Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29408
Title: TITLE: MgO doped PPLN optical wavelength converter with an integrated structure
Authors: Deng, Juan
Advisor: Xu, C. Q.
Department: Engineering Physics
Keywords: optical wavelength converters;optical fibre communication;all-optical signal processing
Publication Date: Aug-2008
Abstract: This thesis describes the development of optical wavelength converters with an integrated coupling structure, fabricated on periodically poled MgO doped lithium niobate (MgO:LN) for optical fiber communication and other all-optical signal processing applications. Wavelength converter is an integral part of any broadband communication system. The ability to transfer information between carrier wavelengths allows for efficient use of the available bandwidth in a transmission medium. Wavelength converters based on PPLN waveguides are among the most efficient nonlinear optical devices available today, due to highspeed operation, low noise, parallel operation on multiple wavelength channels and preservation of information carried in the optical domain. However, low conversion efficiency is an issue for wavelength converter based on PPLN waveguide. Compared to pure LN, MgO doped LN decrease restriction in optical damage and increase conversion efficiency. Integrated coupling structure demonstrates a solution to mode-coupling of the input wave to the fundamental mode of DFG device and increase the conversion efficiency. Therefore, a periodically poled MgO doped lithium niobate (MgO:LN) waveguides with integrated coupling structure is fabricated. The components of integrated coupling structure are compatible with lithium nobate waveguides, including directional couplers, small radius bends, adiabatic taper, and mode filter. The integrated coupling structure combines the pump and signal waves into the DFG conversion section, and makes the single mode conversion of the pump from input waveguide to conversion section. Theoretical models and simulations are provided in this thesis, and performances of the device with this structure are also presented.
URI: http://hdl.handle.net/11375/29408
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Deng_Juan_2008Aug_Masters.pdf
Open Access
4.62 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue