet distribution
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is a multivariate form of the Beta distribution. Beta distributions are a convenient
function commonly used in Bayesian statistics for calculating broad priors. These
distributions strike somewhat resemblance to Gaussian distributions but are unique in
that they are constrained to the interval between 0 and 1. This makes them convenient
for many Bayesian applications.

Consider a category as a cluster of objects 𝑘 . z𝑁 was defined as the set of category
cluster assignments, and 𝐾 was the total number of clusters in z𝑁 . The number of objects
assigned to cluster 𝑘 was defined as 𝑀𝑘 . From this, Sanborn et al. (2010) recognized
that Equations 1.7 and 1.8 could be redefined by the following equation:

𝑃(z𝑁 ) =
(1 − 𝑐)𝐾𝑐𝑁−𝐾∏𝑁−1
𝑖=0 [(1 − 𝑐) + 𝑐𝑖]

𝐾∏
𝑘=1

(𝑀𝑘 − 1)! (1.9)

The researchers observed that Equation 1.9 is equivalent to one derived from Dirichlet
processes calculating the probability that a Dirichlet process separates 𝑁 observations
into clusters z𝑁 :

𝑃(z𝑁 ) =
𝛼𝐾∏𝑁−1

𝑖=0 [𝛼 + 𝑖]

𝐾∏
𝑘=1

(𝑀𝑘 − 1)! (1.10)

With Equation 1.10 they could apply advanced computational approaches such as Gibb’s
Sampling or Particle Filtering to calculate a closer approximation for the posterior
distribution of the problem, thereby solving the computational cost issues of the RMC
while allowing backtracking for re-evaluating previous categorizations.

This Bayesian approach to categorization is compelling because it encapsulates both
Prototype Theory and Exemplar Theory as extreme cases. Exemplar models can be
described as a case where each object is assigned to its own category, and Prototype
models can be described as a case where all objects are assigned to the same category
(Sanborn et al., 2010). However, the RMC also allows the possibility for in-between
cases where some set of objects can be assigned to one category while the others are
assigned to another. The value of the RMC and the complexity of the categorization
problem it is trying to solve lies in Equations 1.7, 1.8, and 1.10. The RMC is an attempt
to model category learning when the number of categories is unknown. This situation is
often circumvented by explicitly making the number of categories known to the observer.

For our categorization experiments throughout this thesis, we make clear to observers
that there are two categories in our categorization tasks. This allows us to ignore the
computational problem of observers learning multiple unknown categories. Instead, we
assume throughout that our participants are aware that there are two categories. This
constraint simplifies our computational model greatly as we do not need to include the
RMC’s Prior term in our model.
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1.6 Overview of Chapters
Throughout the rest of this thesis, we explore a Bayesian-driven categorization paradigm
within the sense of touch, testing the efficacy of a Bayesian observer model against human
performance. Chapter 2 describes the main experimental procedure and the derivation
of the observer model. Chapter 3 focuses on two foundational experiments testing the
model and paradigm in a human participant setting. Chapter 4 explores the role and
influence of internal sensory noise in our categorization paradigm, detailing simulations
exploring the expected outcomes of the model and an additional experiment exploring the
sensory resolution of participants. Finally, Chapter 5 discusses the overall conclusions of
our experiments, how our model fits with the greater bodies of categorization research,
and the limitations and possible future extensions of our work here.
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Chapter 2

Bayesian Categorization Model

2.1 Introduction
The approach to categorization we will explore throughout this thesis is our Bayesian
Categorization Model. This is an observer model that takes the information available
and uses Bayesian inference to determine the best categorical response based on the
posterior probability for each category. We will consider categories as a set of objects
that have certain features in common, and an object as a set of features that are combined
by an observer into a holistic percept. Observers sense an object’s distal features using
their sensory systems resulting in proximal measurements. These measurements are
made in some hypothetical parameter space. A rock might have a particular weight
measurement, hardness rating, or temperature.

We can consider the variation of these features as part of categorical representations.
Variation is found in natural stimuli throughout the world, most often following a Gaus-
sian distribution. For example, while a tree might have an average leaf size, the precise
size of every leaf is not identical. If you were to create a histogram of all leaf sizes
found on a tree you would find that they follow a distribution. Feature values can then
be defined and stored by only two variables: an average value, and the variation about
that value.

One complexity with this approach to category representation has to do with an
assumption made earlier in the rock example; how does the observer know to compare
their object to a rock? There are theoretically infinite numbers of categories someone can
form as they go about in real life. It is unrealistic to expect that observers compare the
object they are trying to identify with all possible stored category representations. This
would be costly both in terms of resources and time. However, observers typically have
further information available about an object, including the environment and context in
which it was found. If you find yourself in a library, you might expect to encounter
desks, tables, bookshelves, books, and computers. If you’re on a hiking trail, then you
might expect trees, trail markers, birds native to your environment, and rocks. The
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context in which you expect to find particular objects should provide a good starting
point when trying to identify unknown objects. From a Bayesian perspective, all this
background information can be considered as the Prior Probability that an object belongs
to a particular category.

Treating categorization as a parameter estimation task frames the scenario as an
inverse problem: observers make measurements of an object but must then decide what
category gave rise to those measurements. Context and background information help
constrain the hypothesis space that comparisons are being made from, and the observer
can determine the probability that their measurements would occur, given the object
belonged to a particular category.

This type of problem lends itself well to a Bayesian approach. Bayes’ Theorem is a
probabilistic equation that calculates the conditional probability of a hypothesis given
prior knowledge and observations made. As we are defining categories with respect to
their feature distributions, Bayesian inference provides a probabilistic way to solve the
inverse problem we described above.

We propose a Bayesian model capable of resolving the categorization problem we
described previously called the Bayesian Categorization Model. We will first discuss
the development of a novel stimulus set designed for a tactile categorization experiment
paradigm. This will allow for training and testing of categories using the sense of touch
in human participants and testing of our Bayesian approach to the problem. We will then
derive our Bayesian Categorization Model, the exploration of which will be the focus of
the rest of the thesis.

2.2 Physical Stimulus Set for a Categorization Task
To test our Bayesian Categorization Model, we first needed to design a stimulus set of
objects and categories. In a typical categorization task, a category is defined by a set
of features that an observer must measure and then identify. A common approach is
to model these categories as Gaussian distributions: each measurable cue or feature is
represented as a single dimension in a multivariate Gaussian distribution. Under this
design, a category can be summarized as a set of means and standard deviations for each
of these feature dimensions.

To study a 2-Category task within the sense of touch it was necessary to create a novel
stimulus set. Exploration within the sense of touch creates a unique methodological
challenge that a typical visual or auditory categorization task does not face: since
the stimuli need to be physically created and stored, we are limited in the number of
stimulus variations we can reasonably present to the participant. Compared to a typical
categorization experiment we have relatively few exemplars to train and test participants
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on. Despite this challenge, we were successful in designing a stimuli set with enough
resolution to employ a 2-Category learning experiment.

The novel stimuli created for these experiments were plastic polygonal discs with
different numbers of sides and an evenly spaced arrangement of raised hemispherical
dots on one of the surfaces, acting as a macro-texture (Figure 2.1). These two features
were chosen according to the distinct different extraction methods an observer may use
to measure each feature. Following the taxonomy of Lederman & Klatzky (1993), the
Number of Sides feature relates most closely to a “shape” feature whose exploration
involves Enclosure of the hand around the object, and the Dot spacing feature relates
most closely to a “texture” feature whose exploration involves Lateral Motion of the
hand or fingers along the surface of the object. The distinctness of these two features
was important to ensure observers would treat them as two independent measurements.

A set of 25 objects were designed which varied along these two dimensions, allowing
for a combination of 5 different Number of Sides and 5 different Dot spacings in 1mm
intervals. These objects were modelled in the openSCAD program to ensure they were
physically identical in all other respects. All of the objects had the same thickness,
radius, and roughly the same weight. The objects were created using the Ultimaker 2 Go
3D printer in PVC plastic. They were stored within a box aligned in a 5x5 grid (Figure
2.2) for ease of use during the running of an experiment. A list of all 25 objects and
their associated features can be found in Table 2.2.

It is worth noting that although here we are treating each of the two features as separate,
single dimensions with one type of measurement needed to extract the information,
several different measurements can be made for each feature. The Sides feature can be
measured in a few different ways; a participant may count the number of sides, measure
the length of each side, or measure the vertices of each side. Likewise, the Dots feature
can be measured in millimetres of spacing between dots, or the number of dots can be
counted, or an observer can feel the frequency of vibrations as they quickly scan their
finger across the surface.

We did not instruct participants on the most effective method for extracting each
feature measurement and instead encouraged them to acquire this information in whatever
way felt natural for them. It is assumed that, given ample time, an observer will be able to
make a sufficient measurement for the Sides or Dots features with any of these methods.
Thus, for our experiments, these features will be treated as single measurements, although
we acknowledge the potentially complex information processing that goes into extracting
a single feature with multiple sources of information. Realistically, measuring the two
features can be considered feature-combination problems in themselves.
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2.3 Category Formation
We defined a category 𝐶 within our novel stimulus set as a mean Number of Sides 𝜇𝐶𝑛
and Dot spacing (mm) 𝜇𝐶𝑑 with some variance𝜎𝐶𝑛 and𝜎𝐶𝑑 along each respective feature
dimension. Through this method we established two categories, 𝐴 and 𝐵. Category 𝐴
had a mean Sides 𝜇𝐴𝑛 = 7, mean Dot spacing (mm) 𝜇𝐴𝑑 = 5𝑚𝑚, and standard deviations
𝜎𝐴𝑛 = 1.5 Sides and 𝜎𝐴𝑑 = 1.5𝑚𝑚 Dot spacing for each feature. Category 𝐵 had a mean
Sides 𝜇𝐵𝑛 = 9, mean Dot spacing 𝜇𝐵𝑑 = 7𝑚𝑚, and standard deviations 𝜎𝐵𝑛 = 1.5 Sides
and 𝜎𝐵𝑑 = 1.5𝑚𝑚 Dot spacing for each feature. The two features, Sides and Dot spacing
(mm), are conditionally independent given the category. We refer to these distributions
as Within-Category Feature Distributions or Class-Conditioned Feature distributions.
From this point forward, while the Dot spacing feature was set in millimetre spacing
between the dots, we will present it as unit-less for easier comparison to the Sides feature.

Figure 2.3 displays 2D intensity plots of the two category distributions described
above. You can notice immediately that these categories are perfectly symmetrical.
They are represented as 2D Gaussian distributions with equal variance in either feature
dimension. However, the means of the two distributions are still close enough that
there is heavy overlap between the categories. This means that our two categories are
perceptually similar and it is not unlikely that an 𝐴 object be chosen that looks closer to
being a 𝐵 object. In such a situation, an ideal observer would incorrectly categorize the
object as 𝐵. This is our expected outcome, and we chose these distribution distances such
that an ideal optimal observer would reach a maximum percent correct of 76%. Also to
note is that these distributions are truncated due to limitations of physically producing
the stimulus set. As we go on to show later, this detail turns out to be mathematically
irrelevant to the categorization task.

The category feature distributions (Figure 2.3) can be considered frequency plots for
each of the 25 objects within either category. If you were to sample a box filled with
only Category 𝐴 objects, the plot represents the frequency at which each object would
be drawn, with the brightest spot being the most common.

We will now derive and describe our Bayesian Categorization Observer Model as
it will appear throughout the rest of this work. Although more complex models exist
within this framework, such as the Rational Model of Categorization (RMC), we decided
to simplify the problem to a special case where the observer knows that there are exactly
two categories, thereby foregoing the need for our model to try to determine how many
categories there are through the RMC’s Prior definition. This was both a convenience
for our modelling work as well as a convenience for our experimental design as our aim
was to run human participants through this categorization task. It is much simpler for a
human participant to learn the true categories of our objects if they know from the start
that only two categories exist.
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2.4 Bayesian Categorization Model Derivation
Consider two categories, 𝐴 and 𝐵, and a set of feature measurements f𝑚 (bolded f
referring to a set of feature measurements). In order to determine the probability of
category 𝐴 given f𝑚, which we will write as 𝑃(𝐴|f𝑚), Bayes’ rule can be applied:

𝑃(𝐴|f𝑚) =
𝑃(f𝑚 |𝐴)𝑃(𝐴)

𝑃(f𝑚 |𝐴)𝑃(𝐴) + 𝑃(f𝑚 |𝐵)𝑃(𝐵)
(2.1)

𝑃(𝐴) and 𝑃(𝐵) are the Prior probabilities that the object belongs to either category.
𝑃(f𝑚 |𝐴) and 𝑃(f𝑚 |𝐵) are the Likelihoods of each hypothesis: the probability of observ-
ing f𝑚 given the object belongs to either category.

With our stimulus design, the set of feature measurements f𝑚 is a combination of two
features: 𝑛𝑚 Sides and 𝑑𝑚 Dot spacing.

𝑃(𝐴|𝑛𝑚, 𝑑𝑚) =
𝑃(𝑛𝑚, 𝑑𝑚 |𝐴)𝑃(𝐴)

𝑃(𝑛𝑚, 𝑑𝑚 |𝐴)𝑃(𝐴) + 𝑃(𝑛𝑚, 𝑑𝑚 |𝐵)𝑃(𝐵)
(2.2)

Since features 𝑛𝑚 and 𝑑𝑚 are set to be conditionally independent, we can consider the
probabilities 𝑃(𝑛𝑚 |𝐴) and 𝑃(𝑑𝑚 |𝐴) separately.

𝑃(𝐴|𝑛𝑚, 𝑑𝑚) =
𝑃(𝑛𝑚 |𝐴)𝑃(𝑑𝑚 |𝐴)𝑃(𝐴)

𝑃(𝑛𝑚 |𝐴)𝑃(𝑑𝑚 |𝐴)𝑃(𝐴) + 𝑃(𝑛𝑚 |𝐵)𝑃(𝑑𝑚 |𝐵)𝑃(𝐵)
(2.3)

For the purposes of the experiments in this thesis, we will be considering only two
categories with two feature measurements. We will also be experimentally enforcing
equal Prior probabilities for the category 𝑃(𝐴) = 𝑃(𝐵) = 0.5 by randomly drawing from
the categories with equal probabilities. Thus, Equation 2.1 can be simplified as:

𝑃(𝐴|𝑛𝑚, 𝑑𝑚) =
𝑃(𝑛𝑚 |𝐴)𝑃(𝑑𝑚 |𝐴)

𝑃(𝑛𝑚 |𝐴)𝑃(𝑑𝑚 |𝐴) + 𝑃(𝑛𝑚 |𝐵)𝑃(𝑑𝑚 |𝐵)
(2.4)

The category likelihoods 𝑃(𝑛𝑚 |𝐶) and 𝑃(𝑑𝑚 |𝐶) can be represented as one-dimensional
Gaussian probability densities with a mean 𝜇𝐶 𝑓 and sigma 𝜎𝐶 𝑓 determined by each
of the category representations. For instance, Category 𝐴 was defined to have a mean
𝜇𝐴𝑛 = 7 and 𝜎𝐴𝑛 = 1.5.

We can specify 𝑃( 𝑓𝑚 |𝐶) using the Gaussian formula:

𝑃( 𝑓𝑚 |𝜇𝐶 𝑓 , 𝜎𝐶 𝑓 ) =
1

𝜎𝐶 𝑓
√

2𝜋
exp

(
−
( 𝑓𝑚 − 𝜇𝐶 𝑓 )2

2𝜎2
𝐶 𝑓

)
(2.5)

From here we can see that the numeration of Equation 2.4 represents a two-dimensional
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Bivariate Gaussian distribution, where 𝑃(𝑛𝑚 |𝐶) and 𝑃(𝑑𝑚 |𝐶) are independent Gaussian
distributions with no covariance 𝜌 between the two features. We can see this more clearly
by applying Equation 2.5 to the 𝑃(𝑛𝑚 |𝐶)𝑃(𝑑𝑚 |𝐶) within Equation 2.4

𝑃(𝑛𝑚 |𝐶)𝑃(𝑑𝑚 |𝐶) =
1

𝜎𝐶𝑛
√

2𝜋
exp

(
− (𝑛𝑚 − 𝜇𝐶𝑛)2

2𝜎2
𝐶𝑛

)
1

𝜎𝐶𝑑
√

2𝜋
exp

(
− (𝑑𝑚 − 𝜇𝐶𝑑)2

2𝜎2
𝐶𝑑

)
=

1
2𝜋𝜎𝐶𝑛𝜎𝐶𝑑

exp

(
−( (𝑛𝑚 − 𝜇𝐶𝑛)2

2𝜎2
𝐶𝑛

+ (𝑑𝑚 − 𝜇𝐶𝑑)2

2𝜎2
𝐶𝑑

)
)

(2.6)

We can simplify Equation 2.6 further by assuming a common 𝜎𝐶 𝑓 for the two features,
which follows from our stimulus and category design where the 𝜎𝐶 𝑓 = 1.5 for each
feature.

𝑃(𝑛𝑚 |𝐶)𝑃(𝑑𝑚 |𝐶) =
1

2𝜋𝜎2
𝐶 𝑓

exp

(
−( (𝑛𝑚 − 𝜇𝐶𝑛)2 + (𝑑𝑚 − 𝜇𝐶𝑑)2

2𝜎2
𝐶 𝑓

)
)

(2.7)

Substituting Equation 2.7 into 2.4 and rearranging yields an elegant expression for the
posterior probability of Category 𝐴which describes the experimental paradigm explored
within this thesis, where 𝜎𝐶 𝑓 = 𝜎𝐶𝑛 = 𝜎𝐶𝑑 = 1.5 :

𝑃(𝐴|𝑛𝑚, 𝑑𝑚) =
1

1 + exp
(
(𝑛𝑚−𝜇𝐴𝑛)2−(𝑛𝑚−𝜇𝐵𝑛)2+(𝑑𝑚−𝜇𝐴𝑑)2−(𝑑𝑚−𝜇𝐵𝑑)2

2𝜎2
𝐶 𝑓

) (2.8)

The model described in Equation 2.8 applies to the specific categorization task which
will be explored further in Chapters 3 and 4. This adheres to specific constraints, such
as a common Within-Category Feature Standard Deviation 𝜎𝐶 𝑓 between each of the
two features for the two categories, and no covariance present between the features.
These are simplifications we can enforce in a laboratory setting while running our
categorization experiment. In a real-world categorization scenario, there may be more
than two categories, more than two features, and it would be unlikely for the 𝜎𝐶 𝑓 to be
equal.

In a 2-Category/2-Feature task where each feature has a unique 𝜎 𝑓 , we can derive a
similar equation to 2.8:

𝑃(𝐴|𝑛𝑚, 𝑑𝑚) =
1

1 + 𝜎𝐴𝑛

𝜎𝐵𝑛

𝜎𝐴𝑑

𝜎𝐵𝑑
exp

(
( (𝑛𝑚−𝜇𝐴𝑛)22𝜎2

𝐴𝑛

+ (𝑑𝑚−𝜇𝐴𝑑)2
2𝜎2

𝐴𝑑

) − ( (𝑛𝑚−𝜇𝐵𝑛)22𝜎2
𝐵𝑛

+ (𝑑𝑚−𝜇𝐵𝑑)2
2𝜎2

𝐵𝑑

)
)

(2.9)
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2.5 Generalized Bayesian Categorization Models
In a multi-Category/2-Feature task, we can see that Equation 2.4 would expand to be
a comparison between many Bivariate Gaussian Distributions. Suppose a hypothetical
third Category H was introduced into the experimental paradigm. Assuming equal
priors as before, by following the same derivation as shown above, we would end with
the following equation for the posterior probability of Category 𝐴:

𝑃(𝐴|𝑛𝑚, 𝑑𝑚) =
1

1 + 𝑃(𝑛𝑚,𝑑𝑚 |𝐵)
𝑃(𝑛𝑚,𝑑𝑚 |𝐴) +

𝑃(𝑛𝑚,𝑑𝑚 |𝐻)
𝑃(𝑛𝑚,𝑑𝑚 |𝐴)

𝑃(𝑛𝑚, 𝑑𝑚 |𝐵)
𝑃(𝑛𝑚, 𝑑𝑚 |𝐴)

=
𝜎𝐴𝑛

𝜎𝐵𝑛

𝜎𝐴𝑑

𝜎𝐵𝑑
exp

(
( (𝑛𝑚 − 𝜇𝐴𝑛)2

2𝜎2
𝐴𝑛

+ (𝑑𝑚 − 𝜇𝐴𝑑)2

2𝜎2
𝐴𝑑

) − ( (𝑛𝑚 − 𝜇𝐵𝑛)2

2𝜎2
𝐵𝑛

+ (𝑑𝑚 − 𝜇𝐵𝑑)2

2𝜎2
𝐵𝑑

)
)

𝑃(𝑛𝑚, 𝑑𝑚 |𝐻)
𝑃(𝑛𝑚, 𝑑𝑚 |𝐴)

=
𝜎𝐴𝑛

𝜎𝐻𝑛

𝜎𝐴𝑑

𝜎𝐻𝑑
exp

(
( (𝑛𝑚 − 𝜇𝐴𝑛)2

2𝜎2
𝐴𝑛

+ (𝑑𝑚 − 𝜇𝐴𝑑)2

2𝜎2
𝐴𝑑

) − ( (𝑛𝑚 − 𝜇𝐻𝑛)2

2𝜎2
𝐻𝑛

+ (𝑑𝑚 − 𝜇𝐻𝑑)2

2𝜎2
𝐻𝑑

)
)

(2.10)

We can see that as the number of category comparisons increases, the number of terms
in the denominator increases in a regular, predictable fashion. Generalizing this for 𝑥
number of categories would yield the following equation, where 𝐶𝑖 are the categories in
the comparison:

𝑃(𝐶1 |𝑛𝑚, 𝑑𝑚) =
1

1 + ∑𝑥
𝑖=2

𝜎𝐶1𝑛
𝜎𝐶𝑖𝑛

𝜎𝐶1𝑑
𝜎𝐶𝑖𝑑

exp
(
( (𝑛𝑚−𝜇𝐶1𝑛)2

2𝜎2
𝐶1𝑛

+ (𝑑𝑚−𝜇𝐶1𝑑)2

2𝜎2
𝐶1𝑑

) − ( (𝑛𝑚−𝜇𝐶𝑖𝑛
)2

2𝜎2
𝐶𝑖𝑛

+ (𝑑𝑚−𝜇𝐶𝑖𝑑
)2

2𝜎2
𝐶𝑖𝑑

)
)

(2.11)
In a 2-Category/multi-Feature task, we can see a similar regularity would arise where we
are multiplying many independent Gaussian distributions together. Following a similar
approach as above, we would arrive at the following equation, where 𝑦 is the number of
features:

𝑃(𝐴| 𝑓𝑚 𝑗
) = 1

1 + (∏𝑦

𝑗=1
𝜎𝐴 𝑓

𝜎𝐵 𝑓
) exp

(∑𝑦

𝑗=1
( 𝑓𝑚𝑗

−𝜇𝐴 𝑓 𝑗
)2

2𝜎2
𝐴 𝑓 𝑗

− ∑𝑦

𝑗=1
( 𝑓𝑚𝑗

−𝜇𝐵 𝑓 𝑗
)2

2𝜎2
𝐵 𝑓𝐽

) (2.12)

Expanding to the multi-Category/multi-Feature task scenario we can arrive at a general-
ized formula to handle any number of categories 𝑥 and features 𝑦, assuming equal priors
amongst the categories and no covariance between the features:

𝑃(𝐶1 | 𝑓𝑚 𝑗
) = 1

1 + ∑𝑥
𝑖=2(

∏𝑦

𝑗=1
𝜎𝐶1 𝑓 𝑗

𝜎𝐶𝑖 𝑓 𝑗

) exp
(∑𝑦

𝑗=1
( 𝑓𝑚𝑗

−𝜇𝐶1 𝑓 𝑗
)2

2𝜎2
𝐶1 𝑓 𝑗

− ∑𝑦

𝑗=1
( 𝑓𝑚𝑗

−𝜇𝐶𝑖 𝑓 𝑗
)2

2𝜎2
𝐶𝑖 𝑓 𝑗

) (2.13)
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Generalized Bayesian Categorization Model for Unequal Priors
Up to this point, we have been assuming the simplified categorization scenario where the
priors between the categories are equal. This is a fair assumption within the context of
our experiments as we artificially set these priors to be equal. However, a true generalized
Bayesian categorization formula would need to account for any set of priors. This would
become especially important in future possible studies where the prior between the
Categories may be changed or manipulated, or measured from the participant as a free
parameter.

We will start with Equation 2.3 and follow a similar derivation as before, applying
Equation 2.6 and leaving 𝑃(𝐴) and 𝑃(𝐵) as variables.

𝑃(𝐴|𝑛𝑚, 𝑑𝑚) =
1

1 + 𝑃(𝐵)
𝑃(𝐴)

𝜎𝐴𝑛

𝜎𝐵𝑛

𝜎𝐴𝑑

𝜎𝐵𝑑
exp

(
( (𝑛𝑚−𝜇𝐵𝑛)22𝜎2

𝐵𝑛

+ (𝑑𝑚−𝜇𝐵𝑑)2
2𝜎2

𝐵𝑑

) − ( (𝑛𝑚−𝜇𝐴𝑛)22𝜎2
𝐴𝑛

+ (𝑑𝑚−𝜇𝐴𝑑)2
2𝜎2

𝐴𝑑

)
)

(2.14)
From Equation 2.14 we can see that including the category priors in our calculations
leaves us with the prior ratio 𝑃(𝐵)

𝑃(𝐴) . This equation will reduce to Equation 2.8 under the
conditions that there are two categories, two features within each category, the𝜎 𝑓 feature
standard deviation is equal in each category for each feature, and the priors are equal.
We can apply the derivation in Equation 2.14 to Equation 2.13 to come to a generalized
formula for 𝑥 categories and 𝑦 features including the priors.

𝑃(𝐶1 |f𝑚) =
1

1 + ∑𝑥
𝑖=2

𝑃(𝐶𝑖)
𝑃(𝐶1) (

∏𝑦

𝑗=1
𝜎𝐶1 𝑓 𝑗

𝜎𝐶𝑖 𝑓 𝑗

) exp
(∑𝑦

𝑗=1
( 𝑓𝑚𝑗

−𝜇𝐶1 𝑓 𝑗
)2

2𝜎2
𝐶1 𝑓 𝑗

− ∑𝑦

𝑗=1
( 𝑓𝑚𝑗

−𝜇𝐶𝑖 𝑓 𝑗
)2

2𝜎2
𝐶𝑖 𝑓 𝑗

)
(2.15)

Truncated Gaussian in a Categorization Task
It might be noticed that our usage of the standard Gaussian formula for 𝑃(f|𝐶) in
Equation 2.5 is technically incorrect in the context of our experiment as the stimulus set
is not a continuous function. With an upper and lower bound truncating the distribution,
the Truncated Gaussian formula would be more proper to use in our calculations:

𝜓( 𝑓𝑚; 𝜇, 𝜎, 𝑎, 𝑏) = 𝑃( 𝑓𝑚 |𝜇, 𝜎)
𝐹 (𝑏; 𝜇, 𝜎) − 𝐹 (𝑎; 𝜇, 𝜎) (2.16)

where 𝑃( 𝑓𝑚 |𝜇, 𝜎) is the Gaussian formula as shown in Equation 2.5 and 𝐹 (𝑥; 𝜇, 𝜎) is
its cumulative distribution function, where 𝑥 is either the upper or lower bound. This
equation applies within the range (𝑎 ≤ 𝑓𝑚 ≤ 𝑏), and returns 0 anywhere outside of this
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range. 𝐹 (𝑥; 𝜇, 𝜎) can be expanded as the following:

𝐹 (𝑥; 𝜇, 𝜎) = 1
𝜎
√

2𝜋

∫ 𝑥

−∞
exp

(
− (𝑡 − 𝜇)2

2𝜎2

)
𝑑𝑡 (2.17)

An important detail about the Truncated Gaussian which becomes apparent upon inspec-
tion is that the denominator for 2.16, which is a difference of two cumulative distribution
functions set at either end of the distribution, is a constant term not dependent on the
feature measurement 𝑓𝑚. As long as the categories being compared share the same fea-
ture distribution spaces, this common denominator will be divided out of the equation
and not impact further derivations. Therefore, while it is technically improper to use the
standard Gaussian equation in our derivations, the result will be the same regardless and
so it is safe to use the simpler form.

Posterior Probability Matrix
Using Equation 2.8 we can calculate the posterior probability that any of the 25 objects,
which we will also refer to as f𝑔 (where 𝑔 denotes one of the 25 objects), belongs to either
category. 𝜎𝐶 𝑓 = 𝜎𝐶𝑛 = 𝜎𝐶𝑑 was set to 1.5 as this was the true Within-Category Feature
Variability of our two categories in either feature dimension. We will do this in terms
of the posterior probability for Category 𝐴, 𝑃(𝐴|𝑛, 𝑑), as the posterior probabilities for
Category 𝐵 will simply be 𝑃(𝐵 |𝑛, 𝑑) = 1 − 𝑃(𝐴|𝑛, 𝑑).

Table 2.1 and Figure 2.4 display the posterior probabilities that each of the 25 objects
f𝑔 belong to Category 𝐴. As either the Sides or Dots features increase, the probability
that the object belongs to Category 𝐴 decreases. This is to be expected, as Category 𝐵
was defined as having more Sides and larger Dot spacing than Category 𝐴.

The diagonal line of 50% probabilities along the posterior distribution (Figure 2.4)
is where the combinations of the features are equidistant to the means of the categories.
These objects are equally likely to appear in either the 𝐴 or 𝐵 categories and should be
the most confusing for observers trying to categorize them. We would expect observers
to guess purely by chance for these objects which category they belong to, as they have
no additional information informing them which category is more likely.

The change in posterior probability from one end of the stimulus space to the other
is not linear, but sigmoidal. This can be seen by examining Equation 2.8 and noticing
that it follows the common logistic function:

1
1 + 𝑍𝑒−𝑥

An important takeaway from this visualization is that the most probable 𝐴 object is
not the most common representative of Category 𝐴. This becomes especially apparent
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comparing Figure 2.4 to the category feature distributions in Figure 2.3, where the most
common 𝐴 object was where 𝜇𝐴𝑛 = 7 and 𝜇𝐴𝑑 = 5. This object is in fact not the
most probable 𝐴 object in our categorization task. The object with the highest posterior
probability 𝑃(𝐴|𝑛, 𝑑) is the corner object where 𝜇𝐴𝑛 = 6 and 𝜇𝐴𝑑 = 4.

2.6 Noisy vs Noiseless Bayesian Categorization Model
The model we have derived here forms the basis of our analysis throughout Experiments
1 and 2 (described in detail in Chapter 3). However, the model is missing a crucial com-
ponent for it to be a rigorous observer model. The basic version of the model in Equation
2.8 only considers Within-Category Feature Variability, which is learned throughout the
experiment and shown as the variances in Figure 2.3. We refer to this model as a noise-
less Bayesian Categorization Model. To extend this to be a more complete model we
must consider a secondary source of variability: the Internal Measurement Noise of the
observer.

An observer does not have direct access to the distal stimulus they are trying to
observe. Instead, this distal stimulus casts projections onto the observer’s nervous
system from which a proximal measurement is made. We refer to this as the Encoding
process; the nervous system encodes the distal stimulus into internal measurements.
However, the nervous system is not a perfect measurement system, and this proximal
measurement is subject to internal sensory Measurement Noise. This Measurement
Noise is introduced at every step of the measurement process, from the dynamics of
sensory receptors in the fingertips up to the somatosensory cortical regions responsible
for processing. This leads to uncertainty in the measurements being made.

A rigorous computational treatment of this sensory noise might involve modelling
every stage of the observer’s nervous system from initial skin deformation and activation
of the cutaneous receptors (the rapid-adapting afferents RA1, the slowly-adapting type1
and type 2 afferents SA1 and SA2, and Pacinian Corpuscles PC), to the somatosensory
cortex and beyond. Sensory noise from these afferents, and the sensory noise at further
stages of this process, could be modelled as a Poisson-like spike count noise (Sripati,
2006; Tolhurst et al., 1983). However, we can simplify this modelling by instead consid-
ering the overall result of this noise. We can take advantage of the Central Limit Theorem
which states that, given enough random samples from a population, the distribution of
the sample means will approximate a normal distribution. Therefore, this Measurement
Noise uncertainty can be modelled as probabilistic Gaussian measurements.

The inclusion of Measurement Noise in our model gives us what we will refer to
as the noisy Bayesian Categorization Model. This model will include two parts: the
Encoder model and the Decoder model.
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2.6.1 Encoder model
The Encoder model is also sometimes called a generative model. This is the model by
which the nervous system produced the proximal measurement 𝑓𝑚 of the distal feature
𝑓 , complete with both Within-Category Feature Variability and Measurement Noise. In
our categorization task, this encapsulates both the process by which the stimulus object
is chosen from either category and the process by which the observer obtains a sensory
measurement from the object. From this sensory measurement, the observer’s task is
to infer which category the object was drawn from. This inference is made through the
Decoder model. However, the observer is not necessarily aware of the Encoder model
used to generate the measurements, and the Decoder model may vary.

𝑃( 𝑓𝑚 |𝐴) =
∑︁
𝑖

𝑃( 𝑓𝑚 | 𝑓 , 𝐴)𝑃( 𝑓 |𝐴) =
∑︁
𝑖

𝑃( 𝑓𝑚 | 𝑓 )𝑃( 𝑓 |𝐴) (2.18)

𝑃( 𝑓𝑚 | 𝑓 ) refers to the Measurement Noise present throughout the nervous system, and
does not depend on the category of the object. It is modelled here as a Gaussian
distribution with the mean set at 𝑓 and 𝜎 𝑓 𝑚 representing the internal Measurement
Noise.

𝑃( 𝑓𝑚 | 𝑓 , 𝜎 𝑓 𝑚) =
1

2𝜋𝜎2
𝑓 𝑚

exp

(
− ( 𝑓 𝑚 − 𝑓 )2

2𝜎2
𝑓 𝑚

)
(2.19)

With Equation 2.19, repeated exposure to the same object with feature value 𝑓 would
result in slightly different measurements 𝑓𝑚, with the spread of this noisy measurement
depending on 𝜎 𝑓 𝑚.

A true ideal observer would be aware of the entire Encoder model and have in-
formation about both the external Within-Category Feature Variability and internal
Measurement Noise of their own system. This may not be the case and the observer may
only be partially aware of the Encoder model.

2.6.2 Decoder models
As Bayes’ Rule shows (Equation 2.1), in order to determine the posterior probability of
𝑃(𝐴|f) the observer must first calculate the likelihoods 𝑃(f|𝐴) and 𝑃(f|𝐵). The possible
categories provide context for what feature measurements the observer can expect, so
getting different measurements assuming that they come from a particular category
will yield different likelihood probabilities. We will now discuss three possible Decoder
models describing how an observer may interpret their sensory measurement of a feature
given the likelihood that the stimulus belonged to a particular category 𝑃( 𝑓𝑚 |𝐶). The
purpose of these sub-models is to disentangle the impact of the observer’s knowledge
about the Within-Category Feature Variability and the Measurement Noise on 𝑃( 𝑓𝑚 |𝐶).
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Decoder model 1

Decoder model 1 (labelled as 𝐷1) represents an observer which is only aware of the
Within-Category Feature Variability and is ignorant of their internal sensory Measure-
ment Noise. Upon being presented with a stimulus object, the observer measures the
features f considering the likelihood that they would be drawn from either category’s
feature distribution. In other words, this observer assumes (incorrectly) that its mea-
surement equals the true feature value. This observer assumes (incorrectly) that the
trial-by-trial variation in its measurements, given a particular category, is produced
entirely by the Within-Category Feature Variability.

𝑃( 𝑓𝑚 |𝐶) = 𝑃( 𝑓 |𝐶) =
1

𝜎𝐶 𝑓
√

2𝜋
exp

(
−
( 𝑓 − 𝜇 𝑓 )2

2𝜎2
𝐶 𝑓

)
(2.20)

Decoder model 2

Decoder model 2 (labelled as 𝐷2) represents the counter-example to Decoder model
1; an observer which is only aware of their internal sensory Measurement Noise and
is ignorant of the Within-Category Feature Variability. In effect, an observer using
this decoder model would believe there are only two objects with no 𝜎 𝑓 𝐶 present—one
object represents each Category, 𝐶 = 𝜇 𝑓 𝐶 . The variation that the observer measures
trial-by-trial is assumed to be produced entirely by this Measurement Noise.

𝑃( 𝑓𝑚 |𝐶) = 𝑃( 𝑓𝑚 |𝜇𝐶 𝑓 ) =
1

𝜎 𝑓 𝑚
√

2𝜋
exp

(
−
( 𝑓𝑚 − 𝜇𝐶 𝑓 )2

2𝜎2
𝑓 𝑚

)
(2.21)

Decoder model 3

Decoder model 3 (labelled as 𝐷3) represents the ideal observer which is aware of both
the Within-Category Feature Variability and their internal sensory Measurement Noise.
This model is optimal as it matches the Encoder model (Equation 2.18).

𝑃( 𝑓𝑚 |𝐶) =
∑︁
𝑖

𝑃( 𝑓𝑚 | 𝑓𝑖)𝑃( 𝑓𝑖 |𝐶) (2.22)

We can expand this equation further by substituting the Gaussian distributions for
𝑃( 𝑓𝑚 | 𝑓𝑖) and 𝑃( 𝑓𝑖 |𝐶).

𝑃( 𝑓𝑚 |𝐶) =
∑︁
𝑖

1
𝜎 𝑓𝑚

√
2𝜋

exp

(
− ( 𝑓𝑚 − 𝑓𝑖)2

2𝜎2
𝑓𝑚

)
1

𝜎𝐶 𝑓𝑖

√
2𝜋

exp

(
−
( 𝑓𝑖 − 𝜇𝐶 𝑓𝑖 )2

2𝜎2
𝐶 𝑓𝑖

)
(2.23)
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One unresolved question about the implementation of Equation 2.23 is how to treat the
measurement feature f distributions. The stimulus set used to train participants on the
categories contained 25 objects, with 5 levels per feature. Thus there are only 5 possible
feature measurements that the observer might see. But is the observer aware that the
feature f distributions are not continuous?

For the analyses present in this paper, we will assume that the observer is aware of the
discrete distributions for the features. When calculating the Within-Category Feature
Variability 𝑃( 𝑓𝑖 |𝐶), the observer will consider only the 5 levels of each feature 𝑓𝑖. When
calculating the internal sensory Measurement Noise 𝑃( 𝑓𝑚 | 𝑓𝑖), the observer will consider
a continuous distribution for the measurement of the feature 𝑓𝑚, but marginalize across
the 5 levels of each feature 𝑓𝑖.

Alternative Decoder models

The three Decoder models 𝐷1, 𝐷2, and 𝐷3 defined here mark three possibilities for
how an observer may process the measurement f𝑚 which they would decide on. D1 and
D2 have only a partial understanding of the Encoder model and are consequently sub-
optimal, whereas 𝐷3 correctly understands the full Encoder model and is consequently
an optimal observer. However, this is by no means an exhaustive list of possible mod-
els. There are potentially infinite different sub-optimal Decoder models that we could
generate that could theoretically be used by an observer to perform our categorization
task. For instance, a guessing model 𝐷𝑟 where an observer responds to every trial by
simply guessing with equal probability between the two categories is a valid potential
Decoder model. We could also define Decoder models which ignore one of the two
features entirely (𝐷𝑠 and 𝐷𝑑). While we can include select alternative Decoder models
in our analyses, we will not realistically be able to exhaustively compare every Decoder
model possible.

2.6.3 Analytical Solution
The Encoder and Decoder models described above will be implemented directly through
simulations in Chapter 4. It is also possible to derive an analytical solution for our
Decoder model. This approach loses some validity for the context of our Experiments
as it requires us to assume our Within-Category Feature Distributions are infinitely
continuous, whereas our Categorization paradigm has a very limited feature range.
Nevertheless, an analytical solution to this problem can prove insightful in understanding
the dynamics of the Decoder models.

First, we can consider the Encoder model as an integral across all possible values of
feature 𝑓 . Each 𝑓 gives rise to possible measurements 𝑓𝑚. By integrating the probability
of each 𝑓𝑚 given 𝑓 and the probability of each 𝑓 given category 𝐶 over all possible 𝑓 ,
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we have a similar equation for the Likelihood 𝑃( 𝑓𝑚 | 𝑓 ).

𝑃( 𝑓𝑚 |𝐶) =
∫

𝑃( 𝑓𝑚 | 𝑓 )𝑃( 𝑓 |𝐶)𝑑𝑓 (2.24)

𝑃( 𝑓𝑚 |𝐶) =
∫

1
𝜎 𝑓𝑚

√
2𝜋

exp

(
− ( 𝑓𝑚 − 𝑓𝑖)2

2𝜎2
𝑓𝑚

)
1

𝜎𝐶 𝑓
√

2𝜋
exp

(
−
( 𝑓 − 𝜇𝐶 𝑓 )2

2𝜎2
𝐶 𝑓

)
𝑑𝑠 (2.25)

After expanding these terms and rearranging, and resolving the integral as the Gaussian
Distribution formula always integrates to 1, we come to the following simplification:

𝑃( 𝑓𝑚 |𝐶) =
1

√
2𝜋

√︄
1

𝜎2
𝐶 𝑓

+ 𝜎2
𝑓 𝑚

exp

(
−

(𝜇 𝑓 − 𝑓𝑚)2

2(𝜎2
𝐶 𝑓

+ 𝜎2
𝑓 𝑚
)

)
(2.26)

Here we can define a new 𝜎∗
𝑓
, which represents the combination of the Within-Category

Feature Variability 𝜎𝐶 𝑓 and the Measurement Noise 𝜎 𝑓 𝑚. This turns out to be the sum
of the two variances, which follows intuitively from the relationship between the Within-
Category Feature Distribution and Measurement Noise. First, feature 𝑓 is drawn from
the Within-Category Feature Distribution. Second, a measurement of this feature 𝑓𝑚 is
drawn from a Measurement Noise distribution centred on feature 𝑓 . As such, the final
measurement is a sum of two Gaussian variables and thus forms s Gaussian distribution
as well whose variance is the sum of the two individual variances.

𝜎∗
𝐶 𝑓 =

√︃
𝜎2
𝐶 𝑓

+ 𝜎2
𝑓 𝑚

(2.27)

Substituting Equation 2.27 into Equation 2.26 gives us the following new equation which
illustrates that the two-step process results in a new Gaussian distribution:

𝑃( 𝑓𝑚 |𝐶) =
1

𝜎∗
𝐶 𝑓

√
2𝜋

exp

(
−
( 𝑓𝑚 − 𝜇𝐶 𝑓 )2

2𝜎∗
𝐶 𝑓

2

)
(2.28)

Now we can expand Equation 2.28 into two dimensions to accommodate the features
of our category design, Sides 𝑛 and Dots 𝑑. Following a similar approach for a 2-
Category/2-Feature task as in Equations 2.6 through 2.8, we can derive a compact
formula for the posterior probability 𝑃(𝐴|𝑛𝑚, 𝑑𝑚):

𝑃(𝐴|𝑛𝑚, 𝑑𝑚) =
1

1 + exp
(
Δ𝑛

𝑀𝑛−𝑛𝑚
𝜎∗
𝑛

2 + Δ𝑑
𝑀𝑑−𝑑𝑚
𝜎∗
𝑑

2

) (2.29)

where 𝑀 𝑓 =
𝜇𝐴 𝑓 +𝜇𝐵 𝑓

2 , and Δ 𝑓 = 𝜇𝐴 𝑓 − 𝜇𝐵 𝑓 . From here, we can see an important
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dynamic of our Encoder and Decoder models; when the term in the exponential equals
0, 𝑃(𝐴|𝑛𝑚, 𝑑𝑚) = 0.5. When this term is > 0, Equation 2.29 will favour Noek, and
then this term is < 0, Equation 2.29 will favour Elyk. Thus, we can consider this term
as a Decision variable whose solution tells us immediately how an observer using our
Decoder model should respond in a categorization task.

𝐷 = Δ𝑛
𝑀𝑛 − 𝑛𝑚
𝜎∗
𝑛

2 + Δ𝑑
𝑀𝑑 − 𝑑𝑚
𝜎∗
𝑑

2 (2.30)

With Equation 2.29 we can now very quickly determine how increasing the Measurement
Noise might change how an observer categorizes different objects in our 2-Category/2-
Feature task.

2.7 Conclusion
Here we have described in detail the Bayesian Categorization Model which we will focus
on exploring through the rest of this thesis. Chapter 3 will explore the efficacy of the
stimulus set developed for this categorization task in a human experimentation setting
and evaluate a noiseless Bayesian Categorization Model against human performance.
Chapter 4 will explore the introduction of Measurement Noise through both theoretical
simulations and a sensory measurement Two-Interval Forced-Choice (2IFC) experiment,
finally re-evaluating the observational data from Chapter 3 with a more complete observer
model.
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2.8 Figures and Captions

Figure 2.1: 3D render of the stimuli created and used for our haptic
categorization task. Objects could have different numbers of sides and
spacing of raised hemispherical dots on their top surface. All of the objects
were generated using the program openSCAD and physically created using
the Ultimaker 2 Go 3D printer in PVC plastic.

30

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/


DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

Figure 2.2: Box of stimuli used throughout participant experiments de-
scribed in this paper. The box contained 25 plastic objects each in a
smaller drawer. The objects were organized in a 5x5 grid. Objects were
arranged according to their sides feature along the columns and their dots
feature along the rows.
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Figure 2.3: Two-dimensional intensity plot displays of the two category
feature distributions. This can be calculated using Equation 2.7. Cate-
gory A was defined as having a mean of 7 Sides and 5mm Dot Spacing
with a 1.5 standard deviation in either feature dimension. Category B
was defined as having a mean of 9 sides and 7mm Dot Spacing with a
1.5 standard deviation in either feature dimension. Note that the Dots
feature was generated according to the space between each dot measured
in millimetres and is coded accordingly, however, this is also directly
proportional to the Number of Dots or Dot Density present. These are
organized to match the arrangement of our stimulus object set seen in
Figure 2.2.
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Table 2.1: Table of Posterior Probability for Category A 𝑃(𝐴|𝑛, 𝑑) for
each of the 25 objects, calculated using Equation 2.8. This is organized
to match the arrangement of our stimulus object set seen in Figure 2.2.

Number of Sides
6 7 8 9 10

D
ot

Sp
ac

in
g 4 0.972 0.935 0.855 0.709 0.500

5 0.935 0.855 0.709 0.500 0.291
6 0.855 0.709 0.500 0.291 0.145
7 0.709 0.500 0.291 0.145 0.065
8 0.500 0.291 0.145 0.065 0.029
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Figure 2.4: Intensity plot of the Posterior Probability𝑃(𝐴|𝑛, 𝑑) for Cate-
gory A calculated using Equation 2.8 arranged in a 5x5 grid. The bright-
ness intensity of each square is directly proportional with the probability,
with the highest probability being 0.972 (located on the upper-leftmost
square). This is organized to match the arrangement of our stimulus object
set seen in Figure 2.2.

34

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/


DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

Table 2.2: Table of the 25 object stimuli used throughout our experi-
ments. Listed is each object’s label f𝑔 as well as their associated Sides
and Dots features. Also listed are the likelihoods for 𝑃(𝑛, 𝑑 |𝐴) and
𝑃(𝑛, 𝑑 |𝐵) calculated using Equation 2.7, where 𝜎𝐶 𝑓 = 1.5 for each fea-
ture, 𝜇𝐴𝑛 = 7 and 𝜇𝐴𝑑 = 5 for the Category A Within-Category Feature
Means, and 𝜇𝐵𝑛 = 9 and 𝜇𝐵𝑑 = 7 for the Category B Within-Category
Feature Means. The final column lists the posterior 𝑃(𝐴|𝑛, 𝑑) calculated
using Equation 2.8 for each object.

Object 𝑔 f𝑔 Sides 𝑛 Dots 𝑑 𝑃(𝑛, 𝑑 |𝐴) 𝑃(𝑛, 𝑑 |𝐵) 𝑃(𝐴|𝑛, 𝑑)
1 f1 6 4 0.045 0.001 0.972
2 f2 6 5 0.057 0.004 0.935
3 f3 6 6 0.045 0.008 0.855
4 f4 6 7 0.023 0.01 0.709
5 f5 6 8 0.008 0.008 0.5
6 f6 7 4 0.057 0.004 0.935
7 f7 7 5 0.071 0.012 0.855
8 f8 7 6 0.057 0.023 0.709
9 f9 7 7 0.029 0.029 0.5
10 f10 7 8 0.01 0.023 0.291
11 f11 8 4 0.045 0.008 0.855
12 f12 8 5 0.057 0.023 0.709
13 f13 8 6 0.045 0.045 0.5
14 f14 8 7 0.023 0.057 0.291
15 f15 8 8 0.008 0.045 0.145
16 f16 9 4 0.023 0.01 0.709
17 f17 9 5 0.029 0.029 0.5
18 f18 9 6 0.023 0.057 0.291
19 f19 9 7 0.012 0.071 0.145
20 f20 9 8 0.004 0.057 0.065
21 f21 10 4 0.008 0.008 0.5
22 f22 10 5 0.01 0.023 0.291
23 f23 10 6 0.008 0.045 0.145
24 f24 10 7 0.004 0.057 0.065
25 f25 10 8 0.001 0.045 0.028
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Chapter 3

Human Performance In A
Two-Category Learning Paradigm

3.1 Introduction
Haptic exploration refers to the use of the tactile system to extract sensory information
about an object and its features. Through physical manipulation and exploration, an
observer can learn the underlying statistics of categories, allowing an explored object
to be categorized (Klatzky et al., 1993). This process often involves the full suite of
sensory systems including vision and audition to quickly and accurately distinguish
different objects. But touch can work alone to extract enough information to make
accurate categorizations, both in sighted and blind individuals (Klatzky et al., 1985;
Norman et al., 2011; Norman et al., 2015). For example, reaching into a mixed bag
of various-sided polyhedral dice would reveal a set of similar-feeling objects, yet an
observer is capable of distinguishing an 8-sided die from a 20-sided die.

Prior research has explored the ability of the tactile system to extract feature infor-
mation from objects both alone and in cooperation with the other senses. Klatzky et al.
(1993) observed several stereotyped procedures that human observers tend to use when
exploring objects, with each procedure optimized to extract specific information. For
instance, Lateral Motion, described as repetitive surface rubbing, extracts information
about texture, while Enclosure or Contour Following extracts information about the
global shape of an object. They also found that haptic exploration is naturally guided by
vision when visual information is present; a visual preview of an object provided coarse
information that helped direct further exploration using touch. However, the informa-
tion extracted from the senses does not need to overlap and can even be processed from
different frames of reference (Newell et al., 2001). When an observer grasps an upright
object, touch naturally provides information about the back side while vision provides
information about the front side.
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Bayesian Categorization with Two Known Categories

In a typical two-categorization task, the objective of the observer is to determine the
posterior probability of the category of an explored object given its feature measurements
f𝑚 (bolded f referring to a set of features). The observer is assumed to know there are
two categories and the features to measure. We can write this posterior probability
as 𝑃(𝐴|f𝑚) (written in terms of category 𝐴, with the posterior for category 𝐵 being
1 − 𝑃(𝐴|f𝑚)). The observer gathers information about the stimulus through sensory
inputs. If the observer is assumed to know the two categories ahead of time, they are
able to calculate the likelihoods (i.e., the probabilities) of measuring the features f𝑚
given either category, 𝑃(f𝑚 |𝐴) and 𝑃(f𝑚 |𝐵). Refer to Chapter 2 for a full derivation of
our Bayesian Categorization Model.

The underlying categorical structure is assumed to be understood by the observer as
Gaussian probability distributions. We designed stimuli to have only two distinguishing
features (𝑛 and 𝑑) and to be identical in every other respect. We also set the Within-
Category Feature Variability of each dimension and each category to be equal and
independent.

We assume that the observers apply an equal prior between categories A and B,
𝑃(𝐴) = 𝑃(𝐵) = 0.5, according to Laplace’s Principle of insufficient reason. This allows
us to use Equation 2.8 as our noiseless Bayesian Categorization Model observer. In
the present study’s experimental design, this assumption was reinforced by randomly
drawing objects from either category with equal probabilities.

In the present study, we investigated human category learning of objects using only
the sense of touch and compared results to our Bayesian model. The stimuli were a
set of novel 3D-printed polygonal objects with pseudo-continuous features. Categories
were artificially defined out of this set of objects as 2D Gaussian distributions. With
this study, we aimed to investigate three questions: 1) Is human haptic categorization
Bayes-optimal? 2) Which training method is most effective for category learning? and
3) Does categorization improve over longer-term training?

3.2 Experiment 1
The purpose of Experiment 1 was to explore human performance in a two-category
learning paradigm using tactile exploration of physical objects. Two categories were
defined and objects were artificially drawn from these categories using computer soft-
ware. Participants were physically handed objects corresponding to the ones drawn
by the software one at a time to freely explore. The goal was to train participants on
the two underlying categories to the point of reaching their highest possible accuracy
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in a categorization task. A set of novel objects was created for the purposes of this
experiment.

In order to test different methods for training participants on the categories, three
separate training regimens were established: block training with feedback, block training
without feedback, and continuous testing with feedback. The goal was to determine the
effectiveness of free exploratory learning (where observers had a chance to explore
many objects from a category where they knew which category the objects belonged to)
against corrective feedback learning (where observers learned while trying to categorize
unknown objects).

3.2.1 Methods
Participants

Forty-five participants (18-26 yr old, median age 19 yr) were recruited from the McMas-
ter University community. Exclusion criteria included any of the following conditions
known to adversely affect tactile acuity or performance on psychophysical tasks: dia-
betes, nervous system disorders, cognitive impairment, learning disabilities, dyslexia,
attention deficit disorder, carpal tunnel syndrome, and arthritis of the hands. All par-
ticipants were naïve to the experiment and the unique stimuli used. Participants were
compensated with either course credit or $20. Participants completed a short demo-
graphic and handedness questionnaire prior to participation, and an exit interview after
the experiment concluded.

Materials and Stimuli

The stimulus objects were created using an Ultimaker 2 Go 3D printer. The objects were
designed using the open-source Computer-Aided Design (CAD) modeller OpenSCAD.
They were designed to be similar polygonal prisms with only two differentiating fea-
tures—the number of sides and the spacing of a dot-matrix texture that covered one of
the faces. All the objects were otherwise identical with a radius of 25𝑚𝑚 and a thickness
of 5𝑚𝑚.

The dot-matrix texture consisted of evenly spaced 0.5𝑚𝑚 radius hemispheres pro-
truding from the surface. We established 5 different levels for dot spacing and 5 levels for
sides, creating 25 unique objects. The center-to-center spacing between neighbouring
dots on an object ranged from 4𝑚𝑚 to 8𝑚𝑚 in 1𝑚𝑚 increments. The number of sides of
each object ranged from 6 to 10 sides in increments of 1 side (see Figures 2.1 and 2.2).
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Object Categories

Two categories were defined using the twenty-five objects detailed in Chapter 2. These
categories were defined by symmetric, 2D Gaussian distributions with a set mean number
of Sides and Dot Spacing, and a Standard Deviation (𝜎) of 1.5. The first category was
set at a mean of 7 Sides and 5𝑚𝑚 Dot spacing. The second category was set at a mean
of 9 Sides and 7𝑚𝑚 Dot Spacing. Participants were given different names to distinguish
these categories. For half of the participants, the categories were named Elyk and Noek
respectively, and for the other half, these names were reversed. These pseudo-words
were chosen to be phonetically similar while avoiding any possible confounding effects
of previous biases to real words or effects of ordering (for instance, naming the categories
‘A’ and ‘B’ might imply a sense order as A comes before B). The Gaussian distribution
parameters were chosen in such a way that the noiseless Bayesian Categorization Model
observer would be correct on average 76% of the time.

Throughout this chapter, we will refer to the first object category with means of 7
Sides and 5𝑚𝑚 Dot spacing simply as Category A, and the second object category with
means of 9 Sides and 7𝑚𝑚 Dot Spacing as Category B.

As discussed in Chapter 2, these categories are not truly continuous Gaussian dis-
tributions. This is a physical limitation; we could not practically produce a continuous
range of stimuli across Dot spacing, and the number of Sides of a polygon is constrained
to be integers. Furthermore, the distributions are clipped at the ends and consequently
are more similar to truncated Gaussian distributions. Regardless, we believe the range of
stimuli presented to participants is sufficient to convey the underlying ideal distributions.

We wanted to simulate the effect of physically drawing random objects from a box
with an equal number of Category A and B objects mixed in together without having to
3D print multiple copies of each object. In reality, and unknown to the participants, we
had only a single 3D print of each of the 25 objects. During the experiment, the computer
randomly (with 50% probability) chose to present either a Category A or B object, and,
having made that choice, randomly sampled an object from the corresponding category
distribution.

Software

The experiment ran on a 2006 iMac using a custom program written in LabVIEW 2017
(National Instruments). While remaining hidden from the participant, this software
managed the progress of the experiment and data collection. A human experimenter was
required to present and retrieve stimuli and input participant responses, but the computer
handled sorting participants pseudo-randomly into different training regimen groups,
selecting an object every trial, and providing corrective feedback to the participant.
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A GoPro Hero 4 camera was used throughout the experiment to record participants’
hands. This camera was mounted on an articulating arm and pointed down for a top-
down view. Video capture was handled automatically by the experiment software. One
out of every 5 trials was recorded and saved as a separate .mp4 video file.

Experiment instructions were pre-recorded on audio files and played for the partici-
pant before beginning the experiment.

Procedure

At the start of the experiment, participants were played a pre-recorded script. All
participants were told that their task was "to try to learn two different categories of
objects using only touch". They were told the names of the two categories, Elyk and
Noek, and that they "differ by both shape and the density of dots on top". They were
explicitly told to try to pay attention to both the Shape and Dots features. They were
also told that "half the objects are Elyk and half are Noek ". The script varied slightly
depending on their assigned training group as the instructions included a description of
any training blocks and corrective feedback.

Unknown to the participants, they were pseudo-randomly assigned to one of three
training regimens. Participants assigned to the training regimen Group 1 completed a
set of two training blocks and a testing block with corrective feedback. Participants
assigned to the training regimen Group 2 completed a set of two training blocks and a
testing block without corrective feedback. Participants assigned to the training regimen
Group 3 completed a set of three testing blocks with corrective feedback. As participants
in Group 3 were given no prior training or exposure to the stimuli and categories, it was
expected that they would be guessing the first few trials. This was conveyed to them
during the pre-recorded script to avoid confusion.

Each block comprised 40 trials, and the set of three blocks was repeated three times
for a total of 9 blocks (360 trials total). In each trial, the participant was given an object
to explore for five seconds. The experiment took a maximum of 2.5 hours to complete.

Participants were counterbalanced for the categories naming convention; for half the
participants, Elyk meant an average of 7 sides and 5mm spacing while Noek meant
an average of 9 sides and 7mm spacing, and for the other half, Elyk and Noek meant
the opposite. Additionally, we also counterbalanced the order of training blocks (only
applicable for participants in Groups 1 and 2). This led to four possible combinations of
naming conventions and training block order. These counterbalances controlled against
possible effects of learning order or the object category names.

During a training block, the participant was told what category they were learning
from for the entire block. The computer randomly drew with replacement from the
indicated category and instructed the experimenter to present that object.
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During the testing block, participants were given an object and told it was randomly
pulled from either category. The computer first randomly chose between Category A
and B, and then randomly drew an object from the chosen category. It then instructed
the experimenter to present that object. After five seconds of exploration, the partic-
ipant reported which category they thought the object belonged to (using the naming
convention of Elyk or Noek) and their confidence in their response from 50%-100%.

In the testing block with corrective feedback, the participants received auditory
feedback and so learned on every trial whether their answer was correct or incorrect. In
the testing block without corrective feedback, participants did not receive this feedback
and did not know whether their response was correct or incorrect.

In an exit interview at the end of the experiment, the experimenter asked the partic-
ipants five questions: Did they think they knew how Noek and Elyk differed (and if so,
how), did they pay attention equally to the two features or more to one than the other,
did the categories become clearer as they progressed, did they have any strategy or rule,
and how confident were they that they understood how Noek and Elyk differed.

3.2.2 Results
The primary aim of this experiment was to explore human categorization capabilities
for objects learned through the tactile modality. A secondary aim was to investigate the
efficiency of various training methods. To this end, three different training regimens
were compared.

In Experiment 1, forty-five participants were split across three training Groups.
Across the Groups were three testing blocks where performance could be compared;
Blocks 3, 6, and 9. Participant responses on these three testing blocks were calculated
against that of a noiseless Bayesian observer (one which does not consider Measurement
Noise, using Equation 2.8) whose responses matched the decision made by the maximum
a posteriori (MAP) estimate of the model. Overall, participants in Group 3, who were
given repeated testing blocks with corrective feedback), outperformed the participants
in Groups 1 and 2.

For all analyses, unless otherwise stated, we excluded trials where one of five object
stimuli were presented to the participant: f5, f9, f13, f17, and f21 (refer to Table 2.2). These
objects were all those in which our noiseless Bayesian Categorization Model calculated
a posterior probability 𝑃(𝐴|𝑛𝑚, 𝑑𝑚) = 0.5. The Bayesian Categorization Model cannot
reasonably categorize these objects and would have to simulate “guessing” by choosing
randomly. This prevents meaningful trial-by-trial comparison between humans and our
model on those trials.
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By Block 9 of the experiment, Group 1 reached an average percent correct of 65.6%
(SD=13.5), Group 2 reached an average of 64.5% (SD=14.7), and Group 3 reached an
average of 73.2% (SD=7.9) (Figure 3.1). Looking at the average responses between
Category A and B (where Category A was coded as 1 and Category B was coded as 2),
Group 1’s average response was 1.47, Group 2’s average response was 1.52, and Group
3’s average response was 1.52, indicating no significant bias between the categories.
Performing a repeated-measures ANOVA between the three Groups and across Blocks
3, 6, and 9 revealed a significant effect of Group, 𝐹 (2, 42) = 3.634, 𝑝 = .035. Mauchly’s
Test of Sphericity indicates the sphericity assumption had not been violated, 𝑋2 = 0.871,
𝑝 = .059.

The average confidence reported by participants in Groups 1, 2, and 3 were 68.1%
(SD=12.6), 72.9% (SD=10), and 66.7% (SD=13.5) respectively. A Repeated Measures
ANOVA revealed no significant effect of confidence ratings between Groups, 𝐹 (2, 42) =
1.531, 𝑝 = .228. Mauchly’s Test of Sphericity indicated that the sphericity assumption
had been violated, 𝑋2 = 14.842, 𝑝 < .001, and so we corrected for sphericity using the
Greenhouse-Geisser correction.

Recalculating the data in terms of the percent of trials matched to the observer model
and performing a Repeated Measures ANOVA revealed a significant effect of Group,
𝐹 (2, 42) = 7.187, 𝑝 = .002, as well as a significant effect of Block, 𝐹 (2, 84) = 4.961,
𝑝 = .009. By Block 9, Group 1 reached a percent match of 74.2% (SD=14.9), Group 2
a percent match of 71.9% (SD=14.2), and Group 3 a percent match of 83.1% (SD=7.6).

The average percent correct of the five excluded object stimuli (f5, f9, f13, f17, and
f21) was between 49% and 50% across the three groups by Block 9, indicating that
participants were guessing when presented with these objects as predicted by noiseless
Bayesian Categorization Model. The average confidence for these five objects by Block
9 was 67.1% for Group 1, 69.3% for Group 2, and 64.4% for Group 3, potentially
indicating a bias in self-reported confidence.

To examine whether participants exhibited a feature bias between Sides and Dots,
we can examine the average response of objects f9 and f17 to see if they are skewed
towards either category. Human observers may not always respond optimally and there
could be many potential sources for this sub-optimal behaviour. A feature bias would be
equivalent to the observer incorrectly assuming the Within-Category Feature Variability
was greater for one feature than the other, and this would have the effect of down-
weighting that particular feature in the inference (as shown in Equation 2.9). In terms
of objects f9 and f17, a Dots feature bias would result in f9 being more often categorized
as Category A and f17 being more often categorized as Category B, while a Sides
feature bias would result in the reverse. If a "Category A" response is coded as 1, and
a "Category B" response is coded as 2, we can take the average of all responses as a
coarse indicator for response bias, where an average response of 1.5 would indicate no
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bias presence. The average responses for object f9 for Groups 1, 2, and 3 were 1.4, 1.45,
and 1.29, while the average responses for object f17 were 1.5, 1.54, and 1.62. This could
indicate a bias for the Dots feature, as f9 was more often categorized as A and f17 more
often categorized as B. This bias can also be visually appreciated in Figure 3.5.

The data was further analyzed to compare the frequency of category responses per
each of the 25 objects against the posterior probability of each object belonging to
Category A (Figure 3.2). This was done for three different sub-models of our Bayesian
Categorization Model: one that only considers the Sides feature, one that only considers
the Dots feature and one that considers both features. Linear regressions were calculated
for each of these models per Group. In Groups 1 and 2, the Dots-only observer model
had a slope closest to 1. In Group 3, the expert model had the slope closest to 1.

This object-wise analysis was also calculated for the participants’ reported confidence
that the object belonged to Category A. Since participants were only asked to report their
confidence in their response for each trial, the participant’s confidence was in respect
of Category A in trials where they responded "A", and in respect of Category B in
trials where they responded "B". In order to put everything in terms of Category
A, the confidence in trials where the participant responded "B" was recalculated as
1 − 𝑐𝑜𝑛 𝑓 𝑖𝑑𝑒𝑛𝑐𝑒. Performing a linear regression against the posterior probability of
each object belonging to Category A reveals a slope of approximately 0.33 for all three
Groups (Figure 3.3).

3.3 Experiment 2
The purpose of Experiment 2 was to investigate the effect of a longer training period.
A key assumption in analyzing Experiment 1 was that participants had fully learned the
categories by the end of the experiment and were performing at their highest possible
performance by the last testing block. By tracking performance across five consecutive
testing days, we aimed to determine if this was a valid assumption. In Experiment 2,
only the third training regimen was used as it was determined through Experiment 1 to
lead to the best categorization performance. The daily testing procedure was the same as
that used in Experiment 1, except that a slight modification was made on days 2 through
5 with the inclusion of two additional objects.

3.3.1 Methods
Participants

Ten participants were recruited from McMaster University (18-23 yr old, median age
20.5 yr). Participants were screened in the same way as participants in Experiment 1
and were naïve to the experiment and the unique stimuli used throughout. Participants
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were compensated $20 per day. Participants completed a short demographic and hand-
edness questionnaire prior to the start of the experiment, and an exit interview after the
experiment concluded.

Materials and Stimuli

The same twenty-five stimuli from Experiment 1 were used in Experiment 2 with the
same category distributions. Additionally, two new objects were introduced from the
second day onward with parameters outside of the range previously seen. One object
had 11 sides and 7𝑚𝑚 dot spacing and the other had 9 sides and 9𝑚𝑚 dot spacing. The
objects were chosen to have the same theoretical probability of belonging to Category
B as object f25 (10 sides and 8𝑚𝑚 dot spacing). The experiment was run on the same
custom program as Experiment 1.

Procedure

All participants were trained under the training regimen of Group 3 which consisted of
testing blocks with corrective feedback. The first day of the experiment was identical
to the procedure in Experiment 1, consisting of 9 blocks of 40 trials taking a maximum
of 2.5 hours to complete. Participants were played the same pre-recorded script used
for Group 3 participants in Experiment 1 at the start of each day. After the first day,
two modifications were made: First, the two new objects were discretely included in
the experiment using pseudo-randomization that ensured that each was presented once
within the block. Trials with these objects provided no corrective feedback to the
participant. In this way, participants would not be able to learn from these objects and
their understanding of the underlying categories should not have changed.

Second, each trial was given a 10% chance to not give the corrective feedback to
the participant, regardless if the object was from the original set or not. This was done
to blind the participant as to which trials included these two new objects. Participants
were informed that some trials from the second day onward would not give corrective
feedback. They were not told that new objects were being added to the experiment.

The experiment was run over five consecutive days, 2.5 hours each day, for a maximum
of 12.5 hours. The same exit interview from Experiment 1 was held at the end of the
last day of the experiment.

3.3.2 Results
The aim of Experiment 2 was to determine the maximum performance attainable by
participants in our categorization task. Ten participants were tested over five consecutive
days (two hours each day, 45 blocks in total). One participant’s data was removed from
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the analysis as their performance fell significantly below all other participants with a total
average of 44.9% across the five days of the experiment. Trials where the participants
were expected to guess randomly (where 𝑃(𝐴|𝑛𝑚, 𝑑𝑚) = 0.5) were also removed from
this analysis.

A table of the results calculated on the last block of each day can be found in Table
3.1. A Repeated Measures ANOVA revealed no significant effect of experiment day on
average percent correct, 𝐹 (4, 28) = 0.396, 𝑝 = .810. The sphericity assumption was
tested using Mauchly’s Test which was not significant, 𝑋2 = 11.036, 𝑝 = .295. Figure
3.7 shows the average percent match to the model across the five-day experiment, with
81.7% (SD=7.8) on Day 1, 85.3% (SD=7.5) on Day 2, 79.4% (SD=11.2) on Day 3,
81.2% (SD=11.3) on Day 4, and 77% (SD=9.4) on Day 5.

A Repeated Measures ANOVA over the average confidence ratings across the five
did not reveal a significant effect of experiment day. Mauchly’s test indicated that the
assumption of sphericity had been violated, 𝑋2 = 22.520, 𝑝 = .010, and so we corrected
with the Greenhouse-Geisser correction, 𝐹 (1.664, 11.647) = 0.443, 𝑝 = .618.

Performance was calculated as the percentage of trials in which the participant re-
sponded similarly to our noiseless Bayesian Categorization Model (Equation 2.8). A
Repeated Measures ANOVA found no significant effect of experiment day, 𝐹 (4, 28) =
1.347, 𝑝 = .277. The sphericity assumption tested using Mauchly’s Test was not vio-
lated, 𝑋2 = 9.222, 𝑝 = .439. In general, performance reached a similar level to that of
participants in Experiment 1 after the first day of the experiment and did not improve
with subsequent days of training.

We again reanalyzed the data in terms of observer response behaviour for each of the
25 objects. The frequency of each object being categorized as A was compared against
the posterior probability of that object belonging to the A category as calculated by
Equation 2.8. Figure 3.8 shows the result of this analysis with a calculated slope close to
1, indicating a strong match between response behaviour and the output of the observer
model.

The total average percent correct of the five excluded object stimuli (f5, f9, f13, f17,
and f21) across all trials was 57%, indicating that participants were likely guessing when
presented with these objects as predicted by noiseless Bayesian Categorization Model.

Two additional objects were introduced randomly throughout days 2 through 5 in
order to test how participants would categorize new objects drawn from the categories.
This tested the possibility that participants were not learning the overall categories and
were instead learning the categories of each object individually. If this were the case,
then participants would be expected to guess with a 50% probability when presented
with the new objects. This was not observed in our results; participants had no problem
categorizing the novel objects and categorized them as we would expect according to an
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understanding of the underlying statistics of the categories. The average percent correct
for both objects was 87.4%. These two objects were comparable to f25 according to our
noiseless Bayesian Categorization Model, which had a total average percent correct of
92.6%.

Experiment 2 demonstrated that participants adequately learned the categories after
a single day of the experiment. This offers validity to Experiment 1 and the assumption
that participants had been trained sufficiently enough on the categories to compare their
response behaviour to our model.

3.4 Advanced Analysis Approaches
The analysis shown in Figures 3.2 and 3.8 are compelling as they allow for a direct
comparison between the participants’ response behaviour and the expected output of our
Bayesian Categorization Model. However, this does not quite follow what we would
expect from our noiseless Bayesian Categorization Model. Our observer uses a MAP
estimate to make categorical decisions, leading to a deterministic response behaviour
where its response would be the same for any given object. This would result in a step
function when plotting 𝑃(′′𝐴′′|f𝑔) against 𝑃(𝐴|f𝑔) where:

𝑃(′′𝐴′′|f𝑔) =
{

1 𝑃(𝐴|f𝑔) > 0.5
0 𝑃(𝐴|f𝑔) < 0.5

(3.1)

This is not what we observed in our human participants. Instead, we found variability
in response behaviour for how each object was categorized. There are a few factors
which could contribute to the stochasticity of human performance in our experiment,
one of which being the presence of Measurement Noise which we will explore in detail
in Chapter 4. An alternative possibility we can immediately apply to this analysis is
that of Bayesian Sampling. Under this method, an observer responds in such a way
that is proportional to the underlying posterior probability; if a particular object had a
75% posterior probability for Category A, an observer using Bayesian Sampling would
respond "A" 75% of the time. Applying this to our analysis, as the posterior probability
for an object belonging to Category A 𝑃(𝐴|f𝑔) increases we’d expect a higher probability
of the observer responding "A", 𝑃(′′𝐴′′|f𝑔). This was seen in both Experiments 1 and 2
with linear regressions revealing slopes close to 1.

There is a major flaw, however, with this analysis. To achieve this object-wise analysis,
the response frequency of Category A needed to be calculated for each of the 25 objects.
Each object was only shown a handful of times throughout the experiment for a single
participant, and some particular objects may have only been shown very few times or
not at all. Figure 3.4 shows a histogram of the frequency each object was drawn, where

46

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/


DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

we can see this discrepancy in stimulus presentation across our participant pool. As
such, there was not enough data within a single participant to calculate the frequency
of Category A responses per object. To calculate this, all participant responses had to
be aggregated together. While still informative, this limitation in the analysis makes it
difficult to draw conclusions.

To address this, we attempted a more advanced analysis procedure taking advantage of
the probabilistic nature of our model. Consider the posterior probability space 𝑃(𝐴|f𝑔).
Each object has a posterior probability as calculated by our Bayesian Categorization
Model in Figure 2.9. Furthermore, we will use a Bayesian Sampling method where
𝑃(𝐴|f𝑔) = 𝑃(′′𝐴′′|f𝑔) for our noiseless Bayesian Categorization Model. While we
cannot directly measure the posterior 𝑃(𝐴|f𝑔) in our human participants, we can measure
𝑃(′′𝐴′′|f𝑔).

The main question in our analysis is whether or not the probability space for the
25 objects described by our model matches the posterior probability 𝑃(𝐴|f𝑔). We can
consider the simple linear regression model 𝑦 = 𝑚𝑥 as a mapping function, relating the
posterior 𝑃(𝐴|f𝑔) in the x-axis to the probability response 𝑃(′′𝐴′′|f𝑔) in the y-axis. In the
case that these two probability spaces map onto each other perfectly, we expect a slope
along the identity line 𝑥 = 1. Thus our linear regression model will be the following:

𝑃(′′𝐴′′|f𝑔) = 𝑥𝑃(𝐴|f𝑔) (3.2)

Consider that participant responses are binary, either Elyk or Noek. As such, we can
treat each trial as if it is a coin flip, where the probability of "landing heads" is given by
𝑃(′′𝐴′′|f𝑔). We can expand this for all trials in a single run through the experiment by
employing the probability "and" rule to find the likelihood of all of our observed data
given a particular slope 𝑥:

𝑃(𝐷 |𝑥) =
𝑛∏
𝑡

𝑃(′′𝐴′′|f𝑔)𝑡 =
𝑛∏
𝑡

𝑝
𝑟𝑡
𝑡 (1 − 𝑝𝑡)1−𝑟𝑡 (3.3)

where 𝐷 is all of the participant’s responses in the experiment, 𝑛 is the total number of
trials in the experiment, 𝑡 is a particular trial, and 𝑟𝑡 is the response of the participant
on that trial. On trials where the participant responds "A", 𝑟𝑡 = 1, and on trials where
the participant responds "B", 𝑟𝑡 = 0. 𝑝𝑡 is the critical modification for our analysis; this
is the probability of the participant responding "A" as given by the model in Equation
2.9 for each particular trial. As such, it will depend on the feature measurements of the
given object handed to the participant on that trial.

𝑝𝑡 = 𝑥𝑃(𝐴|𝑛𝑚, 𝑑𝑚)𝑡 (3.4)

Finally, we can apply Bayes’ formula with a uniform Prior to calculate an estimate for a
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particular slope 𝑥𝑖 given our observed data 𝐷 for each participant. Using this logic we
can sidestep the issue of data resolution we were facing previously and recalculate our
object-wise analysis for each participant. Objects that are presented fewer times will be
naturally down-weighted in their influence over the estimate for the slope.

𝑃(𝑥𝑖 |𝐷) =
𝑃(𝐷 |𝑥𝑖)∑
𝑘 𝑃(𝐷 |𝑥𝑘 )

(3.5)

Using Equation 3.5 we calculated the posterior probability density function for 𝑚 across
a range of slopes 𝑥 from −1 to 1 for each participant across each block of Experiment 1.
Figure 3.6 shows the most probable slope, corresponding with the mode of the posterior
distribution, across the three Groups and Blocks of Experiment 1. Participants in Group
3 reached an average slope of 1.02 by the end of the experiment, while participants in
Groups 1 and 2 only reached slopes of 0.67 and 0.71 respectively. This confirms what
we had found with our previous flawed analysis more rigorously: participants in Group
3 matched closest to the Bayesian observer model with a slope approaching 1 by the end
of the experiment.

One issue with this analysis is our reliance on the use of Bayesian Sampling for our
model’s decision-making process to categorize objects. As we will discuss later in the
discussion section of this chapter and in Chapter 5, this is an uncertain assumption for
us to make. However, because there is response variability present in our participants’
responses, the MAP estimate does not work with this analysis. Our analysis discussed
here could be valid with a MAP estimator observer under the presence of Measurement
Noise. However, in its current state, our model is unable to account for this factor. We
will discuss the presence of Measurement Noise further in Chapter 4.

Model Comparison Analysis

The analysis described above attempted to iterate upon the analysis shown in Figures 3.2
and 3.8 in a way that was not dependent on the frequency of responses for each object.
However, we can expand on this idea even further to answer another important question
in our data set: are participants ignoring either the Sides or Dots features or combining
them in their categorical judgements? Rather than assuming a linear or sigmoidal
relationship between participant response data and our model’s posterior 𝑃(𝐴|f𝑔) and
estimating a slope parameter, we can instead compare different models for 𝑝𝑡 . We can
then use model comparison to determine which model best fits each participant’s data.

We will assume four hypothetical models: an Expert model which includes both
features, a Sides-only model that ignores the Dots feature, a Dots-only model that
ignores the Sides feature, and a Guessing model which responds randomly with an
equal probability of 𝑝𝑡 = 0.5. The three other models will use different configurations
of our Bayesian Categorization Model applying the assumptions of each respectively.
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This results in a different posterior 𝑃(𝐴|𝑛𝑚, 𝑑𝑚) for each and thus a different 𝑝𝑡 =

𝑃(𝐴|𝑛𝑚, 𝑑𝑚)𝑡 dependent on the model. We again use Equations 3.3 and 3.4 to calculate
the likelihood of each model, where 𝑝𝑡 is dependent on the model being used. Our
Bayesian model comparison analysis (using an equal initial prior) thus follows the
following equation, where 𝑑 refers to the collected empirical data:

𝑃(𝐸𝑥𝑝𝑒𝑟𝑡 |𝑑) = 𝑃(𝑑 |𝐸𝑥𝑝𝑒𝑟𝑡)
𝑃(𝑑 |𝐸𝑥𝑝𝑒𝑟𝑡) + 𝑃(𝑑 |𝑆𝑖𝑑𝑒𝑠) + 𝑃(𝑑 |𝐷𝑜𝑡𝑠) + 𝑃(𝑑 |𝐺𝑢𝑒𝑠𝑠𝑖𝑛𝑔) (3.6)

We applied this model comparison analysis on participants across Experiments 1 and
2 for the last block of the experiment. For each participant, the final posteriors at the
last trial of this analysis were used to determine which model was the best fitting model.
The histograms of how many participants were fit into each model are shown in Figure
3.9. We found that overall, more participants were fit to an Expert model than the other
models in Experiment 1, with the Dots only model being the next most fitted model
(Figure 3.9 a). We also found variability comparing against the three Groups, with
Group 3 having the most participants who fit the Expert model. In Experiment 2, most
participants were fit to the Dots only model, with the Expert model being the next most
fitted model (Figure 3.9 b). Overall, this again suggests that while many participants are
able to use both features when performing the categorization task, some participants are
potentially over-relying on the Dots feature and possibly ignoring the Sides feature.

While compelling, this model comparison analysis still relies on Bayesian Sampling
as a core assumption in Equation 3.4. We will return to this model comparison analysis
later in Chapter 4 and greatly improve upon it.

3.5 Discussion
In the present study, we tested human participants in a category learning task using
novel objects and categories that participants learned using only the sense of touch. We
further compared participant performance to that of our Bayesian Categorization Model.
In Experiment 1, we tested three different training regimens and found that participants
reached maximum performance when they learned by being repeatedly tested with
corrective feedback. Participants in Group 3 had higher overall performance throughout
the experiment and reached a greater maximum performance than participants in either
Groups 1 or 2. Participants in Group 3 also showed a response behaviour that was most
closely accounted for by our computational model, suggesting that participants learned
the categories the best using this method.

In Experiment 2, we ran new participants on repeated testing with corrective feedback
training regimen over five days and found that performance did not significantly improve

49

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/


DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

despite the additional time to learn the categories. This suggested to us that participants
were reaching a performance ceiling in our task that was lower than the performance of
our Bayesian Categorization Model.

Overall, while the model we explored in this study seemed to account for a large
proportion of participant performance, there is still a discrepancy between the observer
model’s performance and human performance.

Testing with corrective feedback leads to better category learning
Participants in Group 3 outperformed the participants in both Groups 1 and 2. This
was clear when comparing raw and normalized performance across Groups and when
comparing best-fit linear regressions. More surprising is that participants in Group 1
did not seem any better than those in Group 2. The only difference between these two
groups was that Group 1 was given corrective feedback during testing blocks. Given
that average performance in Group 3 was overall better than Groups 1 and 2, it was
expected that Group 1 would also outperform 2. Participants in Group 2 are provided
less information to learn from than participants in Groups 1 and 3, as they cannot learn
from the testing blocks without corrective feedback.

There are a few possible explanations for these results. The first is that the benefit of
testing blocks with corrective feedback does not make a large enough impact with only
a few blocks. Group 1 only had a third of the number of corrective feedback testing
blocks as Group 3, which might not be sufficient to affect performance. If this were the
case, the benefit provided by corrective feedback may be exponential. This would lead
to a small benefit with a small number of blocks that increases dramatically as more
blocks are introduced. Further experimentation manipulating the amount of corrective
feedback testing blocks would be required to determine this. It is also possible that
mixing types of learning, that is training blocks versus testing blocks with corrective
feedback, leads to a detriment that negates the benefit of corrective feedback. It is
possible that participants can’t learn a category through both types of learning in the
same time frame. A third possibility is that participants in Group 2 are reinforcing their
knowledge of the categories by their responses as if they were given corrective feedback,
even though their responses could have been wrong. On average they are getting more
objects correct than incorrect, so there would be an overall benefit to this strategy, and
this might be enough to close the gap between Groups 1 and 2, making it difficult to
differentiate the two groups.

Human observers are poor at self-reporting confidence
By far the worst-performing measure in this study was participants’ confidence ratings.
We found a positive linear relationship between confidence and posterior probability of
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Category A, but with a fairly flat average slope of 0.33. This is not entirely unexpected;
human observers are generally poor estimators of their own cognitive state. Even an
observer who claims to be guessing can still be performing well (Dienes, 2007). Here we
used a very simple confidence rating scale that relied on the self-report of participants.
This is a commonly used method of extracting confidence but it is not without problems
(Massoni et al., 2014).

Self-reported confidence ratings do not map directly onto performance. Often par-
ticipants will be overconfident and report higher confidence than their actual success
rate. In the present study, we instead observed confidence ratings below average perfor-
mance. Given that participants seemed to find the task difficult and did not reach optimal
performance, this low confidence rating could be an accurate reflection of their internal
state.

It is possible that an alternative confidence rating method could have garnered better
results. One promising method is a no-loss gambling game developed by Dienes &
Seth (2010). In this method, the self-reported confidence of a participant is put into
a two-stage lottery that can potentially reward them. First, a random number is drawn
between 0 and 100. If their confidence rating is higher than this number, the participant
is rewarded based on their accuracy in the experiment. If their confidence rating is lower,
they get placed into a second lottery where a second random number is drawn. If the
first random number is greater than the second, the participant is rewarded. While a
little complicated, this method provides an incentive to answer truthfully and match the
probability of success and discourages being over- or under-confident (Massoni et al.,
2014).

A pilot study using this method instead of the simple confidence rating, unfortunately,
proved to be incompatible with our categorization task. Participants either ignored the
lottery completely or confused the reward of the lottery with the corrective feedback of
the task. Thus, after much deliberation, the simple, inaccurate method was chosen over
the no-loss gambling method.

Response variability
Our object-wise analysis of participant response behaviour revealed variability in how
human observers categorize each object within our stimulus set. Data variability in an
experiment with human participants in itself is not surprising. However, this is not the
response behaviour we expected given our Bayesian Categorization Model. Our observer
model categorizes stimuli using a MAP estimate. This means that our observer model’s
responses are deterministic; it will respond the same way to the same stimulus every
time it is presented determined by the calculated posterior probability. This difference
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between the expected responses of our model and the observed response behaviour of
our participants marks a shortcoming in our Bayesian Categorization Model.

What are the possible sources of this response variability in our human participants?
One explanation could be that participant’s understanding of the category distributions
are changing throughout the experiment. Participants are naïve to the category distri-
butions before the start of the experimental task and are required to learn the categories
throughout the experiment. This learning could be understood and modelled as learning
the Within-Category Feature Mean and Within-Category Feature Variability. As partic-
ipants are learning the categories, we might expect their estimates of these parameters
to shift and change throughout the experiment. However, it is expected that participants
will be finished learning by the end of the first day of the experiment. Our results from
Experiment 2 suggested that participants had learned the categories to the best of their
abilities by the end of the first day of testing and did not significantly improve through
further days of testing. From this, we don’t suspect that participant understanding of the
underlying category distributions is significantly changing once learning is complete by
the final block.

Participants could also be applying unintended complex decision rules on their re-
sponse outside of a MAP estimate. One such rule could be "if I responded ’Elyk’ three
trials in a row, then next trial answer ’Noek’" or "respond ’Elyk’ every other trial". We
scanned for simple patterns in response behaviour throughout our participants and did
not find any indication of such rule sets being used. However, if a participant was incon-
sistent with their decision rules and employed one or several different rules at different
times throughout the experiment we would be unable to accurately detect this.

One source of response variability is the presence of a lapse rate. In some percentage
of trials, participants may not respond based on their measurements but instead randomly
choose between the two categories. This could be driven by a lapse in attention to the
task, either from fatigue or other factors outside of our control. We don’t expect the lapse
rate present in participants to be very large, perhaps only contaminating 5% of trials at
most. Furthermore, we’d also expect that on half of those lapse rate trials, the participant
would answer correctly by chance, meaning lapses might account for a roughly 2.5%
performance cost. In comparison, our calculated percent match to the observer averaged
across participants was around 83% by Block 9, meaning that on roughly 20% of trials,
participants’ responses were different from those of our Bayesian Categorization Model.
So while this does provide some explanation for the variability seen, it fails to explain
the full extent of variability.

Another possibility is that rather than using a MAP estimate to drive response deci-
sions, observers are instead employing Bayesian Sampling, sometimes called Posterior
Sampling or Probability Matching. This theory posits that, rather than responding based
on the posterior probability directly, an observer instead samples from the posterior and
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responds based on this sampling. Under this scenario, the frequency of responses should
match the posterior probability over many trials. It is very difficult experimentally to
distinguish between Bayesian Sampling and other sources of response variability. An
observer who is learning the underlying category distributions would have their decision
cutoff point shift, potentially resulting in behaviour that appears as though it follows
Bayesian Sampling (Kubovy et al., 1971; Healy & Kubovy, 1981). Likewise, the pres-
ence of any amount of Measurement Noise, which would create variability in responses
by making every measurement a stochastic process, would also result in behaviour that
appears to follow Bayesian Sampling.

It is also possible that while we expected Enclosure to be the haptic exploratory
procedure participants would use to extract the Number of Sides feature, they instead
employed a Contour Following strategy. Contour Following is a much slower exploratory
procedure taking significantly more time than Enclosure, requiring the participant to slide
their hand or finger along the entire edge of the object (Lederman & Klatzky, 1993). If
participants were using Contour Following, then the 5-second trial time window might
not have been sufficient to accurately extract the Number of Sides feature measurement.
This could result in significant variability in the measurement of this feature compared
to the Dot Spacing feature.

A major potential source of this response variability could be internal sensory Mea-
surement Noise. Our modelling has ignored Measurement Noise up to this point. It
was assumed that with a long exploration time, participants would be able to extract
sufficient information about the features to acquire an accurate measure of the distal
stimulus. However, this may not be the case, and the presence of significant Measure-
ment Noise could potentially have a large impact on participant performance. If this
variability is large enough, it could result in categorization errors by an observer using
a MAP estimator. We extend our model to incorporate measurement noise in Chapter 4.

3.6 Conclusion
The two experiments presented here investigated the ability of human participants to
categorize objects via haptic exploration and assessed human performance in light of
a Bayesian Categorization Model. Participants were able to learn novel categories
of physical objects when presented with two overlapping category distributions. The
Bayesian Categorization Model developed in Chapter 2 proved to be moderately accurate
in predicting human response behaviour throughout both Experiments. However, human
performance reached at most 80% accuracy in comparison to the model. Further work
will attempt to explore if the presence of Measurement Noise is a significant source of
this response variability.
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3.7 Figures and Captions

Figure 3.1: Performance across the three Groups over the course of
Experiment 1. Group 1 (orange) and Group 2 (yellow) completed a
mixture of training Blocks and testing Blocks, and Group 3 (purple)
only completed testing Blocks for the entirety of the experiment. The
comparison points where all three groups completed a testing Block were
Blocks 3, 6, and 9. Trials where we expected participants to guess (where
𝑃(𝐴|𝑛, 𝑑) = 0.5) were removed from the analysis. A) Percent correct
across the three Groups. By Block 9, participants in both Groups 1 and
2 reached a final percent correct of 65%, while participants in Group 3
reached 73%. B) Percent match to predicted responses according to the
Posterior Probability of our Bayesian Categorization Model across the
three Groups over the course of the experiment. By Block 9, participants
in Group 1 reached a final matched percent of 74%, Group 2 reached 72%,
and Group 3 reached 83%.
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Figure 3.2: Frequency of Category A responses compared against the
Posterior Probability of each object belonging to Category A according to
three variations of our Bayesian Categorization Model: an expert model
which used both Sides and Dots (orange), a Sides-only model (yellow),
and a Dots-only model (purple). A slope closer to 1 indicates a better fit
for the model. A) displays results in Group 1, with the best fitting model
being the Dots-only model. B) displays results for Group 2, with the best
fitting model being the Dots-only model. C) displays Group 3, with the
best fitting model being either the expert model or the Dots-only model.
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Figure 3.3: Confidence that each object belonged to Category A com-
pared against the Posterior Probability of each object belonging to the
Category A category across our three Groups. A slope closer to 1 indi-
cates a better fit for the model predicting confidence. The slope of all
three Groups was found to be about 0.33.
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Figure 3.4: Histogram of the number of trials each object was presented
across all participants and testing Blocks combined during Experiment 1.
Each numbered point corresponds to one of the 25 objects. Objects were
arranged according to their Posterior Probability of Category A 𝑃(𝐴|𝑛, 𝑑)
as calculated using Equation 2.8.
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Figure 3.5: Response frequencies of responding "A" for each of the 25
objects across participants. A) displays the Posterior Probability P(A|n,d)
calculated using Equation 2.8 for visual reference. B) displays the fre-
quency of "A" responses for participants in Group 1. C) displays the
frequency of "A" responses for participants in Group 2. D) displays the
frequency of "A" responses for participants in Group 3.
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Figure 3.6: Average linear regression slopes calculated across Groups and
Blocks using a more advanced parameter estimation analysis. The x-axis
is split for both Blocks and Training Groups. This approach considered
each trial as a coin flip where the probability of the participant responding
Category A followed directly from the Posterior Probability 𝑃(𝐴|𝑛, 𝑑).
Slopes were calculated for each individual participant and averaged within
each Group and Block. Error bars shown are standard error.
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Table 3.1: Results for Experiment 2 across the five days of testing. The
average percent correct, percent match to the model, and confidence were
calculated across participants on the last block of each day.

Day Percent Correct SD Percent Match SD Confidence SD

1 71.8% 7.4 81.7% 7.8 76.6% 8.0
2 74.7% 8.2 85.3% 7.5 79.5% 5.7
3 72.5% 7.6 79.4% 11.2 78.2% 10.1
4 74.0% 9.6 81.2% 11.3 79.2% 9.7
5 70.2% 9.2 77.0% 9.4 78.7% 10.1
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Figure 3.7: Performance for participants over the course of five days in
Experiment 2. Trials where we expected participants to need to guess
(where 𝑃(𝐴|𝑛, 𝑑) = 0.5) were removed from the analysis. Participant
performance was calculated in terms of their proportion match to the
Bayesian observer model

61

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/


DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

Figure 3.8: Frequency of Category A responses compared to the Posterior
Probability of each object belonging to Category A using the "expert"
Bayesian Categorization model which considered both Sides and Dots.
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Figure 3.9: Histogram of the number of participants fitted to either a
Guessing, Both Sides and Dots, Dots-only, or Sides-only model following
our model comparison analysis. a) Experiment 1 participants. b) Experi-
ment 2 participants.
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Chapter 4

Measurement Noise and
Computational Modelling

4.1 Introduction
In the previous chapter, we described two experiments that explored the application
of the Bayesian categorization model introduced in Chapter 2 in a human categoriza-
tion experiment. In Experiment 1, we found that participants were able to learn novel
categories over time and that our model predicted a good proportion of response be-
haviour. However, there were still discrepancies between our model’s performance and
the average participant’s performance. At best, our Bayesian Categorization Model only
accounted for roughly 80% of the categorization trials in participants trained through
corrective feedback. Experiment 2 investigated whether this discrepancy was due to a
lack of training on the categories. The discrepancy remained even after five days of
continuous testing, during which participants had reached asymptotic performance.

Another explanation for this discrepancy is that the categorization model we used is
too simplistic. As mentioned in Chapter 3, the model did not account for the sensory
noise that might be present in human participants. The presence of such noise would
reduce the reliability of measured features and lead to trial-by-trial inaccuracies. This
would presumably lower the maximum performance achievable by an observer. In this
chapter, we explore a robust computational model that accounts for this sensory noise.

Throughout the previous chapter, we assumed that the impact of sensory noise in an
observer categorizing our stimuli was negligible. This assumption was justified by the
exploration period of 5 seconds given to our participants, a relatively long duration in
comparison to many previous visual categorization, cue combination, and tactile studies.
For example, Bankieris et al. (2017) presented audio and visual stimuli over 500ms to
participants making categorical judgements. Ashby & Gott (1988) presented visual
stimuli comprised of two lines of varying lengths at a 90◦ angle to participants for up to
5 seconds, allowing participants to terminate the trial and respond anytime within that

64



DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

time frame. Brooks & Hannah (2006) visually displayed pairs of visual stimuli at a time
to participants for up to 10 seconds each. Ariely (2001) displayed sets of circles for
500ms intervals to participants when exploring how human participants extract statistical
information from stimuli displays. Among tactile-focused experiments, the duration of
stimuli presentation is typically on the order of 1 second (Peters et al., 2015; Li et al.,
2017; Lederman & Klatzky, 1993; Hillis et al., 2002). It was believed that with the
advantage of a relatively large exploration time window, our participants would be able
to extract highly accurate feature measurements. This assumption, however, was likely
naive.

The consideration of Measurement Noise in perceptual tasks has long been a central
component of cue-combination paradigms (Alais & Burr, 2004; Ernst & Banks, 2002;
Ernst & Bülthoff, 2004; Rosas et al., 2005; Knill & Saunders, 2003; Jacobs, 2002).
Sensory Measurement Noise drives cue or feature reliability and can lead to shifts in
perception as the measurements involved are combined into a percept. However, few
studies to our knowledge have explored the impact of Measurement Noise in categorical
tasks. Bejjanki et al. (2011) explored this question by looking at audio-visual speech
perception of phonemes and found that feature uncertainty driven by sensory noise was
taken into account by human participants. Bankieris et al. (2017) trained and tested
participants on novel audiovisual categories comprised of visual dot arrays and audio
labels and found that participant response behaviour matched that of a model which
accounted for Measurement Noise. Both of these studies expanded on the general cue-
combination formula with the inclusion of category variability or environmental noise
alongside sensory noise.

How might an observer’s performance and response behaviour in our categorization
experiment change if their sensory data were degraded by the presence of sensory
Measurement Noise? The presence of sensory noise would result in a degree of variance
in the feature measurements. Specifically, the observer’s feature measurements (e.g., dot
spacing and number of sides) would no longer match the object’s feature values exactly
but would rather vary stochastically around the true feature values from trial to trial.
If this variance were large enough, it could potentially lead to a higher likelihood of
perceiving objects of one category as the other. Overall, we would expect performance
in our categorization task to worsen in proportion to the amount of Measurement Noise
present in the observer. This would also impact the learning rates of the category
distributions. Since the observer is forming their understanding of the categories based
on the measurement information, training on noisier data would reduce the accuracy of
the observer’s internal category distributions, and increase the time required to learn the
categories sufficiently.

As described in detail in Chapter 2, our Bayesian Categorization Model has two
main components: the Encoder model and the Decoder model. The Encoder model
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is the hypothesized process by which measurement data are generated. It describes
the way by which the observer obtains proximal sensory measurements from the distal
stimulus object. The Decoder model by comparison is the hypothesized process by
which the category a particular object belongs to is inferred based on the proximal
sensory measurements.

The Bayesian Categorization Model used up to this point has been noiseless. This
means that there was no inclusion of Measurement Noise in either the Encoder or
Decoder components of the model. Here we will begin to explore the effects of a noisy
Bayesian Categorization Model model. This will include the presence of Measurement
Noise in the Encoder model which generates the measurements used by the observer to
make the categorical judgement. In a truly optimal observer model, the Encoder and
Decoder models agree with each other. In other words, the observer is aware of the
generative process by which the measurements were generated and uses that knowledge
in its inference. However, this is not always the case, and sub-optimal observers may
be using incomplete Decoder models which can lead to erroneous inferences. Two sub-
optimal Decoder models were described in Chapter 2 as Decoder models 1 and 2, which
were unaware of the presence of sensory Measurement Noise or the Within-Category
Feature Variability respectively.

To explore the full theoretical impact of the presence of Measurement Noise in our
categorization experiment, we tested the performance of simulated observers (which
will be referred to henceforth as simulants) through a replication of our categorization
experiment described in Chapters 2 and 3. The term "observer" will be reserved as a
generalization that can apply to either simulants or participants. Simulants can be quickly
generated using any configuration of Decoder models and amounts of Measurement
Noise and run through the simulated experiment. This allows us to explore whether the
use of sub-optimal Decoder models could significantly impact the performance of an
observer in a categorization task. By further manipulating the Measurement Noise for
each simulant we can determine the theoretical impact of having "poor" measurement
acuity for either the Sides or Dots measurement on categorization performance, providing
a possible explanation for the discrepancies between participant performance and our
noiseless Bayesian Categorization Model. This will justify a further Experiment 3 aimed
at empirically measuring the Measurement Noise present in human participants in our
experiments using our object stimuli.

The use of simulants will also let us explore how accurately we can infer which
Decoder model participants might be using in our categorization experiment. The
generated simulants provide expected trial-by-trial response behaviour dependent on
their set Measurement Noise and Decoder model. By comparing different simulants
using different Decoder models, we can determine if the resulting response behaviours
are different enough to be accurately differentiated into either of the Decoder models
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post-hoc. This will justify re-analyzing Experiments 1 and 2 as we attempt to infer
which Decoder model our participants may have been using.

In the following sections, we will describe in detail the design of our simulation,
how simulants were generated and how their results were analyzed. We will explore the
outcomes of our simulations and what they inform us about the hypothetical presence of
Measurement Noise in our categorization task used in Experiments 1 and 2. From there,
we will describe a Two-Interval Forced-Choice (2IFC) experiment run to determine
the Measurement Noise of the Sides and Dots features of our object stimuli present in
participants. Finally, we will re-explore the results of Experiments 1 and 2 using a more
complete Bayesian Categorization Model which takes into account Measurement Noise.

4.2 Categorization Experiment Simulation
The categorization task simulated was similar to what human participants ran in Exper-
iments 1 and 2. The categories and stimulus set used were the same ones previously
described; 25 objects ranging from 6 to 10 sides and 4mm to 8mm in dot spacing.
Category A objects were drawn from a 2D Gaussian distribution with a mean of 7 sides,
5mm dot spacing, and 1.5 standard deviation. Category B objects were drawn from a
2D Gaussian distribution with a mean of 9 sides, 7mm dot spacing, and 1.5 standard
deviation.

The stimulus set being constrained to 25 objects was a limitation present in the
previous experiments due to the physical nature of the experimental design. This
limitation was not technically a problem for our simulations and we could have presented
our simulants with a denser feature space. However, in order to maintain parity between
our simulation results and the results of our human experiments, we decided to impose
the same restrictions.

Simulants were aware of the category means and sigmas and used the actual values
described above when calculating Within-Category Feature Variability. They were also
aware of their true Measurement Noise and used those values when calculating their
likelihoods. Whether or not a simulant considered these values when calculating the
posterior probability for either Category given a stimulus was dependent on which
Decoder model they used. As described in Chapter 2, Decoder model 1 simulants would
only consider the Within-Category Feature Variability when calculating the posterior
and ignore (or were unaware of) the presence of Measurement Noise. These simulants
used Equation 2.20 to calculate the likelihood 𝑃( 𝑓𝑚 |𝐶). Decoder model 2 simulants
would only consider Measurement Noise and ignore (or were unaware of) the presence of
Within-Category Feature Variability, using Equation 2.21 in their likelihood calculations.
Only Decoder model 3 simulants considered both sources of noise in their calculations,
using Equation 2.22.
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Although the simulants varied in which Decoder model they used when calculating
the posterior probability for either category, all simulants used the same Encoder model
(Equation 2.18) when presented with each object and encoding the measurements. This
model combines both Within-Category Feature Variability and Measurement Noise and
is congruent only with Decoder model 3. This means that measurement noise and
category noise were always present factors, and the difference was whether or not the
simulant considered these sources of noise.

Simulant Design

In each simulation trial, data was first generated by the Encoder model and then decoded
using one of the Decoder models to respond to which category the simulant thought
they were presented with. The first step, the Encoder model (described in Equation
2.18), described both how the object was drawn from the categories with their Within-
Category Feature Variability, and then perceived by the simulant with their Measurement
Noise. The categorization task simulation first randomly chose between Category A or
B with equal probability (corresponding to the Prior 𝑃(𝐴) = 𝑃(𝐵) = 0.5 throughout
our experiments). Then, it drew an object from the category, restricted to the set of 25
objects. The features of that chosen object were "presented" to the simulant (denoted by
vector f, a set of features 𝑓 ). A noisy measurement ( 𝑓𝑚) was then drawn from a Gaussian
distribution centred on f with a sigma equal to the simulant’s Measurement Noise for
that feature.

Once the Encoder model process was complete, the simulant used either Decoder
models 1, 2, or 3 to calculate its posterior probability that the object belonged to
Category A using the encoded features. Finally, the simulant made a decision based
on this probability of whether to respond ′′𝐴′′ or ′′𝐵′′ using a maximum a posteriori
(MAP) estimator. If 𝑃(𝐴|f) > 0.5, the simulant responded with A. If 𝑃(𝐴|f) < 0.5,
the simulant responded with B. In the case where 𝑃(𝐴|f) = 𝑃(𝐵 |f) = 0.5, the simulant
would randomly respond ′′𝐴′′ or ′′𝐵′′ with equal probability.

We can further explore the expected response behaviours for each of the 25 objects
(each object denoted by vector f𝑔, with 𝑔 referring to one of the 25 objects) by looking
at the proportion of times for each object the MAP estimate favours Category A over
Category B. The features present in each object f𝑔 give rise to a wide range of noisy
feature measurements f𝑚. For instance, a simulant with some Measurement Noise, when
presented with 𝑑 = 6, might encode 𝑑𝑚 = 6.2 or 𝑑𝑚 = 5.8. We labelled the discretized
space measurements as f𝑚𝑘 , where 𝑘 denotes each measurement bin. We chose a bin size
of 𝑘 = 0.25 and a range of ±5 around the upper and lower limits of each feature range
(note that this would technically give rise to physically impossible objects, however, we
are treating these feature dimensions as unit-less for the purpose of our simulations).
We then calculate 𝑃(f𝑚𝑘 |f𝑔), the probability of a particular set of measurements given
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the presented object 𝑔. We can then calculate the simulant’s categorization frequency
for each of the 25 objects.

𝑃(′′𝐴′′|f𝑔) =
∑︁
𝑘


𝑃(f𝑚𝑘 |f𝑔) 𝑃(𝐴|f𝑚𝑘 ) > 0.5
0 𝑃(𝐴|f𝑚𝑘 ) < 0.5
1
2𝑃(f𝑚𝑘 |f𝑔) 𝑃(𝐴|f𝑚𝑘 ) = 0.5

(4.1)

Equation 4.1 gives us the proportion of times the MAP estimate categorizes an object as
Category A, 𝑃(′′𝐴′′|f𝑔), where ′′𝐴′′ refers to the actual response given by the simulant,
and vector f𝑔 refers to the given object. The calculation for the posterior probability
of Category A for a particular set of feature measurements 𝑃(𝐴|f𝑚𝑘 ) was laid out
in Chapter 2 (Equation 2.9). By taking the sum across each discretized perceived
measurement 𝑘 only when the simulant’s posterior was 𝑃(𝐴|f𝑚𝑘 ) > 0.5, we can find the
total probability that an object f𝑔 gives rise to measurements that yield a response ′′𝐴′′.
When the simulant’s 𝑃(𝐴|f𝑚𝑘 ) = 0.5, they should be purely guessing as there is an equal
probability of the object belonging to Category A or B. Thus, half the times that they
are presented with these objects they should respond ′′𝐴′′.

By following the calculation in Equation 4.1 for each of the 25 objects 𝑔, we can
generate a table listing the probabilities that when presented with each object, a simulant
will respond with ′′𝐴′′. This table is dependent on the Decoder model used throughout
these calculations. It is also dependent on the Measurement Noise present in the simulant,
regardless of which Decoder model they used. Each simulant, with a particular Decoder
model and set of Measurement Noise, will have a response table unique to them.

4.2.1 Simulant Response Table Results
Figure 4.1 displays these calculated 𝑃(′′𝐴′′|f𝑔) response tables at various combinations
of feature measurement noise levels. This was done for Decoder models 1, 2, and 3.
The same Within-Category Feature Variability and Measurement Noise were used for
both the Encoder model and Decoder models. For example, in the response tables where
the Sides measurement noise of 𝜎𝑛𝑚 = 2 was used, this value was used for both the
generative Encoding of the data and the Decoder model’s understanding of their own
Measurement Noise. We did not run a scenario where the Encoder and Decoder model’s
Measurement Noise values differed.

When there is no Measurement Noise present ( 𝜎𝑛𝑚 = 0 and 𝜎𝑑𝑚 = 0), Decoder
models 1 and 3 generate the same response patterns. This is expected as with no
measurement noise present, Decoder model 3 reduces to Decoder model 1. Decoder
model 2 exhibits a very different response pattern with every object other than the two
located at the respective category means, leading to a guessing response. This highlights
a major flaw in the assumptions of Decoder model 2. If an observer is ignorant of the
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presence of category noise, then their understanding of the categories is that there is only
one object representing the category positioned at the mean. If there is no Measurement
Noise present in their observations, and they are aware of this lack of measurement noise,
then it is impossible for the simulant to consider objects outside of the two respective
category means. Therefore, when presented with errant objects, they have no information
to utilize and must guess evenly between the two categories.

When Measurement Noise was equal between the two features (𝜎𝑛𝑚 = 1 and𝜎𝑑𝑚 = 1),
Decoder models 1, 2, and 3 all produced the same response table. This result at first
seemed puzzling as it suggests that an observer would not respond differently to our
categorization task regardless of which Decoder model they used. Such a result is
counter-intuitive to the concept of an "optimal" observer model. Decoder model 3 is the
model that matches the Encoder model used when generating the data. Decoder models 1
and 2 both lack some information, whether it be the Within-Category Feature Variability
or Measurement Noise respectively, and thus we might expect them to perform worse
than Decoder model 3. This does not appear to be the case at first glance. However,
there is a key simplification being made in the calculation of 𝑃(′′𝐴′′|f𝑔) in Equation 4.1
which explains why the three Decoder models reduce to the same response tables. We
employed a deterministic decision strategy for our simulants where they only needed
to consider the equality 𝑃(𝐴|f𝑚𝑘 ) > 0.5 to determine whether they would respond "A"
or "B". This rule means it no longer matters what the precise value of the posterior
𝑃(𝐴|f𝑚𝑘 ) is, only whether it is above 0.5. We can consider the line along the 2D feature
space where 𝑃(𝐴|f𝑚𝑘 ) = 0.5 to be the Decision criterion, where any measurement f𝑚𝑘
past this criterion should result in response 𝑃(′′𝐴′′|f𝑔).

When the two distributions are equally symmetrical, the variances themselves don’t
impact where this Decision criterion is located. Two category distributions with very
large sigmas will have the same criterion line as two category distributions with very
small sigmas. When we increase the Measurement Noise of the Encoder model, this
increases the variation in the encoded measurements each object can produce and thus
results in some objects being miscategorized, leading to the response table’s values
converging to 0.5 as Measurement Noise increases. We can see this convergence to 0.5
in Figure 4.1 as we increase the Measurement Noise values to (𝜎𝑛𝑚 = 2 and 𝜎𝑑𝑚 = 2).
However, as far as the Decoder models are concerned, the criterion line across the feature
measurement space has not changed, and thus all three Decoder models with a particular
set of Measurement Noise produce the same response table.

Where this becomes interesting however is when the Measurement Noise sigmas are
unequal between the two features. When there is a mismatch, the resulting distributions
become unsymmetrical. We can see why this occurs by realizing that the Within-
Category Feature Distributions and Measurement Noise distributions give rise to a
new Gaussian Distribution whose variance is the sum of the two variances. As we
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derived in Chapter 2 (Equation 2.28) we can consider the Encoder model as a two-step
process that first draws an object from the Within-Category Feature Distribution, and
then draws a measurement from that object using the Measurement Noise distribution.
The resulting Category A and Category B Gaussian Distributions therefore have a new
standard deviation 𝜎∗

𝐶 𝑓 , which can be calculated with Equation 2.27:

𝜎∗
𝐶 𝑓 =

√︃
𝜎2
𝐶 𝑓

+ 𝜎2
𝑓𝑚

(4.2)

We can see that if we were to increase the Measurement Noise sigma 𝜎 𝑓𝑚 by the same
amount for each feature, the resulting 𝜎∗

𝐶𝑛 and 𝜎∗
𝐶𝑑 would remain symmetrical and

the Decision criterion line would not be changed. However, when 𝜎𝑛𝑚 ≠ 𝜎𝑑𝑚 the
distributions become unsymmetrical, and the criterion will skew towards the feature
dimension with the smaller Measurement Noise. This makes sense as an observer with
much greater Measurement Noise in one feature than the other will naturally rely less
on that noisier feature in their decision-making since it is unreliable. In other words, an
observer with an extremely high Sides sigma will mostly ignore the Sides feature and
rely on the Dots feature.

It is in this unsymmetrical scenario in which the Decoder model’s response tables
differentiate. Since the three Decoder models consider the Within-Category Feature
Variability and Measurement Noise in different ways, the variances of the resulting
unsymmetrical distributions will differ leading to variation in their criterion placements.
We can see this in the last column of Figure 4.1 where (𝜎𝑛𝑚 = 2 and 𝜎𝑑𝑚 = 1). Decoder
model 1, which only considers Within-Category Feature Variability, is not impacted
by the unsymmetrical Measurement Noise sigma at all as it doesn’t consider that in its
calculation. The resulting criterion is based on 𝜎∗

𝐶𝑛 = 1.5 and 𝜎∗
𝐶𝑑 = 1.5 (which

comes directly from the Within-Category Feature Variability). As the distributions
from Decoder model 1 are still symmetrical, the criterion does not change from before.
Decoder model 2, which only considers Measurement Noise, is directly impacted by the
unsymmetrical sigma as that is the only noise it is considering. Its resulting criterion
is based on 𝜎∗

𝐶𝑛 = 2 and 𝜎∗
𝐶𝑑 = 1, and it becomes very skewed towards favouring

the Dot’s feature. Decoder model 3, which considers both Within-Category Feature
Variability and Measurement Noise, is marginally impacted by the unsymmetrical sigma
values. We can calculate the new 𝜎∗

𝐶 𝑓 values that the resulting criterion is based on
using Equation 4.2, which come to 𝜎∗

𝐶𝑛 = 2.5 and 𝜎∗
𝐶𝑑 = 1.8. The resulting criterion

is skewed, but not as much as Decoder model 2.

It is important to note that Decoder model 3 matches the Encoder model used to
generate the data originally. That means that the Decoder model 3’s response table is the
optimal way to respond to reach the highest performance. We can expect that when the
Sides and Dots feature sigma is symmetrical, all three Decoder models should respond
identically and achieve the same percent correct. However, when the feature sigma is
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unsymmetrical, Decoder model 3 represents the optimal response behaviour and should
perform the best out of the three models. Note that the presence of Measurement Noise
in the Encoder model results in worse performance overall for all three models, as it
increases the chance that the simulant might be presented with a Category A object yet
respond ′′𝐵′′.

4.2.2 Varying Measurement Noise Between Decoder models
With the 𝑃(′′𝐴′′|f𝑔) response tables, we can greatly reduce the computational cost of
the categorization task simulation. Rather than repeatedly calculating the posterior
probability 𝑃(𝐴|f𝑚𝑘 ) for every object presented, we can calculate this once and then use
the generated table of 𝑃(′′𝐴′′|f𝑔) and take advantage of the binomial nature of the task.
Each trial can be treated as a binomial coin flip with two possible outcomes, either an
′′𝐴′′ response or a ′′𝐵′′ response from an observer. The probability of either response is
given in the table. Each Decoder model gives rise to a unique table, providing a different
set of probabilities depending on which model the simulant is using.

Another way to conceptualize this scenario is to imagine there is a single coin that
has some probability of landing heads 𝑃𝑔. The probability of the coin landing heads
is dependent on 𝑔, which changes each time the coin is flipped. This value 𝑔 is drawn
from the category distributions for A and B we outlined above. The coin landing heads
correspond with an observer responding ′′𝐴′′, and tails for ′′𝐵′′.

We first explored the impact of Measurement Noise on the categorization performance
of the three main Decoder models outlined in Chapter 2. We generated a set of simulants
varying their internal Measurement Noise sigmas from 0 to 4 with a step size of 0.25
for both the Sides and Dots features resulting in 289 unique simulants. Each simulant
was run through 10,000 trials of a categorization task. This was done for each of the
three Decoder models, resulting in a total of 867 simulant participants each running
10,000 trials. Each simulant had a corresponding response table generated based on
their Decoder model. This response table was used to randomly choose an ′′𝐴′′ or ′′𝐵′′

response in every trial given the object the simulant was presented. We could then
calculate the overall accuracy of the model by calculating the frequency with which the
simulant categorized the given object correctly.

There were no free parameters in our simulation. The Within-Feature Category
Variability of the two categories was known and available to the simulants, and the
Measurement Noise for the two features was generated and varied across simulants.
Learning these parameters was not a part of this simulation; simulants were experts at
the task and performed at the same skill level from the first trial onward.

Decoder model 1 simulants are only aware of the Within-Category Feature Variability
and ignorant of their internal sensory Measurement Noise. Figure 4.2 shows the results
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from our simulation of Model 1. The lowest percent correct was recorded with the worst
noise sigmas at ≈ 56%, while the highest percent correct was recorded with the best
set of sigmas (perfect measurements with virtually no noise) at ≈ 77%. There was a
roughly linear increase going from the worst sigmas to the best sigmas while decreasing
both sigma values by equal amounts. When we increased one feature’s sigma, but not
the other, performance also suffered, with a percent correct of ≈ 60% when 𝜎𝑛 ≈ 0 and
𝜎𝑑 = 4. The same occurred when these values were flipped. From these results, we can
draw a fairly standard conclusion: performance in a categorization task is dependent on
the internal Measurement Noise of the observer, even if they are unaware of this noise.

Decoder model 2 simulants are only aware of the Measurement Noise and ignorant
of the Within-Category Feature Variability underlying the categories. Effectively, these
simulants treat the situation as though there are only two objects, a single Elyk and a
single Noek, each situated at their respective means. Figure 4.3 shows the results from
our simulation of Model 2. The worst noise sigmas again yielded poor performance
at ≈ 56%, but the worst performance was recorded when both 𝜎𝑛𝑚 = 0 and 𝜎𝑑𝑚 = 0
at ≈ 54%. The best performance was recorded with the "next best" sigmas where
𝜎𝑛𝑚 = 0.25 and 𝜎𝑑𝑚 = 0.25 at ≈ 77%. If only one of 𝜎𝑛𝑚 or 𝜎𝑑𝑚 was set to zero,
performance was ≈ 60%.

We can see why this occurred by examining the Decoder model 2 response table
in Figure 4.1 when both Measurement Noise sigmas were set to zero. Under these
circumstances, the simulant guesses for all objects other than the two representing the
Within-Category Feature Means as it cannot consider any other objects belonging to
either category. The theoretical performance here can be calculated by combining the
probability of drawing an Elyk object and responding "Elyk " correctly or the probability
of drawing a Noek object and responding "Noek " correctly, which in this case comes to
54%. Note that the calculation for the probability of drawing each object in either the
Elyk or Noek boxes requires us to either estimate through brute force simulating random
draws in our categorization experiment or account for the discrete feature range by using
the Truncated Gaussian probability density formula covered in Chapter 2.

Decoder model 3 simulants represent ideal observers who are aware of both the
Within-Category Feature Variability and their internal sensory Measurement Noise.
Figure 4.4 shows the results from our simulation of Model 3. Similar to Model 1, the
lowest percent correct was recorded with the worst noise sigmas at around ≈ 56%, while
the highest percent correct was recorded with the best sigmas (virtually perfect noise) at
≈ 76%. The slope between the worst sigmas and best sigmas performance was roughly
linear.

Where Model 1 simulants differ greatly from Model 2 and Model 3 simulants is when
𝜎𝑛 ≠ 𝜎𝑑 . In the extreme cases with the best Measurement Noise in one feature and
the worst in the other, we found an improved performance from Model 3 with percent
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correct at either 𝜎𝑛𝑚 = 4 or 𝜎𝑑𝑚 = 4 to be around ≈ 70%. Model 2 simulants also
demonstrated this improvement at the "next best" sigmas 𝜎 𝑓 𝑚 = 0.25. This follows
from what we would expect when examining the response tables (Figure 4.1). In these
mismatch Measurement Noise conditions, simulants using Decoder model 1 are unable
to account for the unsymmetrical distributions resulting from combining the Within-
Category Feature Variability and uneven Measurement Noise. This results in Model 1
being heavily impacted by the worst measurement present in its inference. However,
Models 2 and 3 can account for this uneven Measurement Noise. As it turns out, a percent
correct of ≈ 70% is the expected theoretical maximum percent correct if an observer is
only using one feature rather than two. This indicates that as the Measurement Noise of
one feature increases more than the other feature, Models 2 and 3 will put less weight
on that feature until eventually ignoring it completely.

We can empirically determine if overall one Model performed better than another
Model in our simulations by calculating a "distance" value between the resulting planes.
To determine this distance we calculated the sum of the point-by-point difference be-
tween two planes. We excluded the simulation results where either 𝜎𝑛𝑚 = 0 or 𝜎𝑑𝑚 = 0
as simulants using Decoder model 2 had the different response behaviour previously
discussed. The distance between Models 1 and 2 was 494% favouring Model 2, which
corresponds with the higher percent correct expected in the mismatch Measurement
Noise conditions. The distance between Models 1 and 3 was 562% favouring Model 3,
again corresponding with the mismatch Measurement Noise conditions but also indicat-
ing that Model 3 performed even better than Model 2. We confirmed this by calculating
the distance between Models 2 and 3 to be 68% favouring Model 3.

Sub Models and Hypotheses

We have so far described and focused on only three Decoder models— one which only
considers Within-Feature Category Variability, one which only considers Measurement
Noise and one which considers both. This third model which we have been referring to
as Decoder model 3 is considered to be our Optimal Decoder model. This model uses
all of the information available to it and should theoretically perform the best in our
categorization task. The other two models, Decoder models 1 and 2, can be considered
to be sub-optimal variants of Model 3, with each lacking some piece of information in
its consideration of the given objects.

We can outline further sub-optimal Models by considering simulants who completely
ignore either of the features present in the objects. This addresses the possibility of
participants ignoring the Sides feature that arose out of Experiments 1 and 2. It is difficult
to account for this in our analyses from participant self-reports alone as a participant’s
self-evaluation of their strategy might not align with their actual in-experiment behaviour.
However, by defining sub-models that account for ignoring the different features, we can
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determine post-hoc if participant behaviour matches a Decoder model that ignores either
the Sides or Dots feature.

We can create further sub-models of each Decoder model for either "Sides-Only"
observers, "Dots-Only" observers, or "Sides and Dots" observers who account for both.
This gives us a total of 9 sub-models, with one of them being our Optimal "Expert"
model. We calculated these sub-models by removing the feature-relevant likelihood
term from our calculation of the posterior probability 𝑃(𝐴|f𝑚𝑘 ) so that they would only
be considering one of the features and not the other.

Figure 4.6 shows the simulation results for the 9 sub-models over the same range
of Measurement Noise sigmas as before. Column A shows the results of the "Sides
and Dots" Decoder models, which is the same data we have seen and discussed before.
Columns B and C show the Sides-Only and Dots-Only Decoder models respectively.
We can observe immediately that there are little to no differences between any of the
Decoder models, besides Decoder model 2 having difficulty when the Measurement
Noise sigma was set to 0. Calculating distance values between the Sides-Only Decoder
models confirms this with there being a distance of 7.4% between Models 1 and 2, and
a distance of 7.2% between Models 1 and 3.

These results make sense when considering the insights made from analyzing the
response tables in Figure 4.1. The three Decoder models were most distinguishable in
the presence of uneven dots and sides Measurement Noise. This led to different criterion
placements driven by our MAP estimator. When only one feature is being considered,
the change in Measurement Noise of the attended feature no longer matters as it changes
equally between the two categories.

4.2.3 Post-Hoc Inference of Observer Decoder models
We have up to this point explored in detail the response behaviour of the three Decoder
models under varying circumstances of Measurement Noise, as well as their expected
performance in the categorization task. One goal of having well-defined opposing
Decoder models is to be able to infer post-hoc which Decoder model an observer may
have used to generate the responses they gave. This will be the focus of a later section
in this chapter where we will re-analyze Experiments 1 and 2 with our updated Decoder
models using empirically driven feature Measurement Noise values. However, before we
can perform this post-hoc inference on participant response data, we must first determine
if it is viable to make this inference with our simulants.

To determine if this analysis is possible, we generated new Model 1, 2 and 3 simulants
using Measurement Noise sigmas 𝜎𝑛𝑚 = 1.645 and 𝜎𝑑𝑚 = 1.183 (the justification for
these values will be provided in the following section detailing Experiment 3). Critically,
these Measurement Noise values are uneven and lead to different response tables for each
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Decoder model. Each simulant was run through 360 trials, the number of trials of a
single experimental day in Experiments 1 and 2. A model comparison analysis between
Decoder models 1, 2, and 3 was performed over the 360 trials, where the Model with
the highest posterior probability was recorded. This was done 50 times per simulant
response table for a total of 18,000 trials.

To compare responses between each model we can take advantage of the Binomial
"coin flip" nature of the two-category categorization task which we previously dis-
cussed. Each trial of the experiment can be considered as a signal Binomial trial with
two outcomes, a response of ′′𝐴′′ (corresponding with "heads") or a response of ′′𝐵′′

(corresponding with "tails"). In general, the probability of a simulant response (whether
′′𝐴′′ or ′′𝐵′′) is given by the following Binomial relationship:

𝑃(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 |f𝑔)𝐷𝑛 =
∏
𝑡

𝑃(′′𝐴′′|f𝑔)𝐷𝑛𝑡
𝑘 (1 − 𝑃(′′𝐴′′|f𝑔)𝐷𝑛𝑡)

(1−𝑘) (4.3)

where 𝑘 = 1 when the simulant responded ′′𝐴′′, and 𝑘 = 0 when the simulant responded
′′𝐵′′. The probability 𝑃(′′𝐴′′|f𝑔)𝐷 comes from our response tables discussed previously
and is dependent on which Decoder model was used. We will denote the three Decoder
models as 𝐷1, 𝐷2, and 𝐷3. A fourth control "guessing" model (where the simulant
simply answers randomly between the two categories) was included and denoted as 𝐷𝑟 .
Finally, the Sides-Only and Dots-Only sub-models were also included (denoted 𝐷𝑠 and
𝐷𝑑). Since we determined from analyzing the simulation results in Figure 4.6 that the
three Decoder models give the same output when only one feature is considered, we
arbitrarily used Decoder model 3’s Sides-Only and Dots-Only sub-models for 𝐷𝑠 and
𝐷𝑑.

We can calculate the probability of observing all the responses by multiplying across
all trials 𝑡. We will use subscript 𝑛 as 𝐷𝑛 to denote the Model used by simulants in
generating responses (also referred to as the generative Model), and superscript ∗ as
𝐷𝑛∗ to denote the Model our analysis matched to those responses (also referred to as
the matched Model). The model comparison analysis followed a Bayesian comparison
between the six models according to the following equation:

𝑃(f𝑔 |𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠)𝐷1 =
𝑃(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 |f𝑔)𝐷1∑
𝐷𝑛 𝑃(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 |f𝑔)𝐷𝑛

(4.4)

To assess the accuracy of our model comparison analysis and its ability to recover the
correct generative Decoder model, we ran multiple simulations with each generative
Model. Each Model was run for 50 sets of 360 trials. This number of trials was chosen
as it represents 9 blocks of our categorization experiment in Experiments 1 and 2. At the
end of each 360 trial set, the Model with the highest posterior probability was chosen
as the matched Model. The frequency with which our analysis matched each generative
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Model to each of the six Models was calculated and organized into confusion matrices
(Figure 4.7). We did this for four configurations of Measurement Noise for the Sides and
Dots features.

In general, our model comparison analysis was able to recover the correct generative
Model used. If we consider 𝐷1, 𝐷2, and 𝐷3 together against the other alternative
generative models (𝐷𝑟 , 𝐷𝑠, and 𝐷𝑑), we can see that our analysis was able to almost
perfectly determine if the simulant data was generated using either the three Decoder
models, the Guessing model, the Sides-Only model, or the Dots-Only model. This
accuracy was irrespective of the configuration of Measurement Noise used to generate
the data. From this, we can maintain a high degree of confidence that if our model
comparison matches behavioural data to either the Guessing, Sides-Only, or Dots-Only
models, this is likely an accurate matching to the true generative model. This was true
both for when 𝜎𝑛𝑚 = 𝜎𝑑𝑚 = 1 and 𝜎𝑛𝑚 = 𝜎𝑑𝑚 = 0.5. Unfortunately, when the feature
measurement sigmas are symmetrical, we are unable to distinguish between 𝐷1, 𝐷2, and
𝐷3. This is because, as discussed previously, the response tables between these three
models are all identical when 𝜎𝑛𝑚 = 𝜎𝑑𝑚 . As such, the expected behaviours are also
identical, and our model comparison analysis comes to an equal posterior probability
that either model could have generated the results.

When 𝜎𝑛𝑚 = 2 and 𝜎𝑑𝑚 = 1 (Figure 4.7 c), our analysis became very accurate in
correctly matching 𝐷1 94% of the time, 𝐷2 86% of the time, and 𝐷3 92% of the time.
This indicates that having an asymmetrical combination of Sides and Dots Measurement
Noise is necessary for our model comparison analysis to be able to match behavioural data
to its generative model accurately. When this asymmetry was reduced to 𝜎𝑛𝑚 = 1.645
and 𝜎𝑑𝑚 = 1.183 (Figure 4.7 d), which will be the sigma values we will use later in
this chapter, this model matching accuracy lowered to 𝐷1 84% of the time, 𝐷2 82%
of the time, and 𝐷3 64% of the time. This reinforces that having a larger separation
in Measurement Noise between our two features leads to higher accuracy of our model
comparison analysis. This also gives us an idea of how trustworthy we should find our
analysis.

When we reduced the number of trials in our analysis set to 50 sets of 120 representing
3 blocks of the experiment (Figure 4.7 e and f), we generally found a decrease in the
accuracy of our analysis. When 𝜎𝑛𝑚 = 1.645 and 𝜎𝑑𝑚 = 1.183, we found model-
matching accuracy of 𝐷1 68% of the time, 𝐷2 74% of the time, and 𝐷3 42% of the
time. The analysis had the most difficulty with 𝐷3, confusing it with 𝐷1∗ 28% of the
time and with 𝐷2∗ 42% of the time. This tells us that model comparison analysis over
120 trials, while informative, should be treated as less trustworthy as our analysis has a
higher likelihood of confusing the three generative Decoder models together.

To test the sensitivity of our analysis against incorrect assumptions about Measure-
ment Noise, we simulated two scenarios where the generative model’s noise sigmas were

77

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/


DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

different from that assumed by our analysis. Figure 4.7 (g) shows the resulting confusion
matrix when the generative model’s noise sigmas were 𝜎𝑛𝑚 = 2 and 𝜎𝑑𝑚 = 1, but the
analysis assumed 𝜎𝑛𝑚 = 1.645 and 𝜎𝑑𝑚 = 1.183. This difference can be quantified by
the ratio between the two sigmas, which was 2 for the generative model, and 1.39 for the
matched models. The analysis in this case had a lot more difficulty. 𝐷1 was matched
correctly 84% of the time but was incorrectly matched to 𝐷3∗ 16% of the time. 𝐷2 was
matched correctly 48% of the time but was incorrectly matched to 𝐷3∗ and 𝐷𝑑∗ ≈ 17%
of the time. 𝐷3 was matched correctly only 20% of the time while being confused with
𝐷2∗ 78% of the time. 𝐷𝑟 , 𝐷𝑠 and 𝐷𝑑 were still generally matched correctly.

Figure 4.7 (h) shows the opposite case when the generative model’s noise sigmas
were 𝜎𝑛𝑚 = 1 and 𝜎𝑑𝑚 = 2, but the analysis assumed 𝜎𝑛𝑚 = 1.645 and 𝜎𝑑𝑚 = 1.183.
This is a ratio of 0.5 for the generative model and 1.39 for the matched models. Our
analysis in this scenario was again very accurate when matching 𝐷𝑟 , 𝐷𝑠 and 𝐷𝑑, and
matched 𝐷1 correctly 88% of the time. However, it confused 𝐷2 as 𝐷∗ 90% of the time.
It also confused 𝐷3 with 𝐷1∗ 92%, and rarely any model to 𝐷2∗ or 𝐷3∗ at all.

This model comparison analysis will be the basis for how we approach part of our
re-analysis of Experiments 1 and 2 where we will attempt to determine which generative
Model human participants might have been using throughout our experiments. As an
overall takeaway of our evaluation of our model comparison analysis, we can place
high confidence when our analysis matches either a Guessing model, a Sides-Only
model, or a Dots-Only regardless of the assumed Measurement Noise of our models, or
whether we analyze across 120 or 360 trials of the experiment. Likewise, we can place
high confidence that when our analysis matches any of the three Decoder models, the
behavioural data was truly generated with either of the three Decoder models. We are
a bit less confident in the ability of our analysis to accurately infer between the three
Decoder models when analyzing across 360 trials (using 𝜎𝑛𝑚 = 1.645 and 𝜎𝑑𝑚 = 1.183),
and place even less confidence when analyzing across 120 trials.

4.2.4 Discussion
The simulations detailed here demonstrate the potential impact of an observer’s Mea-
surement Noise on their ability to accurately categorize object stimuli in a categorization
task. There was a direct correlation between Measurement Noise in either the Sides or
Dots feature dimensions and maximum performance. When simulants were generated
with lots of noise (𝜎 = 4), performance was at its lowest around ≈ 56% correct. When
simulants were generated with no noise (𝜎 = 0), performance was at its best at around
≈ 76%. This was true for both Model 1 and Model 3 simulations. Had we continued to
increase the simulants’ Measurement Noise, their performance would approach ≈ 50%
where the simulant would essentially be guessing every trial. Even with moderate
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Measurement Noise between 𝜎 = 1 and 𝜎 = 1.5, the performance decrease was still
significant by ≈ 4% and ≈ 6%.

Performance for Model 1 simulants was greatly impacted by the presence of just a
single noisy feature measurement. When these simulants had high noise in one feature
measurement and low noise in the other, performance was not much better than when
both features had high noise with expected performance to be between ≈ 60% and
≈ 63%. This means that the performance of an observer using Decoder model 1 will
be largely dependent on their worst-performing feature measurement. However, this
was not the case for Model 3 simulants. When Model 3 simulants had high noise in
one feature measurement and low noise in the other, performance suffered not nearly
as much as with Model 1 simulants, with performance dropping only to ≈ 70%. This
means that an observer using decoder Model 3 is protected to some degree from the
poor performance of their worst feature measurement. This makes intuitive sense as
an observer aware of the unreliability of a feature measurement would be able to put
less weight on those measurements and rely more on the other feature. Observers using
Decoder model 1 on the other hand would be unable to take this into consideration as
they are unaware that there is any internal measurement noise at all.

A concern that arose from the use of the stimuli set created for Experiments 1 and
2 was that the Sides feature and Dots feature were not measured by participants to the
same acuity. This was observed through self-reports given by participants after running
through the experiment, where many participants stated that they only attended to the
Dots feature and had difficulty with the Sides feature. We also found evidence for this
through a model comparison analysis attempting to determine whether participants were
only attending to either the Sides or Dots features, using both features or guessing.
Results indicated that most participants were either using both features or relying on
only the Dots feature. This could occur if the participant’s Measurement Noise for the
Sides and Dots feature was unequal, with the Sides feature being worse than the Dots
feature. The noisier feature measurement could have reduced performance significantly
depending on which Decoder model applies to the participants in our experiments.

This concern is what drove the expanded 9 sub-models for Sides-Only observers,
Dots-Only observers, and "Expert" observers who considered both features. One pos-
sible strategy for an observer who has high Measurement Noise for one feature is to
ignore that feature entirely. This strategy might make sense considering that participants
were attempting to learn the novel categories in our Experiments. The participants
running through the categorization experiment were naive to the objects, the categories,
and the Within-Feature Category Means and Variability before starting the experiment.
Throughout repeated exposure to the categories, they were required to learn these pa-
rameters. The presence of Measurement Noise increases the difficulty of this task; If one
feature’s Measurement Noise is too high, the participant may be unable to gather any
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relevant information about the Within-Feature Category Variability of that feature and
may opt to ignore it, leading to an incorrect understanding of the categories or treating
the experiment as a single-feature categorization task. This would be especially true if
participants were using Decoder model 1 as they would be greatly negatively impacted
by the presence of a poor feature measurement. In those cases, ignoring the feature
completely would lead to better performance.

The model comparison we outlined here is powerful, but limited by the range of
hypothesized sub-models that we included in our analysis. Unfortunately, we are unable
to account for all possible hypothetical sub-optimal models here. When an observer
is "optimal", there is generally just one single optimal model that can be derived and
compared against. However, when an observer is not optimal at a task, the problem
balloons in complexity. There are an endless number of ways that an observer can be
sub-optimal. With a study of this kind, we cannot exhaustively test all possible sub-
optimal models. Even with our best attempt to do so, we would still be limited by the
context of what we thought to consider and account for in the creation of our models,
and there could still be many others that we failed to consider. What we have chosen to
focus on here are interesting cases that are relevant to the overall focus of this thesis. The
9 models we included in our model comparison analysis attempt to explore the impact
of the presence of Measurement Noise in our categorization task and roughly account
for some of the observed possibilities for participant behaviour in Experiments 1 and 2.

The theoretical work we have covered thus far lays the groundwork for how our
Bayesian Categorization Model can be improved upon. The model comparison analysis
is a powerful approach to analyzing participant data that solves the issues faced with
trying to develop more advanced analytical techniques in Chapter 3. However, to
better apply these analysis methods to our data set, the Measurement Noise present in
human participants needs to be constrained. These values can be empirically determined
through further experimentation. In the following section, we will detail Experiment 3
in which we sought to empirically determine the Measurement Noise of the Sides and
Dots features present amongst participants with our stimulus set.

4.3 Experiment 3
The presence of internal Measurement Noise in an observer has the potential to have a
high impact on performance in a categorization task. The simulation experiment we just
described reveals the extent of this theoretical impact. If an observer’s Measurement
Noise is low, their categorization performance should be unimpeded and they should be
able to reach the highest expected percent correct in a categorization task. However,
an observer with high Measurement Noise may perform significantly worse, potentially
approaching near-guessing behaviour.

80

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/


DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

These results could offer insight into Experiments 1 and 2, where we found that
performance against the Bayesian Categorization Model was high but not able to reach
100% accuracy. Taking into account participants’ Measurement Noise might explain this
discrepancy and lead to a more human-accurate model. This motivated the development
of Experiment 3 in which we set out to determine the Measurement Noise present in
participants exploring the stimulus object set used through our previous experiments. To
this end, we employed a 2IFC experimental design procedure to determine this sensory
noise.

In designing this experiment, a couple of considerations were kept in mind to expand
upon the analysis of Experiments 1 and 2. The first consideration was maintaining parity
with the previous experiments. To this end, the same 25 stimuli objects were used for
this experiment as were used in the previous experiments. It is important to note that this
object set is not ideal for use in a 2IFC experimental design. If we were solely interested
in determining the sensory measurement noise of observers when measuring the number
of sides or spacing of dots on objects similar to ours, we would ideally create a newly
expanded stimulus set with a far higher resolution ceiling, allowing for a finer tuning in
step size to get a precise and accurate estimation of each participant’s noise.

There are only 5 levels per feature with the current 25 stimuli object set (that is, there
are only 5 objects within the "sides" or "dots" feature dimensions). Designing a 2IFC
experiment with this stimulus set greatly limits the resolution of our sensory measurement
noise estimate. However, it was important to run this experiment with the pre-existing
stimulus set because we were primarily interested in participant’s measurement noise
within the context of the previous experiments. We were not interested in the generalized
accuracy of measuring dots on an object. Instead, we were interested in the accuracy of
measuring dots specifically in our categorization experiment.

The second consideration was to explore the impact of the task load placed on
participants during the categorization experiment. The design of Experiments 1 and
2 required participants to make a categorical judgement using both the sides and dots
features after only 5 seconds of exploration. This presents a potential limit on participant
performance in their ability to accurately measure the features, which could increase the
measurement noise present. That is, it is possible that requiring participants to make
two separate measurements in a 5-second time window might adversely impact their
measurement noise. To explore this aspect of the previous experiments, we again
only allowed participants 5 seconds per trial to explore the objects in making their
measurements. Additionally, we compared blocks of trials where participants were told
to focus on just one feature against blocks of trials where participants were told to focus
on both.

Experiment 3 does not represent a thorough exploration into the sensory measurement
noise of human participants when physically exploring objects to determine the number
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of sides or spacing of a dot matrix texture. Instead, Experiment 3 acts as a companion
to the previous Experiments 1 and 2 to expand on the findings observed there and offer
further insight into the discrepancy found between participant performance and our
Bayesian model estimated performance in the categorization task.

4.3.1 Methods
Participants

Fifteen participants (17-23 yr old, median age 18 yr) were recruited from the McMaster
University community for this experiment. Participants were screened for the following
conditions known to adversely affect tactile acuity that may have impacted their per-
formance in the experiment: diabetes, nervous system disorders, cognitive impairment,
learning disabilities, dyslexia, attention deficit disorder, carpal tunnel syndrome, and
arthritis of the hands. All participants were naïve to the experiment and the unique
stimuli used throughout. Participants were compensated for their participation by either
course credit through the university or 20$. Participants completed a short demographic
and handedness questionnaire prior to participation, and an exit interview after the
experiment had concluded.

Materials, Stimuli, and Software

The same twenty-five stimuli objects from Experiment 1 and 2 were used in Experiment
3. These objects were created using the Ultimaker 2 Go 3D printer and printed using
PLA plastic. The objects were differentiated by two features, the number of sides and the
spacing of a dot-matrix texture that covered one of the faces. All objects were otherwise
identical with a radius of 25mm and a thickness of 5mm.

The two feature dimensions had 5 levels per dimension. The dot-matrix texture
consisted of evenly spaced 0.5mm radius hemispheres protruding from the surface. We
established 5 different levels for dot spacing and 5 levels for sides, creating 25 unique
objects. The space between each dot on an object ranged from 4mm to 8mm in 1mm
increments. The number of sides of each object ranged from 6 to 10 sides in steps of 1
side.

The experiment was run on a Windows 10 PC system using specialized software
developed in LabVIEW 2017 (National Instruments). Like the previous experiments,
a human experimenter was required to present and retrieve the physical stimuli and
input participant responses into the software. However, the software itself instructed the
experimenter on which objects to present and managed the progress of the experiment.

Experiment instructions were pre-recorded on audio files and played for the partici-
pant, and instructions were verbally reminded by the experimenter each block.
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Procedure

The experiment consisted of 6 blocks of 48 trials each, taking a maximum of 3 hours
to complete. The blocks were separated into three types, where either the participants’
perception of the sides feature, the dots feature or both the sides and dots features in
conjunction were under investigation. The two blocks where the participant was told
to focus on only a single feature were considered Low Task Load blocks, and the block
where the participant was told to focus on both features was considered High Task
Load blocks. These three types of blocks were repeated twice, leading to a total of 6
experimental blocks. The blocks in the first half of the experiment were referred to as
First-Half blocks, and the blocks in the latter half of the experiment were referred to as
Second-Half blocks.

During a testing block, participants sat at a desk behind an opaque screen which
blocked the participants’ vision. Participants were handed two stimulus objects per trial,
one after the other, and were given 5 seconds to explore each one. At the end of each
5-second interval, participants immediately placed the object down. After exploration
of the second object, participants were asked to respond with either "first" or "second"
which stimulus object had more of the feature being investigated. In the sides block,
they were asked to respond to which object had more sides. In the dots block, they were
asked to respond to which object had more dots. In the both sides-and-dots block, they
were asked to respond first which object had more sides, then which object had more
dots.

The presentation of objects followed a method of constant stimuli procedure. A
reference object was chosen with Sides of 𝑛 = 8 and Dot Spacing of 𝑑 = 6 (corresponding
to feature level 3 for both Sides and Dots). To avoid any possible confound of having
the same physical object presented repeatedly in succession during the experiment, this
reference object was duplicated with an identical newly 3D printed object. Comparison
objects were selected from our set of 25 objects, with five feature levels for both the Sides
and Dots features possible. During each block, the comparison objects were pseudo-
randomly chosen in such a way that the feature levels were presented to the participant
10 times. The order of presentation of the reference object and comparison object was
randomized in every trial.

During the Sides Low Task Load block, participants completed 40 trials comparing
the reference object against four comparison objects that varied only by Sides (𝑛 =

6, 7, 9, 10; 𝑑 = 8). During the Dots Low Task Load block, participants completed 40
trials comparing the reference object against four comparison objects that varied only
by Dots (𝑛 = 8; 𝑑 = 4, 5, 7, 8). During the High Task Load block where attention was
required toward both features, participants completed 48 trials comparing the reference
object against the four feature levels of both the Sides and Dots features, resulting in
24 comparison objects in total. Each combination of Sides and Dots feature level was
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presented twice. In this way, 10 comparisons were made between the reference object
and a comparison object for each feature level within either the Sides or Dots feature.
The comparison between the reference object and its identical feature level object was
excluded leading to 48 total trials that allowed us to compare the 10 comparisons per
feature level with the Low Task Load blocks in this High Task Load condition where
participants were attending to both.

4.3.2 Results
To calculate participant measurement sigmas, we fit cumulative Gaussian psychometric
functions with 𝜇 = 0.5 and 𝜎 as a free parameter to the proportion of trials within a
block in which the comparison object was reported to be larger than the reference object.
We did this separately for the Sides and Dots features. We also split measurement sigma
calculations between the first and second halves of the experiment to determine if there
was any training effect in measurement sigma as participants had continued exposure
to the object set. Finally, we split measurement sigma calculations between Low Task
Load, where participants only needed to focus on either the sides or dots feature alone,
and High Task Load, where participants needed to focus on both the sides and dots
features at the same time.

𝑃(𝑥) = 1
𝜎
√

2𝜋

∫ 𝑥

−∞
𝑒−(𝑡−𝜇)

2/2𝜎2
𝑑𝑡 (4.5)

where 𝑥 is the difference in feature value between the standard stimulus and the com-
parison stimulus. Figure 4.8 displays the main results found from this experiment.
Measurement sigmas for the dots feature were lower than those for the sides feature.
This was consistent across the First-Half blocks and Second-Half blocks, as well as the
Low and High Task Load blocks. Increasing the task load also consistently increased
measurement sigma for both the Sides and Dots features. Participants on average de-
creased their measurement sigma for sides throughout the experiment, but not for dots.
A Repeated Measures ANOVA revealed significant within subjects effects of Feature
𝐹 (1, 15) = 8.049, 𝑝 = .012, Training, 𝐹 (1, 15) = 14.399, 𝑝 = .002, and task load,
𝐹 (1, 15) = 20.086, 𝑝 < .001, and a significant interaction between Feature and Train-
ing, 𝐹 (1, 15) = 6.978, 𝑝 = .018.

The Second-Half, Heavy task load experiment condition represents the most relevant
context in comparison to the previous Experiments 1 and 2. The average best-fitting
measurement sigmas across our participant pool here were 𝜎𝑛 = 1.645 (SD=1.231) for
the sides feature and 𝜎𝑑 = 1.183 (SD=0.368) for the dots feature. Figure 4.9 plots the
psychometric functions corresponding to these two measurement sigmas.

Figure 4.10 displays the full range of best-fitting measurement sigmas for the Sides
feature and Dots feature across all 15 participants. Error bars displayed represent
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95% confidence intervals. This shows the full range of variation observed across our
participant pool, with some participants reaching a fairly low measurement noise floor
and others reaching very high measurement noise.

4.3.3 Discussion
Experiment 3 provides greater context in understanding the results found in Experiments
1 and 2. Through this 2IFC experiment, we aimed to explore three main questions: is
there a difference between participant measurement sigmas for the Sides feature and
Dots feature, does increasing task load impact these measurement sigmas, and can this
measurement sigma change and improve throughout the experiment?

Measurement sigmas were lower for Dots versus Sides feature measurements. This is
in line with the results and observations found in Experiments 1 and 2, where it appeared
that participants were worse at measuring the Sides feature than the Dots feature. We
suspected this to be the case from the model comparison analysis where most participants
were estimated to either be using both features or only the Dots feature, but not the Sides
feature. This also came out through participant self-report when we asked participants
to verbally describe any strategy they used. Many participants reported ignoring the
Sides feature. The worse measurement noise for Sides than Dots found in Experiment 3
supports the idea that participants were having difficulty with this feature in Experiments
1 and 2.

In terms of task load, we found that measurement sigmas became worse when we
asked participants to attend to both features in a trial than when they were only required
to attend to one. This effect was present for both the Sides feature and the Dots
feature. Interestingly, the impact of task load was uniform for both feature measurements,
meaning that both the Sides and Dots measurement sigmas increased by the same amount
when participants attended. This High Task Load condition matched the context of the
previous categorization experiment, where participants were required to pay attention to
both features when making their categorical judgments. The effect of task load provides
interesting insight for designing future experiments and considerations for analysis and
interpretation.

We observed an experiment half effect throughout the experiment, with measurement
sigma for the Sides feature decreasing significantly by the latter half of the experiment,
but not as much for the Dots feature. We also observed an interaction between experiment
half and task load, with the effect of task load diminishing in the Second-Half blocks.

Overall, through the 2IFC experiment detailed here, we have empirically determined
an average Measurement Noise value for both the Sides feature and Dots feature in the
context of our experimental categorization task. These values can be applied to our
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analytical methods developed earlier in this chapter to constrain the Measurement Noise
parameters to those realistically found among our human participants.

Estimating Measurement Thresholds with limited exploration time and a limited
stimulus set

For Experiment 3, we set out to get an idea of participant measurement thresholds
with the features that we were using throughout our other experiments. One of the
most important aspects of our methodology was to match as closely as possible the
experimental conditions of our previous categorization experiments. There were a
few aspects we identified as being critical to our unique design: the stimulus objects,
the trial-by-trial task requirement, and the trial length were all constrained to match
our categorization task closely. Importantly, the goal of our methodology was not to
measure participants’ absolute best ability to extract the number of sides feature or dots
feature, but to measure their ability within the context of our experiment.

In regards to the trial time, we were not interested in determining the amount of time
needed to measure the number of sides or dots as accurately as possible. We expect
that imposing a time limit lowers performance as the participant might not have enough
time to make an accurate measurement. Given an infinite amount of time to explore the
objects, a participant should be able to extract near-perfect measurements of the object.
Likewise, if we gave the participants less time their performance would reasonably
decrease. Naturally, then there should be an optimal amount of time for each participant
that they would need to explore the object to extract the information accurately, and that
time likely is not the 5 seconds we used. Our 5-second trial time was decided upon for
the categorization task as a way to constrain the length of the experiment. Increasing the
trial length would increase the total experiment time, and to keep within a reasonable
experiment length we would have instead had to lower the number of experimental trials.
We decided on our 5-second trial length to balance out having enough trials within a
2-hour experiment.

In regards to the stimulus objects, a major limitation of our threshold task is the poor
stimulus resolution offered by our stimulus set. Out of our 25 objects, we only have
five stimulus levels for each feature dimension (6 sides to 10 sides, and 4mm to 8mm
with a 1mm step size). This means that the fixed reference object can only be compared
against four other comparison objects. Had we been interested purely in measuring a
participant’s ability to discern differences in the number of sides or the spacing of dots,
we would ideally have had many more stimulus levels to compare against. However, it
was important for us to stay within the context of our categorization experiment, and that
meant using the same objects for that task. There are some physical difficulties as well
that led us to use our categorization stimulus set for this experiment. A higher resolution
would have required us to 3D print many more objects which would have not only been
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time-consuming, but difficult both to store and work with during the experiment. A
higher resolution would have also only been possible for the Dot Spacing feature, as the
Number of Sides feature is physically constrained to integer values.

A major issue arises when analyzing measurement sigmas with a low-resolution stim-
ulus set. With only four levels of comparison, we have poor precision in determining the
actual measurement sigma of the observer. This becomes especially problematic when a
participant exhibits very high performance. In these cases, their measurement thresholds
result in a step function with an infinitesimally small measurement sigma. Essentially,
the participant’s sigma is smaller than our stimulus set allows us to measure. This creates
an interesting analysis problem; how do we report a participant’s measurement sigma
for a feature when the threshold we extract bottoms out at our minimum estimate?

One approach is to consider the smallest threshold we can measure before this issue
of bottoming out (what is the threshold when someone makes a single mistake?). An-
other approach is to consider how often we reasonably expect people to have a perfect
performance at different sigmas. We can find this by simulating many blocks of trials
at different sigma levels. For each sigma level, we can calculate how many times, when
two objects are drawn with a difference of 1, the participant perfectly identifies which
object is larger. For instance, an observer with a measurement sigma of 0.6 doing 10
trial blocks 100 times is expected to have a perfect block about 20% of the time.

Despite the similarities from the previous categorization experiment in terms of
procedure and the use of the same set of stimuli, this is still a fundamentally different
task being asked of the observers participating in the experiment. The main difference
between the categorization task and the 2IFC task is the sources of variability present
that the observer must account for. In the categorization task, both the Within-Feature
Category Variability and Measurement Noise are present and impact the judgement
being made by the observer. Categorization requires the observer to first form a percept
of the feature properties that they perceived and then form a categorical decision based
on that percept. The 2IFC task in contrast does not involve this Within-Feature Category
Variability or this extra layer of decision making. All that is required of the participant
is to accurately distinguish the feature differences.

Why does increasing the demands of the task decrease Sides and Dots measurement
acuity?

There are a few possible explanations for why High Task Load decreased measurement
acuity with our stimuli object set. For instance, increasing the demands during the
experiment may make the task physically more difficult. The nature of our experimental
design involving physical objects means that extraction of feature information from
the stimuli requires physical exploration of the objects. The exploration strategies
for extracting haptic information for different types of features are different; requiring

87

https://www.mcmaster.ca
https://science.mcmaster.ca/pnb/


DOCTOR OF PHILOSOPHY– Kyra Alice Gauder; McMaster University– Psychology

participants to perform both exploration strategies in a short time window may have
impeded their performance. As we outlined previously in Chapter 3, we expected
participants to employ Lateral Motion to explore the Dots feature and either Contour
Following or Enclosure to explore the Sides feature (Klatzky et al., 1993). It was
expected that these exploration motions could be performed simultaneously; however,
this may have posed a greater challenge for participants than originally thought.

Additionally, participants may not have used these optimal exploration strategies and
instead relied on other means to explore the objects. Especially with the Sides feature,
it was observed that participants often attempted to count the sides rather than feel for
the overall shape as we had originally hypothesized. This may be because the number
of sides was a low integer that feasibly could be counted in the 5-second trial time.
However, when paired with the physical exploration of the dots, counting 6 to 10 sides
accurately may not have been possible in that time frame. This could explain the worse
measurement acuity for the Sides feature than the Dots feature.

The performance decrease with the increased task load may also be an effect of
splitting attention. Requiring observers to attend to both features in the 5-second time
window means that both feature measurements must be held in memory. This memory
must remain intact while the observer measures both objects, as a comparison and
reference object was observed sequentially in each trial (each with a 5-second exploratory
period). This means that by the time a participant is providing their response, some of
this memory will need to have persisted for more than 10 seconds. The additional
information required to keep in memory may make this task more difficult, leading to
the performance decrease.

4.4 Reanalyzing Experiments 1 & 2
As we have highlighted throughout this chapter, the Bayesian model used when analyzing
Experiments 1 and 2 was limited by the exclusion of the presence of internal Measurement
Noise. From our simulations, we found that Measurement Noise has a strong influence on
the response behaviour of our models, regardless of whether the decoder model ignores
it (represented in Decoder model 1) or accounts for it (represented in Decoder models
2 and 3). This impacts the expected performance of our models on our categorization
task as well as the expected trial-by-trial behaviour in how the model categorizes each
object.

We can now return to our collected data sets from Experiments 1 and 2 and reanalyze
them using the model comparison analysis methods established earlier in this chapter.
Through our 2IFC Experiment 3, we found that human participants had an average
Measurement Noise sigma value of 𝜎𝑛 = 1.645 for the Sides feature and 𝜎𝑑 = 1.183
for the Dots feature. By accounting for the presence of this Measurement Noise in our
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updated Bayesian Categorization Model, we can more accurately match our participants’
data to our Bayesian models to better determine how well our model accounts for that
human behaviour.

Here we will use the empirical Measurement Noise sigmas found in Experiment 3
as a rough estimate for the measurement noise present and apply them to the model to
see if this yields us a closer fit. We will run our model comparison analysis to fit each
participant into their closest matched model, and then use that matched model to compare
against the participant’s performance. In the future, a more complete experiment may
include the pairing of a 2IFC task alongside the categorization experiment to have
within-participant sigma noise values to apply to the Bayesian Categorization Model.

Measurement Noise Ratios

The average Measurement Noise sigmas found in Experiment 3 across 15 participants
was 𝜎𝑛 = 1.645 for the Sides feature and 𝜎𝑑 = 1.183 for the Dots feature. However, it is
important to acknowledge that using these average noise sigma values will lack a degree
of accuracy as we found there was variability in individual participant Measurement
Noise values for both the Sides feature and the Dots feature. Ideally, we would need to
know an individual participant’s true noise sigma values to most accurately match them
to our models. Unfortunately, we cannot retroactively know the actual Measurement
Noise sigmas for our participants in Experiments 1 and 2.

As we illustrated by examining the response tables generated from different con-
figurations of Measurement Noise sigmas (Figure 4.1), and the accuracy of our model
comparison analysis (Figure 4.7), the precise sigma values used are not as important for
our analysis to correctly classify the generative model behind a set of behavioural data.
What matters most is the ratio between the Sides feature sigma and the Dots feature
sigma, and how close our assumed values ratio is to the true generative model’s ratio.
This assumed ratio must be in the same direction as the true ratio of our participants.

The ratio of Sides:Dots for the average sigmas we found across the 15 participants
in Experiment 3 was 1.39, with the Sides noise sigma being larger than the Dots noise
sigma. Of these participants, 10 exhibited a ratio in this direction. Of these participants,
their average Measurement Noise sigma values for the Sides and Dots features were
𝜎𝑛 = 2.13 and 𝜎𝑑 = 1.05, resulting in an average ratio of 2.03. The 5 remaining
participants exhibiting a ratio in the reverse direction had average Measurement Noise
sigma values of 𝜎𝑛 = 0.59 and 𝜎𝑑 = 1.48, resulting in an average ratio of 0.39.

Since we found that 1/3 of our participants in Experiment 3 had this reversed direction
between their Measurement Noise sigmas, we might expect that a significant number
of participants in Experiments 1 and 2 could also have this pattern of Measurement
Noise. While we cannot verify this directly with our previously collected data set, we
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can attempt to account for this possibility with our model comparison analysis. We can
instead consider two possible "types" of observers: one whose Sides feature sigma is
worse than their Dots feature sigma, and one whose Sides feature sigma is better than
their Dots feature sigma. We will label this second type of observer reverse observers,
signifying the reversal of their Sides:Dots ratio.

Rather than using the average sigma values of 𝜎𝑛 = 1.645 and 𝜎𝑑 = 1.183 across
our models, we can split our models further into the two types of observers. We will
label these additional reverse models as 𝐷1𝑅, 𝐷2𝑅, 𝐷3𝑅, 𝐷𝑠𝑅, and 𝐷𝑑𝑅. The original
6 models used in the model comparison analysis will use the average sigmas of the
participants whose Sides noise sigma was larger than their Dots noise sigma, 𝜎𝑛 = 2.13
and𝜎𝑑 = 1.05. The reverse models will use the average sigmas of the participants whose
Sides noise sigma was smaller than their Dots noise sigma, 𝜎𝑛 = 0.59 and 𝜎𝑑 = 1.48.
By including both types of models in our model comparison analysis, we can account
for the possible range in participant variation and lead to better fits per participant.

To test the efficacy of our expanded model comparison analysis, we re-ran our
confusion matrix simulation analysis comparing the frequency of times our analysis
matched each model to every possible generative model. We ran these simulations for
50 sets of 120 trials of our categorization task and calculated the frequency of times the
data from each set of trials was matched to each model. The results of this confusion
analysis are shown in Figure 4.12. We found that the analysis remained generally very
accurate at correctly matching behavioural data to the true generative models. The
analysis was worst at matching to model 𝐷2, correctly matching 𝐷2 60% of the time. It
remained best at matching 𝐷𝑟 100% of the time. All of the other models were correctly
matched within 70% to 94% of the time.

The expanded model comparison analysis remains fairly powerful at accurately
matching behavioural data to the generative models behind that data. While this compar-
ison is still not exhaustive of all possible generative models, it represents a fairly decent
representation of the range of generative models behind what we might expect from our
participant pool. In the following analyses, we will first run our participants through
the original formation of our model comparison analysis with 6 comparison models and
sigma values of 𝜎𝑛 = 1.645 and 𝜎𝑑 = 1.183. Afterwards, we will move to our expanded
model comparison analysis using sigma values of 𝜎𝑛 = 2.13 and 𝜎𝑑 = 1.05 for the main
set of models and 𝜎𝑛 = 0.59 and 𝜎𝑑 = 1.48 for the reverse set of models.

4.4.1 Model Comparison Analysis
The participant pool for our model comparison analysis contained the 15 participants
from Experiment 1 who were in training regimen Group 3 and the 10 participants from
Experiment 2. Of the Experiment 2 participants, only the first 360 trials (corresponding
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to the first 9 blocks, or the first day, of the experiment) were included. The first 9 blocks
of Experiment 2 were designed as a replication of Experiment 1, allowing us to combine
these participant pools for a total of 25 participants.

First, we ran our model comparison analysis using 𝜎𝑛 = 1.645 for the Sides feature
Measurement Noise sigma and 𝜎𝑑 = 1.183 for the Dots feature Measurement Noise
sigma. We previously established through our simulations that we can make post-hoc
inferences as to which Decoder model an observer may have been using throughout
our categorization experiment. Following the model comparison method we described
through Equations 4.3 and 4.4, we ran our model comparison analysis for 3 sets of 120
trials (each set corresponding to 3 blocks of the experiment). Only the results from the
last 3 blocks of the experiment were considered for deciding overall which Model fit
the participant the best, as this corresponded to when the participant had presumably
learned the novel categories to the best of their abilities within the time frame of the
experiment. The models matched against in our analysis will be the same ones used
in our previous simulations, with 𝐷1, 𝐷2, and 𝐷3 corresponding to Decoder models
1, 2, and 3 respectively, 𝐷𝑟 corresponding to a control "guessing" model, and 𝐷𝑠 and
𝐷𝑑 corresponding to a Sides-Only and Dots-Only model respectively. We ran these
models with equal priors of 1/6 initialized in our trial-by-trial analysis for each set of
120 trials. We first examined the frequencies of matches to models 𝐷1, 𝐷2, and 𝐷3
combined against 𝐷𝑟 , 𝐷𝑠, and 𝐷𝑑, as we established through our sensitivity analysis
that our analysis is generally very accurate at distinguishing between these comparisons.
Afterwards, compared against models 𝐷1, 𝐷2, and 𝐷3 to see how our analysis matched
between these three models.

Figure 4.13 (a) displays the frequency that either 𝐷3, 𝐷𝑠, 𝐷𝑑 or 𝐷𝑟 was matched
to participants. 8 participants were matched to 𝐷3, and 11 participants were matched
to the Dots-Only model 𝐷𝑑. 4 were matched to the Sides-Only model 𝐷𝑠, and 2 were
matched to the guessing model 𝐷𝑟. Expanding this frequency analysis to separate 𝐷1,
𝐷2, and 𝐷3 (Figure 4.13 b) revealed that 2 participants were matched to 𝐷1, 3 were
matched to 𝐷2, and 5 were matched to 𝐷3. Overall, the Decoder models that accounted
for both the Sides and Dots features as well as the Dots-Only model fit the majority of
our participants. Finding a large number of participants matched to 𝐷𝑑 corresponds
with our previous findings in Experiments 1 and 2 where participants seemed to focus
more on the Dots feature than the Sides feature.

Next, we ran our expanded model comparison analysis using sigma values of 𝜎𝑛 =

2.13 and 𝜎𝑑 = 1.05 for the main set of models and 𝜎𝑛 = 0.59 and 𝜎𝑑 = 1.48 for the
reverse set of models (𝐷3𝑅, 𝐷𝑠𝑅, and 𝐷𝑑𝑅). We again ran these models with equal
priors of 1/7 initialized in our trial-by-trial analysis for each set of 120 trials. Figure
4.14 (a) again reveals that the majority of our participant pool was matched to 𝐷3 or
𝐷𝑑. This is illustrated more clearly in Figure 4.14 (b) where we combine the data of
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each model with the corresponding reverse model.

Figures 4.14 (c) and (d) display the fully separated histogram of matched models,
including all three decoder models and their reverse models in our analysis. Here we
see again that 𝐷𝑑 was the most frequently matched model with 11 participants matched
to it. 3 participants were matched to 𝐷1, 4 participants to 𝐷2, 4 participants to 𝐷3, 2
participants to 𝐷𝑠, and 1 participant to 𝐷𝑟. If we take all the Decoder models together,
we find that our analysis matched 11 participants to either 𝐷1, 𝐷2 or 𝐷3.

Investigating the two participants who originally were matched to 𝐷𝑟 further, we
found that participant 9 from Experiment 1 was reclassified to 𝐷𝑑𝑅, and participant 1
from Experiment 2 remained classified to 𝐷𝑟 . This indicates that participant 9 from
Experiment 1 was likely erroneously matched to 𝐷𝑟 as there were no better fitting
models, and that participant 1 from Experiment 2 truly fits 𝐷𝑔 the best. When we
expanded the range to include the three Decoder models (Figures 4.14 d), we found that
5 participants were matched to 𝐷2, 3 participants were matched to 𝐷1, and 4 participants
were matched to 𝐷3. 𝐷𝑑 remains the most matched model but with now 9 participants
matched to it, indicating, that two participants were switched to being matched to one of
the Decoder models.

4.4.2 Best Matched Model Fitting
To test how well our matched models fit their respective participant data, we ran each
participant’s matched model through simulated trials of the participant’s experiment.
The participant’s matched model was simulated running through the same trials as the
participant did for each block of 40 trials using its generated response table 𝑃(′′𝐴′′|f𝑔).
We ran these simulations 10,000 times per block and calculated an average percent
correct expected from the model given that block of trials. Additionally, since we ran
our model comparison analysis for sets of 3 blocks (120 trials), we used the matched
model within these sets of blocks. For instance, if a participant was matched to 𝐷𝑑 in
the first 6 blocks but then 𝐷3 in the last 3 blocks, our expected performance simulations
would use the respective matched models to each block.

This performance simulation analysis explores how well our Bayesian Categorization
Model fits the behavioural data of our human participants. It also controls for trial-
by-trial variability in difficulty, since the models are running through the same trials
and presented the same objects as our participants. Unfortunately, we cannot do the
same "Percent match to model" analysis as we did in Chapter 3 (Figure 3.1) as once our
models involve the inclusion of Measurement Noise they become a stochastic process
and respond with some variability to the same stimuli. By simulating through a block
of trials many times and getting a distribution of the percent correct calculated for those
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simulations, we can determine if the participant’s actual recorded percent correct is
within a reasonable range of the distribution of expected percent correct.

We also calculated the expected performance of our previous Bayesian Categorization
Model used in Chapter 3 which did not include Measurement Noise at either the Encoder
or Decoder stage. We will hereafter refer to this previous model as the noiseless Bayesian
Categorization Model, as it was unaware of and did not account for the presence of
Measurement Noise entirely (neither at the Encoder nor Decoder stage). This model
was similarly run through the same trials as the participant did, with a percent correct
calculated for each block. This allows us to directly compare the performance of our
previous iteration of our model to our new iterations which account for Measurement
Noise.

As we did when analyzing our data in Experiments 1 and 2, we excluded trials
where our "Expert" observer model would calculate a posterior probability of 𝑃(𝐴|𝐷) =
𝑃(𝐵 |𝐷) = 0.5 for a given object. This posterior probability calculation is taken from our
original noiseless Bayesian Categorization Model which does not include Measurement
Noise in either the Encoder or Decoder portions of the model. As such, the performance
of this noiseless model is deterministic and does not include any variability.

Figure 4.15 displays three example participants from Experiment 1 of this analysis.
For each participant, we calculated their percent correct per block, the distribution of
our matched model’s percent correct per block (with the solid line indicating the mode
of the distribution and the dotted lines indicating 1 standard deviation), and the noiseless
model’s percent correct per block. Participant 3 was matched to the Sides-Only model
𝐷𝑠 for blocks 1-6 (although our analysis also competed against 𝐷𝑟 for these blocks), and
Decoder model 3 𝐷3 for blocks 7-9. Participant 15 was matched to the reverse Dots-
Only 𝐷𝑑𝑅 model for blocks 1-6, and Decoder model 2 𝐷2 for blocks 7-9. Participant
33 was matched to the Decoder model 2 𝐷2 for blocks 1-6, and the Dots-Only 𝐷𝑑 for
blocks 7-9. For these example participants, the performance of our matched models fit
more closely to the participant data than the noiseless Bayesian Categorization Model.

We expect that our analysis is the least trustworthy at the beginning blocks of the exper-
iment for each participant as they were required to learn the novel categories throughout
the experiment. As such, they did not initially know the distributions underlying the
categories and would be learning these parameters as the experiment continued. Our
model comparison analysis does not account for learning. As such, it is most informative
to focus on the data from the last 3 blocks of the experiment (blocks 7-9) when examining
the closeness of fit, as this should represent when participant learning of the category
distributions is complete.

We can describe the fit of our matched models to participant data further by running
a one-sample z-test per testing block. We compared the calculated percent correct of
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each participant against the simulated percent correct of their matched model, treating
the matched model as the population. We simulated the population distribution of
the matched model by running it through 10,000 simulated blocks following what the
participant was presented in their respective block. The calculated mode and standard
deviation of these simulated trials were used as a population mean and standard deviation
for our z-test. The null hypothesis in this context is that the participant’s percent correct
equals that of the matched model’s mean percent correct.

We calculated the z-score per block and compared it against a significance level of
0.05. Examining the results of the last 3 blocks across all participants, we failed to
reject the null hypothesis in almost every instance. Only participants 9, 21, and 30 from
Experiment 1 and participant 8 from Experiment 2 had one of their last 3 blocks reject the
null hypothesis. This null result helps describe the comparison between our participant
results and matched model results, where the population of our matched model’s results
could have generated the observed participant’s data.

This z-score test requires us to assume that percent correct is a normally distributed
variable, which is potentially an incorrect assumption as the relationship between percent
correct and the Measurement Noise which drives it is not necessarily linear. A better way
to measure the goodness of fit of our matched models to participant data is to perform
a Posterior Predictive Model Check. This method directly compares the performance
predicted by our matched models and the actual performance of our participants. To
do this, we took the matched model for each participant block of data and ran 10,000
simulations of that block, calculating the percent correct for each run. We then compared
the average model percent correct of the simulated blocks against the participant’s
percent correct for that block. If the model’s average percent correct was lower than the
participant’s, we then compared each simulated percent correct against the participant’s
and calculated the frequency of times the model’s percent correct was larger. If the
model was higher, we made the same comparison but calculated the frequency of times
the model was lower than the participant’s. This method resulted in a one-tailed p-value
of how many times the model’s prediction was further than the participant’s.

We performed this analysis across participant data from Block 9. We defined four
bins signifying different levels of fit of our model. A p-value between 0 − 0.05 was
defined as a very poor fit since this would indicate that the participant percent correct
is very far from the model’s mean percent correct. A p-value between 0.05 − 0.1 was
defined as a moderate fit. A p-value between 0.1−0.25 was defined as a good fit. Finally,
a p-value between 0.25 − 0.5 was defined as a very good fit. The theoretical maximum
for a best-fitting model was 0.5 as this would mean that half of all model calculated
percent correct were above the participant’s and half were below, which would occur
when the participant’s percent correct was equal to the model’s average percent correct.

The histogram of our Posterior Predictive Model Check results is displayed in Figure
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4.16. This corresponds with the expanded matched model data in Figure 4.14 (c) and
(d). For most of our participants, their matched models proved to be either a good fit
or a very good fit. 5 participants were classified as having only a moderate fit to their
matched model. Only 2 participants (participant 30 from Experiment 1 and participant
5 from Experiment 2) were classified as having a poor fit to their matched model, one
of which was the same participant who matched poorly with our z-score test. Overall,
this supports the idea that the use of our matched models through our model comparison
analysis led to a better-fitting model with high predictive power.

Further comparing the average percent correct of our participants against the aver-
age percent correct of the matched models per block reveals a strong fit between our
distributions (Figure 4.17). The average percent correct of the matched models follows
participant data very closely, especially in the latter half of the experiment. Further
comparing against the performance of the noiseless Bayesian Categorization Model
used previously through Chapter 3 demonstrates that the addition of Measurement Noise
in our models has decreased expected performance to match more closely to our human
participants.

In order to more empirically describe the comparison between our average participant
performance and average matched model performance, we ran a Repeated Measures
ANOVA with experiment block as the repeated measure factor, and group (participant vs
matched model) as the between-subjects factor. We limited this analysis to only the last 3
blocks of the experiment as this is when participant learning of the category distributions
would theoretically be completed. We failed to find a significant difference between our
participants’ performance and their matched model’s performance, 𝐹 (2, 1) = 0.291,
𝑝 = .592, with Mauchly’s Test not revealing sphericity violation, 𝑋2 = 0.479, 𝑝 = .787.
This lends further support to our hypothesis that the Bayesian Categorization Model
which accounts for Measurement Noise better represents participants’ behavioural data
in our categorization task.

4.5 Conclusion
The experiments and simulations detailed here provide a continued exploration into the
object categorization paradigm explored throughout this thesis and a thorough justifica-
tion of the importance of considering internal Measurement Noise in observer models.
The simulation of our categorization task with simulant observers generated with various
noise sigmas revealed that the presence of Measurement Noise can greatly impact the
performance of observers, whether the observers are aware of this internal noise or not.
This justified the need for consideration of Measurement Noise in the context of our
experiments, whereas it had previously been ignored. Experiment 3 attempted to find
an empirical estimation of the Measurement Noise present within Experiments 1 and 2
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across participants by employing a 2IFC experimental design. These average best-fitting
noise sigma values could then be used to re-analyze the results of Experiments 1 and 2
with better-fitting models which accounted for the presence of Measurement Noise.

We also provided empirical evidence that the features chosen for our stimuli object set,
the Number of Sides and Dot matrix texture, likely had differing Measurement Noise with
the Sides measurement being worse than the Dots measurement. We also determined
that both these noise sigmas were on average at a level that would have a significant
performance impact on our categorization task. The nature of the Measurement Noise
present helps to explain the results seen in Experiments 1 and 2.

Returning to our data collected throughout Experiments 1 and 2, we applied our
updated Bayesian Categorization Model to examine if the inclusion of Measurement
Noise led to a better fitting model. We found that the inclusion of Measurement Noise
lowered the expected performance of our models which better matched the performance
of our human participants. Further matching different configurations of our model to
each participant allowed us to fit each participant to a best-fitting model through our
model comparison analysis. We found that these matched models fit participant data
very well.

One of the major questions left at the end of Chapter 3 was the source of the per-
formance gap between our human participants and our Bayesian Categorization Model.
Why did our model consistently perform much better than human participants on our
categorization task? Here have demonstrated that the inclusion of Measurement Noise
in our Bayesian Categorization Models led to a better-fitting model for each partici-
pant. Overall, this chapter has provided evidence and justification for the importance of
considering the presence of Measurement Noise in a categorization task.
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4.6 Figures and Captions

Figure 4.1: Intensity plots displaying the generated "coin-flip" response
tables 𝑃(”𝐴”|f𝑔)𝑔 for Decoder Models 1, 2, and 3. These were generated
for varying levels of measurement noise 𝜎s. Column one shows Decoder
Models 1, 2, and 3 response tables when 𝜎𝑛𝑚 = 0 and 𝜎𝑑𝑚 = 0. Column
two shows Decoder Models 1 2 and 3 response tables when 𝜎𝑛𝑚 = 1 and
𝜎𝑑𝑚 = 1. Column three shows Decoder Models 1, 2, and 3 response
tables when 𝜎𝑛𝑚 = 2 and 𝜎𝑑𝑚 = 2. Column four shows a mismatch
condition for Decoder Models 1, 2, and 3 response tables when 𝜎𝑛𝑚 = 2
and 𝜎𝑑𝑚 = 1.
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Figure 4.2: Results for experiment simulation of observer Decoder model
1. We generated 17 unique simulants per feature dimension for 289 total
simulants with noise sigmas ranging from 𝜎 = 0 to 𝜎 = 4. Each simulant
was run through 10,000 trials of a virtual categorization task identical
to Experiment 1. Plotted is performance percent correct against the dot
spacing feature noise and sides feature noise. The lowest percent correct
was found with the simulant with the highest measurement noise at≈ 56%,
and the highest percent correct was found with the simulant with the lowest
measurement noise at ≈ 77%. In the mismatch cases where one feature
noise was high and the other was low, performance was greatly impacted
with the percent correct recorded at ≈ 60%.
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Figure 4.3: Results for experiment simulation of observer Decoder model
2. We generated 17 unique simulants per feature dimension for 289 total
simulants with noise sigmas ranging from 𝜎 = 0 to 𝜎 = 4. Each simulant
was run through 10,000 trials of a virtual categorization task identical
to Experiment 1. Plotted is performance percent correct against the dot
spacing feature noise and sides feature noise. The lowest percent correct
was found with the simulant with 𝜎𝑛𝑚 = 0 and 𝜎𝑑𝑚 = 0 at ≈ 54%, and
the highest percent correct was found with the simulant with 𝜎𝑛𝑚 = 0.25
and 𝜎𝑑𝑚 = 0.25 at ≈ 77%. In the mismatch cases where one feature noise
was high and the other was low, performance was recorded at ≈ 60%.
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Figure 4.4: Results for experiment simulation of observer Decoder model
3. We generated 17 unique simulants per feature dimension for 289 total
simulants with noise sigmas ranging from 𝜎 = 0 to 𝜎 = 4. Each simulant
was run through 10,000 trials of a virtual categorization task identical
to Experiment 1. Plotted is performance percent correct against the
dot spacing feature noise and sides feature noise. The lowest percent
correct was found with the simulant with the highest measurement noise
at ≈ 56%, and the highest percent correct was found with the simulant
with the lowest measurement noise at ≈ 77%. In the mismatch cases
where one feature noise was high and the other was low, performance was
somewhat impacted with the percent correct recorded at ≈ 70%.
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Figure 4.5: Intensity plots of the results for the experiment simulation of
observers using Decoder models 1, 2, and 3 respectively. Pink represents
the highest percent correct recorded, and blue represents the lowest percent
correct recorded.
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Figure 4.6: Results of the experiment simulation of 9 Decoder sub-
models. The three rows show simulation results for Decoder models 1,
2, and 3 respectively. Column 1 shows simulation results for the three
models where both the Sides and Dots features were attended to. Column
2 shows simulation results for the "Sides Only" Decoder models, where
the Dot’s feature was ignored. Column 3 shows simulation results for the
"Dots Only" Decoder models, where the Side’s feature was ignored.
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Figure 4.7: Confusion matrices detailing the accuracy of our model
comparison analysis inferring the correct generative model given simu-
lated behavioural categorization data. Simulations were run for 50 sets of
360 trials. Bayesian model comparison was used to determine the best-
matched model per set of trials. Rows show the generative model used to
generate behavioural data, and the columns show the frequency that our
analysis matched that data to each model. Listed below each trial are the
Measurement Noise sigmas used for the generative models and matched
models. a-d) displays four different combinations of feature Measurement
Noise and analysis after 360 trials. e-f) display two different combinations
of feature Measurement Noise and analysis after 120 trials. g-h) displays
two incongruent cases where the generative model’s Measurement Noise
was different than what is displayed and used for the analysis. g) shows
the case where the generative model sigmas were 𝜎𝑛 = 2 and 𝜎𝑑 = 1.
h) shows the case where the generative model sigmas were 𝜎𝑛 = 1 and
𝜎𝑑 = 2.
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Figure 4.8: Measurement sigmas across 16 participants in a 2IFC exper-
iment. Sigmas were calculated for both the Sides and Dots features in the
Low and High task load conditions. Error bars represent Standard Error.
Low Task Load referred to when participants only attended to either of the
two features in a trial, and High Task Load referred to when participants
attended to both features in a trial. The left side of the graph displays
the measurement sigmas calculated in the First-half blocks of the ex-
periment, and the right side displays the measurement sigmas calculated
in the Second-half blocks of the experiment. Generally, measurement
sigmas across participants were lower for the dots feature than the sides
feature. Increasing the task load also increased measurement sigmas for
both features. A repeated measures ANOVA revealed a significant effect
of feature, experiment half, and task load, with an interaction between
feature and experiment half.
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Figure 4.9: Best-fitting psychometric functions for the Sides measure-
ment and the Dots measurement as found in Experiment 3. The x-axis
corresponds to the five feature levels of the comparison stimulus compared
against the reference stimulus, with level 3 being where the reference stim-
ulus and comparison stimulus were equal. The y-axis plots the probability
of a participant responding that the reference stimulus was larger than the
comparison stimulus for either the Sides feature with 𝜎𝑛 = 1.645 or the
Dots feature with 𝜎𝑑 = 1.183. These sigmas represent what was found
in the High Task Load condition in the Second-Half blocks of the exper-
iment.
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Figure 4.10: Average best-fitting measurement sigmas for the Sides and
Dots as found in Experiment 3 across all 15 participants. These sigmas
represent what was found in the High task load condition in the Second-
half blocks of the experiment. Error bars represent 95% confidence
intervals for each measurement.
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Figure 4.11: Top-down Intensity plots displaying the generated response
tables 𝑃(”𝐴”|f𝑔)𝑔 for Decoder model 3 with three different configurations
of Measurement Noise sigmas. a) shows a table generated for an observer
with a Sides sigma of 𝜎𝑛𝑚 = 1.645 and a Dots sigma of 𝜎𝑑𝑚 = 1.183.
b) shows a table generated for an observer with 𝜎𝑛𝑚 = 2.13 and 𝜎𝑑𝑚 =

1.05. c) shows a table generated for an observer with 𝜎𝑛𝑚 = 0.59 and
𝜎𝑑𝑚 = 1.48.
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Figure 4.12: Confusion Matrix of our expanded model comparison anal-
ysis examining the accuracy in inferring the correct generative model
given simulated categorization data. Simulations were run for 50 sets of
360 trials. The rows show the generative model used to generate a set of
behavioural data, and the columns show the frequency with our analysis
matched this generated behavioural data to each model.
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Figure 4.13: Histogram of the number of participants matched to a range
of Decoder models. The Decoder Models were run with a Measurement
Noise configuration of 𝜎𝑛𝑚 = 1.645 and 𝜎𝑑𝑚 = 1.183. a) shows the
resulting histogram when only 𝐷3 was run alongside 𝐷𝑛, 𝐷𝑑, and 𝐷𝑔.
b) shows the resulting histogram when𝐷1,𝐷2, and𝐷3 were run alongside
𝐷𝑛, 𝐷𝑑, and 𝐷𝑑.
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Figure 4.14: Histogram of the number of participants matched to an
expanded range of Decoder models. The Decoder models were run with
a Measurement Noise configuration of 𝜎𝑛𝑚 = 2.13 and 𝜎𝑑𝑚 = 1.05. The
three reverse Decoder models (designated with an 𝑅) were run with a
Measurement Noise configuration of 𝜎𝑛𝑚 = 0.59 and 𝜎𝑑𝑚 = 1.48. a)
shows the resulting histogram when only 𝐷3 was run alongside 𝐷𝑛, 𝐷𝑑,
the reverse models, and 𝐷𝑔. c) shows the resulting histogram when 𝐷1,
𝐷2, and 𝐷3 were run alongside 𝐷𝑛, 𝐷𝑑, the reverse models, and 𝐷𝑔. b)
and d) show the results of combining the reverse model results with their
respective counterparts.
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Figure 4.15: Results of our expanded model comparison analysis for
participants 3, 15, and 33 are shown in A), B), and C) respectively. The
"model comparison over trials" plot displays the calculated posterior prob-
abilities for each model in the model comparison analysis across trials.
The analysis was reset for every 120 trials (3 blocks). The "winning
model" was determined by the model with the highest posterior probabil-
ity in the last trial of the experiment. A bar chart displaying these final
posterior probabilities across all models is also displayed. Two Bayes Fac-
tors were calculated, one comparing the posterior of the best-fitting model
to the posterior of the Guessing model 𝐷𝑔 and one comparing the best-
fitting model to the second-best-fitting model. Finally, the participants’
raw performance was plotted across blocks (shown in blue) against the
average performance predicted by the participant-matched model (shown
in pink). The average predicted performance was calculated by running
the matched model through 10,000 simulations of the participant’s exper-
iment block and calculating the model’s performance per simulation. The
performance of the noiseless Bayesian Categorization Model was also
plotted (shown in purple).
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Figure 4.16: Histogram of the calculated matched model p-values across
our participants in Block 9. This value represents a fitness measure
between each participant’s percent correct and the expected range of
performance produced by their matched model through simulation. The
four bins of our histogram are: 0 − 0.05, signifying a poor fit; 0.05 − 0.1,
signifying a moderate fit; 0.1 − 0.25, signifying a good fit; 0.25 − 0.5,
signifying a very good fit.
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Figure 4.17: Total average results of our model comparison analysis
comparing average performance as given by our noiseless Bayesian Ob-
server Model (in purple), average participant performance per block (in
blue), and the average performance of each participant’s matched model
(in pink). The thinner blue and pink lines represent 95% confidence in-
tervals for average participant performance and average matched model
performance respectively.
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Chapter 5

General Discussion

5.1 Summary
Throughout this thesis we have presented the exploration of a Bayesian Categorization
Model applied to a human categorization paradigm within the sense of touch. We
designed a category task using novel 3D printed objects and trained participants on
two artificially defined categories, named Elyk and Noek. Through both empirical and
theoretical work, we demonstrated that human participants can learn categories using
only touch alone.

In Chapter 2, we detailed the derivation of this Bayesian Categorization Model as
well as the experimental design used throughout the rest of the thesis. We explored
further complex generalizations of the model which could be extended to many other
experiments outside the scope of this thesis. We also outlined a modification of our model
to include sensory Measurement Noise explored more thoroughly in a later chapter.

In Chapter 3, we investigated human performance on the categorization task compared
to our Bayesian Categorization Model. We found that participants were able to reach high
performance levels after a single day of experimentation, with only a minor performance
increase observed when the experiment extended across multiple days. Furthermore, we
demonstrated that our Bayesian Categorization Model was able to be matched to human
performance with some degree of accuracy. However, our model still outperformed
participants and was not completely predictive of their performance.

In Chapter 4, we investigated the impact of internal sensory Measurement Noise
on observers in our categorization task through both theoretical simulation and an
empirical Two-Interval Forced-Choice (2IFC) experiment. Through simulations of our
experiment using a Bayesian Categorization Model which included Measurement Noise,
we demonstrated that the inclusion of sensory noise had the potential to strongly impact
categorization performance. Our 2IFC experiment revealed that Measurement Noise
was a present factor amongst participants observing our physical stimulus set. Using
empirically driven estimates for this Measurement Noise, we then re-analyzed the results
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of Experiments 1 and 2 and found that a more complete noisy Bayesian Categorization
Model fit our collected participant data even more closely.

Throughout this thesis, we have found evidence supporting the importance of in-
cluding sensory Measurement Noise in human categorization models. Our simulations
demonstrated that the amount of Measurement Noise found for participants’ feature
measurements was significant enough to expect a decrease in performance. Incorporat-
ing this noise into our Bayesian Categorization Model led to a better-fitting model that
accurately matched the performance of our participants in a categorization task.

To our knowledge, the current thesis provides a unique exploration of a categorization
task in which participants are limited to only their sense of touch and a Bayesian
model like ours applied this type of categorization paradigm. Our main findings are
consistent with previous categorization studies which have investigated the other senses
or combinations of senses.

5.2 Learning categories using touch
The study of categorization has seen the use of a wide variety of stimuli. Many
experiments focus on visual representations, from real-world images or drawings of
imaginary animals (Iordan et al., 2015; Brooks & Hannah, 2006; Minda & Ross, 2004;
Ahn & Medin, 1992; Yamauchi & Markman, 2000) to more abstract displays including
arrays of dots, lines, geometric figures and sine-wave discs (Bankieris et al., 2017; Ashby
& Gott, 1988; Smith et al., 2010; Love, 2002). Experiments using stimuli which focus
on other senses are not as common, but they can sometimes involve auditory stimuli
such as whole novel words or phonemes (Bankieris et al., 2017; Bejjanki et al., 2011).
In some experiments, categories are even formed through a combination of audio and
visual stimuli. Tactile stimuli have seldom seen exploration in categorization.

One study from Schwarzer et al. (1999) looked at the haptic categorization of stimuli
consisting of wooden blocks made from beech wood. These blocks varied by four
features: size, shape, surface texture, and weight. Each feature had three levels; for
instance, the surface texture feature had fine, medium, and rough instantiations, and the
shape feature changed from a cylinder to a mixture of a cylinder and cube, and a cube.
Unlike our experimental paradigm, not every possible combination of their stimuli was
created. Instead, a select 18 instantiations were chosen to be created. Generally, Category
A consisted of objects whose features were mostly level 1, and Category B consisted of
objects whose features were mostly level 3. Their categorization experiment involved
a learning phase and a test phase. During the learning phase, participants explored a
subset of the objects (8 in total) using only their sense of touch and then attempted
to categorize the object, receiving corrective feedback directly from the experimenter.
During the testing phase, participants were presented with the full set of 18 stimuli and
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categorized without receiving corrective feedback. Schwarzer et al. (1999) found that
their participants predominantly learned the categories through an analytical learning
strategy—one in which participants categorized based on single separated features—
rather than a holistic one. Furthermore, participants exhibited an overall preference
for the surface texture feature of the objects. The shape feature was preferred second,
although the preference difference between surface texture and shape was not as large
amongst their adult population as their younger population.

The results found by Schwarzer et al. (1999) seem at odds with what we found
throughout our own experiments and model comparison analysis. While we did find that
a large proportion of our participants focused on our Dots surface feature, we also found
evidence that many participants were using both features to categorize our stimuli. With
the inclusion of Measurement Noise, the model which combined both the Sides and Dots
features was fit to almost as many participants as the model which only looked at the
Dots feature. However, the structure of our categorization experiment differs in key ways
that make direct comparisons here difficult. Mainly, the formation and consideration of
our categories are fundamentally different.

Our categories were formed by underlying Gaussian distributions. To learn these
categories, participants were required to learn the underlying parameters. We created our
stimuli with these underlying parameters in mind to represent this underlying statistical
structure present in our categories. In contrast, the stimuli and categories that Schwarzer
et al. (1999) used did not consider underlying statistical distributions along their four
features. Instead, features were ternary with arbitrarily distanced levels.

The training of our categories was also done in such a way as to reinforce underlying
categorical statistical distributions. This meant that we presented stimuli from our
categories by drawing from these distributions. In contrast, Schwarzer et al. (1999)
trained participants on a small subset of chosen exemplar stimuli and then tested on
a larger set. Each of the stimuli was shown one at a time and categorized by the
participant outside of any reinforcement of the categories. Furthermore, the stimuli in
their test phase included exemplars outside of the expected range from the learning phase
stimuli. The learning phase involved stimuli with a feature being one level away from
the Category, while the testing phase involved stimuli with a feature being two levels
away from the Category. The closest analogue of this with our experiment would be if
we had first trained participants on sharper category distributions and then changed the
categories by broadening the distributions for a test phase. However, this would still not
make an equivalent experiment as there are too many differences in how our categories
are structured. While the study by Schwarzer et al. (1999) is an informative and related
work to ours being one of the few experiments we could find involving haptic exploration
of physical objects and category learning, its consideration of categories fundamentally
differs from ours which makes a direct comparison difficult.
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5.3 Opposing paradigms of categorization
The approach taken by Schwarzer et al. (1999) is similar to research like that of Dr.
Lee Brooks in which categories are considered a collection of features with often binary
integer valued levels (Allen & Brooks, 1991). Stimuli can often involve line drawings
of imaginary animals, such as the Bleebs and Ramuses (Brooks & Hannah, 2006), or
the Moneks and Plaples (Yamauchi & Markman, 2000), Brunswik faces (Reed, 1972),
or sometimes just visual displays of geometric shapes (Medin & Schaffer, 1978). For
example, Bleebs and Ramuses were defined by four binary features: 2 or 4 legs, round
or angular head, round or angular body, and stripes or spots (Brooks & Hannah, 2006).
Categories from these stimuli are typically based on "prototype" representations and
variations are made by mixing one or more features from the opposing category. A
Bleeb prototype might be coded as 1111 but a 1011 or 1101 would also be Bleebs. This
simplification of categories could code for more than two features (Schwarzer et al.,
1999) or even more than two categories (Sanborn et al., 2010).

These approaches fundamentally differ from ours and that of other research which
considers the features within a category as continuous statistical distributions. Often
studies of this type use stimuli that can be parameterized, often as Gaussian distributions,
and the stimuli are created by drawing from these distributions. Methodologies tend to
be based in Signal Detection Theory (SDT) (Ashby & Gott, 1988; Smith et al., 2010) or
follow similarly from a cue-combination approach (Bankieris et al., 2017).

We refer to the first type of experiments as the Nominal-Ordinal Feature Paradigm,
and the second type of experiments as the Continuous Feature Paradigm. The treat-
ment of category features as an ordinal or nominal set, or a continuous measurement, is
the major differentiating factor that makes comparisons between the two experimental
paradigms difficult. Both ultimately study the same underlying phenomenon, but at-
tempts to understand one set of category formation from the other reveal that the stimuli
and underlying assumptions of how they are perceived are too different. This funda-
mental difference tends to inform the rest of the experimental design in incompatible
ways.

Both paradigms can deal with overlap among the individual feature distributions of
categories. A Nominal-Ordinal Feature Paradigm experiment might have so-called "one
away" stimuli with a Category A object that has a feature found normally in Category
B. For instance, if we were to follow the Nominal-Ordinal Feature Paradigm for our
stimulus set, we would have objects with two features of binary levels: fewer sides versus
more sides and fewer dots versus more dots. Our categories could be defined as 11 or
00. Thus, there would be only four objects in our set. We could introduce variation
similarly to Brooks & Hannah (2006) as different instantiations of these feature levels
(different organizations of dots, or more or fewer dots), but they would be considered as
different variations of the same feature level. There would no longer be consideration
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for the distribution of dots or sides seen in a category. The treatment of the feature as
either ordinal or nominal also means that the perceptual distance between those levels is
not often considered, or the frequency that these overlapping features are seen across the
categories. Continuous Feature Paradigm experiments in contrast will tend to consider
the statistical distributions underlying the features in each category. This extends to how
the overlap of the categories overall is considered between the experimental paradigms.

The critical factor important for all categorization research is whether the methodol-
ogy treats the category and feature distributions probabilistically. Considering categories
as probabilistic distributions turns category learning into an exercise in learning the dis-
tributions underlying the category—the observer learns the variance they might expect
in their measurements of the categories through repeated exposure and exploration. It
also allows for models like our Bayesian Categorization Model to be applied which can
lead to predictive power and understanding of how observers are learning the categories
and inference as to when they are likely to be making mistakes. Experiments under the
Continuous Feature Paradigm fit well with treating category and feature distributions
probabilistically. However, experiments under the Nominal-Ordinal Feature Paradigm
often do not include a consideration of these probabilistic distributions and thus are
incompatible with our model without adjustments to the methodology. The probabilistic
treatment of category and feature distributions is also what allowed us to incorporate
the presence of Measurement Noise in our model. This would not be possible under the
Nominal-Ordinal Feature Paradigm.

We cannot say with absolute certainty whether the Measurement Noise for a particular
feature, such as our Sides feature, is the driving factor for why an observer may choose to
ignore a feature or focus predominantly on another. To determine this more completely,
further experimentation would be required to directly test the hypothesis that observers
will choose to ignore a feature with high Measurement Noise more often than a feature
with low noise. However, the results found throughout this thesis suggest that this may be
the case. We believe the data and analysis presented in this thesis provide a compelling
argument for the importance of including Measurement Noise in human categorization
models.

5.4 The analytical power of our model
Throughout Chapter 4 we explored the development of a complex post-hoc analysis
method which allowed us to make inferences about how observers might process the
information available to them. This resolved many of the issues we encountered when
originally analyzing Experiments 1 & 2. Mainly, it allowed us to make a direct analysis
of the participants’ trial-by-trial response behaviour when our collected data was not
immediately suited for this. Through our model comparison analysis, we were able
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to compare different alternative models explaining how observers might categorize our
stimuli and directly test which model best fits individual participants’ data. This approach
followed naturally from our Bayesian Categorization Model and the way we considered
our categories and features under the Continuous Feature Paradigm.

Our analysis methodology developed here is a powerful approach for examining
categorization by observers. By outlining the Encoder and Decoder models that an
observer might use to resolve a categorization problem we can directly explore expected
behavioural outcomes from an observer through simulations. Running many tens of
thousands of experiment simulations becomes a trivial computational task even under
the presence of stochastic Measurement Noise and helps better inform further experimen-
tation and analysis. By applying Bayesian model comparison approaches we inferred if
participant behaviour fit that of an observer focusing on just one feature (analogous to
what’s sometimes referred to as analytical strategies in other works) or fit an observer
who combined both features. Fitting participants to their closest model made it further
possible to better estimate an expected performance outcome given the trials they were
presented with.

This analysis method can be greatly expanded upon in many ways. The specific
models we chose to compare were based on our Bayesian Categorization Model and
derivative sub-models. However, any alternative model could be used to fit human
participant data. This method can also include parameter estimation to find the best-
fitting parameters used in the model. For instance, while we relied on empirically driven
average estimates for the sensory Measurement Noise of our Sides and Dots features,
these values could have been estimated as sub-hypotheses in an attempt to find the best
fitting sigma.

This could be further extended into incorporating learning of the categories them-
selves, something we did not directly explore through our model. Under the Continuous
Feature Paradigm approach, categories can be encoded as a set of distribution mean’s
and sigma’s. Learning of a category thus would mean learning of these parameters.
This learning could be modelled as a complex parameter estimation problem, where
different configurations of parameters act as sub-hypotheses in the model comparison.
The analysis would then attempt to estimate the best-fitting mean and sigma parameters
that would give rise to the participant’s behaviour in a given set of trials.

5.5 Possible neural mechanisms underlying Bayesian cat-
egorization

Throughout this thesis, we have mainly discussed categorization and our Bayesian model
in terms of a theoretical computational model. Following Marr (1982)’s Levels of
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Analysis, we have been concerned with exploring the algorithmic level of processing
categorization (McClamrock, 1991). Our focus lay on exploring our computational
model—directly tying it into a neural implementation that existed outside the scope
of our experimentation. Here we will briefly overview the potential links between
computational Bayesian models for categorization and their implementation in the brain.

It has been established that aspects of perception and processes in the brain can be
understood as probabilistic inferences, and many studies have found success in applying
Bayesian methods and computational models to this end. Many of these studies have
shown that the brain can take into account uncertainty in its integration of information
to make inferences about its perceptions (Moreno-Bote et al., 2011). Many visual
illusions have been demonstrated to be the result of inferences which can be modelled
and predicted through Bayesian approaches (Weiss et al., 2002; Knill & Pouget, 2004).
Weiss et al. (2002) for instance applied a Bayesian visual motion perception model and
found consistent predictive power accounting for many of the illusions human observers
experience under various circumstances. Bayesian perception models have also been
powerful in explaining tactile illusions, such as the Cutaneous Rabbit Illusion (Tong
et al., 2016).

Research into the Bayesian nature of the brain has led to the formation of a Bayesian
Coding Hypothesis, stating that the brain generally represents sensory information prob-
abilistically (Knill & Pouget, 2004). This follows directly from the population coding
hypothesis, which states that the nervous system encodes sensory information through
populations of neurons. This has been seen in many neural recording studies. For
instance, single-cell recordings of the Middle Temporal Visual Area (MT) visual area in
rhesus monkeys revealed that clusters of neurons were responsible for encoding a direct
orientation feature when the monkeys perceived visual movement (Saizman et al., 1990;
Saizman & Newsome, 1994). Population coding has also been observed in other focus
areas of rhesus monkey brains, such as in the neurons in the Lateral Intraparietal Cortex
(LIP) (Churchland et al., 2008). Individual neurons within the neuron populations ori-
ent to encode specific features, like orientation, forming this tuning curve behaviour to
collectively encode the feature (Pouget et al., 2000; Sigala & Logothetis, 2002). In this
way, the brain repeatedly organizes itself for feature selection.

The population coding in neurons may follow a gain-encoding schema, where the
population of neurons can encode the mean and variance of a Gaussian density function
simultaneously. This takes advantage of the fact that neural population coding noise
tends to be Poisson-like (Tolhurst et al., 1983). As Saizman & Newsome (1994) have
demonstrated, visual cortex neurons coding for orientation follow a Gaussian-like tuning
curve, where an individual neuron has a preferred orientation where it responds max-
imally and its response drops off as that orientation is moved away from. Presenting
the entire population of neurons with a particular orientation will elicit a noisy response
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from all the neurons responding at different rates according to their tuning curve. We
can treat noisy Poisson responses of this nature as the posterior distribution for a Gaus-
sian distribution, with the peak encoding the mean of the distribution and the amplitude
encoding the variance (Pouget et al., 2003; Knill & Pouget, 2004; Beck et al., 2008;
Lakshminarasimhan et al., 2018).

This mechanism of feature encoding through neural population coding has been ex-
tended further to categorical representations (O’Connell et al., 2018). Studies have
found evidence for an Evidence accumulation model present in the brain, which states
that the brain accumulates evidence for multiple possibilities over time until it reaches
an internally set threshold (Churchland et al., 2008). This has been extended further
into drift-diffusion models, where a calculated decision variable moves towards a thresh-
old or criterion as the nervous system receives sensory information (O’Connell et al.,
2018; Rorie et al., 2010). These lower-level feature variables are further combined
into higher-level feature encoding when observers are making categorical judgements,
which can further be represented through population coding. (Vogels, 1999). Cate-
gorical population encoding has been observed in various regions of the brain, such as
the left-Dorsolateral Prefrontal Cortex (left-DLPFC), Anterior Cingulate Cortex (ACC),
and Temporal-Parietal Cortex (TPC) (Freedman et al., 2003; Heekeren et al., 2004;
Koenig et al., 2005; Shadlen & Newsome, 2001). The previously discussed neural areas
demonstrating population coding, such as the MT, may encode primitive features that
later integrate into abstract categorical representations (Iordan et al., 2015).

5.6 Deterministic vs Probabilistic Sampling
A pervasive question in cognition is the nature of decision strategies under uncertainty.
Consider a binary task where an observer must discriminate a stimulus as coming from
one of two distributions. One possible way an observer may respond is with a determin-
istic strategy, where an observer should respond according to the comparison between
their internal measurement and some criterion. A deterministic observer should respond
the same way given the same stimulus measurement. This idea forms a cornerstone to
SDT , where an observer’s response to a stimulus is dependent on the distance of the
signal and noise distributions and their set criterion (Macmillan & Creelman, 2005).
Under this model, an observer will respond the same way every time they receive a
signal greater than their criterion, and their response only changes as either the signal or
noise distributions change or the criterion is moved.

An alternative possibility for how an observer may respond is through probability
sampling, also known as Bayesian sampling, where an observer responds with the
underlying probability of the stimulus against the distributions (Lee & Janke, 1964;
Healy & Kubovy, 1981). For example, if a particular stimulus has a 60% probability of
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coming from distribution 𝐴, an observer employing probability sampling should respond
𝐴 60% of the time. There has been some evidence in favour of probability sampling
under certain circumstances (Healy & Kubovy, 1981). For example, bi-stable percepts
like the Neckercube Illusion are nicely explained by Bayesian Sampling. The two
percepts of the Neckercube—an inward-facing cube versus an outward-facing cube—
result in equal or near-equal posteriors, and an observer who uses Bayesian Sampling
would experience switching between the two percepts randomly (Moreno-Bote et al.,
2011). However, attempts to uncover the presence of Bayesian Sampling in perceptual
decision-making have not seen much success and the model generally fails to explain
human performance in perceptual tasks (Murray et al., 2015). More importantly, it
is difficult to experimentally distinguish true probability sampling; data generated by
a "noisy" deterministic strategy will match the appearance of probability sampling
(Kubovy et al., 1971).

This noise can arise in a multitude of ways. For instance, an observer might shift their
criterion during an experiment every trial, meaning even given the same stimulus and the
same measurement being made an observer may still respond differently on a trial-by-
trial basis (Kubovy et al., 1971; Healy & Kubovy, 1981). More importantly, the presence
of internal sensory Measurement Noise, caused by the nervous system contaminating
the sensation of the stimulus, can lead to different proximal measurements from the
same distal stimulus. Even under a maximum a posteriori (MAP) estimator the presence
of Measurement Noise makes the process stochastic by nature. The consequence of
stochasticity would lead to empirically the behaviour as an observer using Bayesian
sampling: variable responses given the same stimulus.

One thing to consider with the empirical challenge in differentiating deterministic
from probabilistic decision strategies is that the difficulty arises from the limitation in
our empirical observations. The deterministic observer may only appear stochastic from
an external frame of reference. Their internal measurement is contaminated with their
sensory system’s internal Measurement Noise, a measurement that we do not have direct
access to. If we were able to directly observe this internal measurement, we might find
that the observer is responding according to a true deterministic MAP estimator.

5.7 Ecological validity of categorization experiments
A common criticism across much of categorization research is the validity of categoriza-
tion research in real-world settings. Many categorization experiments focus on contrived
situations of observers learning a specific, often unnatural set of stimuli in a laboratory
setting. Visual categorization experiments may feature stimuli such as the cartoons of
fictional animals (Brooks et al., 2007), arrays of dots on the screen (Ariely, 2001), sine-
wave disks with varying orientations and bar widths (Smith et al., 2010), or even two
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lines at a 90-degree angle of varying lengths (Ashby & Gott, 1988). While undoubtedly
these bodies of work have made important and informative strides in expanding our
understanding of how humans (and non-humans (Smith et al., 2012)) process and form
categories, it is worth questioning the ecological validity of these types of work.

Human observers form and use natural categories every day as they explore their
environments. These categories are formed through intuitive and goal-driven exploration
of encountered objects. Researchers like Markman & Ross (2003) have pointed out the
gap between how categories are typically learned in experimental settings and how
categories are learned in natural environments (Ross, 2000; Markman & Ross, 2003).
This ultimately leads to paradigms such as indirect learning tasks, where the observers
are not told there are categories nor are tasked with learning said categories (Minda &
Ross, 2004).

One of the goals of the methodology we developed and used throughout this thesis
was to provide a more naturally adjacent setting for observers to learn the categories of
our stimuli. This was the main inspiration to create an experiment where participants
are allowed free, unguided exploration of the stimuli. Rather than present the stimuli to
the participant in a highly controlled manner, we simply handed the participant objects
to explore on their own. We did not instruct them on how best to explore said objects or
try to influence the way they might explore them. Instead, we allowed them to physically
manipulate the objects however best they saw fit to extract the information they needed.

This does not address the full extent of the ecological validity concerns raised by
Markman & Ross (2003). In our methodology, observers were still given the simple goal
of classifying the objects without any further goal or context in mind. Future experiments
could be designed to further bridge this validity gap by requiring the observers to naturally
form categories with the objects, possibly in the form of a game. However, we hoped
the considerations we made in allowing for a natural exploration of the objects, on top
of the physical nature of our objects, might help observers to perceive the objects and
categories holistically and as "real things" rather than abstract concepts.

5.8 Assumption of Equal Priors
Our assumption that participants apply an equal Prior on the two categories follows
according to Laplace’s Principle of insufficient reason: participants in the task have
no reason to favour one category over the other, so initially they should assign the
two categories equal priors (Feldman, 2012). We took steps to attempt to remove any
possible bias in creating unique novel names for the categories. If we had simply
named the categories "One and Two" or "A and B", there could potentially have been an
ordering bias. Additionally, arbitrarily choosing different existing nouns as the category
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names like "Chocolate and Peanuts" could have allowed participants to bring in their
own pre-existing biases towards the categories based solely on the name.

We further reinforced the equal priors between the two categories by explicitly telling
participants that "half of the objects were Elyk and half were Noek ", and by genuinely
drawing from either category according to those priors. Every trial had an equal 50%
chance to yield either an Elyk or Noek object. We can further ensure that participants
were trained on this prior by analyzing the objects presented to the participant. The only
instance where this was not the case was in Experiment 2, where on a set number of
trials (4) per block the participant was handed one of two objects outside of the usual set.
However, these trials were also ensured to reinforce the equal priors by not favouring
one category over the other. Two of the trials presented an Elyk object and the other
two presented a Noek object. Analyzing these blocks for bias showed that they still
reinforced the equal priors to the participant.

As we took these considerations into account in our experimental design and when
deciding what information we made available to our participants, we believe that the
assumption of equal Priors was valid to make in the context of our experiments.

5.9 Observer Confidence Ratings
We have largely ignored discussing human observer confidence ratings throughout the
experiments featured in this thesis. However, measuring confidence was always part
of our experimental design; in every trial, after the participant responded with the
categorization of their given object stimuli, they then verbally gave a confidence rating
from 50% to 100%. This seemed at the time a simple addition to our experimental
design with little cost for including (either through adding overall experiment time or
adding fatigue to the participant). However, as we briefly mentioned in Chapter 3, this
measure proved to be uninformative.

We originally hypothesized that participant confidence ratings for their categorization
responses might match the posterior probability as calculated by our observer model.
Since this value represented the probability that a given object belonged to the Elyk
Category, it seemed intuitive that this would also drive the observer’s confidence in their
response. If an object had a 95% posterior probability 𝑃(𝐸𝑙𝑦𝑘 |f𝑚), then an observer
responding "Elyk " should also report a high confidence in their response. While we
generally found a linear trend that supported this hypothesis, there was a high variance
across and within-participant responses that proved to be difficult to interpret. For some
participants, confidence response behaviour seemed to follow different strategies, such as
only responding within a small range like 60% to 80% rather than the full range available
to them. Other participants might stick to only a small subset of responses. While it was
possible to scale participant’s responses to encapsulate the full range of 50% to 100%,
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making comparison easier, this also introduced a level of data manipulation that we did
not feel justified in making. The only conclusion we could draw with any confidence
was that our confidence rating measurement was contaminated by other factors, and was
not a direct measure of the observer’s actual confidence in their response.

Measurement of confidence is a deceptively complex problem. In SDT , the discrim-
ination between response accuracy and the confidence in that response is called a Type
2 Task, and attempts to measure confidence judgements are often confounded by the
presence of response bias (Galvin et al., 2003). For instance, we could have instead
changed our experimental design to ask participants to respond with a binary "high" or
"low" confidence rating every trial rather than a percentile from 50% to 100%. This
would have conceptually been simpler for the participant. However, this measure would
still be confounded by the individual observer’s own biases which we cannot otherwise
account for.

It is important to consider that confidence is a retroactive judgement being made by
the observer. A human observer is unlikely to be cognitively aware of the calculations
that went into their response—they only have the final output which drove their response.
When an experiment asks the participant to report their confidence, they are not nec-
essarily reading out the posterior probability 𝑃(𝐸𝑙𝑦𝑘 |f𝑚) as we might hope they are.
Instead, they are evaluating why they came to the judgement they did. The task becomes
a meta-cognitive problem, and by asking for the observer’s confidence we are instead
more likely receiving the observer’s ability and biases in observing their own responses.

However, there are indeed ways to measure an observer’s confidence ratings despite
these meta-cognitive complexities. Our initial hypothesis was not unfounded; Bayes’
formula does give us the probability that an observer’s response was correct. Methods
have been outlined detailing how an experimental design might try to capture confidence
ratings outside of these confounds. For instance, Maniscalco & Lau (2012) proposed
a measure meta-d’ which reflected the Type 2 Task sensitivity and could be calculated
alongside the typical d’ found in a Signal Detection Theory experimental paradigm
(where an observer is discriminating between two distributions, a noise and a signal).

One interesting approach to measuring an observer’s confidence ratings is the Match-
ing Probability methodology, which uses a lottery-styled gambling game. (Massoni
et al., 2014; Dienes & Seth, 2010). In this approach, an observer first gave a Type 1
response to some discrimination task. They were told that they would be entered into
a lottery based on their accuracy. If their response was correct, they would be awarded
some amount. They then were asked to respond from 0% to 100% the minimum chance
𝑝 they would be required to exchange their lottery ticket (based on their response) for a
new lottery ticket that would be based instead on the chance 𝑝 they gave. Once they gave
this second response, the lottery began. First, a number 𝑙1 was drawn (between 40%
and 100%). If 𝑝 > 𝑙1, the observer would keep their initial lottery ticket. In this case,
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the observer would be rewarded if their Type 1 discrimination response was correct, and
otherwise receive nothing. If 𝑝 < 𝑙1, they would be forced to exchange for the second
lottery ticket. In this case, a new number 𝑙2 was drawn between 0% and 100% and if
𝑙1 > 𝑙2, the observer would be rewarded.

Under the Matching Probability methodology, the percentage response 𝑝 given by
the observer should directly relate to their belief in their discrimination task response.
There are some key details to notice about this methodology. First, if they had high
confidence that their response was correct, then the optimal outcome is for the observer
to stick with their first lottery ticket which rewards them based on that response. The
higher the percentage 𝑝 they respond, the higher the chance that they will keep this initial
lottery ticket. In the case that 𝑙1 is drawn higher than their responded 𝑝 and they are
forced to exchange tickets, they are still highly likely to be rewarded since 𝑙1, which will
have had to be a higher number above an already high 𝑝, will be compared against the
newly drawn 𝑙2. Thus, if the observer is confident that their discrimination task response
is correct, they are rewarded the most if they respond with a high 𝑝. Second, if the
observer is not confident in their discrimination task response, the optimal outcome is
for the observer to exchange the second lottery ticket. While this second ticket is not
directly based on the percentage 𝑝 responded by the participant, it holds a critical detail
where 𝑝 < 𝑙1. This means that the lower the observer responds 𝑝, not only does the
chance of exchanging lottery tickets increase but so too does the chance of 𝑙1 also being
a low number. In the lottery ticket 2 scenario, the observer is rewarded when 𝑙1 > 𝑙2.
This means that the best chance for winning is with as high an 𝑙1 value as possible. This
prevents a strategy of simply "bottoming out" the 𝑝 response when the observer has
low confidence, as this hurts their chances of winning the second lottery ticket. As it
turns out, the most optimal response in this scenario is to respond with a 𝑝 that matches
the actual probability that their Type 1 discrimination task response is correct (Massoni
et al., 2014).

Attempts were made to implement Matching Probability into our experimental design
for our categorization task. We ran a pilot experiment with a small number of participants
through such a design. However, it proved to be too complex in the context of our
experiment for our participants to follow along with. The stimuli and task design in
our experiment are a bit more complex than typical discrimination task experiments.
Especially considering that our human participants were tasked with learning the novel
categories throughout the experiment, it was determined that implementing the Matching
Probability was outside the scope of our experiment.

In the end, our attempt to capture confidence ratings from our participants was naive.
We were aware of this naivety as we designed our experiment, and while we attempted to
address this with a more clever methodology, it proved to interfere with the main focus of
our experiment in teaching human observers novel categories of objects through touch.
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5.10 Future Directions
Throughout this thesis, we have explored and empirically tested the fundamental frame-
work for a categorization task within the sense of touch using physical objects and
allowing for the testing and exploration of complex probabilistic models. Our Bayesian
observer model which was detailed in length in Chapter 2 illustrates a starting point for
a Bayesian Categorization Model testable in an experimental setting. However, while
it was outside of the scope of the current thesis to explore this model further, there is a
wealth of variation and modification that could be made.

Testing an extended stimulus object set
One of the biggest limitations of the empirical studies presented here has been the limited
resolution of the stimulus set used in our experiments. The features used to make up
the categories only had 5 levels each (6 to 10 sides, and 4mm to 8mm dot spacing).
This resulted in 25 total objects. The coarse resolution of this stimulus set was set
mostly as a compromise for the cost and difficulty of being able to support more physical
objects. For instance, if we had wanted to double the resolution such that each feature
had 10 levels, the total number of physical objects needed to be created would inflate
to 100. This would take a considerable amount of time to 3D print the objects, as each
object took multiple hours to produce. It also would become infeasible for a human
experimenter to run such an experiment where they would be required to select a single
object out of an array of 100.

However, there are alternative stimulus object designs that could be explored in the
future that would be able to increase the feature resolution while keeping the number
of physical objects needed to a minimum. One such design could be a shell-and-face
stimulus set, which would feature configurable and deconstructable objects. Rather than
needing to 3D print every feature combination, an experimenter could print the feature
levels independently and have objects that need to be put together. For instance, we
could have five "sides" objects and five "dot spacing texture" objects, resulting in 10
total physical prints that would need to be created but retaining the 25 object resolution.

Exploring complex feature dimensions and categories
A natural progression of the experimental paradigm presented here would be to manip-
ulate the feature dimensions used to define the categories. Different types of features
may prove to be better suited for learning the category distributions than the ones chosen
in our design. For instance, the sides featured turned out to be problematic for a few
reasons being an odd feature for participants to measure in the experiment. This was
seen anecdotally through participant self-reports and in the results of Experiment 3,
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where it was found that the Sides measurements were typically worse than the Dots mea-
surements. The sides feature is also not a physically continuous variable, which makes
it a bit inappropriate to consider as a true Gaussian probability density. The experiment
should be repeated with a more appropriate feature, such as weight or thickness. The
categories could also be constructed using a combination of three features. Derivations
of the Bayesian observer model that could handle more than two features can be found
in 2.

The categories used throughout our experiments were designed to be conceptually
easy for observers to learn. To maintain this simplicity, the two features sides and dot
spacing were considered to be independent variables. This was true for our experiment
design; the category distributions were created in such a way that there was no correlation
between the two features, 𝜌 = 0. However, this may not always be the case in real-world
categorization settings. It would be worthwhile to test if observers can learn tactile
categories when a correlation is present.

To approach such a problem, some modification would be needed from our previous
derivations in Chapter 2. Namely, we can rewrite the Bivariate Gaussian Equation 2.6
to include the correlation coefficient 𝜌.

𝑃(𝑛𝑚 |𝐶)𝑃(𝑑𝑚 |𝐶) =
1

2𝜋𝜎𝐶𝑛𝜎𝐶𝑑
√︁

1 − 𝜌2
𝑒
−( (𝑛𝑚−𝜇𝐶𝑛 )2

2𝜎2
𝐶𝑛

+ (𝑑𝑚−𝜇𝐶𝑑 )2

2𝜎2
𝐶𝑑

− 2𝜌(𝑛𝑚−𝜇𝐶𝑛 ) (𝑑𝑚−𝜇𝐶𝑑 )
𝜎𝐶𝑛𝜎𝐶𝑑

)

(5.1)

A categorization experiment could also be run with multiple categories, the deriva-
tions of which can be found in Chapter 2.

These variations of our experiment manipulating the number of features and cate-
gories present that observers are required to learn will test the validity of our model
applied to humans at higher complexity levels. The Bayesian Categorization Model can
in theory resolve any categorization task of any complexity. However, this could prove
to be too complex for participants to categorize with the same degree of accuracy as our
model. Learning such complex categories themselves could prove to be too difficult a
task at a certain point. The upper limits of when and how our model loses validity in pre-
dicting human categorization performance would be an important step in understanding
the extent of our model’s predictive power.
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Changing priors
As previously discussed in this chapter, we reinforced experimentally and assumed equal
priors between the two categories for observers in the experiment. However, this does
not necessarily need to be the case, and it would be experimentally simple to introduce
unequal priors in this experimental design. This would allow questioning and exploration
of whether observers are capable of learning more complex prior distributions.

We might expect that an observer with degraded or less informative sensory data
would be more susceptible to changes in the Prior probabilities of the categories (Tong et
al., 2016). In the two experiments we have discussed thus far, the Prior was intentionally
set to be equal between each of the categories. A simple future experiment could
involve manipulating these priors, either during or after category training. Under such a
manipulation an observer would rely more on the Priors rather than the Likelihoods.

One experimental design could explore the impact of having the priors change during
the experiment and observe how this impacts category learning and performance. For
instance, participants could be trained on equal priors for the first half of the experiment,
and then be trained on unequal priors (for instance, 70% Elyk and 30% Noek) halfway
through, where Elyk objects are then more likely to appear than Noek objects.

Bridging to other forms of categorization experiments
Earlier we outlined two distinct paradigms within categorization research whose method-
ologies are often incompatible with making valid direct comparisons: The Nominal-
Ordinal Feature Paradigm and the Continuous Feature Paradigm. Our work throughout
this thesis fits within the latter paradigm. However, it would be interesting and worth-
while for future work to attempt to bridge these two paradigms together and form a
more unifying understanding of categorization overall. This could be accomplished
by fitting a stimulus and experiment design analogous to typical Feature Classification
experiments that can be then expanded to a Feature Distribution experiment.

As an illustrative example, let’s examine the first experiment described in Brooks &
Hannah (2006)’s Instantiated features and the use of "rules". This experiment depicted
a 2 category task featuring the Bleebs and Ramuses line drawings. These stimuli had
four features that could vary by two levels. Prototype Bleebs and Ramuses were coded as
0000 and 1111 respectively. The training set of stimuli presented to participants featured
"one-aways", which were stimuli that had one feature differing from the prototype (for
example, 0100 would be a one-away Bleeb). The four features examined in this stimulus
set were the number of legs, the head shape, the body pattern, and the body shape.
Of interest in this particular study is its consideration of instantiations, which were the
visual representation of a certain feature. For instance, the pattern of Bleebs was coded
as stripes, and there might be many different visual instantiations of stripes, but they
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would all be coded as 0 for stripes. This was an attempt to incorporate an element of
variation in feature representations. Repeating their example, both humans and birds
have two legs, but those legs never share the same appearance across the two categories.

This is an interesting consideration that outlines a substantial shortcoming in the way
features are encoded through this experimental paradigm. By reducing a legs feature
to just the number of legs, an observer who can only see the number of legs and no
other qualities about them would truly consider birds and humans to have the same
measurement regarding legs. However, there is far more information available regarding
just the animal’s legs to be able to differentiate them. Brooks & Hannah (2006) attempts
to get around this problem by considering these different instantiations of the same feature
and examining the effect of introducing novel instantiations. However, this problem is
resolved when you consider the multiple observational measurements an observer can
make across stimuli, and that these measurements are not necessarily binary distinctions
being made but continuous measurements that can account for statistical distributions
underlying them. It is even possible under this view that sub-categories such as binary
stripes vs dots classification can be formed through these measurements, and that these
sub-categories are what are combined into the overall category percept.

We put forth the following hypothesis relating the two paradigms together: The
Nominal-Ordinal Feature Paradigm represents a special case of the Continuous Feature
Paradigm where a continuous feature distribution is assumed to have zero variance.
Thus, we might be able to fit stimuli such as the ones featured in our experiments by
applying this condition directly, setting the Within-Category Feature Variability𝜎𝐶 𝑓 = 0
for each feature and category. We would further be able to mimic effect instantiations
explored by Brooks & Hannah (2006) by taking another measurement close to the
category mean.

Since our stimuli set only contains two features, it is currently not suitable to replicate
Nominal-Ordinal Feature Paradigm studies in this way. We would need to create a new
set of complex stimuli where we could replicate the Bleebs and Ramuses stimuli set
conceptually. This could be done in several ways and through the use of different
senses. Keeping in line with the work we presented through this thesis, let’s consider
a fully tactile experimental design. We could follow the stimulus design by Schwarzer
et al. (1999) and create a set of objects with four defining features: size, shape, surface
texture, and weight. These features can all be potentially continuous and thus would
be able to fit under the Continuous Feature Paradigm. For the surface texture feature,
rather than the grit of sandpaper we could create a measurement of stripes-to-dots with
in-between measurements being some ambiguous transform combination of stripes and
dots to varying degrees. With these new stimuli, we could replicate the experimental
design of Brooks & Hannah (2006), as well as Schwarzer et al., 1999 and many other
experiments and an initial phase of the experiment would confirm this valid replication.
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However, the critical part of this proposed study would be to change the categories to
use feature distributions (in effect, set 𝜎𝐶 𝑓 > 0). Such an experiment would allow us to
unify these methodologies and examine our hypotheses in how they relate to one another.
Furthermore, we could examine if our Bayesian Categorization Model fits the results
found in Nominal-Ordinal Feature Paradigm studies as well.

What may prove to be especially powerful with this approach will be the ability to
include Measurement Noise in the Nominal-Ordinal Feature Paradigm. Currently, vari-
ation in how observers may measure the features under this paradigm is not considered.
However, as we demonstrated in Chapter 4 this factor can potentially have a major impact
on participant categorization accuracy. If Measurement Noise is a present factor then
even under the special case of the Nominal-Ordinal Feature Paradigm where 𝜎𝐶 𝑓 = 0,
the resulting distributions including this sensory noise variance are 𝜎𝐶 𝑓 + 𝑓𝑚 > 0.

Further extensions of our work
We have focused our considerations of categories on representations that are generally
rooted in the natural world. These are mainly comprised of features that can be measured
directly through the senses resulting in a holistic, sensed percept. However, the concept
of categories can extend to be far more abstract than this; things such as concepts,
ideas, emotions, or descriptions of things that do not pertain to a physical, tangible
representation can be understood through categories. Furthermore, if we can understand
the factors that influence these kinds of abstract categories, we could theoretically apply
approaches like our Bayesian Categorization Model to understand how these categories
are perceived.

Perception of identity is one such abstract concept that could be understood through
the lens of categorization. Of particular interest is the perception of gender identity:
how does one person perceive another person’s gender? This question is especially
relevant to transgender populations whose experiences usually involve an incongruence
with their gender identity and how other people identify them. What are the different
factors that someone is using, either intentionally or not, in their perception of another’s
gender? What are the main observations being made that contribute to gender perception,
and how are these observations and perceptions changing as a trans person takes steps
to transition? Considering these questions through our Bayesian Categorization Model
reveals that to understand how categorical gender perception is made, we must understand
what is driving the underlying observations and categories people hold on gender.
Human physical characteristics vary wildly across people. Even if an overall average
measurement differs for male-identifying individuals and female-identifying individuals,
this variance means these measurements overlap greatly, and so too should the categories.
With so many potential features to make observations over, gender perception is likely a
complex categorical problem.
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Exposure to these gender categories is an important driving force for these underlying
categorical distributions, and poor representation of people of differing identities and
appearances throughout media might lead to very biased and inaccurate categorical
gender distributions throughout the population. The treatment of gender as a binary
category might be driven by a biased sampling of the population (through movies,
television, etc) that doesn’t properly represent an even sampling of the human population.
By just considering the observations involved in gender perception as distributions with
variation, and that these distributions are combined to form an overall gender percept, we
can see how gender perception becomes reduced to a bimodal distribution. We might be
able to calculate an overall posterior for either gender category using our model if we had
access to all the observations involved and the distributions of those observations within
the categories. Of course, gender is not truly a binary. Gender-nonconforming people
and non-binary people might not fit nor want to fit within a binary gender categorization
at all. Finding ways to shift or expand the gender categories that are learned throughout
the population would lessen the amount of incongruent gender perception overall. An
interesting study along this line of thinking might involve seeing if these underlying
category distributions could be changed simply through further exposure. In other
words, does more diverse representation change people’s perception of other genders to
better reflect the variation found in people?

Of course, studies of this nature would need to be done with extreme care and be
informed by representatives of transgender and non-binary communities. Scientific
study on marginalized groups, even with good intentions and in pursuit of fundamental
research to further understanding, can very easily be used in turn to further marginalize,
stigmatize and pathologize those groups.

This consideration of identity perception as a problem approachable through cat-
egorization could also hold fascinating exploration when considering plural people.
Plurality is a phenomenon of experiencing some form of multiple selves within one
body, sometimes referred to as headmates or alters. This is often related to and known
as Dissociative Identity Disorder (DID), although plurality and DID are not exactly the
same thing; while DID is a specific and narrow diagnosis, plurality represents a wider
umbrella of diverse experiences as varied as the night sky. Plural experiences are often
associated with trauma, however, this is not always the case and some plural people
might have no history of trauma at all (Yarbrough, 2018). A plural person may have
two or more people or unique identities within their system—a term that plural people
sometimes use to refer to themselves as a collective.

Spending time getting to know a plural system and the members of their system
can eventually lead to recognizing and identifying those persons based on even subtle
behavioural cues. We could again attempt to understand this identity perception by an
outside observer on individual identities through our Bayesian Categorization Model.
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Each headmate within a plural system could be understood as a category with different
behavioural observations being the features an observer is measuring, such as patterns
in speech, vocal pitch, body language, and interests. These behavioural cues might
naturally have some amount of variance within a headmate "category" of what an
observer might expect or can accurately measure themselves. These categories can also
overlap to varying degrees, making identification a complex categorization problem.
However, given enough time and information an observer may learn to accurately identify
headmates in a system. Understanding this learning process could further inform how
identity is perceived overall.

5.11 Conclusion
Throughout the study of categorization, researchers have employed various methodolo-
gies, stimuli, and models to understand how the brain undergoes this process. Each of
these approaches has its own strengths and weaknesses for studying different aspects of
categorization. However, we found two gap existed in this research. There is a lack of
direct Bayesian approaches that consider categories and stimuli based on the statistical
information underlying them. There has also been limited exploration on the tactile
system in categorization. This thesis aimed to bridge both of these gaps by exploring
categorization through our Bayesian model and investigate human performance on a
categorization task when limited to their sense of touch.

The empirical and theoretical work presented here puts forth an experimental frame-
work for training and testing novel categories in human participants using only the
sense of touch. Furthermore, we demonstrate that a Bayesian Categorization Model
which includes sensory Measurement Noise can predict overall human performance in
a tactile-based categorization task. This work supports the hypothesis that a Bayesian-
based computational perceptual model may represent the underlying processing that a
human observer undergoes during categorization tasks.
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