Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29112
Title: An Innovative Fabrication Route to Machining Micro-Tensile Specimens Using Plasma-Focused Ion Beam and Femtosecond Laser Ablation and Investigation of the Size Effect Phenomenon Through Mechanical Testing of Fabricated Single Crystal Copper Micro-Tensile Specimens
Authors: Huang, Betty
Advisor: Basim, Nabil
Department: Materials Science and Engineering
Keywords: Microscopy;Focus Ion Beam;Micromechanical Testing;Micro-Tensile;Size Effect;Femtosecond Laser;Electron Backscattered Diffraction;X-Ray Computed Tomography;Martensite Steel;Single Crystal;Bicrystal;Plasma FIB;Hydro Turbines;copper;Heat-Affected Zone
Publication Date: 2023
Abstract: This project is in collaboration with the Hydro-Quebec Research Institute (IREQ) and the Canadian Centre for Electron Microscopy (CCEM) on the mechanical test performance of miniature-scale micro-tensile specimens. The objective of the thesis project is to create an efficient and reliable fabrication route for producing micro-tensile specimens and to validate the accuracy of a newly custom-built micro-tensile bench at IREQ. The fabrication techniques developed and outlined in this thesis use the underlying fundamental physical mechanisms of secondary electron microscopy (SEM), focused-ion beam (FIB), and the femtosecond (fs)-laser machining for producing optimal quality micro-tensile specimens. The mechanical testing of the specimens is geared towards studying the localized deformation occurring in the microstructure when the size of the specimen only limits a number of grains and grain boundaries in order to target the specific detailed measurement of the mechanical behaviour of individual grains and interfaces. The goal for creating an optimal fabrication route for micro-tensile specimens is to carry out micro-mechanical testing of the primary turbine steels of 415 martensitic stainless steel used in the manufacture of Francis turbine components at Hydro-Quebec. The mechanical testing of single phase and interphase interface 415 steel micro-tensile specimens are considered building blocks to developing digital twin models of the steel microstructure. The experimental data from the mechanical tests would be fed into the crystal plasticity finite element models (CPFEM) that are currently being developed by researchers at IREQ. With the development of digital twin models, engineers at IREQ would be able to predict crack initiation at the microstructure level (prior to crack propagation into macro-scale cracks) by observing the evolution of the grain’s crystallographic orientation and morphology, as well as deformation mechanisms such as martensite formation and twinning produced from localized induced strains in the microstructure. In addition, self-organized dislocation processes such as dislocation nucleation and dislocation escape through the free surface can also be studied using the CPFEM models for size-limited mechanical deformation behaviour of miniature-scale mechanical test specimens. The fabrication routes studied in this thesis project use the combination of the fs-laser and plasma focused ion beam (PFIB) to machine the micro-tensile specimens. (100) single crystal copper was the ideal material chosen to validate the accuracy of the micro-tensile bench and quality of the fs-laser-machined tensile specimens, due to its ductile nature and well-characterized properties studied in literature. A mechanical size effect was studied for single crystal copper specimens with different gauge thicknesses. It was observed from the micro-tension testing that the strength of the specimens increased with decreasing gauge thickness occurring in the size-limited tensile gauges. In addition, it was determined there was negligible differences in the size effect seen between the PFIB-machined copper micro-tensile specimens and the fs-laser-machined micro-tensile specimens, demonstrating that the fs-laser is a reliable machining route for the micro-tensile specimens. X-ray computed tomography was used to validate the correct geometry of the machined gauge section produced from an innovative gauge thinning method adopted from IREQ’s research collaborator, Dr. Robert Wheeler. As well, finite-element analysis (FEA) was performed to determine the deformation behaviour under both linear-elastic and non-linear elastoplastic conditions of (100) copper and 415 steel models simulated in pure tension, prior to the fabrication of the micro-tensile specimens, respectively. Furthermore, significant progress has been made towards targeting martensite grains in the 415-steel microstructure using electron backscattered diffraction (EBSD) analysis to produce single crystal and interphase interface micro-tensile specimens. A workflow towards grain targeting using EBSD analysis has been developed, as well as for the relocation of grains using reference fiducial marks for future fabrication of the single crystal and interphase interface 415 micro-tensile specimens.
URI: http://hdl.handle.net/11375/29112
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Thesis (Final Version) Updated.pdf
Open Access
An Innovative Fabrication Route to Machining Micro-Tensile Specimens Using Plasma-Focused Ion Beam and Femtosecond Laser Ablation and Investigation of the Size Effect Phenomenon Through Mechanical Testing of Fabricated Single Crystal Copper Micro-Tensile Specimens6.96 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue